JP7083985B2 - Vibration power generation element and its manufacturing method - Google Patents

Vibration power generation element and its manufacturing method Download PDF

Info

Publication number
JP7083985B2
JP7083985B2 JP2016012675A JP2016012675A JP7083985B2 JP 7083985 B2 JP7083985 B2 JP 7083985B2 JP 2016012675 A JP2016012675 A JP 2016012675A JP 2016012675 A JP2016012675 A JP 2016012675A JP 7083985 B2 JP7083985 B2 JP 7083985B2
Authority
JP
Japan
Prior art keywords
power generation
generation element
magnetostrictive
vibration power
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016012675A
Other languages
Japanese (ja)
Other versions
JP2017135806A (en
Inventor
博司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M.T.C CO.LTD
Original Assignee
M.T.C CO.LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M.T.C CO.LTD filed Critical M.T.C CO.LTD
Priority to JP2016012675A priority Critical patent/JP7083985B2/en
Publication of JP2017135806A publication Critical patent/JP2017135806A/en
Application granted granted Critical
Publication of JP7083985B2 publication Critical patent/JP7083985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、振動から電力を生成する振動発電素子に関し、特に、磁歪材料を用いた振動発電素子に関する。 The present invention relates to a vibration power generation element that generates electric power from vibration, and more particularly to a vibration power generation element using a magnetostrictive material.

従来、磁歪材料による逆磁歪効果を利用して、振動から電力を生成する振動発電素子が提案されている(例えば、特許文献1参照)。ここで、逆磁歪効果とは、磁化させることで形状が歪む磁歪効果の逆の現象であり、形状を歪ませて磁化させる現象である。なお、磁歪効果及び逆磁歪効果を発揮する材料を磁歪材料と呼ぶ。 Conventionally, a vibration power generation element that generates electric power from vibration by utilizing the magnetostrictive effect of a magnetostrictive material has been proposed (see, for example, Patent Document 1). Here, the magnetostrictive effect is the reverse phenomenon of the magnetostrictive effect in which the shape is distorted by being magnetized, and is a phenomenon in which the shape is distorted and magnetized. A material that exerts a magnetostrictive effect and a magnetostrictive effect is called a magnetostrictive material.

特許文献1には、磁歪材料からなる磁歪薄帯と、磁歪薄帯を巻回する導電性の配線パターンから構成されるコイルと、磁歪薄帯と配線パターンとの間に介在する絶縁層とを備え、磁歪薄帯及び絶縁層を含む厚みが500μm以下のシート構造を有する磁歪発電薄膜片が開示されている。このような磁歪発電薄膜片を振動する構造物に貼り付けることで、振動が電力に変換され、コイルから電力を取り出すことができるというものである。 In Patent Document 1, a magnetostrictive thin band made of a magnetostrictive material, a coil composed of a conductive wiring pattern around the magnetostrictive thin band, and an insulating layer interposed between the magnetostrictive thin band and the wiring pattern are provided. A magnetostrictive power generation thin film piece having a sheet structure having a thickness of 500 μm or less including a magnetostrictive thin band and an insulating layer is disclosed. By attaching such a magnetostrictive power generation thin film piece to a vibrating structure, the vibration is converted into electric power, and electric power can be taken out from the coil.

一方、近年、このような振動発電に好適で、かつ、安価な磁歪材料として、Fe-Si-B系のアモルファス合金が提供されるようになってきた。 On the other hand, in recent years, Fe—Si—B-based amorphous alloys have been provided as a magnetostrictive material suitable for such vibration power generation and at low cost.

国際公開第2012/176475号International Publication No. 2012/176475

しかしながら、Fe-Si-B系のアモルファス合金は、ロールに溶融メタルを吹き付けて急冷させる製法によって製造され、バルクではなく、薄帯としてだけ製造される。そのために、Fe-Si-B系のアモルファス合金を上記特許文献1の磁歪発電薄膜片に適用しても、コイルで巻回された磁歪薄帯の断面積が十分ではなく、起電力が小さいという問題がある。コイルで巻回された磁歪薄帯から発生する起電力は、磁歪薄帯の振動周波数、コイルの巻数、磁束が通過する磁歪薄帯の断面積、及び、その磁束密度の変化率に比例するからである。 However, the Fe—Si—B-based amorphous alloy is produced by a method of spraying molten metal onto a roll to quench it, and is produced only as a thin band, not as a bulk. Therefore, even if the Fe—Si—B-based amorphous alloy is applied to the magnetostrictive power generation thin film piece of Patent Document 1, the cross-sectional area of the magnetostrictive thin band wound by the coil is not sufficient and the electromotive force is small. There's a problem. The electromotive force generated from the magnetostrictive band wound by the coil is proportional to the vibration frequency of the magnetostrictive band, the number of turns of the coil, the cross-sectional area of the magnetostrictive band through which the magnetic flux passes, and the rate of change in the magnetic flux density. Is.

そこで、本発明は、上記問題に鑑みてなされたものであり、安価に入手できるアモルファス合金を磁歪薄帯として用いた振動発電素子であって、従来よりも起電力が大きい振動発電素子を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and provides a vibration power generation element using an inexpensively available amorphous alloy as a magnetostrictive thin band, and has a larger electromotive force than the conventional vibration power generation element. The purpose is.

上記目的を達成するために、本発明の一形態に係る振動発電素子は、振動から電力を生成する振動発電素子であって、アモルファス合金の磁歪材料からなる膜状の複数の磁歪薄帯と、前記複数の磁歪薄帯を積層させるように接合する接合剤と、接合された前記複数の磁歪薄帯を束ねて巻回するコイルとを備える。 In order to achieve the above object, the vibration power generation element according to one embodiment of the present invention is a vibration power generation element that generates power from vibration, and has a plurality of film-like magnetostrictive strips made of an amorphous alloy magnetostrictive material. It includes a bonding agent for joining the plurality of magnetostrictive thin bands so as to be laminated, and a coil for bundling and winding the plurality of the joined magnetostrictive thin bands.

