WO2022208981A1 - Composite member and method for producing same - Google Patents

Composite member and method for producing same Download PDF

Info

Publication number
WO2022208981A1
WO2022208981A1 PCT/JP2021/042383 JP2021042383W WO2022208981A1 WO 2022208981 A1 WO2022208981 A1 WO 2022208981A1 JP 2021042383 W JP2021042383 W JP 2021042383W WO 2022208981 A1 WO2022208981 A1 WO 2022208981A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
layer
composite member
inorganic
resin
Prior art date
Application number
PCT/JP2021/042383
Other languages
French (fr)
Japanese (ja)
Inventor
章弘 望月
康之 竹田
高士 見置
友美 香村
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2022508566A priority Critical patent/JP7085081B1/en
Publication of WO2022208981A1 publication Critical patent/WO2022208981A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a composite member in which resins are joined together or a resin and a dissimilar material are joined together, and a manufacturing method thereof.
  • Composite materials which are made by bonding different materials such as resins together or resins and metals, glass, or inorganic materials, have been used for automobile interiors such as console boxes around instrument panels, engine parts, interior parts, and digital cameras. It is used in parts that come into contact with the outside world, such as housings, interface connections, and power supply terminals of electronic devices such as mobile phones.
  • Patent Literature 3 proposes a technique having a layer made of an inorganic material.
  • An object of the present invention is to provide a new method for manufacturing a composite member in which resins are combined or resins are combined with dissimilar materials such as metal, glass, and inorganic materials with high productivity.
  • the present invention has been achieved by the following.
  • a composite member obtained by joining a first member having a layer of inorganic particles on a substrate and a second member made of an elastomer via a layer of inorganic particles, wherein the layer of inorganic particles is A composite member, which is a layer having a surface on which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are arranged, and at least a part of the surface has a structural color. 2.
  • a method for producing a composite member by bonding a first member having a layer of inorganic particles on a base material and a second member made of an elastomer via a layer of inorganic particles comprising: A method for producing a composite member, wherein the layer is formed by using a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed in a solvent at a concentration of 0.1% by mass or more and less than 15% by mass. . 3. 3. The method for producing a composite member according to 2 above, wherein the base material is made of resin or elastomer. 4. 4.
  • FIG. 1 is a perspective view of a first member of the present invention
  • FIG. 1 is a perspective view of composite member embodiment 1.
  • FIG. FIG. 2 is a schematic diagram showing the tensile direction and speed for evaluating the bonding strength of the composite member according to embodiment 1;
  • 10A and 10B are photographs and SEM photographs of the first member of Example 3 after advection and accumulation; The surface on which the inorganic particles are arranged is cut out for SEM imaging, and the surface on which the inorganic particles are arranged has a structural color.
  • 10A and 10B are photographs and SEM photographs of the first member of Comparative Example 1 after advection and accumulation;
  • One aspect of the method for producing a composite member of the present invention is a composite formed by joining a first member having a layer made of inorganic particles on a base material and a second member made of an elastomer through a layer made of inorganic particles.
  • a method for manufacturing a member, wherein the layer composed of inorganic particles uses a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed at a concentration of 0.1% by mass or more and less than 15% by mass, and advective accumulation is performed. It is characterized by being formed by a method.
  • the layer of inorganic particles on the first member of the present invention (hereinafter also simply referred to as a particle layer) is made of inorganic particles having an average particle size of 1 nm or more and less than 20 nm. Also, the thickness of the layer is preferably 1 to 500 nm. This layer is preferably a layer of closely packed inorganic particles. This layer of inorganic particles is formed by an advection accumulation method or the like using a dispersion liquid dispersed at a concentration of 0.1% by mass or more and less than 15% by mass.
  • the particle layer formed by this method forms a close-packed structure by accumulating particles due to lateral capillary force. It is speculated that this close-packed structure is formed more pronouncedly when dispersions dispersed at concentrations of less than 15% by weight are used.
  • the surface on which the inorganic particles of the present invention are arranged is visually observed, it is found to have a structural color.
  • the range in which this structural color can be observed is most preferably the entire surface where the inorganic particles are arranged, but is preferably 5% or more, more preferably 20% or more, and particularly preferably 50% or more of the surface where the inorganic particles are arranged.
  • Patent Document 3 a dispersion having an average particle size of 25 nm and a concentration of 15% by mass is used. Compared to this case, it is possible to suddenly observe a significant increase in bonding strength by setting the range within the scope of the present invention. can.
  • Usual inorganic particles such as silica particles, titanium particles, and alumina particles, metal particles, and metal oxide particles can be used as the inorganic particles.
  • the average particle size is preferably 1 nm or more and less than 20 nm, more preferably 3 to 15 nm.
  • the thickness of the layer composed of inorganic particles is preferably 1 to 1500 nm, more preferably 10 to 300 nm, even more preferably 20 to 100 nm.
  • the layer composed of the inorganic particles of the present invention is preferably close-packed. If the inorganic particles are all spherical and have the same size, the volume packing ratio at the time of closest packing is theoretically about 74%, but in practice the shape of the inorganic particles usually varies to some extent.
  • the filling state of the inorganic particles in the outermost layer is considered to have a large effect.
  • Closest packing means that the area packing rate of inorganic particles in the outermost layer of the layer composed of inorganic particles is 80% or more, and 85% or more is more preferable.
  • the thickness of the layer made of inorganic particles was measured with a transmission electron microscope (TEM). Specifically, on a TEM image of the surface of the inorganic particle layer formed on the base material, the diameters of 10 randomly selected inorganic particles are measured to determine the average particle size. The thickness of the layer composed of the inorganic particles was obtained by measuring the thickness of the layer at five random locations on the TEM image of the cross section of the particle layer.
  • TEM transmission electron microscope
  • Whether or not it is the closest packing is generally determined by photographing an arbitrary region (1 ⁇ m ⁇ 1 ⁇ m) on the inorganic particle layer forming surface of the substrate with a TEM and observing the state of filling of the inorganic particles in the outermost layer. can do.
  • the base material for forming the particle layer of the present invention is not limited as long as it is made of a material to which the advective accumulation method can be applied. Examples include metals, glass, ceramics, and resins, but in order to uniformly form a close-packed structure with stronger bonding strength, the base material should have a thermal conductivity of 500 W/m ⁇ K or less. is preferred, and it is more preferred that the material has a power of 400 W/m ⁇ K or less.
  • the thermal conductivity of the substrate is preferably within this range from the viewpoint of the solidification speed of the resin during injection molding and welding.
  • Usual cyclic polyolefin (COC), polyacetal (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystalline resin (LCP), etc. is a preferred thermoplastic resin, and polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), and liquid crystalline resin (LCP) are particularly preferred.
  • the thermal conductivity of these resins is 1.0 W/m ⁇ K or less.
  • Ceramics include alumina, mullite, ferrite, barium titanate, lead zirconate titanate, forsterite, steatite, cordierite, zircon, zirconia, aluminum nitride, silicon nitride, and silicon carbide. Their thermal conductivity is between 0.5 and 200 W/m ⁇ K. Examples of metals include aluminum, stainless steel, magnesium, copper, and titanium. Their thermal conductivity is between 10 and 400 W/m ⁇ K.
  • a more preferable Rz is Rmax ⁇ 5%.
  • Rmax is more preferably 1.5 to 8 ⁇ m, even more preferably 2 to 5 ⁇ m.
  • the second member of the present invention is made of elastomer.
  • the elastomer is preferably an elastomer or a resin composition containing an elastomer whose contraction rate sh (%) and elastic modulus E (MPa) satisfy the relationship of E ⁇ 100000 ⁇ exp ( ⁇ 2.64 ⁇ sh).
  • the base material resin of the resin composition containing the elastomer the resin mentioned as the base material of the first member can be used.
  • resin compositions obtained by adding inorganic fillers, elastomers, etc. to the preferred resins listed as the base material of the first member include olefin resin compositions, acrylic resin compositions, polyester resin compositions, polyacetal resin compositions, and PPS resins. A composition or the like is also preferable as the second member.
  • the inorganic filler examples include fibrous, plate-like, granular, and powdery inorganic fillers such as glass fiber, glass beads, glass flakes, talc, mica, and silica, and particularly the inorganic particle layer formed on the first member.
