JP2019089297A - Composite member and method for producing the same - Google Patents

Composite member and method for producing the same Download PDF

Info

Publication number
JP2019089297A
JP2019089297A JP2017221578A JP2017221578A JP2019089297A JP 2019089297 A JP2019089297 A JP 2019089297A JP 2017221578 A JP2017221578 A JP 2017221578A JP 2017221578 A JP2017221578 A JP 2017221578A JP 2019089297 A JP2019089297 A JP 2019089297A
Authority
JP
Japan
Prior art keywords
resin composition
inorganic particles
composite member
composite
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017221578A
Other languages
Japanese (ja)
Other versions
JP7020874B2 (en
JP2019089297A5 (en
Inventor
望月 章弘
Akihiro Mochizuki
章弘 望月
康之 竹田
Yasuyuki Takeda
康之 竹田
敦子 石田
Atsuko Ishida
敦子 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2017221578A priority Critical patent/JP7020874B2/en
Publication of JP2019089297A publication Critical patent/JP2019089297A/en
Publication of JP2019089297A5 publication Critical patent/JP2019089297A5/ja
Application granted granted Critical
Publication of JP7020874B2 publication Critical patent/JP7020874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a composite member in which resins or a resin and a dissimilar material are made into a composite, and a new method for producing the same.SOLUTION: There is provided a composite member in which a first member having a layer formed of inorganic particles and a second member formed of a resin having a shrinkage ratio sh (%) and an elastic modulus E (MPa) satisfying a relationship of E≤10,000×exp (-2.64×sh) are joined to each other on a base material. In the composite member, the second member is formed of a resin composition having a shrinkage ratio sh (%) and an elastic modulus E (MPa) satisfying a relationship of E≤63,000×exp (-2.64×sh).SELECTED DRAWING: Figure 1

Description

本発明は、樹脂同士、または樹脂と異種材料とが接合された複合部材およびその製造方法に関する。   The present invention relates to a composite member in which resins, or resins and different materials are joined, and a method of manufacturing the same.

樹脂同士、または樹脂と金属やガラス、無機材料といった異種材料とが接合された複合部材は、従来から、インストルメントパネル周りのコンソールボックス等の自動車の内装部材やエンジン周り部品、インテリア部品、デジタルカメラや携帯電話等の電子機器の筐体部、インターフェース接続部、電源端子部等の外界と接触する部品に用いられている。   Composite members in which resins or resin and dissimilar materials such as metal, glass, and inorganic materials are joined have been conventionally used in automobile interior members such as a console box around an instrument panel, engine interior parts, interior parts, digital cameras They are used in parts that come in contact with the outside world, such as the housing of electronic devices such as mobile phones and the like, interface connections, and power supply terminals.

樹脂と樹脂、または樹脂と異種材料とを複合化する方法としては、樹脂と接合される相手側部材の接合面に微小な凹凸を形成しておきアンカー効果で接合する方法、接着剤や両面テープを用いて接着する方法、異種材料及び/又は樹脂成形品に折り返し片や爪等の固定部材を設け、この固定部材を用いて両者を固着させる方法、ねじ等を用いて接合する方法等がある。これらの中でも、樹脂板、金属板に微小な凹凸を形成する方法や接着剤を用いる方法は、複合成形品を設計する形状自由度の点で有効である(特許文献1、2)。   As a method of compounding resin and resin or resin and different material, a method of forming minute unevenness on the joint surface of the other member to be joined with the resin and joining by the anchor effect, adhesive agent, double-sided tape Bonding methods using different materials and / or resin molded products, and fixing members such as folded pieces and claws, using the fixing members to fix them together, and bonding using screws, etc. . Among these, the method of forming minute irregularities on a resin plate or a metal plate and the method of using an adhesive are effective in terms of the degree of freedom in designing a composite molded product (Patent Documents 1 and 2).

国際公開第WO2014/125999号パンフレットInternational Publication No. WO 2014/125999 Brochure 特開2014−117724号公報JP, 2014-117724, A

上記特許文献1、2に記載の方法は、レーザーで対象部材の表面に溝を形成するため、局所的な発熱があり、接合部材の熱膨張に起因する変形を生じることがあった。また樹脂にレーザー加工した場合、樹脂の炭化物が接合面に残り経時での接合性を劣化させる場合があるという課題があった。
本発明の目的は、樹脂同士、または樹脂と金属やガラス、無機材料といった異種材料とを複合化した複合部材およびその新たな製造方法を提供することにある。
In the methods described in Patent Documents 1 and 2 described above, since a groove is formed on the surface of the target member by a laser, there is local heat generation, which may cause deformation due to thermal expansion of the bonding member. In addition, when laser processing is performed on a resin, there is a problem that carbides of the resin may remain on the bonding surface to deteriorate the bonding property over time.
An object of the present invention is to provide a composite member in which resins are mixed or resins and different kinds of materials such as metal, glass, and inorganic materials, and a new manufacturing method thereof.

本発明は、下記によって達成された。
1. 基材上に無機粒子からなる層を有する第1部材と、収縮率sh(%)と弾性率E(MPa)がE≦100000×exp(−2.64×sh)を満たす樹脂組成物からなる第2部材、とを接合してなる複合部材。
2.前記第2部材が、収縮率sh(%)と弾性率E(MPa)がE≦63000×exp(−2.64×sh)を満たす樹脂組成物からなるものである前記1に記載の複合部材。
3.前記樹脂組成物が、エラストマを含むものである前記1又は2に記載の複合部材。
4.基材上に無機粒子からなる層を有する第1部材と、エラストマを含む樹脂組成物からなる第2部材とを接合してなる複合部材。
5.前記エラストマが、オレフィン系重合体、ポリエステル系エラストマ及びウレタン系エラストマ、アクリル系重合体から選ばれる少なくとも1種である前記3又は4に記載の複合部材。
6. 前記エラストマが、グリシジル基を含有するエラストマである前記3〜5いずれかに記載の複合部材。
7.前記無機粒子からなる層が、平均粒径1〜500nmの無機粒子からなるものである、前記1〜6いずれかに記載の複合部材。
8.前記無機粒子からなる層が、厚さ1〜1500nmである、前記1〜7いずれかの項に記載の複合部材。
9.前記無機粒子からなる層が、最密充填した無機粒子からなるものである、前記1〜8いずれかに記載の複合部材。
10.前記基材が、JIS B 0601:1982に準拠して測定される表面粗さが、Rz=Rmax±10%、かつRmax=1〜10μmである前記1〜9いずれかに記載の複合部材。
11.前記基材上の層が、実質的に前記無機粒子のみからなるものである前記1〜10いずれかに記載の複合部材。
12.前記樹脂組成物が粒径0.1〜50μmの無機粒子からなる充填材を5〜50質量%含有するものである前記1〜11いずれかに記載の複合部材。
13.前記基材が、樹脂、ガラス、セラミックおよび金属から選ばれる少なくとも1種からなるものである前記1〜12いずれかに記載の複合部材。
14.前記基材の熱伝導率λ(W/m・k)が2.0以下である前記1〜13いずれかに記載の複合部材。
15.前記1〜14いずれかに記載の複合部材の製造方法であって、移流集積法により、基材上に無機粒子からなる層を形成して第1部材を作成し、前記第1部材上に、収縮率sh(%)と弾性率E(MPa)がE≦100000×exp(−2.64×sh)を満たす樹脂組成物からなる第2部材を射出成形により接合する、複合部材の製造方法。
The present invention is achieved by the following.
1. Consisting of a first member having a layer consisting of inorganic particles on a base material, and a resin composition in which the shrinkage factor sh (%) and elastic modulus E (MPa) satisfy E ≦ 100000 × exp (−2.64 × sh) And a second member.
2. The composite member according to the above 1, wherein the second member is made of a resin composition in which the shrinkage ratio sh (%) and the elastic modulus E (MPa) satisfy E ≦ 63000 × exp (−2.64 × sh) .
3. The composite member according to the above 1 or 2, wherein the resin composition contains an elastomer.
4. The composite member formed by joining the 1st member which has a layer which consists of inorganic particles on a base material, and the 2nd member which consists of a resin composition containing an elastomer.
5. The composite member according to 3 or 4, wherein the elastomer is at least one selected from an olefin polymer, a polyester elastomer, a urethane elastomer, and an acrylic polymer.
6. The composite member according to any one of 3 to 5, wherein the elastomer is an elastomer containing a glycidyl group.
7. The composite member according to any one of the above 1 to 6, wherein the layer made of the inorganic particles is made of inorganic particles having an average particle diameter of 1 to 500 nm.
8. The composite member according to any one of 1 to 7, wherein the layer made of the inorganic particles has a thickness of 1 to 1,500 nm.
9. The composite member according to any one of 1 to 8, wherein the layer composed of the inorganic particles is composed of a close-packed inorganic particle.
10. The composite member according to any one of the above 1 to 9, wherein the base material has a surface roughness measured according to JIS B 0601: 1982, Rz = Rmax ± 10%, and Rmax = 1 to 10 μm.
11. 11. The composite member according to any one of 1 to 10, wherein the layer on the substrate substantially consists of only the inorganic particles.
12. The composite member according to any one of 1 to 11, wherein the resin composition contains 5 to 50% by mass of a filler composed of inorganic particles having a particle diameter of 0.1 to 50 μm.
13. The composite member according to any one of 1 to 12, wherein the substrate is made of at least one selected from resin, glass, ceramic and metal.
14. The composite member according to any one of 1 to 13, wherein the thermal conductivity λ (W / m · k) of the substrate is 2.0 or less.
15. In the method for producing a composite member according to any one of 1 to 14, the first member is formed by forming a layer composed of inorganic particles on a substrate by an advection accumulation method, and on the first member, The manufacturing method of the composite member which joins by injection molding the 2nd member which consists of a resin composition with which shrinkage | contraction rate sh (%) and elastic modulus E (MPa) satisfy | fill E <= 100000xexp (-2.64xsh).

本発明の複合部材は、基材が熱により変形することがなく、また、基材が樹脂の場合であっても灰分が残ることもなく、経時での接合性を確保することができる。   In the composite member of the present invention, the base material is not deformed by heat, and even when the base material is a resin, the ashing property does not remain, and the bonding property over time can be secured.