これにより、本発明に係る振動発電素子は、安価に入手できるが厚さに制限がある磁歪薄帯が複数、積層された構造を有するので、磁材材料の量がバルクのように増し、あるいは、磁界中に配置された場合に磁歪薄帯の断面積が大きくなり、従来よりも大きな起電力が発生する。 As a result, the vibration power generation element according to the present invention has a structure in which a plurality of magnetostrictive strips, which can be obtained at a low price but have a limited thickness, are laminated, so that the amount of the magnetic material is increased like a bulk, or When placed in a magnetic field, the cross-sectional area of the magnetostrictive thin band becomes large, and a larger electromotive force than before is generated.

ここで、前記アモルファス合金は、Fe-Si-B系のアモルファス合金であってもよい。 Here, the amorphous alloy may be a Fe—Si—B based amorphous alloy.

これにより、広く普及し、安価なFe-Si-B系のアモルファス合金を磁歪薄帯とする振動発電素子が実現される。 As a result, a vibration power generation element using an inexpensive Fe—Si—B-based amorphous alloy as a magnetostrictive thin band is realized.

また、前記複数の磁歪薄帯のそれぞれの厚さは、100μm未満であってもよい。 Further, the thickness of each of the plurality of magnetostrictive strips may be less than 100 μm.

これにより、複数の磁歪薄帯が積層された積層構造体は、全体として非常に薄いシート構造なので、振動を受けて撓み易く、大きな起電力を生じ得る。 As a result, the laminated structure in which a plurality of magnetostrictive thin bands are laminated has a very thin sheet structure as a whole, so that it is easily bent by vibration and can generate a large electromotive force.

また、前記コイルは、絶縁材で被覆された導線であってもよい。 Further, the coil may be a conducting wire coated with an insulating material.

これにより、上記特許文献1の磁歪発電薄膜片が備える絶縁層が不要となり、製法が簡素化される。 This eliminates the need for the insulating layer included in the magnetostrictive power generation thin film piece of Patent Document 1, and simplifies the manufacturing method.

また、前記接合剤は、エポキシ樹脂であってもよい。 Further, the bonding agent may be an epoxy resin.

これにより、複数の磁歪薄帯が強固に接合され、振動時には、振動構造物から複数の磁歪薄帯のそれぞれに対して引張応力と圧縮応力とが確実に加えられる。 As a result, the plurality of magnetostrictive strips are firmly joined, and during vibration, tensile stress and compressive stress are reliably applied to each of the plurality of magnetostrictive strips from the vibrating structure.

また、振動発電素子は、さらに、前記複数の磁歪薄帯に、積層されるように貼り付けて固定される基板を備え、前記コイルは、積層された前記複数の磁歪薄帯と前記基板とを束ねるように巻回されていてもよい。 Further, the vibration power generation element further includes a substrate that is attached and fixed to the plurality of magnetostrictive strips so as to be laminated, and the coil has the plurality of laminated magnetostrictive strips and the substrate. It may be wound so as to be bundled.

これにより、複数の磁歪薄帯に積層されるように基板が固定されるので、その基板を利用して振動構造物に取り付けることが容易となる。また、積層された複数の磁歪薄帯と基板とを束ねるようにコイルを巻回すればよいので、コイルの巻回が容易となり、振動発電素子の製造が効率化される。 As a result, the substrate is fixed so as to be laminated on a plurality of magnetostrictive thin bands, so that the substrate can be easily attached to the vibrating structure. Further, since the coil may be wound so as to bundle the plurality of laminated magnetostrictive strips and the substrate, the coil can be easily wound and the production of the vibration power generation element can be made more efficient.

また、前記基板の厚さは、前記複数の磁歪薄帯における厚さよりも大きくてもよい。 Further, the thickness of the substrate may be larger than the thickness of the plurality of magnetostrictive thin bands.

これにより、基板の厚さが複数の磁歪薄帯からなる積層構造体における厚さよりも大きいので、積層構造体と基板とを合わせた振動発電素子の厚さの中間(中心線)が積層構造体ではなく基板に存在することになる。よって、積層構造体と基板とを重ねて振動構造物に固定した場合に、振動している積層構造体の上層及び下層の一方で引張応力が生じ、他方で圧縮応力が生じることによる起電力の相殺という不具合が回避される。 As a result, the thickness of the substrate is larger than the thickness of the laminated structure composed of a plurality of magnetic strain thin bands, so that the middle (center line) of the thickness of the vibration power generation element obtained by combining the laminated structure and the substrate is the laminated structure. It will be on the board, not on the board. Therefore, when the laminated structure and the substrate are overlapped and fixed to the vibrating structure, tensile stress is generated on one of the upper and lower layers of the vibrating laminated structure, and compressive stress is generated on the other side. The problem of offsetting is avoided.

また、振動発電素子は、さらに、前記複数の磁歪薄帯に対して磁界を印加する磁界発生部を備えてもよい。 Further, the vibration power generation element may further include a magnetic field generating unit that applies a magnetic field to the plurality of magnetostrictive thin bands.

これにより、複数の磁歪薄帯にはバイアス磁界が印加されるので、複数の磁歪薄帯を通過する磁束が大きくなり、大きな起電力が発生される。 As a result, a bias magnetic field is applied to the plurality of magnetostrictive thin bands, so that the magnetic flux passing through the plurality of magnetostrictive thin bands becomes large and a large electromotive force is generated.

また、前記振動発電素子は、片持ち梁となるように、一端が振動構造物に固定されてもよい。 Further, one end of the vibration power generation element may be fixed to the vibration structure so as to be a cantilever.

これにより、振動発電素子が、片持ち梁として、その一端が振動構造物に固定されるので、振動構造物からの振動が拡大されて複数の磁歪薄帯に伝達され、高い効率で振動を電力に変換する振動発電素子が実現される。 As a result, the vibration power generation element is fixed to the vibration structure at one end as a cantilever, so that the vibration from the vibration structure is expanded and transmitted to a plurality of magnetic strain thin bands, and the vibration is powered with high efficiency. A vibration power generation element that converts to is realized.

本発明により、安価に入手できるアモルファス合金を磁歪薄帯として用いた振動発電素子であって、従来よりも起電力が大きい振動発電素子が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a vibration power generation element using an inexpensive available amorphous alloy as a magnetostrictive thin band, which has a larger electromotive force than the conventional one.

よって、本発明により、自動車、モータ、高架橋等で生じている振動を電力に変換することが可能となり、エネルギーの効率的利用が確保され、本発明の実用的価値は極めて高い。 Therefore, according to the present invention, vibrations generated in automobiles, motors, viaducts, etc. can be converted into electric power, efficient use of energy is ensured, and the practical value of the present invention is extremely high.