  • fibrous, plate-like, granular, and powdery inorganic fillers such as glass fiber, glass beads, glass flakes, talc, mica, and silica, and particularly the inorganic particle layer formed on the first member.
  • the affinity between the inorganic particle layer of the first member and the second member is excellent.
  • an inorganic filler with a particle size of 0.1 to 50 ⁇ m may be included. It is preferable to include inorganic fillers having an aspect ratio of 1-3.
  • the content of the inorganic filler the resin composition constituting the second member preferably contains 5 to 50% by mass of the above inorganic filler.
  • Preferred elastomers include olefin polymers such as ethylene-ethyl acrylate copolymers (for example, NUC-6570 manufactured by ENEOS NUC Co., Ltd.), polyester elastomers, urethane elastomers, and acrylic polymers such as polymethacrylic acid esters. Combined (for example, Zephiac, Staphyroid, etc. manufactured by Aica Kogyo Co., Ltd.) and the like can be mentioned.
  • elastomers even in the form of core-shell particles, can be effectively used as long as they can be mixed with the composition of the present invention.
  • elastomers for core-shell particles include Paraloid EXL2311 and EXL2314 available from Dow Chemical Company.
  • the elastomer preferably contains a glycidyl group, and examples of the elastomer containing a glycidyl group include glycidyl group-containing olefinic copolymers such as ethylene-glycidyl methacrylate copolymers and ethylene-glycidyl methacrylate-methyl acrylate copolymers. (for example, Bond First manufactured by Sumitomo Chemical Co., Ltd.).
  • the content of the elastomer may be 1 to 99% by mass, preferably 1 to 30% by mass, of the resin composition constituting the second member.
  • the elastomer contains a glycidyl group
  • the content of the glycidyl group is preferably 0.01 to 20% by mass in the resin composition constituting the second member.
  • elastomers may be used as the resin composition constituting the second member in a state in which they are contained as additives in the resins described above, or the elastomers themselves or the elastomers containing additives such as inorganic fillers may be used. You may use the thing as a resin composition which comprises the 2nd member.
  • the reason why the second member made of the resin composition having the properties described above exerts a strong bonding force is presumed as follows.
  • the particle layer on the first member exerts adhesive force to the base material first by being formed to have a close-packed structure by the advective accumulation method. It is observed that a resin composition whose shrinkage rate and elastic modulus satisfy the above formulas has excellent conformability to the surface shape of the particle layer of the close-packed structure and, as a result, has a strong bonding strength due to the large surface area of the close-packed structure. .
  • the "shrinkage rate sh (%)" means a mold having a side gate of width 4 mm ⁇ thickness 2 mm provided at the center of one side of a flat test piece of 80 mm ⁇ 80 mm ⁇ 2 mm.
  • the molding shrinkage rate in the direction perpendicular to the flow ( After molding, using a flat test piece that has been left to stand at 23°C and 50% RH for 24 hours or more, the dimension of the molded product in the direction perpendicular to the flow at a position 20 mm from the end on the opposite gate side (side on the flow terminal side) (Width of flat test piece) is measured, and the difference (shrinkage amount) from the mold dimension corresponding to the position is divided by the mold dimension), and "elastic modulus E (MPa)" , refers to the flexural modulus measured according to ISO 178.
  • the inorganic particles forming the layer on the surface of the substrate are dispersed in a solvent such as isopropyl alcohol, methanol, ethyl acetate, benzene, methyl ethyl ketone, cyclohexane, or the like.
  • a solvent such as isopropyl alcohol, methanol, ethyl acetate, benzene, methyl ethyl ketone, cyclohexane, or the like.
  • the surface on which the inorganic particle layer is arranged emits a structural color.
  • the structural color can be visually observed as shown in FIG.
  • the part that looks dark and the part that looks light have different structural colors, and the whole looks like a rainbow.
  • These structural colors are presumed to be colors developed by scattering, diffraction, interference, etc., of white light (visible light) such as sunlight by the inorganic particle layer according to the Bragg condition.
  • the particle layer does not always have the same structure, but has a variety of colors that differ depending on the viewing angle.
  • the solvent of the present invention preferably has a boiling point of 40° C. or higher and 100° C. or lower, more preferably 50° C. or higher and 90° C. or lower, in order to form a layer of inorganic particles with a uniform thickness.
  • the boiling point is preferably at room temperature or higher, and from the viewpoint of aggregation and crystallization of inorganic particles during the time until the solvent volatilizes, the boiling point is 100 ° C. or lower.
  • the boiling point is preferably at room temperature or higher, and from the viewpoint of aggregation and crystallization of inorganic particles during the time until the solvent volatilizes.
  • the surface tension value of the solvent to be used is preferably about the same as that of the substrate, for example about 10 to 30 mN/m, more preferably about 15 to 25 mN/m.
  • the content of the inorganic particles in the dispersion is 0.1% by mass or more and less than 15% by mass, preferably 0.5 to 10% by mass, and particularly preferably 1 to 5% by mass. By reducing the concentration, the area with structural color can be increased and critically an increase in bond strength can be observed.
  • the inorganic particle layer may not be provided. Multiple times may be sufficient as the number of times of application.
  • the base resin molded product can be produced by a commonly used method such as injection molding or extrusion molding. If so, it is possible to use a material manufactured by a commonly used method such as a normal pressure sintering method or a reaction sintering method. These substrates may be processed such as by cutting or welding, depending on requirements such as design, functionality, and fixation with other members.
  • the resin composition constituting the second member is brought into contact with the inorganic particle layer of the first member in a molten state, and then the resin composition is cooled and solidified to join the second member. I do.
  • the bonding method is not particularly limited.
  • the first member having the inorganic particle layer is placed in a mold for molding the second member, and the resin composition constituting the second member is added to the inorganic particles of the first member.
  • the second member can be joined by injection molding (so-called insert molding) on the layer, and the region of the surface of the pre-molded second member used for joining is heated and melted. It is also possible to bond by contacting the inorganic particle layer of the first member and applying pressure (so-called welding).
  • the conditions for insert molding and welding of the second member are not particularly limited, and can be appropriately set according to the type of resin contained in the resin composition forming the second member.
  • the cylinder temperature during insert molding is 130 to 200° C., preferably 180° C. or higher, and the injection speed is 5 to 80 mm/s. It is preferably 20 to 50 mm/s, and the holding pressure is 5 MPa to 100 MPa, preferably 10 to 50 MPa.
  • insert molding is advantageous in terms of process simplification because it is possible to simultaneously form the second member and join the first member.
  • the rigidity and toughness of the first member are low and the resin pressure in insert molding deforms or damages the first member, bonding by welding provides a high degree of freedom in setting pressurization conditions. , it is advantageous because it is easy to suppress deformation and breakage of the first member.
  • POM resin composition 1 Polyplastics Co., Ltd. polyacetal resin composition: Duracon (registered trademark) M90-40, (shrinkage rate 2.0%, elastic modulus 2500 MPa), cylinder temperature 200 ° C., mold temperature 80 ° C., The substrate was injection molded at an injection speed of 50 mm/sec and a holding pressure of 60 MPa.
  • Silica particles with an average particle diameter of 12 nm in isopropyl alcohol (IPA, surface tension value 20.8 mN/m) or methanol (MTA, surface tension value 22.6 mN/m) were adjusted to the concentrations shown in the table, Silica particles are applied to the bonding surface of the base material by the advection accumulation method by performing the operation (dip) once to dip the base material and then lift it so that the bonding surface of the step is perpendicular to the liquid surface. , and dried at 23° C. to volatilize the isopropyl alcohol and form an inorganic particle layer on the substrate surface to produce the first member.
  • inorganic particles with an average particle size of 25 nm and an average particle size of 45 nm were used.
  • a composite member as shown in FIG. 2 was manufactured by insert molding by placing the first member and injection molding the resin composition constituting the second member.
  • ethylene-ethyl acrylate copolymer "NUC-6570" (contraction rate 3%, elastic modulus 20 MPa) manufactured by ENEOS NUC Co., Ltd. was used at a cylinder temperature of 200°C, a mold temperature of 40°C, and an injection speed of 10 mm/sec. , the second member was injection molded at a holding pressure of 10 MPa. Samples were also prepared by changing the injection molding conditions such as cylinder temperature, injection speed and holding pressure (Example 2). The results are shown in Table 3.
  • FIG. 4 is an SEM image showing the deposited arrangement of silica particles in a 5% concentration solution of isopropyl alcohol
  • FIG. 5 is a 30% concentration solution in isopropyl alcohol.