本発明の複合部材の一実施態様1を模式的に示す平面図である。It is a top view which shows typically embodiment 1 of the composite member of this invention. 複合部材実施態様1の斜視図である。FIG. 2 is a perspective view of a composite member embodiment 1; 複合部材実施態様1の接合強度を評価する方法の模式図である。It is a schematic diagram of the method to evaluate the joint strength of composite member embodiment 1. FIG. 気密試験のための試料形態を示す模式図である。It is a schematic diagram which shows the sample form for an airtightness test. 気密試験機を用いた気密性評価の方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the method of airtightness evaluation using an airtightness tester. 本発明の実施態様3の第1部材(A)および複合部材(B)の斜視図である。It is a perspective view of the 1st member (A) and composite member (B) of Embodiment 3 of this invention.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.

<複合部材>
本発明の複合部材の一態様は、基材上に無機粒子からなる層を有する第1部材と、収縮率sh(%)と弾性率E(MPa)がE≦10000×exp(−2.64×sh)を満たす樹脂組成物からなる第2部材とを接合してなることを特徴とする。また、本発明の複合部材の別の態様は、基材上に無機粒子からなる層を有する第1部材と、熱可塑性樹脂及びエラストマを含む樹脂組成物からなる第2部材とを接合してなることを特徴とする。
<Composite member>
One aspect of the composite member of the present invention is a first member having a layer comprising inorganic particles on a substrate, and a shrinkage rate sh (%) and an elastic modulus E (MPa) of E ≦ 10000 × exp (−2.64) It is characterized by joining with the 2nd member which consists of a resin composition which fills xsh). Moreover, another aspect of the composite member of the present invention is formed by bonding a first member having a layer comprising inorganic particles on a substrate and a second member comprising a resin composition containing a thermoplastic resin and an elastomer. It is characterized by

≪基材上に無機粒子からなる層を有する第1部材≫
本発明の第1部材上の無機粒子からなる層(以下、単に粒子層ともいう)は、平均粒径1〜500nmの無機粒子からなるものであることが好ましい。また、層の厚さは1〜1500nmであることが好ましい。この層は、最密充填した無機粒子からなる層であることが好ましい。具体的には、例えばいわゆる移流集積法を利用して無機粒子が配列した層であることが好ましい。
«First member having a layer consisting of inorganic particles on a substrate»
The layer composed of inorganic particles on the first member of the present invention (hereinafter, also simply referred to as a particle layer) is preferably composed of inorganic particles having an average particle diameter of 1 to 500 nm. Moreover, it is preferable that the thickness of a layer is 1-1500 nm. This layer is preferably a layer consisting of closely packed inorganic particles. Specifically, for example, a layer in which inorganic particles are arranged by using a so-called advection accumulation method is preferable.

この方法による粒子層は、粒子が横毛管力によって集積し、最密構造を形成することが知られている。本発明では、この粒子層を2つの部材の接合に使用することを特徴とする。つまり本発明では、基材上に形成した最密構造を有する無機粒子層が接合材の役目を果たすという、これまでにない接合方法による複合部材を提供する。   The particle layer by this method is known to accumulate particles by lateral capillary force to form a close-packed structure. The present invention is characterized in that this particle layer is used to bond two members. That is, the present invention provides a composite member according to an unprecedented bonding method in which an inorganic particle layer having a close-packed structure formed on a substrate serves as a bonding material.

なお、第1部材の接合面上にムラなく無機粒子が分散した状態とするためには、無機粒子が第1部材の表面に二次元配列(一層のみで存在)した状態よりも、複数層に重ね塗りされた状態で存在している方が好ましいが、一方で無機粒子層が極端に厚い場合、層内で無機粒子が厚さ方向に幾重にも三次元的に積層された状態となり、無機粒子同士の境界からの剥離による第1部材と第2部材の接合強度の低下が発生するおそれがあるため、無機粒子層の厚さは、無機粒子が第1部材の接合面全体に均一に二次元的に配列(5層以下、例えば1〜3層で配列)した状態となることが好ましい。   Note that in order to make the inorganic particles uniformly dispersed on the bonding surface of the first member, the inorganic particles are in a plurality of layers rather than in a state in which the inorganic particles are two-dimensionally arrayed (present only in one layer) on the surface of the first member. It is preferable that the inorganic particle layer is extremely thick, but in the case where the inorganic particle layer is extremely thick, the inorganic particles are three-dimensionally laminated several times in the thickness direction in the layer, and thus inorganic Since there is a risk that a decrease in bonding strength between the first member and the second member may occur due to peeling from the boundaries between the particles, the inorganic particle layer is formed such that the inorganic particles are uniformly distributed over the entire bonding surface of the first member. It is preferable to be in a state of being arranged dimensionally (5 layers or less, for example, 1 to 3 layers).

無機粒子としては、シリカ粒子、チタン粒子、アルミナ粒子等の通常の無機物粒子、金属粒子、金属酸化物粒子を適用することができる。平均粒径は好ましくは1〜500nmであり、より好ましくは10〜100nmであり、さらに好ましくは20〜50nmである。無機粒子からなる層の厚さは、好ましくは1〜1500nmであって、10〜300nmがより好ましく、20〜100nmがさらに好ましい。   As inorganic particles, usual inorganic particles such as silica particles, titanium particles and alumina particles, metal particles and metal oxide particles can be applied. The average particle size is preferably 1 to 500 nm, more preferably 10 to 100 nm, and still more preferably 20 to 50 nm. The thickness of the layer made of inorganic particles is preferably 1 to 1500 nm, more preferably 10 to 300 nm, and still more preferably 20 to 100 nm.

本発明の無機粒子からなる層は、最密充填であることが好ましい。無機粒子が全て同寸法の真球状である場合、最密充填時の体積充填率は理論上約74%であるが、実際には無機粒子の形状はある程度バラつくことが通常である。また、無機粒子が厚さ方向に積層されている場合であっても、第2部材との接合を考慮する場合、最表層の無機粒子の充填状態の影響が大きいと考えられるため、ここでいう最密充填とは、無機粒子からなる層の最表層における無機粒子の面積充填率が、80%以上であることをいい、85%以上がさらに好ましい。   It is preferable that the layer which consists of inorganic particles of this invention is close packing. When the inorganic particles are all spherical of the same size, the volume packing ratio at close packing is theoretically about 74%, but in practice the shapes of the inorganic particles usually vary to some extent. Moreover, even when inorganic particles are stacked in the thickness direction, when considering bonding with the second member, it is considered that the influence of the filling state of the inorganic particles in the outermost layer is large, so The closest packing means that the area filling ratio of the inorganic particles in the outermost layer of the layer made of inorganic particles is 80% or more, and more preferably 85% or more.

なお、無機粒子の平均粒径および無機粒子からなる層の厚さは、透過型電子顕微鏡(TEM)によって測定した。具体的には、基材上に形成した無機粒子層の表面をTEMにより撮影した画像上で、無作為に抽出した10個の無機粒子の直径を測定して平均粒径を求め、同様に無機粒子層の断面をTEMにより撮影した画像上で、層の厚さを無作為の5箇所において測定した平均値を無機粒子からなる層の厚さとした。   The average particle diameter of the inorganic particles and the thickness of the layer formed of the inorganic particles were measured by a transmission electron microscope (TEM). Specifically, on the image of the surface of the inorganic particle layer formed on the substrate taken by TEM, the diameters of ten randomly extracted inorganic particles are measured to obtain the average particle diameter, On the image which image | photographed the cross section of the particle layer by TEM, the average value which measured the thickness of the layer in five places of random was made into the thickness of the layer which consists of inorganic particles.

また最密充填であるか否かは、基材の無機粒子層形成面における任意の領域(1μm×1μm)をTEMにより撮影し、最表層における無機粒子の充填状態の観察によって決定した。ここで、観察領域内において無機粒子が厚さ方向に積層され、かつその積層状態が均一ではない場合は、適宜画像処理を行うことで平均化した面積充填率を求めればよい。   Moreover, it was determined by observing the arbitrary area | region (1 micrometer x 1 micrometer) in the inorganic particle layer formation surface of a base material by TEM, and observing the filling state of the inorganic particle in outermost layer whether it is closest packing. Here, in the case where the inorganic particles are stacked in the thickness direction in the observation region, and the stacked state is not uniform, the area filling rate averaged by appropriately performing image processing may be obtained.

≪基材≫
本発明の粒子層を形成するための基材は、移流集積法を適用することができる素材からなる基材であれば制限はない。例えば、金属、ガラス、セラミック、樹脂等が挙げられるが、より接合力の強い最密構造を均一に形成させるためには、基材の熱伝導率が10W/m・K以下の素材であることが好ましく、5W/m・K以下の素材であることがより好ましく、2.0W/m・K以下の素材であることがさらに好ましい。
«Base material»
The base material for forming the particle layer of the present invention is not limited as long as it is a base material made of a material to which the advection accumulation method can be applied. For example, metal, glass, ceramic, resin, etc. may be mentioned, but in order to form a close-packed structure with stronger bonding power uniformly, the material has a thermal conductivity of 10 W / m · K or less for the base material. Is preferable, a material of 5 W / m · K or less is more preferable, and a material of 2.0 W / m · K or less is even more preferable.

これは、粒子の自己集積現象が穏やかに進むことから、より最密化するために好ましいものと推定している。また、基材の熱伝導率が低ければ、無機粒子を分散させた液相の揮発も穏やかに進むことで、粒子層が全面にわたり均一に形成されやすくなるために好ましいものと推定している。熱伝導率は、レーザーフラッシュ法にて熱拡散率、DSCにて比熱、水中置換法(JIS Z8807固体比重測定方法に準拠)にて比重を測定し、[熱伝導率]=[熱拡散率×比熱×比重]により算出した。   It is presumed that this is preferable in order to achieve closer packing because particle self-accumulation phenomena proceed gently. In addition, if the thermal conductivity of the substrate is low, the volatilization of the liquid phase in which the inorganic particles are dispersed also proceeds gently, and it is presumed that the particle layer is likely to be uniformly formed over the entire surface. The thermal conductivity is the thermal diffusivity by the laser flash method, the specific heat by DSC, the specific gravity by the water displacement method (based on the JIS Z 8807 solid specific gravity measurement method), and [thermal conductivity] = [thermal diffusivity × Specific heat × specific gravity] was calculated.

樹脂としては通常の環状ポリオレフィン(COC)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶性樹脂(LCP)等は、好ましい熱可塑性樹脂であり、特に、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、液晶性樹脂(LCP)が好ましく用いられる。これら樹脂の熱伝導率は1.0W/m・K以下である。   As a resin, usual cyclic polyolefin (COC), polyacetal (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), liquid crystalline resin (LCP), etc. Is a preferable thermoplastic resin, and in particular, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), and liquid crystalline resin (LCP) are preferably used. The thermal conductivity of these resins is 1.0 W / m · K or less.