実施の形態1における振動発電素子の外観図External view of the vibration power generation element in the first embodiment 実施の形態2における振動発電素子の外観図External view of the vibration power generation element in the second embodiment 実施の形態3における振動発電素子の外観図External view of the vibration power generation element in the third embodiment 実施の形態3における振動発電素子が振動によって撓んだ様子を示す図The figure which shows the appearance that the vibration power generation element in Embodiment 3 was bent by vibration. 実施の形態4における振動発電素子の外観図External view of the vibration power generation element in the fourth embodiment

以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, all of the embodiments described below show a specific example of the present invention. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, processes, order of processes, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept of the present invention will be described as arbitrary components.

(実施の形態1)
まず、本発明の実施の形態1における振動発電素子について説明する。
(Embodiment 1)
First, the vibration power generation element according to the first embodiment of the present invention will be described.

図1は、実施の形態1における振動発電素子10の外観図である。この振動発電素子10は、逆磁歪効果を利用して振動から電力を生成する板状の素子であり、アモルファス合金の磁歪材料からなる膜状の複数の磁歪薄帯12a~12eと、複数の磁歪薄帯12a~12eを積層させるように接合する接合剤13a~13dと、接合された複数の磁歪薄帯12a~12eを束ねて巻回するコイル15とで構成される。なお、接合剤13a~13dで接合された磁歪薄帯12a~12eを、まとめて、積層構造体14と呼ぶ。 FIG. 1 is an external view of the vibration power generation element 10 according to the first embodiment. The vibration power generation element 10 is a plate-shaped element that generates electric power from vibration by utilizing the magnetostrictive effect, and has a plurality of film-like magnetostrictive strips 12a to 12e made of an amorphous alloy magnetostrictive material and a plurality of magnetostrictive bands. It is composed of bonding agents 13a to 13d for bonding the thin bands 12a to 12e so as to be laminated, and a coil 15 for bundling and winding a plurality of the bonded magnetostrictive thin bands 12a to 12e. The magnetostrictive thin bands 12a to 12e joined by the bonding agents 13a to 13d are collectively referred to as a laminated structure 14.

磁歪薄帯12a~12eのそれぞれは、Fe-Si-B系のアモルファス合金であり、例えば、Fe75Si1015、Fe73.5Si13.5NbCu等からなる厚さが100μm未満のシート状の薄帯である。磁歪薄帯12a~12eのそれぞれのサイズは、例えば、長さ(X軸方向)が10cm、幅(Y軸方向)が5mm、厚さ(Z軸方向)が25μmである。なお、本実施の形態では、積層構造体14は、5層の磁歪薄帯12a~12eで構成されているが、2層以上の磁歪薄帯で構成されればよい。積層構造体14を構成する磁歪薄帯の層数は、1個の磁歪薄帯の厚み、発生させたい起電力の大きさ、及び、設置する環境等に応じて、適宜、決めればよい。 Each of the magnetic strain strips 12a to 12e is a Fe—Si—B based amorphous alloy, and has a thickness of, for example, Fe 75 Si 10 B 15 , Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 . Is a sheet-like thin band having a size of less than 100 μm. The sizes of the magnetostrictive strips 12a to 12e are, for example, 10 cm in length (X-axis direction), 5 mm in width (Y-axis direction), and 25 μm in thickness (Z-axis direction). In the present embodiment, the laminated structure 14 is composed of five layers of magnetostrictive thin bands 12a to 12e, but may be composed of two or more layers of magnetostrictive thin bands. The number of layers of the magnetostrictive strips constituting the laminated structure 14 may be appropriately determined according to the thickness of one magnetostrictive strip, the magnitude of the electromotive force to be generated, the installation environment, and the like.

接合剤13a~13dは、磁歪薄帯12a~12eを積層させて強固に接合する部材であり、例えば、強力な接着力を有するエポキシ樹脂である。 The bonding agents 13a to 13d are members for laminating and firmly joining the magnetostrictive thin bands 12a to 12e, and are, for example, epoxy resins having a strong adhesive force.

コイル15は、磁歪薄帯12a~12eで生じる磁束密度の変化を検出して電力を発生す導線の一例であり、例えば、絶縁材で被覆された銅線(つまり、エナメル線)である。なお、コイル15は、磁歪薄帯12a~12eを束ねるように巻回されており、その巻き数や重ね巻きの度合いは、必要とする起電力に応じて適宜決められる。コイル15の両端は、この振動発電素子10で得られた起電力を供給する負荷(例えば、整流して直流電圧に変換する電源回路等)に接続される。また、コイル15の材料は、銅線に限られず、金、銀、超電導材料等が用いられた導線であればよい。 The coil 15 is an example of a conducting wire that generates electric power by detecting a change in magnetic flux density that occurs in the magnetostrictive strips 12a to 12e, and is, for example, a copper wire (that is, an enamel wire) coated with an insulating material. The coil 15 is wound so as to bundle the magnetostrictive thin bands 12a to 12e, and the number of turns and the degree of lap winding are appropriately determined according to the required electromotive force. Both ends of the coil 15 are connected to a load that supplies the electromotive force obtained by the vibration power generation element 10 (for example, a power supply circuit that rectifies and converts it into a DC voltage). Further, the material of the coil 15 is not limited to the copper wire, and any conductor wire using gold, silver, a superconducting material or the like may be used.

以上のような構造を有する本実施の形態における振動発電素子10の製造方法は、次の通りである。まず、形状の揃ったシート状の磁歪薄帯12a~12eを準備する。次に、磁歪薄帯12a~12eの積層構造において接触し合う磁歪薄帯12a~12eの面に接合剤13a~13dを塗布し、磁歪薄帯12a~12eを貼り合わせることで、積層構造体14を作る。最後に、積層構造体14に対してコイル15を巻く。このようにして完成された振動発電素子10を、振動を発生する構造物(つまり、振動構造物)に固定又は貼り付ける。 The method for manufacturing the vibration power generation element 10 according to the present embodiment having the above structure is as follows. First, sheet-shaped magnetostrictive thin bands 12a to 12e having the same shape are prepared. Next, in the laminated structure of the magnetostrictive strips 12a to 12e, the bonding agents 13a to 13d are applied to the surfaces of the magnetostrictive strips 12a to 12e that come into contact with each other, and the magnetostrictive strips 12a to 12e are bonded to each other to form the laminated structure 14. make. Finally, the coil 15 is wound around the laminated structure 14. The vibration power generation element 10 thus completed is fixed or attached to a structure that generates vibration (that is, a vibration structure).