Abstract

The purpose of the present invention is to provide: a composite member which is obtained by combining resins or a resin and a dissimilar material with high bonding strength and productivity; and a novel method for producing this composite member. The purpose of the present invention has been achieved by a composite member which is obtained by bonding a first member that has a layer, which is composed of inorganic particles, on a base material and a second member, which is composed of an elastomer, by the intermediary of a layer that is composed of inorganic particles, wherein: the layer that is composed of inorganic particles has a surface in which inorganic particles having an average particle diameter of not less than 1 nm but less than 20 nm are arranged; and at least a part of the surface has a structural color.

Description

複合部材およびその製造方法Composite member and manufacturing method thereof
 本発明は、樹脂同士、または樹脂と異種材料とが接合された複合部材およびその製造方法に関する。 The present invention relates to a composite member in which resins are joined together or a resin and a dissimilar material are joined together, and a manufacturing method thereof.
 樹脂同士、または樹脂と金属やガラス、無機材料といった異種材料とが接合された複合部材は、従来から、インストルメントパネル周りのコンソールボックス等の自動車の内装部材やエンジン周り部品、インテリア部品、デジタルカメラや携帯電話等の電子機器の筐体部、インターフェース接続部、電源端子部等の外界と接触する部品に用いられている。 Composite materials, which are made by bonding different materials such as resins together or resins and metals, glass, or inorganic materials, have been used for automobile interiors such as console boxes around instrument panels, engine parts, interior parts, and digital cameras. It is used in parts that come into contact with the outside world, such as housings, interface connections, and power supply terminals of electronic devices such as mobile phones.
 樹脂と樹脂、または樹脂と異種材料とを複合化する方法としては、樹脂と接合される相手側部材の接合面に微小な凹凸を形成しておきアンカー効果で接合する方法、接着剤や両面テープを用いて接着する方法、異種材料及び/又は樹脂成形品に折り返し片や爪等の固定部材を設け、この固定部材を用いて両者を固着させる方法、ねじ等を用いて接合する方法等がある。これらの中でも、樹脂板、金属板に微小な凹凸を形成する方法や接着剤を用いる方法は、複合成形品を設計する形状自由度の点で有効である(特許文献1、2)。
 これらに記載の方法は、レーザーで対象部材の表面に溝を形成するため、局所的な発熱があり、接合部材の熱膨張に起因する変形を生じることがあった。また樹脂にレーザー加工した場合、樹脂の炭化物が接合面に残り経時での接合性を劣化させる場合があるという課題があった。
 それに対し特許文献3では、無機材料からなる層を有する技術が提案されている。
As a method of compositing resin and resin or resin and dissimilar material, there is a method of forming fine unevenness on the joint surface of the mating member to be joined with the resin and joining with an anchor effect, adhesives and double-sided tapes. a method of adhering using a different material and / or a method of providing a fixing member such as a folded piece or a nail on a different material and / or a resin molded product, and a method of fixing both using this fixing member, a method of joining using screws etc. . Among these methods, the method of forming minute unevenness on a resin plate or metal plate and the method of using an adhesive are effective in terms of the degree of freedom in designing a composite molded product (Patent Documents 1 and 2).
Since the methods described in these publications use a laser to form grooves on the surfaces of the target members, there is localized heat generation, which sometimes causes deformation due to thermal expansion of the members to be joined. In addition, when a resin is laser-processed, there is a problem that the carbide of the resin may remain on the bonding surface and deteriorate the bondability over time.
On the other hand, Patent Literature 3 proposes a technique having a layer made of an inorganic material.
国際公開第WO2014/125999号パンフレットInternational Publication No. WO2014/125999 pamphlet 特開2014-117724号公報JP 2014-117724 A 特開2019-89297号公報JP 2019-89297 A
 特許文献3に記載の方法では、特許文献1、2が有する課題を解決できたが、接合強度としてはまだ十分でなかった。また接着強度のバラつきが発生しやすく生産性の点で課題があった。
 本発明の目的は、樹脂同士、または樹脂と金属やガラス、無機材料といった異種材料とを生産性高く複合化した複合部材の新たな製造方法を提供することにある。
The method described in Patent Document 3 was able to solve the problems of Patent Documents 1 and 2, but the bonding strength was still insufficient. In addition, there is a problem in terms of productivity because the adhesive strength tends to vary.
SUMMARY OF THE INVENTION An object of the present invention is to provide a new method for manufacturing a composite member in which resins are combined or resins are combined with dissimilar materials such as metal, glass, and inorganic materials with high productivity.
 本発明は、下記によって達成された。
1.  基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を配置した面を有する層であり、該面の少なくとも一部が構造色を有する複合部材。
2. 基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材の製造方法であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で溶媒中に分散した分散液を使用して形成したものである、複合部材の製造方法。
3. 前記基材が、樹脂またはエラストマからなる前記2に記載の複合部材の製造方法。
4. 前記無機粒子を分散する分散液の溶媒が、沸点100℃以下の有機溶媒である前記2または3記載の複合部材の製造方法。
5. 前記基材上の無機粒子からなる層が、移流集積法により形成されたものである前記1~4いずれかに記載の複合部材の製造方法。
6. 前記第1部材と第2部材との接合方法が、溶着または射出成形である前記2~5いずれかに記載の製造方法。
7. 前記第1部材と第2部材の接合が、溶着または射出成形である前記1記載の複合部材。
The present invention has been achieved by the following.
1. A composite member obtained by joining a first member having a layer of inorganic particles on a substrate and a second member made of an elastomer via a layer of inorganic particles, wherein the layer of inorganic particles is A composite member, which is a layer having a surface on which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are arranged, and at least a part of the surface has a structural color.
2. A method for producing a composite member by bonding a first member having a layer of inorganic particles on a base material and a second member made of an elastomer via a layer of inorganic particles, the method comprising: A method for producing a composite member, wherein the layer is formed by using a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed in a solvent at a concentration of 0.1% by mass or more and less than 15% by mass. .
3. 3. The method for producing a composite member according to 2 above, wherein the base material is made of resin or elastomer.
4. 4. The method for producing a composite member according to 2 or 3 above, wherein the solvent of the dispersion in which the inorganic particles are dispersed is an organic solvent having a boiling point of 100° C. or less.
5. 5. The method for producing a composite member according to any one of 1 to 4 above, wherein the layer of inorganic particles on the substrate is formed by an advective accumulation method.
6. 6. The manufacturing method according to any one of 2 to 5, wherein the method for joining the first member and the second member is welding or injection molding.
7. 2. The composite member according to 1 above, wherein the joining of the first member and the second member is welding or injection molding.
 本発明では、接合強度、生産性の高い複合部材およびその製造方法を提供することができる。 In the present invention, it is possible to provide a composite member with high bonding strength and productivity, and a method for manufacturing the same.
本発明の第1部材の斜視図である。1 is a perspective view of a first member of the present invention; FIG. 複合部材実施態様1の斜視図である。1 is a perspective view of composite member embodiment 1. FIG. 複合部材実施態様1の接合強度を評価のための引張方向、速度を示す模式図である。FIG. 2 is a schematic diagram showing the tensile direction and speed for evaluating the bonding strength of the composite member according to embodiment 1; 実施例3の第1部材の移流集積後の写真とSEM写真である。SEM撮影のため無機粒子を配置した面を切り出しているが、無機粒子を配置した面は、構造色を有している。10A and 10B are photographs and SEM photographs of the first member of Example 3 after advection and accumulation; The surface on which the inorganic particles are arranged is cut out for SEM imaging, and the surface on which the inorganic particles are arranged has a structural color. 比較例1の第1部材の移流集積後の写真とSEM写真である。10A and 10B are photographs and SEM photographs of the first member of Comparative Example 1 after advection and accumulation;
