JP7081030B1 - Electrode device for ultra-high temperature heating furnace - Google Patents

Electrode device for ultra-high temperature heating furnace Download PDF

Info

Publication number
JP7081030B1
JP7081030B1 JP2021126293A JP2021126293A JP7081030B1 JP 7081030 B1 JP7081030 B1 JP 7081030B1 JP 2021126293 A JP2021126293 A JP 2021126293A JP 2021126293 A JP2021126293 A JP 2021126293A JP 7081030 B1 JP7081030 B1 JP 7081030B1
Authority
JP
Japan
Prior art keywords
electrode portion
ultra
high temperature
furnace
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021126293A
Other languages
Japanese (ja)
Other versions
JP2023020749A (en
Inventor
浩也 稲本
照昌 金井
上士 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2021126293A priority Critical patent/JP7081030B1/en
Application granted granted Critical
Publication of JP7081030B1 publication Critical patent/JP7081030B1/en
Publication of JP2023020749A publication Critical patent/JP2023020749A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Abstract

【課題】円管状のスリーブ内において黒鉛電極部を支持するセラミックス絶縁体の溶損を抑制することができる超高温加熱炉の電極装置を提供する。【解決手段】スリーブ64内において、セラミックス絶縁体であるアルミナ磁器製の第2円管状碍子82とスリーブ64の開口との間に、第2円管状碍子82を遮蔽するように設けられ、第2円管状碍子82よりも高融点を有するセラミックス遮蔽物84が、備えられている。これにより、円管状のスリーブ64内において黒鉛電極部68を支持する第2円管状碍子82の溶損を抑制することができる。稼働率を大きく向上させることができる。【選択図】図5PROBLEM TO BE SOLVED: To provide an electrode device of an ultra-high temperature heating furnace capable of suppressing melting damage of a ceramic insulator supporting a graphite electrode portion in a circular tubular sleeve. SOLUTION: In a sleeve 64, a second circular tubular insulator 82 is provided so as to shield between a second circular tubular insulator 82 made of alumina porcelain, which is a ceramic insulator, and an opening of the sleeve 64. A ceramic shield 84 having a higher melting point than the circular tubular insulator 82 is provided. As a result, it is possible to suppress the melting damage of the second circular tubular insulator 82 that supports the graphite electrode portion 68 in the circular tubular sleeve 64. The operating rate can be greatly improved. [Selection diagram] FIG. 5

Description

本発明は、ヒータを用いて熱処理を行なう超高温加熱炉の電極装置の構造に関する。 The present invention relates to the structure of an electrode device of an ultra-high temperature heating furnace that performs heat treatment using a heater.

カーボン繊維やグラファイトシート、燃料電池用ガス拡散層基材等を製造するための黒鉛化処理等では、2000℃以上の超高温領域で熱処理を行なうことが求められている。このような2000℃程度の超高温領域で熱処理が行なわれる超高温加熱炉では、炉内に設けられたカーボンヒータに給電する電極装置が、炉壁を貫通した状態で備えられる。このような超高温加熱炉に用いられる電極装置は、カーボンヒータに接続された黒鉛電極部と、その黒鉛電極部に高融点金属製の接続部を介して接続された水冷金属電極部とを備え、炉体に貫通する状態で設けられた円管状のスリーブ内に、たとえばアルミナ製の円環状或いは円筒状のセラミックス絶縁体を介して支持されている。たとえば特許文献1に記載された電極装置がそれである。 In the graphitization treatment for producing carbon fibers, graphite sheets, gas diffusion layer base materials for fuel cells, etc., it is required to perform heat treatment in an ultra-high temperature region of 2000 ° C. or higher. In such an ultra-high temperature heating furnace in which heat treatment is performed in an ultra-high temperature region of about 2000 ° C., an electrode device for supplying power to a carbon heater provided in the furnace is provided in a state of penetrating the furnace wall. The electrode device used in such an ultra-high temperature heating furnace includes a graphite electrode portion connected to a carbon heater and a water-cooled metal electrode portion connected to the graphite electrode portion via a connection portion made of refractory metal. It is supported in a circular tubular sleeve provided so as to penetrate the furnace body, for example, via an annular or cylindrical ceramic insulator made of alumina. For example, the electrode device described in Patent Document 1 is that.

これにより、水冷金属電極部の接続部が高温によって機械的強度が著しく損なわれることが抑制され、2000℃以上の超高温領域で熱処理を行なうことが可能になったとされている。 As a result, it is said that the connection portion of the water-cooled metal electrode portion is prevented from being significantly impaired in mechanical strength due to high temperature, and heat treatment can be performed in an ultra-high temperature region of 2000 ° C. or higher.