なお、振動発電素子10は、必ずしも必要ではないが、より大きな起電力を発生させるためには磁界(バイアス磁界)中に配置するのが好ましい。磁界を発生する装置としては、振動発電素子10(厳密には、磁歪薄帯12a~12e)に磁界を印加できるものであればなんでもよく、例えば、振動発電素子10の近くに設置された永久磁石、あるいは、モータ等の磁界を発生する振動構造物であってもよい。 Although the vibration power generation element 10 is not always necessary, it is preferable to arrange the vibration power generation element 10 in a magnetic field (bias magnetic field) in order to generate a larger electromotive force. The device that generates a magnetic field may be any device that can apply a magnetic field to the vibration power generation element 10 (strictly speaking, magnetic strain thin bands 12a to 12e), for example, a permanent magnet installed near the vibration power generation element 10. Alternatively, it may be a vibration structure that generates a magnetic field such as a motor.

振動発電素子10は、振動を受けると、次の原理によって発電する。つまり、振動発電素子10に対して、振動構造物から引張応力と圧縮応力とが交互に加わり、逆磁歪効果によって、磁歪薄帯12a~12eを通過する磁束の密度が交番状に変化する。このとき、電磁誘導の原理で、コイル15に電圧(起電力)が発生する。 When the vibration power generation element 10 receives vibration, it generates power according to the following principle. That is, tensile stress and compressive stress are alternately applied to the vibration power generation element 10 from the vibrating structure, and the density of the magnetic flux passing through the magnetostrictive thin bands 12a to 12e changes in an alternating manner due to the magnetostrictive effect. At this time, a voltage (electromotive force) is generated in the coil 15 by the principle of electromagnetic induction.

以上のように、本実施の形態における振動発電素子10は、振動から電力を生成する素子であって、アモルファス合金の磁歪材料からなる膜状の複数の磁歪薄帯12a~12eと、複数の磁歪薄帯12a~12eを積層させるように接合する接合剤13a~13dと、接合された複数の磁歪薄帯12a~12eを束ねて巻回するコイル15とを備える。これにより、本発明に係る振動発電素子は、安価に入手できるが厚さに制限がある磁歪薄帯が複数、積層された構造を有するので、磁材材料の量がバルクのように増し、あるいは、磁界中に配置された場合に磁歪薄帯の断面積が大きくなり、従来よりも大きな起電力が発生する。 As described above, the vibration power generation element 10 in the present embodiment is an element that generates electric power from vibration, and includes a plurality of film-like magnetostrictive strips 12a to 12e made of an amorphous alloy magnetostrictive material and a plurality of magnetostrictive bands. A bonding agent 13a to 13d for joining the thin bands 12a to 12e so as to be laminated, and a coil 15 for bundling and winding a plurality of the joined magnetostrictive thin bands 12a to 12e are provided. As a result, the vibration power generation element according to the present invention has a structure in which a plurality of magnetostrictive strips, which can be obtained at a low price but have a limited thickness, are laminated, so that the amount of the magnetic material is increased like a bulk, or When placed in a magnetic field, the cross-sectional area of the magnetostrictive thin band becomes large, and a larger electromotive force than before is generated.

また、アモルファス合金は、Fe-Si-B系のアモルファス合金である。これにより、広く普及し、安価なFe-Si-B系のアモルファス合金を磁歪薄帯とする振動発電素子が実現される。 The amorphous alloy is a Fe—Si—B based amorphous alloy. As a result, a vibration power generation element using an inexpensive Fe—Si—B-based amorphous alloy as a magnetostrictive thin band is realized.

また、複数の磁歪薄帯12a~12eのそれぞれの厚さは、100μm未満である。これにより、複数の磁歪薄帯12a~12eが積層された積層構造体14は、全体として非常に薄いシート構造なので、振動を受けて撓み易く、大きな起電力を生じ得る。 Further, the thickness of each of the plurality of magnetostrictive thin bands 12a to 12e is less than 100 μm. As a result, the laminated structure 14 in which the plurality of magnetostrictive thin bands 12a to 12e are laminated has a very thin sheet structure as a whole, so that it is easily bent by vibration and can generate a large electromotive force.

また、コイル15は、絶縁材で被覆された導線である。これにより、上記特許文献1の磁歪発電薄膜片が備える絶縁層が不要となり、製法が簡素化される。 Further, the coil 15 is a conducting wire coated with an insulating material. This eliminates the need for the insulating layer included in the magnetostrictive power generation thin film piece of Patent Document 1, and simplifies the manufacturing method.

また、接合剤13a~13dは、エポキシ樹脂である。これにより、複数の磁歪薄帯12a~12eが強固に接合され、振動時には、振動構造物から磁歪薄帯12a~12eのそれぞれに対して引張応力と圧縮応力とが確実に加えられる。 Further, the bonding agents 13a to 13d are epoxy resins. As a result, the plurality of magnetostrictive thin bands 12a to 12e are firmly joined, and at the time of vibration, tensile stress and compressive stress are surely applied to each of the magnetostrictive thin bands 12a to 12e from the vibrating structure.

(実施の形態2)
次に、本発明の実施の形態2における振動発電素子について説明する。
(Embodiment 2)
Next, the vibration power generation element according to the second embodiment of the present invention will be described.

図2は、実施の形態2における振動発電素子10aの外観図である。この振動発電素子10aは、実施の形態1の振動発電素子10に加えて、積層構造体14(複数の磁歪薄帯12a~12e)に積層されるように貼り付けて固定される基板30が備えられている。なお、本図では、片持ち梁として、振動発電素子10aの一端が、ボルト42によって、振動構造物の一例であるアンカー40に固定されている様子が示されている。以下、実施の形態1と同じ構成要素には同じ符号を付してその説明を省略し、実施の形態1と異なる点を説明する。 FIG. 2 is an external view of the vibration power generation element 10a according to the second embodiment. The vibration power generation element 10a includes, in addition to the vibration power generation element 10 of the first embodiment, a substrate 30 that is attached and fixed so as to be laminated on a laminated structure 14 (a plurality of magnetostrictive thin bands 12a to 12e). Has been done. In this figure, as a cantilever, one end of the vibration power generation element 10a is fixed to an anchor 40, which is an example of a vibration structure, by a bolt 42. Hereinafter, the same components as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be described.