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Embodiments of the present invention will be described below. In addition, this invention is not limited to the following embodiment.
<複合部材>
 本発明の複合部材の製造方法一態様は、基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材の製造方法であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で分散した分散液を使用し、移流集積法により形成したものであることを特徴とする。
<Composite material>
One aspect of the method for producing a composite member of the present invention is a composite formed by joining a first member having a layer made of inorganic particles on a base material and a second member made of an elastomer through a layer made of inorganic particles. A method for manufacturing a member, wherein the layer composed of inorganic particles uses a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed at a concentration of 0.1% by mass or more and less than 15% by mass, and advective accumulation is performed. It is characterized by being formed by a method.
 ≪基材上に無機粒子からなる層を有する第1部材≫
 本発明の第1部材上の無機粒子からなる層(以下、単に粒子層ともいう)は、平均粒径1nm以上20nm未満の無機粒子からなるものである。また、層の厚さは1~500nmであることが好ましい。この層は、最密充填した無機粒子からなる層であることが好ましい。そしてこの無機粒子からなる層は、0.1質量%以上15質量%未満の濃度で分散した分散液を使用し、移流集積法等によって形成されたものである。
<<First member having a layer made of inorganic particles on a base material>>
The layer of inorganic particles on the first member of the present invention (hereinafter also simply referred to as a particle layer) is made of inorganic particles having an average particle size of 1 nm or more and less than 20 nm. Also, the thickness of the layer is preferably 1 to 500 nm. This layer is preferably a layer of closely packed inorganic particles. This layer of inorganic particles is formed by an advection accumulation method or the like using a dispersion liquid dispersed at a concentration of 0.1% by mass or more and less than 15% by mass.
 この方法による粒子層は、粒子が横毛管力によって集積し、最密構造を形成することが知られているが、本発明の平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で分散した分散液を使用した場合、この最密充填構造がより顕著に形成されるものと推測している。 It is known that the particle layer formed by this method forms a close-packed structure by accumulating particles due to lateral capillary force. It is speculated that this close-packed structure is formed more pronouncedly when dispersions dispersed at concentrations of less than 15% by weight are used.
 本発明の無機粒子を配置した面を目視で観察すると、構造色を有することがわかる。この構造色が観察できる範囲は、無機粒子を配置した全面であることが最も好ましいが、配置した面の5%以上が好ましく、さらに好ましくは20%以上、特に好ましくは50%以上である。 When the surface on which the inorganic particles of the present invention are arranged is visually observed, it is found to have a structural color. The range in which this structural color can be observed is most preferably the entire surface where the inorganic particles are arranged, but is preferably 5% or more, more preferably 20% or more, and particularly preferably 50% or more of the surface where the inorganic particles are arranged.
 特許文献3では、平均粒径25nmの15質量%濃度の分散液を使用しているが、この場合に比べ、本発明の範囲とすることによって、いきなり接合強度の顕著な上昇を観察することができる。 In Patent Document 3, a dispersion having an average particle size of 25 nm and a concentration of 15% by mass is used. Compared to this case, it is possible to suddenly observe a significant increase in bonding strength by setting the range within the scope of the present invention. can.
 残念ながら、電子顕微鏡等では直接的に層の微細構造の違いを観察することはできていないが、無機粒子を配置した面では構造色を有する。本発明の範囲では、そして、接合強度について、特許文献3からの連続的な変化では説明のできない効果が発現している。 Unfortunately, it is not possible to directly observe the difference in the microstructure of the layers with an electron microscope or the like, but the surface on which the inorganic particles are arranged has a structural color. Within the scope of the present invention, and with respect to the bonding strength, effects that cannot be explained by the continuous change from Patent Document 3 are exhibited.
 無機粒子としては、シリカ粒子、チタン粒子、アルミナ粒子等の通常の無機物粒子、金属粒子、金属酸化物粒子を適用することができる。平均粒径は好ましくは1nm以上20nm未満であり、より好ましくは3~15nmである。無機粒子からなる層の厚さは、好ましくは1~1500nmであって、10~300nmがより好ましく、20~100nmがさらに好ましい。 Usual inorganic particles such as silica particles, titanium particles, and alumina particles, metal particles, and metal oxide particles can be used as the inorganic particles. The average particle size is preferably 1 nm or more and less than 20 nm, more preferably 3 to 15 nm. The thickness of the layer composed of inorganic particles is preferably 1 to 1500 nm, more preferably 10 to 300 nm, even more preferably 20 to 100 nm.
 本発明の無機粒子からなる層は、最密充填であることが好ましい。無機粒子が全て同寸法の真球状である場合、最密充填時の体積充填率は理論上約74%であるが、実際には無機粒子の形状はある程度バラつくことが通常である。 The layer composed of the inorganic particles of the present invention is preferably close-packed. If the inorganic particles are all spherical and have the same size, the volume packing ratio at the time of closest packing is theoretically about 74%, but in practice the shape of the inorganic particles usually varies to some extent.
 また、無機粒子が厚さ方向に積層されている場合であっても、第2部材との接合を考慮する場合、最表層の無機粒子の充填状態の影響が大きいと考えられるため、ここでいう最密充填とは、無機粒子からなる層の最表層における無機粒子の面積充填率が、80%以上であることをいい、85%以上がさらに好ましい。 In addition, even if the inorganic particles are laminated in the thickness direction, when considering the bonding with the second member, the filling state of the inorganic particles in the outermost layer is considered to have a large effect. Closest packing means that the area packing rate of inorganic particles in the outermost layer of the layer composed of inorganic particles is 80% or more, and 85% or more is more preferable.
 無機粒子の平均粒径は、BET法によって、下記の通り求めた。
〔平均粒径(比表面積径)〕
b有機溶媒に分散した無機粒子の乾燥後、BET法による比表面積S(m/g)を測定し、以下の換算式(1)にて、平均粒径d(nm)を求めた。
[数1]
 d(nm)=6000/[ρ(g/cm)×S(m/g)](1)
(式中、dは平均粒径、ρは密度、Sは比表面積をあらわす。シリカでは、密度は2.2(g/cm)を採用した。)。
The average particle size of the inorganic particles was obtained by the BET method as follows.
[Average particle diameter (specific surface area diameter)]
b After drying the inorganic particles dispersed in the organic solvent, the specific surface area S (m 2 /g) was measured by the BET method, and the average particle diameter d (nm) was determined by the following conversion formula (1).
[Number 1]
d (nm) = 6000/[ρ (g/cm 3 ) x S (m 2 /g)] (1)
(In the formula, d is the average particle size, ρ is the density, and S is the specific surface area. For silica, the density was 2.2 (g/cm 3 ).).
 無機粒子からなる層の厚さは、透過型電子顕微鏡(TEM)によって測定した。具体的には、基材上に形成した無機粒子層の表面をTEMにより撮影した画像上で、無作為に抽出した10個の無機粒子の直径を測定して平均粒径を求め、同様に無機粒子層の断面をTEMにより撮影した画像上で、層の厚さを無作為の5箇所において測定した平均値を無機粒子からなる層の厚さとした。 The thickness of the layer made of inorganic particles was measured with a transmission electron microscope (TEM). Specifically, on a TEM image of the surface of the inorganic particle layer formed on the base material, the diameters of 10 randomly selected inorganic particles are measured to determine the average particle size. The thickness of the layer composed of the inorganic particles was obtained by measuring the thickness of the layer at five random locations on the TEM image of the cross section of the particle layer.
 また最密充填であるか否かは、一般的には基材の無機粒子層形成面における任意の領域(1μm×1μm)をTEMにより撮影し、最表層における無機粒子の充填状態の観察によって決定することができる。 Whether or not it is the closest packing is generally determined by photographing an arbitrary region (1 μm × 1 μm) on the inorganic particle layer forming surface of the substrate with a TEM and observing the state of filling of the inorganic particles in the outermost layer. can do.
 ≪基材≫
 本発明の粒子層を形成するための基材は、移流集積法を適用することができる素材からなる基材であれば制限はない。例えば、金属、ガラス、セラミック、樹脂等が挙げられるが、より接合力の強い最密構造を均一に形成させるためには、基材の熱伝導率が500W/m・K以下の素材であることが好ましく、400W/m・K以下の素材であることがより好ましい。基材の熱伝導率は、射出成型時、溶着時の樹脂の固化速度の観点から、この範囲とすることが好ましい。
≪Base material≫