実開昭58-90694号公報Jikkai Sho 58-90694

ところで、上記の電極装置では、黒鉛電極部、高融点金属製の接続部、および水冷金属電極部のうち、円管状のスリーブ内において少なくとも黒鉛電極部を支持するセラミックス絶縁体は、円管状のスリーブの開口側から入射する高エネルギの輻射線に晒されることや、構造的にスリーブ内において移動し易い場合には、スリーブの開口側へ移動して、炉内からの高エネルギの輻射線に一層晒されるので、溶損する恐れがあった。このような不都合は、2500℃から3000℃の超高温領域となるほど、顕著となっていた。 By the way, in the above-mentioned electrode device, among the graphite electrode portion, the connection portion made of refractory metal, and the water-cooled metal electrode portion, the ceramic insulator that supports at least the graphite electrode portion in the circular tubular sleeve is a circular tubular sleeve. If it is exposed to the high-energy radiant rays incident from the opening side of the sleeve, or if it is structurally easy to move in the sleeve, it moves to the open side of the sleeve and becomes one layer to the high-energy radiant rays from the inside of the furnace. Since it was exposed, there was a risk of melting. Such inconvenience became more remarkable in the ultra-high temperature region of 2500 ° C to 3000 ° C.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、円管状のスリーブ内において黒鉛電極部を支持するセラミックス絶縁体の溶損を抑制することができる超高温加熱炉の電極装置を提供することにある。 The present invention has been made in the background of the above circumstances, and an object thereof is an ultra-high temperature capable of suppressing melting damage of a ceramic insulator supporting a graphite electrode portion in a circular tubular sleeve. The purpose is to provide an electrode device for a heating furnace.

本発明者等は、以上の事情を背景として種々検討を重ねた結果、炉壁を貫通して設けられたスリーブの開口とスリーブ内において、黒鉛電極部等を支持するセラミックス絶縁体とスリーブの開口との間に黒鉛電極部の外周面から突き出す突起を設けると、セラミックス絶縁体の溶損が好適に抑制されることを見出した。本発明はかかる知見に基づいてなされたものである。 As a result of various studies against the background of the above circumstances, the present inventors have conducted various studies, and as a result, the opening of the sleeve provided through the furnace wall and the opening of the ceramic insulator and the sleeve that support the graphite electrode portion and the like in the sleeve. It has been found that if a protrusion protruding from the outer peripheral surface of the graphite electrode portion is provided between the two, the melting damage of the ceramic insulator is suitably suppressed. The present invention has been made based on such findings.

すなわち、第1発明の要旨とするところは、(a)金属電極部と前記金属電極部に連ねて接続された黒鉛電極部とを備え、超高温加熱炉の炉壁を構成する水冷式の外殻および断熱パネルをそれぞれ貫通して固設された円筒部材及びリーブ内に前記黒鉛電極部の外側端部がセラミックス絶縁体を径方向に介して配置され、前記黒鉛電極部の内側端部が前記炉壁の内側に前記炉壁の内壁面と平行に配置されている長手状の一対のカーボンヒータに接続された、超高温領域で黒鉛化処理を行なう超高温加熱炉の電極装置であって、(b)前記スリーブ内において、前記セラミックス絶縁体と前記スリーブの開口との間に黒鉛電極部の外周面から突き出す突起を、備え、(c)前記金属電極部は、前記炉壁に固定され、(d)前記金属電極部には、冷却水を循環させる配管が接続された止まり穴が形成され、(e)前記黒鉛電極部の内側端部は、前記炉壁の内側において、前記炉壁の内壁面と平行な長手状のブロックを介して前記一対のカーボンヒータの端部と接続され、(f)前記長手状のブロックは、前記黒鉛電極部の径よりも大きい幅寸法を有し、(g)前記長手状のブロックの長手方向の中央部に前記黒鉛電極部の内側端部が接続され、前記長手状のブロックの長手方向の両端部に前記一対のカーボンヒータの端部がそれぞれ接続されていることにある。 That is, the gist of the first invention is the outside of the water-cooled type, which includes (a) a metal electrode portion and a graphite electrode portion connected to the metal electrode portion in a row, and constitutes a furnace wall of an ultra-high temperature heating furnace. The outer end portion of the graphite electrode portion is arranged radially through the ceramic insulator in the cylindrical member and the leave fixed through the shell and the heat insulating panel, respectively, and the inner end portion of the graphite electrode portion is the said. An electrode device for an ultra-high temperature heating furnace that performs a graphite treatment in an ultra-high temperature region, which is connected to a pair of longitudinal carbon heaters arranged inside the furnace wall in parallel with the inner wall surface of the furnace wall . (B) In the sleeve, a protrusion protruding from the outer peripheral surface of the graphite electrode portion is provided between the ceramic insulator and the opening of the sleeve, and (c) the metal electrode portion is fixed to the furnace wall. (D) A blind hole to which a pipe for circulating cooling water is connected is formed in the metal electrode portion, and (e) the inner end portion of the graphite electrode portion is inside the furnace wall and is formed in the furnace wall. Connected to the ends of the pair of carbon heaters via a longitudinal block parallel to the inner wall surface, (f) the longitudinal block has a width dimension greater than the diameter of the graphite electrode portion (f). g) The inner ends of the graphite electrode portion are connected to the central portion of the longitudinal block in the longitudinal direction, and the ends of the pair of carbon heaters are connected to both ends of the longitudinal block in the longitudinal direction. It is in the fact that it is.