基板30は、積層構造体14の面(ここでは、最下層の磁歪薄帯12aの下面)とエポキシ樹脂等の接合剤で接合され、片持ち梁として、一端が振動構造物に固定され、振動構造物からの振動を積層構造体14に伝達する金属製の部材である。ここでは、基板30の一端を貫通するボルト42によって基板30はアンカー40に固定されている。 The substrate 30 is joined to the surface of the laminated structure 14 (here, the lower surface of the magnetic strain thin band 12a of the lowermost layer) with a bonding agent such as epoxy resin, and one end is fixed to the vibrating structure as a cantilever and vibrates. It is a metal member that transmits vibrations from the structure to the laminated structure 14. Here, the substrate 30 is fixed to the anchor 40 by a bolt 42 penetrating one end of the substrate 30.

コイルは、積層構造体14と基板30とを束ねるように巻回されている。 The coil is wound so as to bundle the laminated structure 14 and the substrate 30.

このような構造を有する本実施の形態における振動発電素子10aによれば、基板30を利用して振動構造物に取り付けることが容易となる。また、製造する際には、積層構造体14と基板30とを束ねるようにコイルを巻回すればよいので、コイルの巻回が容易となり、振動発電素子10aの製造が効率化される。 According to the vibration power generation element 10a in the present embodiment having such a structure, it becomes easy to attach the substrate 30 to the vibration power generation structure. Further, in the manufacturing, the coil may be wound so as to bundle the laminated structure 14 and the substrate 30, so that the coil can be easily wound and the production of the vibration power generation element 10a is made efficient.

また、基板30を、片持ち梁として、その一端を振動構造物に固定することで、振動構造物からの振動が基板30で拡大されて磁歪薄帯12a~12eに伝達され、高い効率で振動を電力に変換する振動発電素子が実現される。つまり、図2に示される形態では、基板30の自由端が上方(Z軸の正方向)に撓んだ場合には、磁歪薄帯12a~12eの全てに圧縮応力が加わり、一方、基板30の自由端が下方(Z軸の負方向)に撓んだ場合には、磁歪薄帯12a~12eの全てに引張応力が加わり、振動発電素子10aに大きな歪みが生じ、効率的に発電される。 Further, by fixing the substrate 30 as a cantilever and one end thereof to the vibrating structure, the vibration from the vibrating structure is expanded by the substrate 30 and transmitted to the magnetic strain thin bands 12a to 12e, and the vibration is performed with high efficiency. A vibration power generation element that converts the power into electric power is realized. That is, in the form shown in FIG. 2, when the free end of the substrate 30 bends upward (in the positive direction of the Z axis), compressive stress is applied to all of the magnetostrictive thin bands 12a to 12e, while the substrate 30. When the free end of is bent downward (negative direction of the Z axis), tensile stress is applied to all of the magnetostrictive strips 12a to 12e, causing a large strain in the vibration power generation element 10a to efficiently generate power. ..

なお、本実施の形態では、基板30の大きさ及び厚さは、任意でよい。ただし、基板30と積層構造体14とを束ねてコイル15で巻回し易いように、基板30の幅は、磁歪薄帯12a~12eの幅と略同一にしておくのが好ましい。また、基板30を振動構造物に取り付け易いように、基板30の長さは、磁歪薄帯12a~12eの長さよりも大きいのが好ましい。さらに、基板30の厚さについては、片持ち梁として振動し易い厚さであるのが好ましい。 In this embodiment, the size and thickness of the substrate 30 may be arbitrary. However, it is preferable that the width of the substrate 30 is substantially the same as the width of the magnetostrictive thin bands 12a to 12e so that the substrate 30 and the laminated structure 14 can be bundled and easily wound by the coil 15. Further, the length of the substrate 30 is preferably larger than the length of the magnetostrictive thin bands 12a to 12e so that the substrate 30 can be easily attached to the vibrating structure. Further, the thickness of the substrate 30 is preferably a thickness that easily vibrates as a cantilever.

また、本実施の形態では、振動発電素子10aは、1個のボルト42によって振動構造物に固定されたが、複数のボルトによって振動構造物に固定されてもよいし、ボルトとは異なる手法(溶接、圧着等)で振動構造物に固定されてもよい。 Further, in the present embodiment, the vibration power generation element 10a is fixed to the vibration structure by one bolt 42, but it may be fixed to the vibration structure by a plurality of bolts, and a method different from that of the bolt ( It may be fixed to the vibrating structure by welding, crimping, etc.).

(実施の形態3)
次に、本発明の実施の形態3における振動発電素子について説明する。
(Embodiment 3)
Next, the vibration power generation element according to the third embodiment of the present invention will be described.

図3は、実施の形態3における振動発電素子10bの外観図である。この振動発電素子10bは、実施の形態2の振動発電素子10aと比べて、基板30aの大きさ及び厚さが異なる。以下、実施の形態2と同じ構成要素には同じ符号を付し、その説明を省略し、実施の形態2と異なる点を説明する。 FIG. 3 is an external view of the vibration power generation element 10b according to the third embodiment. The size and thickness of the substrate 30a of the vibration power generation element 10b are different from those of the vibration power generation element 10a of the second embodiment. Hereinafter, the same components as those in the second embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the second embodiment will be described.

基板30aは、実施の形態2の基板30と同様に、積層構造体14の面(ここでは、最下層の磁歪薄帯12aの下面)とエポキシ樹脂等の接合剤で接合され、片持ち梁として、一端が振動構造物に固定され、振動構造物からの振動を積層構造体14に伝達する金属製の部材である。 Similar to the substrate 30 of the second embodiment, the substrate 30a is joined to the surface of the laminated structure 14 (here, the lower surface of the magnetic strain thin band 12a of the lowermost layer) with a bonding agent such as epoxy resin, and serves as a cantilever. , One end is fixed to the vibrating structure, and it is a metal member that transmits the vibration from the vibrating structure to the laminated structure 14.