The base material for forming the particle layer of the present invention is not limited as long as it is made of a material to which the advective accumulation method can be applied. Examples include metals, glass, ceramics, and resins, but in order to uniformly form a close-packed structure with stronger bonding strength, the base material should have a thermal conductivity of 500 W/m·K or less. is preferred, and it is more preferred that the material has a power of 400 W/m·K or less. The thermal conductivity of the substrate is preferably within this range from the viewpoint of the solidification speed of the resin during injection molding and welding.
 樹脂としては通常の環状ポリオレフィン(COC)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶性樹脂(LCP)等は、好ましい熱可塑性樹脂であり、特に、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、液晶性樹脂(LCP)が好ましく用いられる。これら樹脂の熱伝導率は1.0W/m・K以下である。 Usual cyclic polyolefin (COC), polyacetal (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystalline resin (LCP), etc. is a preferred thermoplastic resin, and polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), and liquid crystalline resin (LCP) are particularly preferred. The thermal conductivity of these resins is 1.0 W/m·K or less.
 セラミックとしてはアルミナ、ムライト、フェライト、チタン酸バリウム、チタン酸ジルコン酸鉛、フォルステライト、ステアタイト、コーディエライト、ジルコン、ジルコニア、窒化アルミニウム、窒化ケイ素、炭化ケイ素が挙げられる。これらの熱伝導率は、0.5~200W/m・Kである。金属としてはアルミニウム、ステンレス、マグネシウム、銅、チタン等が挙げられる。これらの熱伝導率は10~400W/m・Kである。 Ceramics include alumina, mullite, ferrite, barium titanate, lead zirconate titanate, forsterite, steatite, cordierite, zircon, zirconia, aluminum nitride, silicon nitride, and silicon carbide. Their thermal conductivity is between 0.5 and 200 W/m·K. Examples of metals include aluminum, stainless steel, magnesium, copper, and titanium. Their thermal conductivity is between 10 and 400 W/m·K.
 ≪表面粗さが、Rz=Rmax±10%、かつRmax=1~10μmである基材≫
 本発明の粒子層を形成する基材の表面は、表面粗さが、Rz=Rmax±10%、かつRmax=1~10μmであることが好ましい。より好ましいRzはRmax±5%である。また、Rmaxは1.5~8μmであることがより好ましく、2~5μmであることがさらに好ましい。このような面粗さとすることで、無機粒子の充填性を向上させることができる。
<<Substrate having a surface roughness of Rz=Rmax±10% and Rmax=1 to 10 μm>>
The surface of the substrate forming the particle layer of the present invention preferably has a surface roughness of Rz=Rmax±10% and Rmax=1 to 10 μm. A more preferable Rz is Rmax±5%. Also, Rmax is more preferably 1.5 to 8 μm, even more preferably 2 to 5 μm. By setting it as such surface roughness, the filling property of an inorganic particle can be improved.
 このような表面粗さとするためには、基材を作製する際に、要求される表面粗さに適した成形型を用いること、製造後の基材表面を研磨すること、基材表面をプラズマ、紫外線、コロナ放電等の活性種で処理すること、または基材表面に物理的及び/又は化学的に凹凸を形成及び/又は除去すること、基材に凹凸を生じるような粒子を含有させること等によって調整することができる。 In order to achieve such a surface roughness, it is necessary to use a mold suitable for the required surface roughness when producing the substrate, polish the surface of the substrate after production, and apply plasma to the surface of the substrate. , treatment with active species such as ultraviolet rays and corona discharge, or physical and/or chemical formation and/or removal of unevenness on the substrate surface, and inclusion of particles that cause unevenness on the substrate etc. can be adjusted.
 ≪エラストマからなる第2部材≫
 本発明の第2部材は、エラストマからなる。エラストマとしては、収縮率sh(%)と弾性率E(MPa)が、E≦100000×exp(-2.64×sh)の関係を満足するエラストマ、エラストマを含む樹脂組成物であることが好ましい。エラストマを含む樹脂組成物の母材樹脂としては、第1部材の基材として挙げた樹脂を使用することができる。
<<Second member made of elastomer>>
The second member of the present invention is made of elastomer. The elastomer is preferably an elastomer or a resin composition containing an elastomer whose contraction rate sh (%) and elastic modulus E (MPa) satisfy the relationship of E≦100000×exp (−2.64×sh). . As the base material resin of the resin composition containing the elastomer, the resin mentioned as the base material of the first member can be used.
 第1部材の基材として挙げた好ましい樹脂に、無機充填剤、エラストマ等を含有させた樹脂組成物として、オレフィン樹脂組成物、アクリル樹脂組成物、ポリエステル樹脂組成物、ポリアセタール樹脂組成物、PPS樹脂組成物等も第2部材として好ましい。 Examples of resin compositions obtained by adding inorganic fillers, elastomers, etc. to the preferred resins listed as the base material of the first member include olefin resin compositions, acrylic resin compositions, polyester resin compositions, polyacetal resin compositions, and PPS resins. A composition or the like is also preferable as the second member.
 無機充填剤としてはガラス繊維、ガラスビーズ、ガラスフレーク、タルク、マイカ、シリカ等の繊維状、板状、粒状、粉状の無機充填剤が挙げられ、特に第1部材上に形成する無機粒子層に用いられる無機物と同質の無機充填材を含有する場合、第1部材の無機粒子層と第2部材との親和性が優れる点で好ましい。 Examples of the inorganic filler include fibrous, plate-like, granular, and powdery inorganic fillers such as glass fiber, glass beads, glass flakes, talc, mica, and silica, and particularly the inorganic particle layer formed on the first member. In the case of containing an inorganic filler of the same quality as the inorganic substance used in (1), it is preferable in that the affinity between the inorganic particle layer of the first member and the second member is excellent.
 また、粒径としては0.1~50μmの無機充填材を含んでも良い。無機充填剤のアスペクト比は1~3であるものを含むことが好ましい。無機充填剤の含有量は、第2部材を構成する樹脂組成物が、上述の無機充填剤を5~50質量%含有することが好ましい。 Also, an inorganic filler with a particle size of 0.1 to 50 μm may be included. It is preferable to include inorganic fillers having an aspect ratio of 1-3. As for the content of the inorganic filler, the resin composition constituting the second member preferably contains 5 to 50% by mass of the above inorganic filler.
 好ましいエラストマとしては、エチレン-エチルアクリレート共重合体(例えば、(株)ENEOS NUC製NUC-6570等)等のオレフィン系重合体や、ポリエステル系エラストマ、ウレタン系エラストマ、ポリメタクリル酸エステルのアクリル系重合体(例えば、アイカ工業(株)製ゼフィアック、スタフィロイド等)等が挙げられる。 Preferred elastomers include olefin polymers such as ethylene-ethyl acrylate copolymers (for example, NUC-6570 manufactured by ENEOS NUC Co., Ltd.), polyester elastomers, urethane elastomers, and acrylic polymers such as polymethacrylic acid esters. Combined (for example, Zephiac, Staphyroid, etc. manufactured by Aica Kogyo Co., Ltd.) and the like can be mentioned.
 これらのエラストマは、コアシェル粒子の形状であっても、本発明の組成物に混合することができるのであれば、有効に使用することができる。コアシェル粒子のエラストマとしては、例えばダウ・ケミカル社のパラロイドEXL2311やEXL2314などが挙げられる。 These elastomers, even in the form of core-shell particles, can be effectively used as long as they can be mixed with the composition of the present invention. Examples of elastomers for core-shell particles include Paraloid EXL2311 and EXL2314 available from Dow Chemical Company.
 エラストマとしてはグリシジル基を含有することも好ましく、グリシジル基を含有するエラストマとしてはエチレン-グリシジルメタクリレート共重合体やエチレン-グリシジルメタクリレート-アクリル酸メチル共重合体のようなグリシジル基含有オレフィン系共重合体(例えば、住友化学(株)製ボンドファースト)が挙げられる。 The elastomer preferably contains a glycidyl group, and examples of the elastomer containing a glycidyl group include glycidyl group-containing olefinic copolymers such as ethylene-glycidyl methacrylate copolymers and ethylene-glycidyl methacrylate-methyl acrylate copolymers. (for example, Bond First manufactured by Sumitomo Chemical Co., Ltd.).
 第2部材で樹脂組成物としてエラストマを使用する場合、エラストマの含有量としては、第2部材を構成する樹脂組成物中の1~99質量%含有しても良く、1~30質量%含有しても良い。エラストマがグリシジル基を含有するエラストマである場合は、グリシジル基の含有量が第2部材を構成する樹脂組成物中の0.01~20質量%であることが好ましい。 When an elastomer is used as the resin composition in the second member, the content of the elastomer may be 1 to 99% by mass, preferably 1 to 30% by mass, of the resin composition constituting the second member. can be When the elastomer contains a glycidyl group, the content of the glycidyl group is preferably 0.01 to 20% by mass in the resin composition constituting the second member.
 これらのエラストマは、上述の樹脂中に添加材として含有させた状態で、第2部材を構成する樹脂組成物として用いても良いし、エラストマ自体又はエラストマに無機充填材等の添加材を含有させたものを、第2部材を構成する樹脂組成物として用いても良い。 These elastomers may be used as the resin composition constituting the second member in a state in which they are contained as additives in the resins described above, or the elastomers themselves or the elastomers containing additives such as inorganic fillers may be used. You may use the thing as a resin composition which comprises the 2nd member.