第2発明の要旨とするところは、第1発明において、前記超高温加熱炉は、6面の炉壁で囲まれた炉室を有し、前記カーボンヒータは、前記6面の炉壁の内側にそれぞれ配置されていることにある。 The gist of the second invention is that, in the first invention, the ultra-high temperature heating furnace has a furnace chamber surrounded by six furnace walls, and the carbon heater is inside the six furnace walls. It is located in each of them.

第3発明の要旨とするところは、第1発明又は第2発明において、前記スリーブ内において、前記セラミックス絶縁体と突起との間に、前記セラミックス絶縁体よりも高融点を有するセラミックス遮蔽物が、配置されていることにある。 The gist of the third invention is that, in the first invention or the second invention, a ceramic shield having a melting point higher than that of the ceramic insulator is provided between the ceramic insulator and the protrusion in the sleeve. It is in place.

第4発明の要旨とするところは、第3発明において、前記セラミックス絶縁体は、アルミナ磁器であり、前記セラミックス遮蔽物は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものであることにある。 The gist of the fourth invention is that in the third invention, the ceramic insulator is an alumina porcelain, and the ceramic shield is made of any one of aluminum nitride, silicon carbide, zirconia, and boron nitride. It is to be manufactured.

1発明の超高温加熱炉の電極装置によれば、金属電極部と前記金属電極部に連ねて接続された黒鉛電極部とを備え、超高温加熱炉の炉壁を構成する水冷式の外殻および断熱パネルをそれぞれ貫通して固設された円筒部材及びスリーブ内に前記黒鉛電極部の外側端部がセラミックス絶縁体を径方向に介して配置され、前記黒鉛電極部の内側端部が前記炉壁の内側に配置されているカーボンヒータに接続された、超高温加熱炉の電極装置であって、前記スリーブ内において、前記セラミックス絶縁体と前記スリーブの開口との間に黒鉛電極部の外周面から突き出す突起を、備え、前記金属電極部は、前記炉壁に固定され、前記金属電極部には、冷却水を循環させる配管が接続された止まり穴が形成され、前記黒鉛電極部の内側端部は、前記炉壁の内側において、前記炉壁の内壁面と平行な長手状のブロックを介して前記一対のカーボンヒータの端部と接続され、前記長手状のブロックは、前記黒鉛電極部の径よりも大きい幅寸法を有し、前記長手状のブロックの長手方向の中央部に前記黒鉛電極部の内側端部が接続され、前記長手状のブロックの長手方向の両端部に前記一対のカーボンヒータの端部がそれぞれ接続されている。これにより、炉内からスリーブ内へ入射する輻射線が、黒鉛電極部の外周面から突き出す突起によって遮られるので、黒鉛電極部を電気的絶縁状態で支持するセラミックス絶縁体の溶損が好適に抑制される。また、特に電極装置が外殻の天井や扉に設けられる場合において、前記セラミックス絶縁体が前記突起に干渉して前記スリーブ内から脱落することが好適に抑制される。 According to the electrode device of the ultra-high temperature heating furnace of the first invention, the metal electrode portion and the graphite electrode portion connected to the metal electrode portion are provided, and the outside of the water-cooled type constituting the furnace wall of the ultra-high temperature heating furnace. The outer end portion of the graphite electrode portion is arranged radially through the ceramic insulator in the cylindrical member and sleeve fixed through the shell and the heat insulating panel, respectively, and the inner end portion of the graphite electrode portion is the said. An electrode device of an ultra-high temperature heating furnace connected to a carbon heater arranged inside the furnace wall, and in the sleeve, the outer periphery of the graphite electrode portion between the ceramic insulator and the opening of the sleeve. A protrusion protruding from the surface is provided, the metal electrode portion is fixed to the furnace wall, and a blind hole to which a pipe for circulating cooling water is connected is formed in the metal electrode portion, and the inside of the graphite electrode portion is formed. The end portion is connected to the end portion of the pair of carbon heaters inside the furnace wall via a longitudinal block parallel to the inner wall surface of the furnace wall, and the longitudinal block is the graphite electrode portion. The inner end of the graphite electrode portion is connected to the longitudinal center portion of the longitudinal block, and the pair of longitudinal blocks are connected to both ends of the longitudinal block in the longitudinal direction. The ends of the carbon heaters are connected to each other. As a result, the radiation incident from the inside of the furnace into the sleeve is blocked by the protrusions protruding from the outer peripheral surface of the graphite electrode portion, so that the melting damage of the ceramic insulator that supports the graphite electrode portion in the electrically insulated state is suitably suppressed. Will be done. Further, particularly when the electrode device is provided on the ceiling or door of the outer shell, it is preferably suppressed that the ceramic insulator interferes with the protrusion and falls out of the sleeve.