ただし、本実施の形態の基板30aは、図3に示されるように、基板30aの長さが、積層構造体14の長さと同程度である。そして、振動発電素子10bの全体が片持ち梁となるように、基板30と積層構造体14の両方を貫通するボルト42によって振動発電素子10bの一端がアンカー40に固定されている。 However, in the substrate 30a of the present embodiment, as shown in FIG. 3, the length of the substrate 30a is about the same as the length of the laminated structure 14. Then, one end of the vibration power generation element 10b is fixed to the anchor 40 by a bolt 42 penetrating both the substrate 30 and the laminated structure 14 so that the entire vibration power generation element 10b becomes a cantilever.

また、本実施の形態では、基板30aの厚さは、積層構造体14の厚さよりも大きい。つまり、基板30aと積層構造体14とを合わせた振動発電素子10bの厚さの中間が積層構造体14ではなく基板30に存在する。これは、本実施の形態では、実施の形態2とは異なり、基板30と積層構造体14とが一体となって振動構造物に固定されるので、振動時において、積層構造体14の上層及び下層の一方で引張応力が生じ、他方で圧縮応力が生じることによる起電力の相殺という不具合を回避するためである。 Further, in the present embodiment, the thickness of the substrate 30a is larger than the thickness of the laminated structure 14. That is, the middle of the thickness of the vibration power generation element 10b in which the substrate 30a and the laminated structure 14 are combined exists not in the laminated structure 14 but in the substrate 30. In this embodiment, unlike the second embodiment, the substrate 30 and the laminated structure 14 are integrally fixed to the vibrating structure, so that the upper layer of the laminated structure 14 and the laminated structure 14 and the laminated structure 14 are fixed at the time of vibration. This is to avoid the problem of canceling the electromotive force due to the tensile stress generated on one side of the lower layer and the compressive stress generated on the other side.

つまり、もし、基板30aを備えることなく、コイルが巻回された積層構造体だけを片持ち梁として一端を固定した場合には、振動時において、積層構造体の上層及び下層の一方で引張応力が生じ、他方で圧縮応力が生じることによって、起電力が相殺し合う。本実施の形態によれば、応力の中立線が積層構造体14から外れるので、このような起電力の相殺が回避される。 That is, if one end of the laminated structure around which the coil is wound is fixed as a cantilever without the substrate 30a, tensile stress is applied to one of the upper and lower layers of the laminated structure during vibration. On the other hand, compressive stress is generated, so that the electromotive forces cancel each other out. According to the present embodiment, since the stress neutral line deviates from the laminated structure 14, such offsetting of electromotive force is avoided.

図4は、本実施の形態における振動発電素子10bが振動によって撓んだ様子を示す図である。ここでは、図3におけるIV-IV線を含む面で振動発電素子10bを切断したときの断面図が示されている。また、基板30aと積層構造体14とを合わせた振動発電素子10bの厚さの中間を通る線(中心線32)も併せて図示されている。 FIG. 4 is a diagram showing a state in which the vibration power generation element 10b in the present embodiment is bent by vibration. Here, a cross-sectional view when the vibration power generation element 10b is cut on the surface including the IV-IV line in FIG. 3 is shown. Further, a line (center line 32) passing through the middle of the thickness of the vibration power generation element 10b in which the substrate 30a and the laminated structure 14 are combined is also shown.

本図に示されるように、本実施の形態の振動発電素子10bでは、積層構造体14よりも基板30aの厚さが大きいため、応力の中立線となる中心線32は、基板30aを通る。その結果、振動発電素子10bが片持ち梁として振動した場合に、積層構造体14を構成する磁歪薄帯12a~12eの全てに引張応力又は圧縮応力が加わり、磁歪薄帯12a~12eの全てに同じ応力が加えられ、確実に起電力が生じる。 As shown in this figure, in the vibration power generation element 10b of the present embodiment, the thickness of the substrate 30a is larger than that of the laminated structure 14, so that the center line 32, which is the neutral line of stress, passes through the substrate 30a. As a result, when the vibration power generation element 10b vibrates as a cantilever, tensile stress or compressive stress is applied to all of the magnetostrictive strips 12a to 12e constituting the laminated structure 14, and all of the magnetostrictive strips 12a to 12e are subjected to tensile stress or compressive stress. The same stress is applied and the electromotive force is surely generated.

(実施の形態4)
次に、本発明の実施の形態4における振動発電素子について説明する。
(Embodiment 4)
Next, the vibration power generation element according to the fourth embodiment of the present invention will be described.

図5は、実施の形態4における振動発電素子10cの外観図である。この振動発電素子10cは、実施の形態2の振動発電素子10aに、積層構造体14に対して磁界を印加する磁界発生部(連結ヨーク20a及び20b、永久磁石22a及び22b、並びに、バックヨーク24からなる構造物)を追加した構造を有する。以下、実施の形態2と同じ構成要素には同じ符号を付してその説明を省略し、実施の形態2と異なる点を説明する。 FIG. 5 is an external view of the vibration power generation element 10c according to the fourth embodiment. The vibration power generation element 10c is a magnetic field generating portion (connecting yokes 20a and 20b, permanent magnets 22a and 22b, and a back yoke 24) that apply a magnetic field to the laminated structure 14 to the vibration power generation element 10a of the second embodiment. It has a structure with the addition of a structure consisting of). Hereinafter, the same components as those in the second embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the second embodiment will be described.

連結ヨーク20a及び20b、永久磁石22a及び22b、並びに、バックヨーク24は、磁歪薄帯12a~12eにバイアス磁界を印加する構造物である。つまり、連結ヨーク20a及び20bは、Feを含む磁性材料で構成され、それぞれ、積層構造体14の一端面及び他端面にエポキシ樹脂等で接合されている。永久磁石22a及び22bは、それぞれ、S極及びN極が連結ヨーク20a及び20bにエポキシ樹脂等で接合された永久磁石である。バックヨーク24は、Feを含む磁性材料で構成され、永久磁石22aのN極と永久磁石22bのS極とにエポキシ樹脂等で接合されている。 The connecting yokes 20a and 20b, the permanent magnets 22a and 22b, and the back yoke 24 are structures that apply a bias magnetic field to the magnetostrictive thin bands 12a to 12e. That is, the connecting yokes 20a and 20b are made of a magnetic material containing Fe, and are bonded to one end surface and the other end surface of the laminated structure 14 with epoxy resin or the like, respectively. The permanent magnets 22a and 22b are permanent magnets in which the S pole and the N pole are bonded to the connecting yokes 20a and 20b with an epoxy resin or the like, respectively. The back yoke 24 is made of a magnetic material containing Fe, and is bonded to the N pole of the permanent magnet 22a and the S pole of the permanent magnet 22b with an epoxy resin or the like.