セラミックとしてはアルミナ、ジルコニア、窒化ケイ素が挙げられる。これらの熱伝導率は、0.5〜1.5W/m・Kである。金属としてはアルミニウム、ステンレス、マグネシウム、銅、チタン等が挙げられる。これらの熱伝導率は10〜400W/m・Kである。   Examples of the ceramic include alumina, zirconia and silicon nitride. Their thermal conductivity is 0.5 to 1.5 W / m · K. Examples of the metal include aluminum, stainless steel, magnesium, copper, titanium and the like. Their thermal conductivity is 10 to 400 W / m · K.

≪表面粗さが、Rz=Rmax±10%、かつRmax=1〜10μmである基材≫
本発明の粒子層を形成する基材の表面は、表面粗さが、Rz=Rmax±10%、かつRmax=1〜10μmであることが好ましい。より好ましいRzはRmax±5%である。また、Rmaxは1.5〜8μmであることがより好ましく、2〜5μmであることがさらに好ましい。このような面粗さとすることで、無機粒子の充填性を向上させることができる。
<< Base material whose surface roughness is Rz = Rmax ± 10% and Rmax = 1 to 10 μm >>
The surface of the substrate on which the particle layer of the present invention is formed preferably has a surface roughness of Rz = Rmax ± 10% and Rmax = 1 to 10 μm. More preferable Rz is Rmax ± 5%. Further, Rmax is more preferably 1.5 to 8 μm, further preferably 2 to 5 μm. By making such surface roughness, the filling property of the inorganic particles can be improved.

このような表面粗さとするためには、基材を作製する際に、要求される表面粗さに適した成形型を用いること、製造後の基材表面を研磨すること、基材表面をプラズマ、紫外線、コロナ放電等の活性種で処理すること、または基材表面に物理的及び/又は化学的に凹凸を形成及び/又は除去すること、基材に凹凸を生じるような粒子を含有させること等によって調整することができる。   In order to obtain such surface roughness, when producing a substrate, using a mold suitable for the required surface roughness, polishing the substrate surface after production, plasma the substrate surface Treatment with an active species such as ultraviolet light, corona discharge, etc., or physical and / or chemical formation and / or removal of irregularities on the substrate surface, and inclusion of particles that cause the substrate to produce irregularities It can be adjusted by etc.

なお本発明の表面粗さは、JIS B 0601:1982に準拠し、接触式表面粗さ測定器(株式会社ミツトヨ製、輪郭形状測定器サーフテストSV−3000CNC)によって、平板状試験片の中央部の流動直角方向15mmの範囲を測定した。   The surface roughness of the present invention is in accordance with JIS B 0601: 1982, using a contact-type surface roughness measuring device (Mitsutoyo Co., Ltd., contour shape measuring device surf test SV-3000 CNC), the central portion of the flat test piece The range of 15 mm perpendicular to the flow direction of the

≪収縮率sh(%)と弾性率E(MPa)がE≦10000×exp(−2.64×sh)を満たす樹脂組成物からなる第2部材≫
本発明の第2部材は、収縮率sh(%)と弾性率E(MPa)が、E≦10000×exp(−2.64×sh)の関係を満足する樹脂組成物である。このような樹脂組成物としては、第1部材で挙げた樹脂を使用することができる。
«Second member made of a resin composition in which the shrinkage ratio sh (%) and the elastic modulus E (MPa) satisfy E 10000 10000 x exp (-2.64 x sh) >>
The second member of the present invention is a resin composition in which the shrinkage ratio sh (%) and the elastic modulus E (MPa) satisfy the relationship of E ≦ 10000 × exp (−2.64 × sh). As such a resin composition, the resin mentioned by the 1st member can be used.

第1部材で挙げた好ましい樹脂に加え、無機充填剤、エラストマ等を含有する樹脂組成物として、オレフィン樹脂組成物、アクリル樹脂組成物、ポリエステル樹脂組成物、ポリアセタール樹脂組成物、PPS樹脂組成物等も第2部材として好ましい樹脂として挙げられる。無機充填剤としてはガラス繊維、ガラスビーズ、ガラスフレーク、タルク、マイカ、シリカ等の繊維状、板状、粒状、粉状の無機充填剤が挙げられ、特に第1部材上に形成する無機粒子層に用いられる無機物と同質の無機充填材を含有する場合、第1部材の無機粒子層と第2部材との親和性が優れる点で好ましい。   Olefin resin composition, acrylic resin composition, polyester resin composition, polyacetal resin composition, PPS resin composition, etc. as a resin composition containing an inorganic filler, an elastomer, etc. in addition to the preferable resin mentioned in the first member Is also mentioned as a preferable resin as the second member. Examples of the inorganic filler include glass fibers, glass beads, glass flakes, talc, mica, silica and other fibrous, plate-like, granular and powdery inorganic fillers, and in particular, an inorganic particle layer formed on the first member When the inorganic filler of the same quality as that of the inorganic material to be used is contained, it is preferable in that the affinity between the inorganic particle layer of the first member and the second member is excellent.

また、粒径としては0.1〜50μmの無機充填材を含むことが好ましく、無機充填剤のアスペクト比が1〜3であるものを含むことが好ましい。無機充填剤の含有量は、第2部材を構成する樹脂組成物が、上述の無機充填剤を5〜50質量%含有することが好ましい。好ましいエラストマとしては、エチレン−エチルアクリレート共重合体(例えば、(株)NUC製NUC−6570等)等のオレフィン系重合体や、ポリエステル系エラストマ、ウレタン系エラストマ、ポリメタクリル酸エステルのアクリル系重合体(例えば、アイカ工業(株)製ゼフィアック、スタフィロイド等)等が挙げられる。   Moreover, as a particle size, it is preferable to include an inorganic filler of 0.1 to 50 μm, and it is preferable to include one having an aspect ratio of 1 to 3 of the inorganic filler. As for content of an inorganic filler, it is preferable that the resin composition which comprises a 2nd member contains 5-50 mass% of the above-mentioned inorganic fillers. Preferred elastomers include olefin polymers such as ethylene-ethyl acrylate copolymer (for example, NUC-6570 manufactured by NUC Co., Ltd.), and polyester polymers, urethane elastomers, acrylic polymers of polymethacrylic acid esters. (For example, Zefac manufactured by Aika Kogyo Co., Ltd., staphyroid, etc.) and the like can be mentioned.

これらのエラストマは、共重合体としても良いし、コアシェル粒子の形状であっても、本発明の組成物に混合することができるのであれば、有効に使用することができる。
エラストマとしてはグリシジル基を含有することも好ましく、グリシジル基を含有するエラストマとしてはエチレン−グリシジルメタクリレート共重合体やエチレン−グリシジルメタクリレート−アクリル酸メチル共重合体のようなグリシジル基含有オレフィン系共重合体(例えば、住友化学(株)製ボンドファースト)が挙げられる。
These elastomers may be used as copolymers, or in the form of core-shell particles, as long as they can be mixed with the composition of the present invention.
A glycidyl group-containing elastomer is also preferable as the elastomer, and a glycidyl group-containing olefin copolymer such as ethylene-glycidyl methacrylate copolymer or ethylene-glycidyl methacrylate-methyl acrylate copolymer is preferable as the glycidyl group-containing elastomer (For example, Sumitomo Chemical Co., Ltd. product bond first) is mentioned.

エラストマの含有量としては、第2部材を構成する樹脂組成物中の1〜30質量%含有することが好ましく、エラストマがグリシジル基を含有するエラストマである場合は、グリシジル基の含有量が第2部材を構成する樹脂組成物中の0.01〜1質量%であることが好ましい。   As content of an elastomer, it is preferable to contain 1-30 mass% in the resin composition which comprises a 2nd member, and when an elastomer is an elastomer containing a glycidyl group, content of a glycidyl group is 2nd It is preferable that it is 0.01-1 mass% in the resin composition which comprises a member.

これらのエラストマは、上述の樹脂中に添加材として含有させた状態で、第2部材を構成する樹脂組成物として用いても良いし、エラストマ自体又はエラストマに無機充填材等の添加材を含有させたものを、第2部材を構成する樹脂組成物として用いても良い。   These elastomers may be used as a resin composition constituting the second member in a state of being contained as an additive in the above-mentioned resin, or the elastomer itself or an elastomer may contain an additive such as an inorganic filler. May be used as a resin composition that constitutes the second member.

本発明においては、上記の特性を有する樹脂組成物からなる第2部材が強い接合力を発揮する理由を下記のように推定している。第1部材上の粒子層は、まず基材との接着力が、移流集積法により最密構造を有するように形成されることにより、発揮される。そして収縮率と弾性率が上記式を満たす樹脂組成物は、最密構造の粒子層表面形状に対する追随性に優れかつ最密構造の表面積の大きさから、結果として接合力が強いと観察される。   In the present invention, the reason why the second member made of the resin composition having the above-mentioned characteristics exerts a strong bonding force is estimated as follows. The particle layer on the first member is first exerted by forming an adhesive force with the substrate so as to have a close-packed structure by the advective accumulation method. The resin composition having a shrinkage factor and an elastic modulus satisfying the above equation is excellent in the followability to the surface shape of the close-packed particle layer, and the surface area of the close-packed structure is observed to be strong as a result. .

なお、本発明において、「収縮率sh(%)」とは、80mm×80mm×2mmの平板状試験片を、一辺の中央部に設けた幅4mm×厚さ2mmのサイドゲートを有する金型を用いて、第2部材を構成する樹脂組成物を、実際に複合部材を製造する際の第2部材の成形条件と同様の成形条件にて射出成形した場合の、流動直角方向の成形収縮率(成形後、23℃50%RHにて24時間以上静置した平板状試験片を用いて、反ゲート側の端部(流動末端側の辺)から20mmの位置における成形品の流動直角方向の寸法(平板状試験片の幅)を測定し、当該位置に相当する金型寸法との差(収縮量)を、金型寸法で除した値)を指し、「弾性率E(MPa)」とは、ISO178に準拠して測定される曲げ弾性率を指すものとする。   In the present invention, “shrinkage rate sh (%)” means a mold having a side gate of 4 mm in width × 2 mm in thickness provided with a flat test piece of 80 mm × 80 mm × 2 mm at the center of one side. The molding shrinkage ratio in the direction perpendicular to the flow when the resin composition constituting the second member is injection molded under the same molding conditions as the molding conditions of the second member in actual production of the composite member ( After molding, using a flat test piece left to stand at 23 ° C. and 50% RH for 24 hours or more, the dimension in the flow perpendicular direction of the molded product at a position of 20 mm from the end on the non-gate side (side of flow end) (The width of a flat test piece) is measured, and the difference (the amount of shrinkage) from the die size corresponding to the position is divided by the die size, which means "elastic modulus E (MPa)" , Refers to the flexural modulus measured according to ISO 178.