 本発明においては、上記の特性を有する樹脂組成物からなる第2部材が強い接合力を発揮する理由を下記のように推定している。第1部材上の粒子層は、まず基材との接着力が、移流集積法により最密構造を有するように形成されることにより、発揮される。そして収縮率と弾性率が上記式を満たす樹脂組成物は、最密構造の粒子層表面形状に対する追随性に優れかつ最密構造の表面積の大きさから、結果として接合力が強いと観察される。 In the present invention, the reason why the second member made of the resin composition having the properties described above exerts a strong bonding force is presumed as follows. The particle layer on the first member exerts adhesive force to the base material first by being formed to have a close-packed structure by the advective accumulation method. It is observed that a resin composition whose shrinkage rate and elastic modulus satisfy the above formulas has excellent conformability to the surface shape of the particle layer of the close-packed structure and, as a result, has a strong bonding strength due to the large surface area of the close-packed structure. .
 なお、本発明において、「収縮率sh(%)」とは、80mm×80mm×2mmの平板状試験片を、一辺の中央部に設けた幅4mm×厚さ2mmのサイドゲートを有する金型を用いて、第2部材を構成する樹脂組成物を、実際に複合部材を製造する際の第2部材の成形条件と同様の成形条件にて射出成形した場合の、流動直角方向の成形収縮率(成形後、23℃50%RHにて24時間以上静置した平板状試験片を用いて、反ゲート側の端部(流動末端側の辺)から20mmの位置における成形品の流動直角方向の寸法(平板状試験片の幅)を測定し、当該位置に相当する金型寸法との差(収縮量)を、金型寸法で除した値)を指し、「弾性率E(MPa)」とは、ISO178に準拠して測定される曲げ弾性率を指すものとする。 In the present invention, the "shrinkage rate sh (%)" means a mold having a side gate of width 4 mm × thickness 2 mm provided at the center of one side of a flat test piece of 80 mm × 80 mm × 2 mm. When the resin composition constituting the second member is injection molded under the same molding conditions as the second member when actually manufacturing the composite member, the molding shrinkage rate in the direction perpendicular to the flow ( After molding, using a flat test piece that has been left to stand at 23°C and 50% RH for 24 hours or more, the dimension of the molded product in the direction perpendicular to the flow at a position 20 mm from the end on the opposite gate side (side on the flow terminal side) (Width of flat test piece) is measured, and the difference (shrinkage amount) from the mold dimension corresponding to the position is divided by the mold dimension), and "elastic modulus E (MPa)" , refers to the flexural modulus measured according to ISO 178.
<複合部材の製造方法>
 ≪第1部材の製造方法≫
 本発明では、基材が樹脂である場合、基材表面の層を構成する無機粒子を、イソプロピルアルコール、メタノール、酢酸エチル、ベンゼン、メチルエチルケトン、シクロヘキサン等の溶媒中に分散させた分散液に、基材を浸漬して引き上げることで、いわゆる移流集積法により基材表面に無機粒子層が形成された第1部材を製造することができる。
<Manufacturing method of composite member>
<<Manufacturing method of the first member>>
In the present invention, when the substrate is a resin, the inorganic particles forming the layer on the surface of the substrate are dispersed in a solvent such as isopropyl alcohol, methanol, ethyl acetate, benzene, methyl ethyl ketone, cyclohexane, or the like. By immersing the material and pulling it up, the first member having the inorganic particle layer formed on the surface of the base material can be manufactured by the so-called advection accumulation method.
 無機粒子層を配した面は、構造色を発する。構造色は、図4のように目視で観察することができる。濃く見える部分と薄く見える部分は、構造色が異なっており、全体として虹色の様に見える。これらの構造色は、太陽光のような白色光(可視光線)が、無機粒子層によってブラッグ条件に則って散乱、回折、干渉等によって発現した色であると推測しており、本発明の無機粒子層は、常には同じ構造を有するわけではなく、観察する角度によっても異なる多様な色彩である。 The surface on which the inorganic particle layer is arranged emits a structural color. The structural color can be visually observed as shown in FIG. The part that looks dark and the part that looks light have different structural colors, and the whole looks like a rainbow. These structural colors are presumed to be colors developed by scattering, diffraction, interference, etc., of white light (visible light) such as sunlight by the inorganic particle layer according to the Bragg condition. The particle layer does not always have the same structure, but has a variety of colors that differ depending on the viewing angle.
 本発明の溶媒は、無機粒子を均一な厚みの層にするため沸点は40℃以上、100℃以下が好ましく、50℃以上、90℃以下である有機溶媒であることが好ましい。
 移流集積時の溶媒揮発による無機粒子ハンドリングの観点で、沸点は室温以上であることが好ましく、溶媒が揮発するまでの時間での無機粒子が凝集し結晶化の観点から、沸点は100℃以下であることが好ましい。
The solvent of the present invention preferably has a boiling point of 40° C. or higher and 100° C. or lower, more preferably 50° C. or higher and 90° C. or lower, in order to form a layer of inorganic particles with a uniform thickness.
From the viewpoint of handling of inorganic particles by solvent volatilization during advection and accumulation, the boiling point is preferably at room temperature or higher, and from the viewpoint of aggregation and crystallization of inorganic particles during the time until the solvent volatilizes, the boiling point is 100 ° C. or lower. Preferably.
 第1部材に金属やセラミックを使用する場合は水などの溶媒が適し、第1部材に樹脂などの有機物を使用する場合には、有機溶媒であることが好ましい。基材とのぬれ性の観点から、使用する溶媒の表面張力値が基材と同程度が好ましく、例えば10から30mN/m、更に好ましくは15から25mN/m程度である。 When using a metal or ceramic for the first member, a solvent such as water is suitable, and when using an organic substance such as resin for the first member, an organic solvent is preferable. From the viewpoint of wettability with the substrate, the surface tension value of the solvent to be used is preferably about the same as that of the substrate, for example about 10 to 30 mN/m, more preferably about 15 to 25 mN/m.
 分散液における無機粒子の含有量は0.1質量%以上15質量%未満の濃度であり、0.5~10質量%であることが好ましく、特に1~5質量%が好ましい。濃度を薄くすることによって、構造色を有する面積を増やすことができ、臨界的に接合強度の上昇を観察することができる。 The content of the inorganic particles in the dispersion is 0.1% by mass or more and less than 15% by mass, preferably 0.5 to 10% by mass, and particularly preferably 1 to 5% by mass. By reducing the concentration, the area with structural color can be increased and critically an increase in bond strength can be observed.
 ただし、基材表面上に無機粒子が緻密に配列した層を形成することができるのであれば、移流集積法に限定されず、ブラシやスプレーによる塗布、スピンコートなどの各種薄膜形成法を用いることもできる。ここで、無機粒子層を形成する際に、第2部材との接合に用いる箇所以外については、意匠性等の要求により必要に応じ、塗布した液体を拭き取る、あるいはあらかじめ基材にマスキングを施しておくことで、無機粒子層を設けないようにしてもよい。塗布回数は、複数回でもよい。 However, as long as it is possible to form a layer in which inorganic particles are densely arranged on the base material surface, it is not limited to the advection accumulation method, and various thin film formation methods such as brush or spray coating and spin coating may be used. can also Here, when forming the inorganic particle layer, the applied liquid may be wiped off or the base material may be masked in advance, if necessary, depending on the requirements of the design, etc., except for the portion used for bonding to the second member. By placing the inorganic particle layer, the inorganic particle layer may not be provided. Multiple times may be sufficient as the number of times of application.
 なお、基材に樹脂を用いる場合は射出成形や押出成形等の通常用いられる方法により基材となる樹脂成形品を作製すればよく、同様にガラスであればフロート法やダウンドロー法等、セラミックであれば常圧焼結法や反応焼結法等、通常用いられる方法により作製されたものを用いることができる。これらの基材は、意匠性、機能性、他部材との固定などの要求に応じ、適宜切削や溶着といった加工がなされたものを用いても良い。 If a resin is used as the base material, the base resin molded product can be produced by a commonly used method such as injection molding or extrusion molding. If so, it is possible to use a material manufactured by a commonly used method such as a normal pressure sintering method or a reaction sintering method. These substrates may be processed such as by cutting or welding, depending on requirements such as design, functionality, and fixation with other members.
≪第2部材の接合方法≫
 本発明では、第1部材の無機粒子層の上に、第2部材を構成する樹脂組成物を溶融状態で接触させた上で、当該樹脂組成物を冷却固化させることで、第2部材の接合を行う。接合方法は特に限定されず、例えば、無機粒子層を有する第1部材を、第2部材成形用の金型中に配置し、第2部材を構成する樹脂組成物を、第1部材の無機粒子層上に射出成形(いわゆるインサート成形)することで、第2部材の接合を行うこともできるし、あらかじめ成形しておいた第2部材の表面のうち、接合に用いる領域を加熱溶融させた状態で、第1部材の無機粒子層と接触させて加圧(いわゆる溶着)することで接合を行うこともできる。
<<Method of joining the second member>>