第2発明の超高温加熱炉の電極装置によれば、前記超高温加熱炉は、6面の炉壁で囲まれた炉室を有し、前記カーボンヒータは、前記6面の炉壁の内側にそれぞれ配置されていることから、超高温の炉室内からの高いエネルギの輻射線が円管状のスリーブ内へ入射しても、黒鉛電極部の外周面から突き出す突起によって、黒鉛電極部を電気的絶縁状態で支持するセラミックス絶縁体の溶損を抑制することができる。 According to the electrode device of the ultra-high temperature heating furnace of the second invention, the ultra-high temperature heating furnace has a furnace chamber surrounded by a six-sided furnace wall, and the carbon heater is inside the six-sided furnace wall. Even if high-energy radiation from the ultra-high temperature furnace chamber is incident on the circular tubular sleeve, the graphite electrode portion is electrically operated by the protrusions protruding from the outer peripheral surface of the graphite electrode portion. It is possible to suppress melting damage of the ceramic insulator supported in the insulated state.

第3発明の超高温加熱炉の電極装置によれば、前記スリーブ内において、前記セラミックス絶縁体と突起との間に、前記セラミックス絶縁体よりも高融点を有するセラミックス遮蔽物が、配置されているので、円管状のスリーブ内において黒鉛電極部を電気的絶縁状態で支持するセラミックス絶縁体の溶損を抑制することができる。 According to the electrode device of the ultra-high temperature heating furnace of the third invention, a ceramic shield having a higher melting point than the ceramic insulator is arranged between the ceramic insulator and the protrusion in the sleeve. Therefore, it is possible to suppress the melting damage of the ceramic insulator that supports the graphite electrode portion in the electrically insulated state in the circular tubular sleeve.

第4発明の超高温加熱炉の電極装置によれば、前記セラミックス絶縁体は、アルミナ磁器であり、前記セラミックス遮蔽物は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものである。セラミックス絶縁体は、アルミナ磁器よりも高融点の窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素から構成されるので、円管状のスリーブ内において黒鉛電極部を支持するセラミックス絶縁体の溶損を抑制することができる。 According to the electrode device of the ultra-high temperature heating furnace of the fourth invention, the ceramic insulator is an alumina porcelain, and the ceramic shield is made of any one of aluminum nitride, silicon carbide, zirconia, and boron nitride. It is manufactured. Since the ceramic insulator is composed of aluminum nitride, silicon carbide, zirconia, and boron nitride, which have a higher melting point than alumina porcelain, it is possible to suppress melting damage of the ceramic insulator that supports the graphite electrode portion in the circular tubular sleeve. Can be done.

本発明の一実施例の超高温加熱炉の一例を、一部を切り欠いて示す正面図である。It is a front view which shows an example of the ultra-high temperature heating furnace of one Example of this invention by cutting out a part. 図1の超高温加熱炉の平面断面図であって、図1のII-II視断面図である。It is a plan sectional view of the ultra-high temperature heating furnace of FIG. 1, and is the sectional view of II-II of FIG. 図1の超高温加熱炉の縦断面図であって、図1のIII-III視断面図である。It is a vertical sectional view of the ultra-high temperature heating furnace of FIG. 1, and is the sectional view III-III sectional view of FIG. 図1の超高温加熱炉に備えられている電極を拡大して説明する断面図である。It is sectional drawing explaining the electrode provided in the ultra-high temperature heating furnace of FIG. 1 in an enlarged manner. 図4の電極装置の要部を拡大して示す図である。It is a figure which shows the main part of the electrode device of FIG. 4 in an enlarged manner. 本発明の他の実施例の電極装置の要部を拡大して示す図であって、図5に相当する図である。It is a figure which shows the main part of the electrode apparatus of another Example of this invention in an enlarged manner, and is the figure which corresponds to FIG.

以下、本発明の一実施例を図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の超高温加熱炉(以下、加熱炉という)10を、一部を切り欠いて示す正面図である。図2は、加熱炉10の平面断面図を示し、図3は、加熱炉10の縦断面図を示している。加熱炉10は、基台11上に固設された箱型の外殻12と、外殻12の内側に設けられた角筒型断熱ユニット14および平型断熱ユニット16と、外殻12と角筒型断熱ユニット14または平型断熱ユニット16とを貫通する複数個の電極装置18の先端部に支持されることにより、角筒型断熱ユニット14および平型断熱ユニット16の内側において箱型の外殻12の6面に沿ってそれぞれ設けられたカーボンヒータ20と、カーボンヒータ20のそれぞれの内側において図示しない被処理物を6面加熱状態で載置するために外殻12に着脱可能に定された載置台21とを備えている。 FIG. 1 is a front view showing an ultra-high temperature heating furnace (hereinafter referred to as a heating furnace) 10 according to an embodiment of the present invention with a part cut out. FIG. 2 shows a plan sectional view of the heating furnace 10, and FIG. 3 shows a vertical sectional view of the heating furnace 10. The heating furnace 10 includes a box-shaped outer shell 12 fixed on the base 11, a square tubular heat insulating unit 14 and a flat heat insulating unit 16 provided inside the outer shell 12, and an outer shell 12 and a corner. By being supported by the tips of a plurality of electrode devices 18 penetrating the tubular heat insulating unit 14 or the flat heat insulating unit 16, the inside of the square tubular heat insulating unit 14 and the flat heat insulating unit 16 is outside the box type. A carbon heater 20 provided along the six surfaces of the shell 12 and an object to be treated (not shown) inside each of the carbon heaters 20 are detachably fixed to the outer shell 12 in order to be placed in a heated state on the six surfaces. It is equipped with a mounting table 21.