<複合部材の製造方法>
≪第1部材の製造方法≫
本発明では、基材表面の層を構成する無機粒子を、水、イソプロピルアルコール、メタノール、エチレングリコール、プロピレングリコール、エチレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、酢酸エチル、トルエン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等の液相中に分散させた液体に、基材を浸漬して引き上げることで、いわゆる移流集積法により基材表面に無機粒子層が形成された第1部材を製造することができる。
<Method of manufacturing composite member>
«Method of manufacturing first member»
In the present invention, the inorganic particles constituting the layer on the surface of the substrate may be water, isopropyl alcohol, methanol, ethylene glycol, propylene glycol, ethylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethylacetamide, acetic acid The substrate is immersed in a liquid dispersed in a liquid phase such as ethyl, toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like, and pulled up, thereby forming an inorganic particle layer on the surface of the substrate by the so-called advection accumulation method One member can be manufactured.

無機粒子層の形成時における無機粒子の配列しやすさの観点から、液相に用いる媒質は25℃における粘度が0.1〜100mPa・sであることが好ましく、0.5〜50mPa・sであることがより好ましく、1〜30mPa・sであることがさらに好ましい。また、媒質中の無機粒子の含有量は5〜50質量%であることが好ましく、10〜40質量%であることがより好ましい。   The medium used for the liquid phase preferably has a viscosity of 0.1 to 100 mPa · s at 25 ° C., preferably 0.5 to 50 mPa · s, from the viewpoint of the ease of arrangement of the inorganic particles at the time of formation of the inorganic particle layer. And more preferably 1 to 30 mPa · s. The content of the inorganic particles in the medium is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass.

ただし、基材表面上に無機粒子が緻密に配列した層を形成することができるのであれば、移流集積法に限定されず、ブラシやスプレーによる塗布、スピンコートなどの各種薄膜形成法を用いることもできる。ここで、無機粒子層を形成する際に、第2部材との接合に用いる箇所以外については、意匠性等の要求により必要に応じ、塗布した液体を拭き取る、あるいはあらかじめ基材にマスキングを施しておくことで、無機粒子層を設けないようにしてもよい。   However, as long as it is possible to form a layer in which inorganic particles are densely arranged on the surface of a substrate, it is not limited to the advection accumulation method, and various thin film forming methods such as coating by brush or spray, spin coating, etc. may be used. You can also. Here, when the inorganic particle layer is formed, the coated liquid is wiped off or masking is applied to the substrate in advance, if necessary, depending on the requirements such as the design property, except for the portion used for bonding with the second member. By setting, the inorganic particle layer may not be provided.

本発明では、無機粒子を分散させた液体を基材表面に配置した後、液体分を乾燥・揮発させることで、実質的に無機粒子のみからなる層が形成された第1部材を製造することができる。ここで、無機粒子が均質に配列した層を形成するには、液体分の乾燥・揮発を均一に進行させることが望ましく、その観点からは、液相の媒質は沸点が50〜200℃のものが好ましく、60〜160℃のものがより好ましく、70〜130℃のものがさらに好ましい。   In the present invention, a liquid in which inorganic particles are dispersed is disposed on the surface of a substrate, and then the liquid is dried and volatilized to produce a first member in which a layer substantially consisting of only inorganic particles is formed. Can. Here, in order to form a layer in which the inorganic particles are uniformly arranged, it is desirable to allow the drying and volatilization of the liquid to proceed uniformly, and from that viewpoint, the medium of the liquid phase has a boiling point of 50 to 200 ° C. Is preferable, the thing of 60-160 degreeC is more preferable, and the thing of 70-130 degreeC is further more preferable.

なお、基材に樹脂を用いる場合は射出成形や押出成形等の通常用いられる方法により基材となる樹脂成形品を作製すればよく、同様にガラスであればフロート法やダウンドロー法等、セラミックであれば常圧焼結法や反応焼結法等、通常用いられる方法により作製されたものを用いることができる。これらの基材は、意匠性、機能性、他部材との固定などの要求に応じ、適宜切削や溶着といった加工がなされたものを用いても良い。   When a resin is used as the base material, a resin molded product to be the base material may be produced by a commonly used method such as injection molding or extrusion molding, and if it is glass similarly, a float method, down draw method, ceramic etc. If it is, what was manufactured by the method used normally, such as a normal-pressure sintering method and reaction sintering method, can be used. These base materials may be appropriately processed such as cutting and welding according to requirements for designability, functionality, fixation with other members, and the like.

≪第2部材の接合方法≫
本発明では、第1部材の無機粒子層の上に、第2部材を構成する樹脂組成物を溶融状態で接触させた上で、当該樹脂組成物を冷却固化させることで、第2部材の接合を行う。接合方法は特に限定されず、例えば、無機粒子層を有する第1部材を、第2部材成形用の金型中に配置し、第2部材を構成する樹脂組成物を、第1部材の無機粒子層上に射出成形(いわゆるインサート成形)することで、第2部材の接合を行うこともできるし、あらかじめ成形しておいた第2部材の表面のうち、接合に用いる領域を加熱溶融させた状態で、第1部材の無機粒子層と接触させて加圧(いわゆる溶着)することで接合を行うこともできる。
«Method of bonding the second member»
In the present invention, the resin composition constituting the second member is brought into contact with the inorganic particle layer of the first member in a molten state, and then the resin composition is cooled and solidified to join the second member. I do. The bonding method is not particularly limited. For example, the first member having an inorganic particle layer is disposed in a mold for molding a second member, and the resin composition constituting the second member is an inorganic particle of the first member. The second member can be joined by injection molding (so-called insert molding) on the layer, or a state in which a region used for joining among the surfaces of the second member formed in advance is heated and melted. The bonding can also be performed by bringing a pressure (so-called welding) into contact with the inorganic particle layer of the first member.

第2部材のインサート成形や溶着の条件は特に限定されず、第2部材を構成する樹脂組成物に含有される樹脂の種類に応じて適宜設定することができる。なお、インサート成形であれば、第2部材の形成と第1部材との接合を同時に行うことができるため、工程簡略化の面で有利である。また、第1部材の剛性や靱性が低く、インサート成形では樹脂圧により第1部材が変形又は破損してしまうような場合には、溶着で接合を行えば、加圧条件の設定自由度が高く、第1部材の変形や破損を抑制しやすいため有利である。   The conditions for insert molding and welding of the second member are not particularly limited, and can be appropriately set according to the type of resin contained in the resin composition constituting the second member. In addition, if it is insert molding, since formation of a 2nd member and joining with a 1st member can be performed simultaneously, it is advantageous in the surface of process simplification. In addition, when the rigidity and toughness of the first member are low and the first member is deformed or damaged by resin pressure in insert molding, if bonding is performed by welding, the degree of freedom in setting of the pressurizing condition is high. This is advantageous because it is easy to suppress the deformation and breakage of the first member.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお特に記載の無い場合、評価は23℃50%RHの測定室において行った。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, evaluation was performed in a measurement room of 23 ° C. and 50% RH unless otherwise specified.

[接合強度の評価]
<基材の調製>
アルミニウム:日本軽金属株式会社製「A5052」(熱伝導率138W/m・K)を、45mm×18mm×1.5mmに切削し、45mm×18mmの片面を表1に示す表面粗さになるように研磨した。
[Evaluation of joint strength]
<Preparation of base material>
Aluminum: Nippon Light Metal Co., Ltd. “A5052” (thermal conductivity 138 W / m · K) is cut to 45 mm × 18 mm × 1.5 mm so that the 45 mm × 18 mm single side has the surface roughness shown in Table 1 Polished.

<第1部材の製造(粒子層の形成)>
イソプロピルアルコール中に粒径25nmのシリカ微粒子を15質量%含有する液体中に、上述の基材を浸してから研磨面が液面に対し垂直になるように引き上げる操作を1回行うことで、基材の研磨面に対しシリカ微粒子を移流集積法により塗布し、23℃で乾燥させてイソプロピルアルコールを揮発させ、基材表面に無機粒子層を形成して第1部材を製造した。無機粒子層形成面の任意の領域(1μm×1μm)をTEM観察したところ、シリカ微粒子の面積充填率は約90%であり最密充填状態で配列していることが確認された。
<Production of First Member (Formation of Particle Layer)>
The substrate is immersed in a liquid containing 15% by mass of silica fine particles having a particle size of 25 nm in isopropyl alcohol, and then pulled up once such that the polishing surface is perpendicular to the liquid surface. Silica fine particles were applied to the polished surface of the material by the advective flow accumulation method, dried at 23 ° C. to volatilize isopropyl alcohol, and an inorganic particle layer was formed on the surface of the substrate to produce a first member. TEM observation of an arbitrary region (1 μm × 1 μm) of the inorganic particle layer formation surface revealed that the area filling rate of the silica fine particles was about 90%, and they were arranged in the closest packed state.

<複合部材の製造(第2部材との接合)>
第1部材の無機粒子層形成面の一部と、第2部材を形成するための80mm×10mm×4mmのキャビティの一部がオーバーラップするように設計された、複合部材成形用の金型内部に、第1部材を設置し、第2部材を構成する樹脂組成物を射出成形することで図1、2に示すような複合部材をインサート成形により製造した。ここで、第1部材と第2部材は、第1部材の無機粒子層形成面のうち、短辺(18mm)の中央部の幅10mm×当該短辺側端部からの距離10mmの領域が、第2部材の端部10mm×10mmの領域と重なるように配置されている。第1部材と第2部材の組み合せは表1に示す通りであり、第2部材に用いた各樹脂組成物及びその成形条件は以下の通りである。
<Manufacture of composite member (joining with second member)>
Inside of a mold for molding a composite member, designed to overlap a part of the inorganic particle layer forming surface of the first member and a part of an 80 mm × 10 mm × 4 mm cavity for forming the second member Then, the first member was installed, and the composite member as shown in FIGS. 1 and 2 was manufactured by insert molding by injection molding the resin composition constituting the second member. Here, for the first member and the second member, in the inorganic particle layer forming surface of the first member, a region having a width of 10 mm at the center of the short side (18 mm) × 10 mm from the short side end is It arrange | positions so that the area | region of the edge part 10 mm x 10 mm of a 2nd member may be overlapped. The combination of the first member and the second member is as shown in Table 1, and the respective resin compositions used for the second member and the molding conditions thereof are as follows.