このような連結ヨーク20a及び20b、永久磁石22a及び22b、並びに、バックヨーク24は、積層構造体14(より厳密には、磁歪薄帯12a~12e)に対してバイアス磁界を印加する磁界発生部として機能する。つまり、永久磁石22a、バックヨーク24、永久磁石22b及び磁歪薄帯12a~12eによって磁束が通過する磁気ループが形成され、常時、積層構造体14(より厳密には、磁歪薄帯12a~12e)に一定の磁界(バイアス磁界)が印加される。 Such connecting yokes 20a and 20b, permanent magnets 22a and 22b, and the back yoke 24 are magnetic field generating portions that apply a bias magnetic field to the laminated structure 14 (more strictly, the magnetostrictive thin bands 12a to 12e). Functions as. That is, a magnetic loop through which the magnetic flux passes is formed by the permanent magnet 22a, the back yoke 24, the permanent magnet 22b, and the magnetostrictive thin bands 12a to 12e, and the laminated structure 14 (more strictly, the magnetostrictive thin bands 12a to 12e) is always formed. A constant magnetic field (bias magnetic field) is applied to the magnet.

このような構造を有する本実施の形態における振動発電素子10cによれば、磁界発生部によって磁歪薄帯12a~12eに対してバイアス磁界が印加されるので、振動発電素子10cが振動を受けた場合に、磁歪薄帯12a~12eを通過する磁束が大きく変化し、大きな起電力が発生される。 According to the vibration power generation element 10c in the present embodiment having such a structure, a bias magnetic field is applied to the magnetostrictive thin bands 12a to 12e by the magnetic field generating portion, so that when the vibration power generation element 10c is subjected to vibration. In addition, the magnetic flux passing through the magnetostrictive thin bands 12a to 12e changes significantly, and a large electromotive force is generated.

なお、本実施の形態では、実施の形態2の振動発電素子10aに磁界発生部が追加されたが、実施の形態1の振動発電素子10に磁界発生部が追加されてもよい。 In the present embodiment, the magnetic field generation unit is added to the vibration power generation element 10a of the second embodiment, but the magnetic field generation unit may be added to the vibration power generation element 10 of the first embodiment.

以上、本発明の振動発電素子について、実施の形態1~4に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本発明の範囲内に含まれる。 Although the vibration power generation element of the present invention has been described above based on the first to fourth embodiments, the present invention is not limited to these embodiments. As long as the gist of the present invention is not deviated, various modifications that can be conceived by those skilled in the art are applied to the embodiment, and other embodiments constructed by combining some components in the embodiment are also within the scope of the present invention. include.

例えば、上記実施の形態では、振動発電素子は、片持ち梁として設置されたが、このような設置例だけに限られず、振動構造物に貼り付けたり、ネジ等で締めつけたりして、固定されてもよい。 For example, in the above embodiment, the vibration power generation element is installed as a cantilever, but it is not limited to such an installation example, and is fixed by being attached to a vibration structure or tightened with a screw or the like. You may.

本発明は、磁歪材料を用いて振動から電力を生成する振動発電素子として、例えば、自動車、モータ、高架橋等で生じている振動を電力に変換する振動発電素子として、利用できる。 The present invention can be used as a vibration power generation element that generates electric power from vibration using a magnetic strain material, for example, as a vibration power generation element that converts vibration generated in an automobile, a motor, a high bridge, or the like into electric power.

10、10a、10b、10c 振動発電素子
12a~12e 磁歪薄帯
13a~13d 接合剤
14 積層構造体
15 コイル
20a、20b 連結ヨーク
22a、22b 永久磁石
24 バックヨーク
30、30a 基板
40 アンカー
42 ボルト
10, 10a, 10b, 10c Vibration power generation element 12a to 12e Magnetostrictive strip 13a to 13d Joining agent 14 Laminated structure 15 Coil 20a, 20b Coupling yoke 22a, 22b Permanent magnet 24 Back yoke 30, 30a Substrate 40 Anchor 42 Bolt

Claims (10)