箱型の外殻12は、その6面のうちの水平方向に対向する2面を除く4面に対応した角筒型の外殻本体22と、上記水平方向に対向する2面に対応する外殻本体22の正面側開口24および裏面側開口26をそれぞれ気密に閉じる一対の正面側外殻板28および裏面側外殻板30とを、備えている。正面側外殻板28の周縁部は、複数個のアクチュエータ付締結装置32によって着脱可能すなわち開閉可能に外殻本体22の正面側開口24に締結され、裏面側外殻板30の周縁部は、複数個のハンドル付締結装置34によって着脱可能すなわち開閉可能に外殻本体22の裏面側開口26に締結されている。なお、一対の正面側外殻板28および裏面側外殻板30の一方のみが開閉可能に外殻本体22に締結され、他方は外殻本体22に固定されていてもよい。 The box-shaped outer shell 12 has a square tube-shaped outer shell body 22 corresponding to four of the six surfaces excluding two horizontally facing each other, and an outer shell corresponding to the two horizontally facing surfaces. It includes a pair of front side outer shell plates 28 and back side outer shell plates 30 that airtightly close the front side opening 24 and the back side opening 26 of the shell body 22, respectively. The peripheral edge of the front outer shell plate 28 is fastened to the front opening 24 of the outer shell main body 22 so as to be detachable, that is, openable and closable by a plurality of actuator-attached fastening devices 32, and the peripheral edge of the back surface side outer shell plate 30 is attached. It is fastened to the back surface side opening 26 of the outer shell main body 22 so as to be detachable, that is, openable and closable by a plurality of fastening devices 34 with handles. In addition, only one of the pair of front side outer shell plates 28 and the back side outer shell plate 30 may be fastened to the outer shell main body 22 so as to be openable and closable, and the other may be fixed to the outer shell main body 22.

外殻本体22と一対の正面側外殻板28および裏面側外殻板30とは、複数の補強リブ板36を有する外板38と、外板38との間に冷媒を通る間隙Dを隔てて外板38に液密に固定された内板40とを、それぞれ備えている。外殻本体22と正面側外殻板28および裏面側外殻板30とは、それぞれ耐熱鋼板たとえばステンレス鋼板製であって、外殻12の温度上昇を抑制し、角筒型断熱ユニット14および平型断熱ユニット16を冷却するための液冷ジャケットとしても機能している。正面側外殻板28は、被処理物を出し入れするときに開閉される扉として機能し、裏面側外殻板30は、複数枚のカーボン繊維製のフェルト46、および、一対の外側挟持板48および内側挟持板50等の断熱部材を交換する作業を行なうときに開閉される扉として機能する。 The outer shell main body 22, the pair of front side outer shell plates 28, and the back side outer shell plate 30 are separated from each other by a gap D through which a refrigerant passes between the outer plate 38 having a plurality of reinforcing rib plates 36 and the outer plate 38. An inner plate 40, which is liquid-tightly fixed to the outer plate 38, is provided. The outer shell main body 22, the front side outer shell plate 28, and the back side outer shell plate 30 are each made of a heat-resistant steel plate, for example, a stainless steel plate, and suppress the temperature rise of the outer shell 12, and the square tube type heat insulating unit 14 and the flat surface. It also functions as a liquid-cooled jacket for cooling the mold insulation unit 16. The front side outer shell plate 28 functions as a door that is opened and closed when the object to be processed is taken in and out, and the back side outer shell plate 30 is a plurality of carbon fiber felt 46s and a pair of outer holding plates 48. It also functions as a door that is opened and closed when the heat insulating member such as the inner holding plate 50 is replaced.

角筒型断熱ユニット14は、外殻12の6面のうちの前記相対向する2面を除く4面に対応する外殻本体22内に位置し、複数の電極装置18により外殻本体22着脱可能に設けられた、耐熱鋼製たとえばステンレス鋼製の内枠材42と、外殻12の4面の内壁面すなわち外殻本体22の4面に対向するように内枠材42に固定された複数個の断熱パネル44とを、一体的に有し、外殻本体22内に載置されている。本実施例では、外殻12および断熱パネル44が、加熱炉10の6面の炉壁を構成し、6面の炉壁の内側にはカーボンヒータ20が設けられ、加熱炉10内には、その6面の炉壁に囲まれた炉室が形成されている。炉室内において、カーボンヒータ20により囲まれた空間が、超高温とされるようになっている。 The square tube type heat insulating unit 14 is located in the outer shell main body 22 corresponding to four of the six surfaces of the outer shell 12 excluding the two facing surfaces thereof, and the outer shell main body 22 is attached and detached by a plurality of electrode devices 18. The inner frame material 42 made of heat-resistant steel, for example, stainless steel, which was provided as possible, was fixed to the inner frame material 42 so as to face the inner wall surfaces of the four surfaces of the outer shell 12, that is, the four surfaces of the outer shell main body 22. A plurality of heat insulating panels 44 are integrally provided and placed in the outer shell main body 22. In this embodiment, the outer shell 12 and the heat insulating panel 44 form the six-sided furnace wall of the heating furnace 10, the carbon heater 20 is provided inside the six-sided furnace wall, and the inside of the heating furnace 10 is provided with a carbon heater 20. A furnace chamber surrounded by the six furnace walls is formed. In the furnace chamber, the space surrounded by the carbon heater 20 is heated to an ultra-high temperature.