POM樹脂組成物1:ポリプラスチックス株式会社製ポリアセタール樹脂組成物「ジュラコン(登録商標)M90−44」(収縮率2.0%、弾性率2500MPa)、シリンダ温度200℃、金型温度80℃、射出速度20mm/sec、保圧力60MPaにて射出成形した。   POM resin composition 1: Polyplastics Co., Ltd. polyacetal resin composition "Duracon (registered trademark) M 90-44" (shrinkage ratio 2.0%, elastic modulus 2500 MPa), cylinder temperature 200 ° C, mold temperature 80 ° C, The injection molding was carried out at an injection speed of 20 mm / sec and a holding pressure of 60 MPa.

POM樹脂組成物2:ポリプラスチックス株式会社製ポリアセタール樹脂組成物「ジュラコン(登録商標)M140−44」を50質量%と、東洋紡スペシャルティズトレーディング株式会社製ポリエステル系エラストマ「グリラックスE510N」を50質量%とを溶融混練したポリアセタール樹脂組成物(収縮率1.3%、弾性率800MPa)、シリンダ温度200℃、金型温度80℃、射出速度15mm/sec、保圧力60MPaにて射出成形した。   POM resin composition 2: 50% by mass of polyacetal resin composition "Duracon (registered trademark) M140-44" manufactured by Polyplastics Co., Ltd. and 50 mass% of polyester-based elastomer "Grelax E510N" manufactured by Toyobo Specialties Trading Co., Ltd. % And a polyacetal resin composition (shrinkage ratio 1.3%, elastic modulus 800 MPa) melt-kneaded, and injection molded at a cylinder temperature of 200 ° C., a mold temperature of 80 ° C., an injection speed of 15 mm / sec and a holding pressure of 60 MPa.

POM樹脂組成物3:ポリプラスチックス株式会社製ポリアセタール樹脂組成物「ジュラコン(登録商標)M90−44」を74質量%と、アイカ工業株式会社製コアシェルポリマー「スタフィロイド PO−098」を24質量%と、株式会社NUC製エチレン−エチルアクリレート共重合体「NUC−6570」を2質量%とを溶融混練したポリアセタール樹脂組成物(収縮率1.7%、弾性率1100MPa)、シリンダ温度200℃、金型温度80℃、射出速度20mm/sec、保圧力60MPaにて射出成形した。 POM resin composition 3: 74% by mass of polyacetal resin composition "Duracon (registered trademark) M90-44" manufactured by Polyplastics Co., Ltd., and 24% by mass of core-shell polymer "Staphyloid PO-098" manufactured by Aika Kogyo Co., Ltd. And a polyacetal resin composition (shrinkage ratio 1.7%, elastic modulus 1100 MPa) obtained by melt-kneading 2% by mass of NUC Corporation ethylene-ethyl acrylate copolymer “NUC-6570” (cylinder shrinkage 200 ° C., gold) It was injection molded at a mold temperature of 80 ° C., an injection speed of 20 mm / sec, and a holding pressure of 60 MPa.

POM樹脂組成物4:ポリプラスチックス株式会社製ポリアセタール樹脂組成物「ジュラコン(登録商標)M270−44」を53質量%と、ポリプラスチックス株式会社製ポリアセタール樹脂組成物「ジュラコン(登録商標)M90−44」を10質量%と、東ソー株式会社製ウレタン樹脂「ミラクトランP485RSUI」を37質量%とを溶融混練したポリアセタール樹脂組成物(収縮率1.6%、弾性率1000MPa)、シリンダ温度200℃、金型温度80℃、射出速度20mm/sec、保圧力60MPaにて射出成形した。   POM resin composition 4: Polyplastics Co., Ltd. polyacetal resin composition "Duracon (registered trademark) M 270-44" at 53% by mass, Polyplastics Co., Ltd. polyacetal resin composition "Duracon (registered trademark) M 90- Polyacetal resin composition (shrinkage ratio 1.6%, elastic modulus 1000MPa) obtained by melt-kneading 10% by mass of 44 "and 37% by mass of urethane resin" Milactolan P485 RSUI "manufactured by Tosoh Corp. cylinder temperature 200 ° C, gold It was injection molded at a mold temperature of 80 ° C., an injection speed of 20 mm / sec, and a holding pressure of 60 MPa.

PBT樹脂組成物:ウィンテックポリマー株式会社製ポリブチレンテレフタレート樹脂組成物「ジュラネックス(登録商標) 7507K」(収縮率0.6%、弾性率13000MPa)、シリンダ温度260℃、金型温度60℃、射出速度20mm/sec、保圧力60MPaにて射出成形した。 PBT resin composition: Polybutylene terephthalate resin composition "Duranex (registered trademark) 7507 K" (Wind shrink: 0.6%, elastic modulus: 13000 MPa) manufactured by Wintech Polymer Co., cylinder temperature 260 ° C., mold temperature 60 ° C. The injection molding was carried out at an injection speed of 20 mm / sec and a holding pressure of 60 MPa.

PPS樹脂組成物1:株式会社クレハ製ポリフェニレンサルファイド樹脂「フォートロン KPS」(温度310℃で剪断速度1216sec−1における溶融粘度:30Pa・s)を59質量%と、日本電気硝子株式会社製ガラス繊維「ECS03T−747」(平均繊維長:3mm、平均直径:13μm)を35質量%と、エラストとして住友化学株式会社製エチレン−グリシジルメタクリレート共重合体「ボンドファースト 7L」を6質量%とを溶融混練したポリフェニレンサルファイド樹脂組成物(収縮率0.5%、弾性率10000MPa)、シリンダ温度320℃、金型温度150℃、射出速度20mm/sec、保圧力60MPaにて射出成形した。 PPS resin composition 1: 59 mass% of polyphenylene sulfide resin “Fortron KPS” (melt viscosity at a temperature of 310 ° C. and a shear rate of 1216 sec− 1 : 30 Pa · s) manufactured by Kureha Co., Ltd. Glass fiber manufactured by Nippon Electric Glass Co., Ltd. Melt-knead 35% by mass of “ECS 03 T-747” (average fiber length: 3 mm, average diameter: 13 μm) and 6% by mass of ethylene-glycidyl methacrylate copolymer “bond first 7L” manufactured by Sumitomo Chemical Co., Ltd. as elast. The obtained polyphenylene sulfide resin composition (shrinkage ratio 0.5%, elastic modulus 10000 MPa) was injection molded at a cylinder temperature of 320 ° C., a mold temperature of 150 ° C., an injection speed of 20 mm / sec and a holding pressure of 60 MPa.

PPS樹脂組成物2:ポリプラスチックス株式会社製ポリフェニレンサルファイド樹脂「ジュラファイド(登録商標) 0220A9」(収縮率1.7%、弾性率3800MPa)、シリンダ温度320℃、金型温度150℃、射出速度15mm/sec、保圧力60MPaにて射出成形した。   PPS resin composition 2: Polyplastics Co., Ltd. polyphenylene sulfide resin "Durafido (registered trademark) 0220A9" (shrinkage ratio 1.7%, elastic modulus 3800 MPa), cylinder temperature 320 ° C, mold temperature 150 ° C, injection speed It was injection molded at 15 mm / sec and a holding pressure of 60 MPa.

PPS樹脂組成物3:ポリプラスチックス株式会社製ポリフェニレンサルファイド樹脂「ジュラファイド(登録商標) 6165A6」(収縮率0.3%、弾性率18300MPa)、シリンダ温度320℃、金型温度150℃、射出速度20mm/sec、保圧力60MPaにて射出成形した。   PPS resin composition 3: Polyplastics Co., Ltd. polyphenylene sulfide resin "Durafido (registered trademark) 6165A6" (shrinkage rate 0.3%, elastic modulus 18300 MPa), cylinder temperature 320 ° C, mold temperature 150 ° C, injection speed It was injection molded at 20 mm / sec and a holding pressure of 60 MPa.

COC樹脂組成物:ポリプラスチックス株式会社製環状ポリオレフィン樹脂「トパス(登録商標) 6013S−04」(収縮率0.2%、弾性率2900MPa)、シリンダ温度260℃、金型温度60℃、射出速度10mm/sec、保圧力40MPaにて射出成形した。   COC resin composition: Polyplastics Co., Ltd. cyclic polyolefin resin "Topus (registered trademark) 6013S-04" (shrinkage ratio 0.2%, elastic modulus 2900 MPa), cylinder temperature 260 ° C, mold temperature 60 ° C, injection speed The injection molding was performed at 10 mm / sec and a holding pressure of 40 MPa.

EEA樹脂組成物:株式会社NUC(メーカー名)製エチレンエチルアクリレート樹脂「NUC−6570」(収縮率3%、弾性率20MPa)、シリンダ温度250℃、金型温度30℃、射出速度8mm/sec、保圧力20MPaにて射出成形した。   EEA resin composition: ethylene ethyl acrylate resin "NUC-6570" (shrinkage 3%, elastic modulus 20 MPa) manufactured by NUC Co., Ltd., cylinder temperature 250 ° C., mold temperature 30 ° C., injection speed 8 mm / sec, The injection molding was carried out under a holding pressure of 20 MPa.

<接合強度評価>
表1に示す第1部材と第2部材の組み合わせにて、上述の方法で調整した複合部材について、まず第1部材と第2部材との接触面の周囲のバリを除去した後、図3に示すように、試験片固定用治具4の凹部に第1部材を固定した。次いで、株式会社オリエンテック製、テンシロンUTA−50KNを用い、押し治具3を1mm/分の速度で降下させて第2部材を押し下げ、第1部材と第2部材とを剥離させた時の接合強度(MPa)を測定し、破壊強度が10MPa以上の場合を○、10MPa未満の場合を×として接合強度を評価した。結果を表1に示す。
<Evaluation of joint strength>
In the combination of the first member and the second member shown in Table 1, the burrs around the contact surface between the first member and the second member are first removed from the composite member adjusted by the above-described method, as shown in FIG. As shown, the first member was fixed to the recess of the test piece fixing jig 4. Next, using Tensilon UTA-50KN made by ORIENTEC Co., Ltd., the pressing jig 3 is lowered at a speed of 1 mm / min to push down the second member to separate the first member and the second member. The strength (MPa) was measured, and when the breaking strength was 10 MPa or more, the bonding strength was evaluated as ○, and when less than 10 MPa, as x. The results are shown in Table 1.