振動から電力を生成する振動発電素子であって、
アモルファス合金の磁歪材料からなる膜状の複数の磁歪薄帯と、
前記複数の磁歪薄帯を積層させるように接合する接合剤と、
前記接合剤により接合された前記複数の磁歪薄帯に、積層されるように貼り付けて固定されており、かつ、振動構造物に固定される基板と
層された前記複数の磁歪薄帯と前記基板とを束ねるように巻回するコイルと、を備える振動発電素子。
It is a vibration power generation element that generates electric power from vibration.
Multiple film-like magnetostrictive strips made of amorphous alloy magnetostrictive material,
A bonding agent that joins the plurality of magnetostrictive thin bands so as to be laminated,
A substrate that is attached and fixed to the plurality of magnetostrictive strips joined by the bonding agent so as to be laminated and fixed to a vibrating structure .
A vibration power generation element comprising the plurality of laminated magnetostrictive strips and a coil wound so as to bundle the substrate.
前記アモルファス合金は、Fe-Si-B系のアモルファス合金である
請求項1記載の振動発電素子。
The vibration power generation element according to claim 1, wherein the amorphous alloy is a Fe—Si—B-based amorphous alloy.
前記複数の磁歪薄帯のそれぞれの厚さは、100μm未満である
請求項1又は2記載の振動発電素子。
The vibration power generation element according to claim 1 or 2, wherein the thickness of each of the plurality of magnetostrictive strips is less than 100 μm.
前記コイルは、絶縁材で被覆された導線である
請求項1~3のいずれか1項に記載の振動発電素子。
The vibration power generation element according to any one of claims 1 to 3, wherein the coil is a conducting wire coated with an insulating material.
前記接合剤は、エポキシ樹脂である
請求項1~4のいずれか1項に記載の振動発電素子。
The vibration power generation element according to any one of claims 1 to 4, wherein the bonding agent is an epoxy resin.
前記基板の厚さは、前記接合剤により接合された前記複数の磁歪薄帯からなる積層構造体の厚さよりも大きい
請求項1~5のいずれか1項に記載の振動発電素子。
The vibration power generation element according to any one of claims 1 to 5, wherein the thickness of the substrate is larger than the thickness of the laminated structure composed of the plurality of magnetostrictive strips bonded by the bonding agent .
さらに、前記複数の磁歪薄帯に対して磁界を印加する磁界発生部を備える
請求項1~6のいずれか1項に記載の振動発電素子。
The vibration power generation element according to any one of claims 1 to 6, further comprising a magnetic field generating unit that applies a magnetic field to the plurality of magnetostrictive thin bands.
前記振動発電素子は、片持ち梁となるように、一端が前記基板を介して前記振動構造物に固定される
請求項1~7のいずれか1項に記載の振動発電素子。
The vibration power generation element according to any one of claims 1 to 7, wherein one end of the vibration power generation element is fixed to the vibration structure via the substrate so as to be a cantilever.
前記複数の磁歪薄帯の各々の周縁をなす二対の辺のうち、一方の一対の辺に前記コイル
が巻回しており、他方の一対の辺は開放されている
請求項1~8のいずれか1項に記載の振動発電素子。
Any of claims 1 to 8, wherein the coil is wound around one pair of sides of the two pairs forming the peripheral edge of each of the plurality of magnetostrictive strips, and the other pair of sides is open. The vibration power generation element according to item 1.
振動から電力を生成する振動発電素子の製造方法であって、
アモルファス合金の磁歪材料からなる膜状の複数の磁歪薄帯を準備し、
準備された前記複数の磁歪薄帯の積層構造において接触し合う前記複数の磁歪薄帯の面
に接合剤を塗布し、
前記接合剤が塗布された前記複数の磁歪薄帯を貼り合わせることで、積層構造体を作成
し、
前記積層構造体に積層されるように、振動構造物に固定される基板を貼り付けて固定し、
前記積層構造体と前記基板とを束ねるようにコイルを巻回する
振動発電素子の製造方法。
It is a manufacturing method of a vibration power generation element that generates electric power from vibration.
Prepare multiple film-like magnetostrictive strips made of amorphous alloy magnetostrictive material,
A bonding agent is applied to the surfaces of the plurality of magnetostrictive strips that come into contact with each other in the prepared laminated structure of the plurality of magnetostrictive strips.
By laminating the plurality of magnetostrictive strips coated with the bonding agent, a laminated structure is created.
A substrate to be fixed to the vibrating structure is attached and fixed so as to be laminated on the laminated structure.
A method for manufacturing a vibration power generation element in which a coil is wound so as to bundle the laminated structure and the substrate.
JP2016012675A 2016-01-26 2016-01-26 Vibration power generation element and its manufacturing method Active JP7083985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012675A JP7083985B2 (en) 2016-01-26 2016-01-26 Vibration power generation element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012675A JP7083985B2 (en) 2016-01-26 2016-01-26 Vibration power generation element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017135806A JP2017135806A (en) 2017-08-03
JP7083985B2 true JP7083985B2 (en) 2022-06-14

Family

ID=59504509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012675A Active JP7083985B2 (en) 2016-01-26 2016-01-26 Vibration power generation element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7083985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450919B2 (en) 2019-03-25 2024-03-18 国立大学法人信州大学 Power generation elements and sensors
CN114268243A (en) * 2021-12-24 2022-04-01 南昌工程学院 Magnetostrictive-electromagnetic combined vibration energy collector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266892A (en) 2006-03-28 2007-10-11 Sumida Corporation Coil antenna
WO2013136364A1 (en) 2012-03-14 2013-09-19 富士通株式会社 Power generation device
WO2013186876A1 (en) 2012-06-13 2013-12-19 富士通株式会社 Power generation device
JP2014107982A (en) 2012-11-28 2014-06-09 Fujitsu Ltd Power generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990065A (en) * 1995-09-28 1997-04-04 Seiko Epson Corp Portable equipment with power generating device
JPH1169684A (en) * 1997-08-14 1999-03-09 Asahi Chem Ind Co Ltd Printed coil for actuator
JP3569431B2 (en) * 1998-02-17 2004-09-22 新日本製鐵株式会社 Manufacturing method of laminated iron core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266892A (en) 2006-03-28 2007-10-11 Sumida Corporation Coil antenna
WO2013136364A1 (en) 2012-03-14 2013-09-19 富士通株式会社 Power generation device
WO2013186876A1 (en) 2012-06-13 2013-12-19 富士通株式会社 Power generation device
JP2014107982A (en) 2012-11-28 2014-06-09 Fujitsu Ltd Power generator

Also Published As

Publication number Publication date
JP2017135806A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
KR102359667B1 (en) Power generation device, power generation device manufacturing method and actuator
JP5954406B2 (en) Power generator
JP5537984B2 (en) Reciprocating vibration generator
JP5659426B2 (en) Vibration generator
KR101457782B1 (en) Power generation element and power generation apparatus provided with power generation element
JP5998879B2 (en) Power generator
WO2015141414A1 (en) Power generation element and actuator using structure of said power generation element
EP1037502B1 (en) Speaker
JP7083985B2 (en) Vibration power generation element and its manufacturing method
CN106026772A (en) Shearing type permanent magnet piezoelectric composite structure based wire energy-taking apparatus and preparation method
JP2013126337A (en) Power generation device
JP5867097B2 (en) Power generator
WO2021135831A1 (en) Exciter and electronic product
US20190356246A1 (en) Vibration powered generator
JP5880579B2 (en) Power generator
WO2019130862A1 (en) Power generation device
JP2020088933A (en) Power generation device
WO2012176475A1 (en) Magnetostrictive power-generating thin film strip, method for producing same, and magnetostrictive power-generating module
JP2020191777A (en) Transducer and actuator and energy harvester using the same
JP2020198693A (en) Power generation element and device using the same
WO2019142612A1 (en) Power generation device
JP2021136734A (en) Power generator
JP7450827B2 (en) Current sensor and wire diagnostic system
JP2019011989A (en) Current sensor
WO2013136669A1 (en) Energy conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210520

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210525

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210618

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210622

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210727

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210824

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220315

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220419

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7083985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150