In the present invention, the resin composition constituting the second member is brought into contact with the inorganic particle layer of the first member in a molten state, and then the resin composition is cooled and solidified to join the second member. I do. The bonding method is not particularly limited. For example, the first member having the inorganic particle layer is placed in a mold for molding the second member, and the resin composition constituting the second member is added to the inorganic particles of the first member. The second member can be joined by injection molding (so-called insert molding) on the layer, and the region of the surface of the pre-molded second member used for joining is heated and melted. It is also possible to bond by contacting the inorganic particle layer of the first member and applying pressure (so-called welding).
 第2部材のインサート成形や溶着の条件は特に限定されず、第2部材を構成する樹脂組成物に含有される樹脂の種類に応じて適宜設定することができる。 The conditions for insert molding and welding of the second member are not particularly limited, and can be appropriately set according to the type of resin contained in the resin composition forming the second member.
 例えば、第2部材がエラストマであるエチレン-エチルアクリレート共重合体の場合、インサート成形の際のシリンダ温度としては、130~200℃、好ましくは180℃以上、射出速度は、5~80mm/s、好ましくは20~50mm/s、保圧力は、5MPa~100MPa、好ましくは10~50MPaである。 For example, in the case of an ethylene-ethyl acrylate copolymer in which the second member is an elastomer, the cylinder temperature during insert molding is 130 to 200° C., preferably 180° C. or higher, and the injection speed is 5 to 80 mm/s. It is preferably 20 to 50 mm/s, and the holding pressure is 5 MPa to 100 MPa, preferably 10 to 50 MPa.
 なお、インサート成形であれば、第2部材の形成と第1部材との接合を同時に行うことができるため、工程簡略化の面で有利である。また、第1部材の剛性や靱性が低く、インサート成形では樹脂圧により第1部材が変形又は破損してしまうような場合には、溶着で接合を行えば、加圧条件の設定自由度が高く、第1部材の変形や破損を抑制しやすいため有利である。 Note that insert molding is advantageous in terms of process simplification because it is possible to simultaneously form the second member and join the first member. In addition, when the rigidity and toughness of the first member are low and the resin pressure in insert molding deforms or damages the first member, bonding by welding provides a high degree of freedom in setting pressurization conditions. , it is advantageous because it is easy to suppress deformation and breakage of the first member.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお特に記載の無い場合、評価は23℃50%RHの測定室において行った。 Examples and comparative examples are shown below to specifically describe the present invention, but the present invention is not limited to these examples. Unless otherwise specified, the evaluation was performed in a measurement room at 23° C. and 50% RH.
[接合強度の評価]
<基材の調製>
 POM樹脂組成物1:ポリプラスチックス株式会社製ポリアセタール樹脂組成物:ジュラコン(登録商標)M90-40、(収縮率2.0%、弾性率2500MPa)、シリンダ温度200℃、金型温度80℃、射出速度50mm/sec、保圧力60MPaにて基材を射出成形した。
[Evaluation of bonding strength]
<Preparation of base material>
POM resin composition 1: Polyplastics Co., Ltd. polyacetal resin composition: Duracon (registered trademark) M90-40, (shrinkage rate 2.0%, elastic modulus 2500 MPa), cylinder temperature 200 ° C., mold temperature 80 ° C., The substrate was injection molded at an injection speed of 50 mm/sec and a holding pressure of 60 MPa.
<第1部材の製造(無機粒子層の形成)>
 イソプロピルアルコール(IPA、表面張力値20.8mN/m)またはメタノール(MTA、表面張力値22.6mN/m)中に平均粒径12nmのシリカ粒子を表に示した濃度に調整した液体中に、上述の基材を浸してから段差の接合面が液面に対し垂直になるように引き上げる操作(ディップ)を1回行うことで、基材の接合面に対しシリカ粒子を移流集積法により塗布し、23℃で乾燥させてイソプロピルアルコールを揮発させ、基材表面に無機粒子層を形成して第1部材を製造した。
 比較用として、無機粒子の平均粒径25nm、平均粒径45nmを使用した。
<Production of first member (formation of inorganic particle layer)>
Silica particles with an average particle diameter of 12 nm in isopropyl alcohol (IPA, surface tension value 20.8 mN/m) or methanol (MTA, surface tension value 22.6 mN/m) were adjusted to the concentrations shown in the table, Silica particles are applied to the bonding surface of the base material by the advection accumulation method by performing the operation (dip) once to dip the base material and then lift it so that the bonding surface of the step is perpendicular to the liquid surface. , and dried at 23° C. to volatilize the isopropyl alcohol and form an inorganic particle layer on the substrate surface to produce the first member.
For comparison, inorganic particles with an average particle size of 25 nm and an average particle size of 45 nm were used.
<複合部材の製造(第2部材との接合)>
 第1部材の無機粒子層形成面の一部と、第2部材を形成するための上記試験片のキャビティの一部がオーバーラップするように設計された、複合部材成形用の金型内部に、第1部材を設置し、第2部材を構成する樹脂組成物を射出成形することで図2に示すような複合部材をインサート成形により製造した。
<Production of composite member (joining with second member)>
Inside the mold for molding the composite member, which is designed so that part of the inorganic particle layer forming surface of the first member and part of the cavity of the test piece for forming the second member overlap, A composite member as shown in FIG. 2 was manufactured by insert molding by placing the first member and injection molding the resin composition constituting the second member.
 第2部材として、エチレン-エチルアクリレート共重合体:株式会社ENEOS NUC製「NUC-6570」(収縮率3%、弾性率20MPa)をシリンダ温度200℃、金型温度40℃、射出速度10mm/sec、保圧力10MPaにて第2部材を射出成形した。また射出成形条件である、シリンダ温度、射出速度、保圧力を変えた試料も作製した(実施例2)。この結果は表3に示す。 As the second member, ethylene-ethyl acrylate copolymer: "NUC-6570" (contraction rate 3%, elastic modulus 20 MPa) manufactured by ENEOS NUC Co., Ltd. was used at a cylinder temperature of 200°C, a mold temperature of 40°C, and an injection speed of 10 mm/sec. , the second member was injection molded at a holding pressure of 10 MPa. Samples were also prepared by changing the injection molding conditions such as cylinder temperature, injection speed and holding pressure (Example 2). The results are shown in Table 3.
<接合強度評価>
 前記第1部材と第2部材の組み合わせにて、上述の方法で調整した複合部材について、まず第1部材と第2部材との接触面の周囲のバリを除去した後、試験片固定用治具に第1部材を固定した。次いで、島津製作所製 オートグラブAG-20kNXDplusを用い、引張速度500mm/minで、第1部材と第2部材とを剥離させた時の接合強度(MPa)を測定した。第2部材の射出条件も変化させた結果も含め、表1~3に示す。
<Bonding strength evaluation>
In the combination of the first member and the second member, for the composite member prepared by the above method, first remove burrs around the contact surface between the first member and the second member, and then use a jig for fixing the test piece. The first member was fixed to. Then, using Autoglove AG-20kNXDplus manufactured by Shimadzu Corporation, the bonding strength (MPa) when the first member and the second member were separated at a tensile speed of 500 mm/min was measured. Tables 1 to 3 show the results including the results obtained by changing the injection conditions of the second member.
[生産性評価]
<良品率>
 上記複合部材を、10ショットインサート成形し、離型時に第1部材と第2部材が剥がれず、サンプルが取れたものを良品数としてカウントし、良品率を算出した(例えば、10個中3個剥がれず採取できれば、3/10×100=30%とする。)。結果を表1~3に示す。
[Productivity evaluation]
<Good product rate>
The above composite member was insert-molded for 10 shots, and the number of non-defective products was counted as the number of non-defective products in which the first member and the second member did not peel off when the mold was released, and the number of non-defective products was calculated (for example, 3 out of 10 3/10×100=30% if it can be collected without being peeled off). The results are shown in Tables 1-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3に示されているように、本発明の範囲では特異的に接合強度が向上することが判る。  As shown in Tables 1 to 3, it can be seen that the bonding strength is specifically improved within the scope of the present invention. 
 図4、5に、平均粒径12μmのシリカ粒子を移流集積法により処理した試験片の写真を示した。図4はイソプロピルアルコール5%濃度溶液、図5はイソプロピルアルコール30%濃度溶液でのシリカ粒子の堆積配置状況を示したSEM画像である。  Figures 4 and 5 show photographs of test pieces processed by the advection accumulation method with silica particles having an average particle size of 12 µm. FIG. 4 is an SEM image showing the deposited arrangement of silica particles in a 5% concentration solution of isopropyl alcohol, and FIG. 5 is a 30% concentration solution in isopropyl alcohol.
 これによると5%濃度溶液では、試験片表面の無機粒子を配置した60%程度の面積に、構造色が観察されており、均一な無機粒子層が形成されていることが判る。30%濃度溶液では、構造色は観察されず、さらに10から50μmの結晶の析出が観察される。平均粒径が25nm及び45nmの試料では、構造色は観察されない。