[気密性の評価]
<基材の調製および第1部材の製造(粒子層の形成)>
アルミニウム:日本軽金属株式会社製「A5052」(熱伝導率138W/m・K)を、外径50mmφ、内径20mmφ、厚さ1mmの円環板状に切削し、片面を表1に示す表面粗さになるように研磨した後、接合強度の評価における第1部材の製造と同様の操作にて、基材の研磨面に無機粒子層を形成して第1部材1を得た。
[Evaluation of air tightness]
<Preparation of Base Material and Production of First Member (Formation of Particle Layer)>
Aluminum: Japan Light Metal Co., Ltd. “A5052” (thermal conductivity 138 W / m · K) is cut into an annular plate with an outer diameter of 50 mmφ, an inner diameter of 20 mmφ, and a thickness of 1 mm. After polishing so as to be as described above, an inorganic particle layer was formed on the polished surface of the base by the same operation as the production of the first member in the evaluation of bonding strength, to obtain the first member 1.

<複合部材の製造(第2部材との接合)>
第1部材1の無機粒子層形成面の一部と、第2部材2を形成するための30mmφ×厚さ3mm(第1部材との重複部は厚さ2mm)のキャビティの一部がオーバーラップするように設計された、複合部材成形用の金型内部に、第1部材1を設置し、第2部材2を構成する樹脂組成物を内径H上に射出成形することで図4示すような複合部材5をインサート成形により製造した。(a)は平面図であり、(b)は正面図であり、(c)はAA断面を示す断面図である。
<Manufacture of composite member (joining with second member)>
Part of the inorganic particle layer formation surface of the first member 1 and part of the cavity of 30 mmφ × 3 mm (the overlapping part with the first member is 2 mm thick) for forming the second member 2 overlap As shown in FIG. 4, the first member 1 is placed in a mold for molding a composite member designed to have the same structure, and the resin composition constituting the second member 2 is injection-molded on the inner diameter H. The composite member 5 was manufactured by insert molding. (A) is a plan view, (b) is a front view, and (c) is a cross-sectional view showing an AA cross section.

ここで、第1部材1と第2部材2は、第1部材1の無機粒子層形成面のうち、内径(20mmφ)から幅5mmの領域が、第2部材2の端部から幅5mm×厚さ2mmの領域と重なるように配置されている。第1部材1と第2部材2の組み合せおよび第2部材2に用いた各樹脂組成物の成形条件は上述の接合強度の評価と同様、表1に示す通りである。   Here, in the inorganic particle layer forming surface of the first member 1, the first member 1 and the second member 2 have an area of 5 mm in width from the inner diameter (20 mmφ), 5 mm in width × thickness from the end of the second member 2 It is arranged to overlap with the area of 2 mm. The molding conditions of the combination of the first member 1 and the second member 2 and the molding conditions of the respective resin compositions used for the second member 2 are as shown in Table 1 similarly to the above-mentioned evaluation of the bonding strength.

<気密性評価>
表1に示す第1部材1と第2部材2の組み合わせにて、上述の方法で調整した複合部材について、まず第1部材1と第2部材2との接触面の周囲のバリを除去した後、図5に示す装置を用いて以下の気密性評価を行った。
<Tightness evaluation>
In the combination of the first member 1 and the second member 2 shown in Table 1, first, after removing the burr around the contact surface between the first member 1 and the second member 2 for the composite member adjusted by the above method The following airtightness evaluation was performed using the apparatus shown in FIG.

図5は気密試験機7を用いた気密性評価の方法を示す縦断面図である。気密試験機7は、気密試験機本体8と気密試験機蓋9とを備える。Oリング10を介して複合部材5を気密試験機本体8に取り付け、複合部材5の下部を封止した。その後、気密試験機蓋9を複合部材5の第1部材1上に載せてクランプした。   FIG. 5 is a longitudinal sectional view showing a method of air tightness evaluation using the air tightness tester 7. The airtightness tester 7 includes an airtightness tester body 8 and an airtightness tester lid 9. The composite member 5 was attached to the airtightness tester body 8 via the O-ring 10, and the lower portion of the composite member 5 was sealed. Thereafter, the airtight tester lid 9 was placed on the first member 1 of the composite member 5 and clamped.

次いで複合部材5の上に蒸留水11を注ぎ、複合部材5を蒸留水11中に完全に浸した。ライン12を介して空気を送り込み、気密試験機本体内部13に0.1MPaの圧力Pを6分間加え、第1部材1と第2部材2との界面から気泡の漏れがあるか否かを目視で観察した。上記の試験を3回実施し、以下の基準による気密性の評価結果を表1に示す。   Then, distilled water 11 was poured onto composite member 5, and composite member 5 was completely immersed in distilled water 11. Air is fed through the line 12 and a pressure P of 0.1 MPa is applied to the inside of the airtightness tester body 13 for 6 minutes, and it is visually observed whether air bubbles leak from the interface between the first member 1 and the second member 2 Observed. The above test was carried out three times, and the evaluation results of air tightness according to the following criteria are shown in Table 1.

○:1回も気泡の漏れが確認されなかった場合、気密性が良好であると評価した。
△:1〜2回で気泡の漏れが確認された場合、気密性が中程度であると評価した。
×:3回とも漏れが確認された場合、気密性が不良であると評価した。
○: It was evaluated that the air tightness was good when no air bubble leakage was observed even once.
B: When air bubble leakage was confirmed 1 to 2 times, the air tightness was evaluated as moderate.
X: When leak was confirmed 3 times, it evaluated that airtightness was inferior.

Figure 2019089297
なお、気密性はかなり厳しい評価であり、接合だけが必要な部材としては必ずしも必須の特性ではない。
Figure 2019089297
In addition, air tightness is a quite severe evaluation, and it is not necessarily an essential characteristic as a member which requires only joining.

[第2部材の無機充填剤種の影響評価]
第2部材を構成する材料およびその成形条件を下記のものに変更した以外は、上述の接合強度の評価と同様に、第2部材の無機充填剤種の影響を評価した。結果を表2に示す。
[Affected evaluation of inorganic filler type of second member]
The influence of the inorganic filler species of the second member was evaluated in the same manner as in the above-described evaluation of the bonding strength, except that the material constituting the second member and the molding conditions thereof were changed to the following. The results are shown in Table 2.

LCP樹脂組成物1:ポリプラスチックス株式会社製液晶ポリマー「ラペロス(登録商標) A950」にシリカ粒子を50質量%含有する液晶ポリマー組成物(収縮率0.5%、弾性率9500MPa)、シリンダ温度290℃、金型温度80℃、射出速度100mm/sec、保圧力60MPaにて射出成形した。   LCP resin composition 1: Liquid crystal polymer composition containing 50% by mass of silica particles in liquid crystal polymer "Laperos (registered trademark) A950" manufactured by Polyplastics Co., Ltd. (shrinkage ratio 0.5%, elastic modulus 9500 MPa), cylinder temperature Injection molding was performed at 290 ° C., a mold temperature of 80 ° C., an injection speed of 100 mm / sec, and a holding pressure of 60 MPa.

LCP樹脂組成物2:ポリプラスチックス株式会社製液晶ポリマー「ラペロス(登録商標) A950」にガラスビーズを50質量%含有する液晶ポリマー組成物(収縮率0.5%、弾性率9400MPa)、シリンダ温度290℃、金型温度80℃、射出速度100mm/sec、保圧力60MPaにて射出成形した。   LCP resin composition 2: Liquid crystal polymer composition containing 50% by mass of glass beads in liquid crystal polymer "Laperos (registered trademark) A950" manufactured by Polyplastics Co., Ltd. (shrinkage ratio 0.5%, elastic modulus 9400 MPa), cylinder temperature Injection molding was performed at 290 ° C., a mold temperature of 80 ° C., an injection speed of 100 mm / sec, and a holding pressure of 60 MPa.

Figure 2019089297
Figure 2019089297

[基材種と表面粗さの影響評価]
<基材の調製>
a.アルミニウム:日本軽金属株式会社製「A5052」(熱伝導率138W/m・K)を、45mm×18mm×1.5mmに切削し、45mm×18mmの片面を表3に示す表面粗さになるように研磨した。
b.ガラス:旭硝子株式会社製「Dragontrail」(熱伝導率0.65W/m・K)を、45mm×18mm×1.5mmに切削し、45mm×18mmの片面を表3に示す表面粗さになるように研磨した。
[Affected evaluation of substrate type and surface roughness]
<Preparation of base material>
a. Aluminum: Japan Light Metal Co., Ltd. “A5052” (thermal conductivity 138 W / m · K) is cut to 45 mm × 18 mm × 1.5 mm so that 45 mm × 18 mm single-sided surface roughness shown in Table 3 Polished.
b. Glass: Asahi Glass Co., Ltd. “Dragontrail” (thermal conductivity 0.65 W / m · K) is cut to 45 mm × 18 mm × 1.5 mm so that 45 mm × 18 mm single-sided surface roughness shown in Table 3 Polished.

c.PPS樹脂組成物1:前記PPS樹脂組成物1を、シリンダ温度320℃、金型温度150℃、射出速度20mm/sec、保圧力60MPaにて射出成形した65mm×13mm×6.5mmの棒状成形品の13mm×6.5mmの面を、表3に示す表面粗さになるように研磨した。   c. PPS resin composition 1: A rod-shaped molded article of 65 mm × 13 mm × 6.5 mm obtained by injection molding the PPS resin composition 1 at a cylinder temperature of 320 ° C., a mold temperature of 150 ° C., an injection speed of 20 mm / sec and a holding pressure of 60 MPa. The surface of 13 mm × 6.5 mm was polished to have the surface roughness shown in Table 3.

<第1部材の製造(粒子層の形成)>
イソプロピルアルコール中に粒径25nmのシリカ微粒子を15質量%含有する液体中に、上述の基材を浸してから研磨面が液面に対し垂直になるように引き上げる操作を1回行うことで、基材の研磨面に対しシリカ微粒子を移流集積法により塗布し、23℃で乾燥させてイソプロピルアルコールを揮発させ、基材表面に無機粒子層を形成して第1部材を製造した。
<Production of First Member (Formation of Particle Layer)>
The substrate is immersed in a liquid containing 15% by mass of silica fine particles having a particle size of 25 nm in isopropyl alcohol, and then pulled up once such that the polishing surface is perpendicular to the liquid surface. Silica fine particles were applied to the polished surface of the material by the advective flow accumulation method, dried at 23 ° C. to volatilize isopropyl alcohol, and an inorganic particle layer was formed on the surface of the substrate to produce a first member.