断熱パネル44は、所定厚みに積層された複数枚のカーボン繊維製のフェルト46が、一対の外側挟持板48および内側挟持板50の積層体によりカーボン繊維製のフェルト46の厚み方向に挟持されたものであり、それらを貫通耐熱ボルト52によって内枠材42に着脱可能に固定されている。本実施例では、それら複数枚のカーボン繊維製のフェルト46、および、一対の外側挟持板48および内側挟持板50が、断熱部材として機能している。 In the heat insulating panel 44, a plurality of carbon fiber felts 46 laminated to a predetermined thickness were sandwiched in the thickness direction of the carbon fiber felt 46 by a laminated body of a pair of outer holding plates 48 and inner holding plates 50. These are detachably fixed to the inner frame material 42 by the through heat resistant bolts 52. In this embodiment, the plurality of carbon fiber felts 46, and the pair of outer holding plates 48 and inner holding plates 50 function as heat insulating members.

図4は、外殻12に固定されてカーボンヒータ20を支持する電極装置18を示している。電極装置18は、炉壁を構成する外殻本体22、および正面側外殻板28または裏面側外殻板30と断熱パネル44とにそれぞれ貫通した状態で設けられているが、相互に同様に構成されているので、図9では外殻本体22に設けられた例を代表して示している。図9において、外殻本体22には、電極装置18を通すための円管部材62が外殻本体22を貫通した状態で外殻本体22に溶接によって液密に設けられており、断熱パネル44には、黒鉛製円管状のスリーブ64が断熱パネル44を貫通した状態で固設されている。 FIG. 4 shows an electrode device 18 fixed to the outer shell 12 and supporting the carbon heater 20. The electrode device 18 is provided so as to penetrate the outer shell main body 22 constituting the furnace wall, the front side outer shell plate 28 or the back side outer shell plate 30, and the heat insulating panel 44, respectively. Since it is configured, FIG. 9 shows an example provided on the outer shell main body 22 as a representative. In FIG. 9, the outer shell main body 22 is provided with a circular tube member 62 for passing the electrode device 18 through the outer shell main body 22 by welding, and the heat insulating panel 44 is provided. In a state in which a graphite circular tubular sleeve 64 is fixed so as to penetrate the heat insulating panel 44.

電極装置18は、短円柱状の金属電極部66と、金属電極部66に同心状態で連ねて固定された円柱状の黒鉛電極部68とを、備えている。金属電極部66には、外側端面に開口する止まり穴70が形成されており、止まり穴70には、止まり穴70内に冷却水を循環させる配管72が接続されている。金属電極部66は、熱良導体である銅、銅合金、アルミニウム合金等の金属導電体から構成されており、加熱炉10の稼働時には水等の冷媒により常時冷却される水冷電極部である。 The electrode device 18 includes a short columnar metal electrode portion 66 and a columnar graphite electrode portion 68 concentrically connected and fixed to the metal electrode portion 66. The metal electrode portion 66 is formed with a blind hole 70 that opens on the outer end surface, and the blind hole 70 is connected to a pipe 72 that circulates cooling water in the blind hole 70. The metal electrode portion 66 is composed of a metal conductor such as copper, a copper alloy, and an aluminum alloy, which are thermal conductors, and is a water-cooled electrode portion that is constantly cooled by a refrigerant such as water when the heating furnace 10 is in operation.

外殻本体22の外側には、電極装置18を固定するための所定厚みの座板74が溶接によって固定されており、金属電極部66から外周側に一体的に突き出した取付フランジ76が絶縁シート78を介して締結ねじ79によって座板74に締結されることにより、電極装置18が円管部材62を貫通した状態で外殻本体22に固定されている。円管部材62の内周面と金属電極部66の外周面との間には、円管部材62よりも小径の第1円管状碍子80が径方向に介在させられており、円管部材62と金属電極部66との間の電気的な絶縁が維持されている。 A seat plate 74 having a predetermined thickness for fixing the electrode device 18 is fixed to the outside of the outer shell main body 22 by welding, and a mounting flange 76 integrally protruding from the metal electrode portion 66 to the outer peripheral side is an insulating sheet. The electrode device 18 is fixed to the outer shell main body 22 in a state of penetrating the circular tube member 62 by being fastened to the seat plate 74 by the fastening screw 79 via the 78. A first circular tubular porcelain 80 having a diameter smaller than that of the circular tube member 62 is interposed between the inner peripheral surface of the circular tube member 62 and the outer peripheral surface of the metal electrode portion 66 in the radial direction. The electrical insulation between the metal electrode portion 66 and the metal electrode portion 66 is maintained.