 
According to this, in the 5% concentration solution, structural color was observed in about 60% of the area where the inorganic particles were arranged on the surface of the test piece, and it was found that a uniform inorganic particle layer was formed. In a 30% strength solution, no structural color is observed, and in addition the precipitation of crystals of 10 to 50 μm is observed. No structural color is observed in samples with average particle sizes of 25 nm and 45 nm.

Claims (7)

  1.  基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を配置した面を有する層であり、該面の少なくとも一部が構造色を有する複合部材。 A composite member obtained by joining a first member having a layer of inorganic particles on a substrate and a second member made of an elastomer via a layer of inorganic particles, wherein the layer of inorganic particles is A composite member, which is a layer having a surface on which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are arranged, and at least a part of the surface has a structural color.
  2.  基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材の製造方法であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で溶媒中に分散した分散液を使用して形成したものである、複合部材の製造方法。 A method for producing a composite member by bonding a first member having a layer of inorganic particles on a base material and a second member made of an elastomer via a layer of inorganic particles, the method comprising: A method for producing a composite member, wherein the layer is formed by using a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed in a solvent at a concentration of 0.1% by mass or more and less than 15% by mass. .
  3.  前記基材が、樹脂またはエラストマからなる請求項2に記載の複合部材の製造方法。 The method for manufacturing a composite member according to claim 2, wherein the base material is made of resin or elastomer.
  4.  前記無機粒子を分散する分散液の溶媒が、沸点100℃以下の有機溶媒である請求項2または3記載の複合部材の製造方法。 The method for producing a composite member according to claim 2 or 3, wherein the solvent of the dispersion liquid in which the inorganic particles are dispersed is an organic solvent having a boiling point of 100°C or less.
  5.  前記基材上の無機粒子からなる層が、移流集積法により形成されたものである請求項2~4いずれかに記載の複合部材の製造方法。 The method for producing a composite member according to any one of claims 2 to 4, wherein the layer of inorganic particles on the base material is formed by an advection accumulation method.
  6.  前記第1部材と第2部材との接合方法が、溶着または射出成形である請求項2~5いずれかに記載の製造方法。 The manufacturing method according to any one of claims 2 to 5, wherein the method of joining the first member and the second member is welding or injection molding.
  7.  前記第1部材と第2部材の接合が、溶着または射出成形である請求項1記載の複合部材。

     
    2. The composite member according to claim 1, wherein the joining of said first member and said second member is welding or injection molding.

PCT/JP2021/042383 2021-04-02 2021-11-18 Composite member and method for producing same WO2022208981A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508566A JP7085081B1 (en) 2021-04-02 2021-11-18 Composite member and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-063371 2021-04-02
JP2021063371 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022208981A1 true WO2022208981A1 (en) 2022-10-06

Family

ID=83458303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042383 WO2022208981A1 (en) 2021-04-02 2021-11-18 Composite member and method for producing same

Country Status (1)

Country Link
WO (1) WO2022208981A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089297A (en) * 2017-11-17 2019-06-13 ポリプラスチックス株式会社 Composite member and method for producing the same
WO2020059128A1 (en) * 2018-09-21 2020-03-26 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
JP2020157489A (en) * 2019-03-25 2020-10-01 三井化学株式会社 Method for manufacturing metal-resin composite structure and metal-resin composite structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089297A (en) * 2017-11-17 2019-06-13 ポリプラスチックス株式会社 Composite member and method for producing the same
WO2020059128A1 (en) * 2018-09-21 2020-03-26 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
JP2020157489A (en) * 2019-03-25 2020-10-01 三井化学株式会社 Method for manufacturing metal-resin composite structure and metal-resin composite structure

Similar Documents

Publication Publication Date Title
EP1225248B1 (en) Resin moldings for application in electronical components
CN103608140B (en) Grafting material and the conjugant using this grafting material to make
JP7020874B2 (en) Composite member and its manufacturing method
KR101077822B1 (en) Anti-static polyester film improved coating defect and manufacturing method thereof
KR20100037045A (en) Adhesive composition, bonded member made with adhesive composition, support member for semiconductor mounting, semiconductor device, and processes for producing these
JP2019519626A (en) Electrically conductive hot melt adhesive or molding composition
EP3303494A1 (en) High thermally conductive low pressure mouldable hotmelt
JP7279510B2 (en) Conductive composition for molded film, molded film and method for producing same, molded article and method for producing same
WO2018198850A1 (en) Poly(arylene sulfide) resin composition and insert-molded article
TW201605944A (en) Composite magnetic material
WO2018105437A1 (en) Poly(arylene sulfide) resin composition and insert-molded article
TW200530041A (en) Bonding structure and method for bonding members
WO2017099250A1 (en) Powder particles and process for producing green work using same
KR100539105B1 (en) Target material and method thereof
WO2022208981A1 (en) Composite member and method for producing same
WO2019208709A1 (en) Polyarylene sulfide-based resin composition and insert-molded product
JPWO2017010419A1 (en) Laminated body and method for producing the same
JP7085081B1 (en) Composite member and its manufacturing method
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
KR20190102939A (en) Adhesive method of Al2O3 and Cu composite film via aerosol deposition process for application of film resistor
WO2020250610A1 (en) Composite member and method for producing same
WO2020100992A1 (en) Metal-coated particles, particle-connected body, method for producing particle-connected body, connecting material and connecting structure
TW202116910A (en) Resin particle, electroconductive particle, electroconductive material, and connected structure
JP2009242844A (en) Film deposition method
WO2022176777A1 (en) Ceramic circuit board and semiconductor device using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022508566

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935135

Country of ref document: EP

Kind code of ref document: A1