<複合部材の製造(第2部材との接合)>
a.アルミニウム基材については、上述の接合強度の評価と同様にして、PPS樹脂組成物1からなる第2部材を射出成形することで図1,2に示すような複合部材をインサート成形により製造した。
<Manufacture of composite member (joining with second member)>
a. About the aluminum base material, the composite member as shown to FIG. 1, 2 was manufactured by insert molding by inject-molding the 2nd member which consists of PPS resin composition 1 similarly to evaluation of the above-mentioned joint strength.

b.ガラス基材については、あらかじめPPS樹脂組成物1を上述の接合強度の評価と同様の成形条件で射出成形し、80mm×10mm×4mmの棒状成形品を得ておき、この80mm×10mmの面の端部10mm×10mmの領域が、ガラス基材の無機粒子層形成面の18mmの辺側端部から10mmと重複するように熱板溶着し、アルミニウム基材のインサート成形品と同様の複合部材を成形した。
ここで、熱板溶着の条件としては、ガラス基材と棒状成形品の接合面をそれぞれ320℃のホットプレート上で加温し、棒状成形品の接合面を軟化させた状態でガラス基材の接合面と接触させ、3MPaで加圧した後、常温で静置し棒状成形品を固化させた。
b. For the glass substrate, PPS resin composition 1 is injection molded in advance under the same molding conditions as the above-mentioned evaluation of bonding strength to obtain a rod-shaped molded article of 80 mm × 10 mm × 4 mm, and this 80 mm × 10 mm surface Heat plate welding is performed so that the area of the end 10 mm × 10 mm overlaps 10 mm from the 18 mm side edge of the inorganic particle layer forming surface of the glass substrate, and the same composite member as the aluminum base insert molded article Molded.
Here, as a condition of the hot plate welding, the bonding surface of the glass substrate and the rod-shaped molded product is heated on a hot plate at 320 ° C. respectively, and the bonding surface of the rod-shaped molded product is softened. After being brought into contact with the bonding surface and pressurized at 3 MPa, the rod-shaped molded product was solidified by standing at room temperature.

c.PPS樹脂組成物1基材については、無機粒子層を形成した13mm×6.5mmの面がキャビティ内の空間部に露出するようにして、130mm×13mm×6.5mmのキャビティを有する射出成形用金型にインサートし、PPS樹脂組成物1を上述の接合強度の評価と同様の成形条件で射出成形し、インサートした第1部材1の無機粒子層形成面上に溶融樹脂が射出されるように、インサート成形により第2部材2を設け130mm×13mm×6.5mmの図6(B)で示す複合部材を製造した。   c. As for the PPS resin composition 1 base material, for injection molding having a cavity of 130 mm × 13 mm × 6.5 mm so that the 13 mm × 6.5 mm surface on which the inorganic particle layer is formed is exposed to the space in the cavity. A mold is inserted, and the PPS resin composition 1 is injection molded under the same molding conditions as the above-mentioned evaluation of bonding strength, and the molten resin is injected onto the inorganic particle layer forming surface of the inserted first member 1 The second member 2 was provided by insert molding, and a 130 mm × 13 mm × 6.5 mm composite member shown in FIG. 6B was manufactured.

<接合強度評価>
アルミニウム基材およびガラス基材を用いた複合部材については、上述の接合強度の評価と同様に、図3に示す治具を用いて接合強度を測定し、PPS樹脂組成物1基材を用いた複合部材については、オリエンテック社製テンシロンUTA−50kN(クロスヘッド速度10mm/分)にて引張試験を行い複合部材の接合強度を測定した。以下の基準による接合強度評価結果を表3に示す。
<Evaluation of joint strength>
For composite members using an aluminum base and a glass base, the bonding strength was measured using the jig shown in FIG. 3 and the PPS resin composition 1 base was used, as in the above-described evaluation of the bonding strength. About a composite member, the tension test was carried out by Orientec Co., Ltd. Tensilon UTA-50kN (cross head speed 10 mm / min), and the joint strength of the composite member was measured. The bonding strength evaluation results according to the following criteria are shown in Table 3.

◎:接合強度30MPa以上
○:接合強度20MPa以上、30MPa未満
△:接合強度10MPa以上、20MPa未満
:: bonding strength 30 MPa or more ○: bonding strength 20 MPa or more, less than 30 MPa Δ: bonding strength 10 MPa or more, less than 20 MPa

Figure 2019089297
Figure 2019089297

[無機粒子層の影響評価]
上述の基材種と表面粗さの影響評価と同様のアルミニウム基材、ガラス基材、PPS樹脂組成物1基材を、いずれもRmax=4μm、Rz=4μmとなるように調製し、イソプロピルアルコール中に平均粒径25nmのシリカ粒子を分散させた液体に浸漬することで第1部材を製造した。ここで、液体中のシリカ粒子濃度および基材の浸漬回数を調整することにより、無機粒子層の厚さを表4に示すように変化させた。
[Influence evaluation of inorganic particle layer]
An aluminum substrate, a glass substrate, and a PPS resin composition 1 substrate similar to the above-described evaluation of the effects of the substrate type and surface roughness are prepared so that Rmax = 4 μm and Rz = 4 μm, and isopropyl alcohol The first member was manufactured by immersing in a liquid in which silica particles having an average particle diameter of 25 nm are dispersed. Here, the thickness of the inorganic particle layer was changed as shown in Table 4 by adjusting the silica particle concentration in the liquid and the number of times of immersion of the substrate.

他は上述の基材種と表面粗さの影響評価と同様にして、PPS樹脂組成物1からなる第2部材と接合した複合部材を製造し、接合強度の評価を行った。結果を表4に示す。   The other members were manufactured in the same manner as in the above-described evaluation of the effects of the substrate type and the surface roughness, and a composite member bonded to the second member made of the PPS resin composition 1 was manufactured, and the bonding strength was evaluated. The results are shown in Table 4.

Figure 2019089297
Figure 2019089297

なお、基材にガラス、第2部材にCOC樹脂組成物を用いた実施例では、第1部材と第2部材の接合部が透明な複合部材が得られており、本発明の複合部材は透明部材用途にも適用可能なことが確認された。   In the example using a glass as the base material and a COC resin composition as the second member, a composite member in which the bonding portion between the first member and the second member is transparent is obtained, and the composite member of the present invention is transparent. It has been confirmed that it is applicable to member applications.

[他の異材接合技術との比較]
基材として、45mm×18mm×1.5mmに切削したアルミニウム:日本軽金属株式会社製「A5052」の板に、化学エッチングの類として知られる大成プラス株式会社のNMT処理を施し、表面を粗化したものを第1部材として、上述の接合強度の評価と同様の成形条件・試験条件にて、PPS樹脂組成物1からなる第2部材と接合し、接合強度測定を実施した結果、接合強度は30MPaであった。
[Comparison with other dissimilar bonding technology]
Aluminum cut as 45 mm x 18 mm x 1.5 mm as a substrate: A plate of "A5052" manufactured by Nippon Light Metal Co., Ltd. was subjected to NMT treatment by Taisei Plus Co., Ltd. known as a kind of chemical etching to roughen the surface As a first member, it is joined to the second member composed of PPS resin composition 1 under the same molding conditions and test conditions as the above-mentioned evaluation of the joint strength, and the joint strength is measured. As a result, the joint strength is 30 MPa Met.

また、LCP樹脂組成物2からなる第2部材についても、同様にアルミニウム基材にNMT処理を施した第1部材との接合強度評価を行った結果、接合強度は15MPaであった。さらに特開2014−117724の実施例4に記載の試料(接合強度33MPa)と接合力を比較した。これらの結果から、本発明の複合部材は、従来の接合技術と比較して同等またはそれ以上の接合強度が得られることが確認された。   Moreover, also about the 2nd member which consists of LCP resin composition 2, as a result of performing joint strength evaluation with the 1st member which performed the NMT process to the aluminum base similarly, joint strength was 15 Mpa. Furthermore, the bonding strength was compared with the sample (bonding strength 33 MPa) described in Example 4 of JP-A-2014-117724. From these results, it was confirmed that the composite member of the present invention can obtain the same or higher bonding strength as compared with the conventional bonding technology.

1 第1部材
2 第2部材
3 接合強度試験片押し治具
4 接合強度試験片固定用治具
5 気密性評価用試料
H 気密性評価用試料の中央に開けられた孔
7 気密試験機
8 気密試験機本体
9 気密試験機蓋
10 Oリング
11 蒸留水
12 ライン
13 気密試験機本体内部
P 気圧

1 First member 2 Second member 3 Bonding strength test piece pressing jig 4 Bonding strength test piece fixing jig 5 Sample for evaluation of air tightness H Hole formed in the center of sample for air tightness evaluation 7 Airtightness testing machine
8 Airtightness tester body 9 Airtightness tester lid 10 O-ring 11 Distilled water 12 Line 13 Airtightness tester body P inside pressure

Claims (15)