金属電極部66に同心状態で連ねて固定された円柱状の黒鉛電極部68は、好適には、金属電極部66よりも大径で、第1円管状碍子80の外径と略同径である。黒鉛電極部68の外側端部には、黒鉛電極部68の外周面とスリーブ64の内周面との間で径方向に介在する状態で、第1円管状碍子80の端部と重なる第2円管状碍子82が嵌め着けられて、黒鉛電極部68の電気的な絶縁が維持されている。第2円管状碍子82は、その外側端部を除いて黒鉛製円管状のスリーブ64内に嵌め入れられ、黒鉛電極部68の外周面とスリーブ64の内周面との間においてセラミックス絶縁体として機能している。これにより、黒鉛電極部68の外側端部が、第2円筒状碍子82によって被覆されている。また、黒鉛製円管状のスリーブ64とその内側に挿入されている円柱状の黒鉛電極部68との間に、所定の隙間Pが形成されている。第1円管状碍子80および第2円管状碍子82は、それぞれセラミック絶縁体であり、好適にはアルミナ磁器製である。 The columnar graphite electrode portion 68, which is concentrically fixed to the metal electrode portion 66 in a concentric state, preferably has a larger diameter than the metal electrode portion 66 and substantially the same diameter as the outer diameter of the first circular tubular porcelain 80. be. A second portion of the outer end of the graphite electrode portion 68 overlaps the end of the first circular tubular insulator 80 in a state of being radially interposed between the outer peripheral surface of the graphite electrode portion 68 and the inner peripheral surface of the sleeve 64. A circular tubular insulator 82 is fitted to maintain electrical insulation of the graphite electrode portion 68. The second circular tubular insulator 82 is fitted in a graphite circular tubular sleeve 64 except for its outer end portion, and serves as a ceramic insulator between the outer peripheral surface of the graphite electrode portion 68 and the inner peripheral surface of the sleeve 64. It is functioning. As a result, the outer end of the graphite electrode portion 68 is covered with the second cylindrical insulator 82. Further, a predetermined gap P is formed between the graphite circular tubular sleeve 64 and the columnar graphite electrode portion 68 inserted inside the sleeve 64. The first circular tubular insulator 80 and the second circular tubular insulator 82 are ceramic insulators, respectively, and are preferably made of alumina porcelain.

図5に拡大して示すように、黒鉛製円管状のスリーブ64内において第2円管状碍子82とスリーブ64の内側開口との間には、第2円管状碍子82とスリーブ64の内側開口との間の黒鉛電極部68の外周面には、セラミックス遮蔽物84とスリーブ64の開口との間に環状の突起85が、径方向外側へ突き出した状態で形成されている。この突起85は、カーボンヒータ20や炉内からスリーブ64内へ入射する輻射線を遮蔽して第2円管状碍子82を保護するために、第2円管状碍子82の径方向高さと同様の高さ寸法を有しているが、必ずしも円管状碍子82の径方向高さと同様の高さ寸法を有していなくてもよい。また、突起85は、周方向において連続して突き出した環状突起であることが望ましいが、第2円管状碍子82への輻射線の遮蔽に寄与する形状であれば、第2円管状碍子82の径方向高さよりも低くてもよいし、周方向の一部が切り欠かかれていてもよい。 As shown enlarged in FIG. 5, in the graphite circular tubular sleeve 64, between the second circular tubular insulator 82 and the inner opening of the sleeve 64, the inner opening of the second circular tubular insulator 82 and the sleeve 64 On the outer peripheral surface of the graphite electrode portion 68 between them, an annular protrusion 85 is formed between the ceramic shield 84 and the opening of the sleeve 64 in a state of protruding outward in the radial direction. The protrusion 85 has a height similar to the radial height of the second circular tubular insulator 82 in order to shield the radiation incident from the carbon heater 20 and the furnace into the sleeve 64 and protect the second circular tubular insulator 82. Although it has a vertical dimension, it does not necessarily have to have a height dimension similar to the radial height of the circular tubular insulator 82. Further, the protrusion 85 is preferably an annular protrusion that continuously protrudes in the circumferential direction, but if the shape contributes to shielding the radiation to the second circular tubular insulator 82, the second circular tubular insulator 82 may be used. It may be lower than the radial height, or a part of the circumferential direction may be cut out.

図4に戻って、黒鉛電極部68の内側端部が、カーボンヒータ20の端部が連結されたブロック90に着脱可能に連結されることで、電極装置18がカーボンヒータ20を支持した状態でカーボンヒータ20に接続されている。カーボンヒータ20は、電極装置18から低電圧且つ高電流の電力が供給されることにより、2000℃~3000℃の超高温領域で発熱させられる。 Returning to FIG. 4, the inner end portion of the graphite electrode portion 68 is detachably connected to the block 90 to which the end portion of the carbon heater 20 is connected, so that the electrode device 18 supports the carbon heater 20. It is connected to the carbon heater 20. The carbon heater 20 is heated in an ultra-high temperature region of 2000 ° C. to 3000 ° C. by supplying low voltage and high current power from the electrode device 18.