基材上に無機粒子からなる層を有する第1部材と、収縮率sh(%)と弾性率E(MPa)がE≦100000×exp(−2.64×sh)を満たす樹脂組成物からなる第2部材、とを接合してなる複合部材。   Consisting of a first member having a layer consisting of inorganic particles on a base material, and a resin composition in which the shrinkage factor sh (%) and elastic modulus E (MPa) satisfy E ≦ 100000 × exp (−2.64 × sh) And a second member. 前記第2部材が、収縮率sh(%)と弾性率E(MPa)がE≦63000×exp(−2.64×sh)を満たす樹脂組成物からなるものである請求項1に記載の複合部材。   The composite according to claim 1, wherein the second member is made of a resin composition in which a shrinkage ratio sh (%) and an elastic modulus E (MPa) satisfy E 6 63000 x exp (-2.64 x sh). Element. 前記樹脂組成物が、エラストマを含むものである請求項1又は2に記載の複合部材。   The composite member according to claim 1, wherein the resin composition contains an elastomer. 基材上に無機粒子からなる層を有する第1部材と、エラストマを含む樹脂組成物からなる第2部材とを接合してなる複合部材。   The composite member formed by joining the 1st member which has a layer which consists of inorganic particles on a base material, and the 2nd member which consists of a resin composition containing an elastomer. 前記エラストマが、オレフィン系重合体、ポリエステル系エラストマ、ウレタン系エラストマ及びアクリル系重合体、から選ばれる少なくとも1種である請求項3又は4に記載の複合部材。 The composite member according to claim 3 or 4, wherein the elastomer is at least one selected from an olefin polymer, a polyester elastomer, a urethane elastomer, and an acrylic polymer. 前記エラストマが、グリシジル基を含有するエラストマである請求項3〜5いずれかの項に記載の複合部材。   The composite member according to any one of claims 3 to 5, wherein the elastomer is an elastomer containing glycidyl group. 前記無機粒子からなる層が、平均粒径1〜500nmの無機粒子からなるものである、請求項1〜6いずれかの項に記載の複合部材。 The composite member according to any one of claims 1 to 6, wherein the layer composed of the inorganic particles is composed of inorganic particles having an average particle diameter of 1 to 500 nm. 前記無機粒子からなる層が、厚さ1〜1500nmである、請求項1〜7いずれかの項に記載の複合部材。 The composite member according to any one of claims 1 to 7, wherein the layer made of the inorganic particles has a thickness of 1 to 1,500 nm. 前記無機粒子からなる層が、最密充填した無機粒子からなるものである、請求項1〜8いずれかの項に記載の複合部材。   The composite member according to any one of claims 1 to 8, wherein the layer composed of the inorganic particles is composed of closely packed inorganic particles. 前記基材が、JIS B 0601:1982に準拠して測定される表面粗さが、Rz=Rmax±10%、かつRmax=1〜10μmである請求項1〜9いずれかの項に記載の複合部材。   The composite according to any one of claims 1 to 9, wherein the base material has a surface roughness measured according to JIS B 0601: 1982, Rz = Rmax ± 10%, and Rmax = 1 to 10 μm. Element. 前記基材上の層が、実質的に前記無機粒子のみからなるものである請求項1〜10いずれかの項に記載の複合部材。   The composite member according to any one of claims 1 to 10, wherein the layer on the substrate substantially consists of only the inorganic particles. 前記樹脂組成物が粒径0.1〜50μmの無機粒子からなる充填材を5〜50質量%含有するものである請求項1〜11いずれかの項に記載の複合部材。   The composite member according to any one of claims 1 to 11, wherein the resin composition contains 5 to 50% by mass of a filler composed of inorganic particles having a particle diameter of 0.1 to 50 m. 前記基材が、樹脂、ガラス、セラミックから選ばれる少なくとも1種からなるものである請求項1〜12いずれかの項に記載の複合部材。   The composite member according to any one of claims 1 to 12, wherein the substrate is made of at least one selected from resin, glass, and ceramic. 前記基材の熱伝導率λ(W/m・k)が2.0以下である請求項1〜13いずれかの項に記載の複合部材。   The composite member according to any one of claims 1 to 13, wherein the thermal conductivity λ (W / m · k) of the base material is 2.0 or less. 請求項1〜14いずれかの項に記載の複合部材の製造方法であって、移流集積法により、基材上に無機粒子からなる層を形成して第1部材を作成し、前記第1部材上に、収縮率sh(%)と弾性率E(MPa)がE≦100000×exp(−2.64×sh)を満たす樹脂組成物からなる第2部材を射出成形により接合する、複合部材の製造方法。

The method of manufacturing a composite member according to any one of claims 1 to 14, wherein the first member is formed by forming a layer composed of inorganic particles on a base material by an advection accumulation method. A composite member in which a second member made of a resin composition having a shrinkage ratio sh (%) and an elastic modulus E (MPa) satisfying E ≦ 100000 × exp (−2.64 × sh) is joined by injection molding. Production method.

JP2017221578A 2017-11-17 2017-11-17 Composite member and its manufacturing method Active JP7020874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017221578A JP7020874B2 (en) 2017-11-17 2017-11-17 Composite member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221578A JP7020874B2 (en) 2017-11-17 2017-11-17 Composite member and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2019089297A true JP2019089297A (en) 2019-06-13
JP2019089297A5 JP2019089297A5 (en) 2020-12-03
JP7020874B2 JP7020874B2 (en) 2022-02-16

Family

ID=66837060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221578A Active JP7020874B2 (en) 2017-11-17 2017-11-17 Composite member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7020874B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006041A1 (en) * 2019-07-09 2021-01-14 ポリプラスチックス株式会社 Molded body, composite molded body, and method for producing composite molded body
CN114364646A (en) * 2019-09-30 2022-04-15 松下知识产权经营株式会社 Composite component
JP7085081B1 (en) * 2021-04-02 2022-06-15 ポリプラスチックス株式会社 Composite member and its manufacturing method
WO2022208981A1 (en) * 2021-04-02 2022-10-06 ポリプラスチックス株式会社 Composite member and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229474A (en) * 1995-02-27 1996-09-10 Res Dev Corp Of Japan Fine particle membrane and method and device for forming the same
JP2002283499A (en) * 2001-03-26 2002-10-03 Shin Etsu Polymer Co Ltd Composite of polymer-based composition and metal
JP2010064397A (en) * 2008-09-11 2010-03-25 Taisei Plas Co Ltd Metal/plastic composite and its manufacturing process
JP2010155218A (en) * 2008-12-27 2010-07-15 Osaka Univ Method for manufacturing substrate with particulate-single-layer-membrane and substrate with particulate-single-layer-membrane
JP2011068122A (en) * 2009-06-05 2011-04-07 Sumitomo Chemical Co Ltd Inorganic particle composite, and method for manufacturing the same
JP2011224132A (en) * 2010-04-19 2011-11-10 Kaneka Corp Medical connector/shaft assembly, or method of manufacturing the same
WO2011155289A1 (en) * 2010-06-09 2011-12-15 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition, metal composite component, and method for producing metal composite component
JP2012214027A (en) * 2011-03-31 2012-11-08 Toyota Central R&D Labs Inc Joined body of metallic material and resin material, method of manufacturing metallic material for joining with resin material used for manufacturing same, and method of manufacturing the joined body
WO2015087720A1 (en) * 2013-12-13 2015-06-18 住友ベークライト株式会社 Metal-resin composite body
WO2016098680A1 (en) * 2014-12-17 2016-06-23 Dic株式会社 Primer composition for plating, base to be plated, composite body of insulating base and metal layer, method for producing base to be plated, and method for producing composite body of insulating base and metal layer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229474A (en) * 1995-02-27 1996-09-10 Res Dev Corp Of Japan Fine particle membrane and method and device for forming the same
JP2002283499A (en) * 2001-03-26 2002-10-03 Shin Etsu Polymer Co Ltd Composite of polymer-based composition and metal
JP2010064397A (en) * 2008-09-11 2010-03-25 Taisei Plas Co Ltd Metal/plastic composite and its manufacturing process
JP2010155218A (en) * 2008-12-27 2010-07-15 Osaka Univ Method for manufacturing substrate with particulate-single-layer-membrane and substrate with particulate-single-layer-membrane
JP2011068122A (en) * 2009-06-05 2011-04-07 Sumitomo Chemical Co Ltd Inorganic particle composite, and method for manufacturing the same
JP2011224132A (en) * 2010-04-19 2011-11-10 Kaneka Corp Medical connector/shaft assembly, or method of manufacturing the same
WO2011155289A1 (en) * 2010-06-09 2011-12-15 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition, metal composite component, and method for producing metal composite component
JP2012214027A (en) * 2011-03-31 2012-11-08 Toyota Central R&D Labs Inc Joined body of metallic material and resin material, method of manufacturing metallic material for joining with resin material used for manufacturing same, and method of manufacturing the joined body
WO2015087720A1 (en) * 2013-12-13 2015-06-18 住友ベークライト株式会社 Metal-resin composite body
WO2016098680A1 (en) * 2014-12-17 2016-06-23 Dic株式会社 Primer composition for plating, base to be plated, composite body of insulating base and metal layer, method for producing base to be plated, and method for producing composite body of insulating base and metal layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006041A1 (en) * 2019-07-09 2021-01-14 ポリプラスチックス株式会社 Molded body, composite molded body, and method for producing composite molded body
JP2021011094A (en) * 2019-07-09 2021-02-04 ポリプラスチックス株式会社 Molded body, composite molded body, and method for producing composite molded body
CN113906104A (en) * 2019-07-09 2022-01-07 宝理塑料株式会社 Molded body, composite molded body, and method for producing composite molded body
CN113906104B (en) * 2019-07-09 2022-03-29 宝理塑料株式会社 Molded body, composite molded body, and method for producing composite molded body
CN114364646A (en) * 2019-09-30 2022-04-15 松下知识产权经营株式会社 Composite component
JP7085081B1 (en) * 2021-04-02 2022-06-15 ポリプラスチックス株式会社 Composite member and its manufacturing method
WO2022208981A1 (en) * 2021-04-02 2022-10-06 ポリプラスチックス株式会社 Composite member and method for producing same

Also Published As

Publication number Publication date
JP7020874B2 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP2019089297A (en) Composite member and method for producing the same
TWI624358B (en) Metal resin composite formed body and manufacturing method thereof
JP6515933B2 (en) Release film, method of manufacturing the same, and method of manufacturing semiconductor package
JP5149069B2 (en) Mold assembly and injection molding method
JP5876624B1 (en) Polyarylene sulfide resin composition and insert molded product
TW202002191A (en) Electromagnetic wave shield sheet
JP2019181710A (en) Metal-resin bonded product
EP3034277B1 (en) Bonded body and bonding method
KR102134322B1 (en) Resin composition for insert molding, metal-resin composite molded body using the same, and method for producing the same
WO2019208709A1 (en) Polyarylene sulfide-based resin composition and insert-molded product
WO2019208708A1 (en) Polyarylene sulfide-based resin composition and insert-molded product
JPWO2017010419A1 (en) Laminated body and method for producing the same
JP2019029423A (en) Peeling film
JP7085081B1 (en) Composite member and its manufacturing method
WO2022208981A1 (en) Composite member and method for producing same
JP6278822B2 (en) Metal resin composite molded body and method for producing the same
CN104072992B (en) Insert-molding resin combination, metal-resin composite shaped body and its manufacturing method using it
JP3682369B2 (en) Resin package, semiconductor device, and resin package manufacturing method
JP2020036007A (en) Film, and method of manufacturing film
WO2015129236A1 (en) Resin molded body and manufacturing method therefor
JP7149346B2 (en) Composite member and manufacturing method thereof
KR101682934B1 (en) Release film for memory semiconductor package mold
US20200303868A1 (en) Connector-equipped case, connector-equipped wire harness, and engine control unit
KR20220022113A (en) Temporary protective film for semiconductor encapsulation molding, lead frame with temporary protective film, encapsulation molded article with temporary protective film, and method for manufacturing semiconductor device
JP7458354B2 (en) holding device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220203

R150 Certificate of patent or registration of utility model

Ref document number: 7020874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150