加熱炉10では、載置台21上の被処理物に対して、非酸化性雰囲気たとえば窒素やアルゴン等の不活性ガス雰囲気下において2000℃~3000℃の超高温領域、好ましくは2500℃~3000℃の超高温領域で黒鉛化処理が繰り替えされると、カーボン繊維製のフェルト46、断熱ボード54、黒鉛板56などの断熱部材が消耗するので、所定の周期で、角筒型断熱ユニット14および平型断熱ユニット16の交換が行なわれる。このとき、載置台21、カーボンヒータ20、電極装置18、図示しない温度センサ等を取り外すことで、断熱部材が消耗した角筒型断熱ユニット14および平型断熱ユニット16を容易に取り外すことができ、且つ新たな角筒型断熱ユニット14および平型断熱ユニット16を位置決めして電極装置18、カーボンヒータ20等を装着することで、位置決めされ且つ固定される。 In the heating furnace 10, the object to be treated on the mounting table 21 has an ultra-high temperature region of 2000 ° C. to 3000 ° C., preferably 2500 ° C. to 3000 ° C. in a non-oxidizing atmosphere, for example, an inert gas atmosphere such as nitrogen or argon. When the graphitization treatment is repeated in the ultra-high temperature region of the above, the heat insulating members such as the carbon fiber felt 46, the heat insulating board 54, and the graphite plate 56 are consumed. The mold insulation unit 16 is replaced. At this time, by removing the mounting table 21, the carbon heater 20, the electrode device 18, the temperature sensor (not shown), and the like, the square tubular heat insulating unit 14 and the flat heat insulating unit 16 whose heat insulating members have been consumed can be easily removed. The new square tube type heat insulating unit 14 and the flat type heat insulating unit 16 are positioned and the electrode device 18, the carbon heater 20, and the like are mounted to position and fix the new square tube type heat insulating unit 14.

以上のように構成された加熱炉10では、載置台21上の被処理物に対して、非酸化性雰囲気下たとえば窒素やアルゴン等の不活性ガス雰囲気下において2000℃~3000℃の超高温領域、たとえば2500℃~3000℃の超高温領域で黒鉛化処理が行なわれる場合には、炉内のカーボンヒータ20等から高エネルギの輻射線が発生し、スリーブ64の内側開口内へ入り込む。このとき、黒鉛電極部88の外周面から突き出した突起85が、アルミナ磁器製の第2円管状碍子82を高エネルギの輻射線から遮蔽するので、第2円管状碍子82が高エネルギの輻射線を受けることが回避され、第2円管状碍子82の溶損が抑制される。 In the heating furnace 10 configured as described above, the object to be treated on the mounting table 21 has an ultra-high temperature region of 2000 ° C. to 3000 ° C. under a non-oxidizing atmosphere, for example, under an inert gas atmosphere such as nitrogen or argon. For example, when the graphitization treatment is performed in an ultra-high temperature region of 2500 ° C. to 3000 ° C., high-energy radiation rays are generated from the carbon heater 20 or the like in the furnace and enter the inner opening of the sleeve 64. At this time, the protrusion 85 protruding from the outer peripheral surface of the graphite electrode portion 88 shields the second circular tubular insulator 82 made of alumina porcelain from the high energy radiation rays, so that the second circular tubular insulator 82 has high energy radiation rays. It is avoided that the insulator 82 is damaged, and the melting damage of the second circular tubular insulator 82 is suppressed.

上述のように、本実施例の加熱炉10の電極装置18によれば、スリーブ64内において、セラミックス絶縁体であるアルミナ磁器製の第2円管状碍子82とスリーブ64の開口との間に、黒鉛電極部88の外周面から突き出した突起85が設けられ、第2円管状碍子82がスリーブ64内に入射する輻射線から遮蔽される。これにより、円管状のスリーブ64内において黒鉛電極部68を支持する第2円管状碍子82の溶損を抑制することができる。また、特に電極装置18の配置姿勢によっては、第2円管状碍子82のスリーブ64からの脱落が突起85により阻止される。特に電極装置18が外殻12の天井や、扉として機能する正面側外殻板28に設けられる場合には、そのような効果が顕著となる。 As described above, according to the electrode device 18 of the heating furnace 10 of the present embodiment, in the sleeve 64, between the second circular tubular insulator 82 made of alumina porcelain, which is a ceramic insulator, and the opening of the sleeve 64. A protrusion 85 protruding from the outer peripheral surface of the graphite electrode portion 88 is provided, and the second circular tubular insulator 82 is shielded from radiation incident on the sleeve 64. As a result, it is possible to suppress the melting damage of the second circular tubular insulator 82 that supports the graphite electrode portion 68 in the circular tubular sleeve 64. Further, in particular, depending on the arrangement posture of the electrode device 18, the protrusion 85 prevents the second circular tubular insulator 82 from falling off from the sleeve 64. In particular, when the electrode device 18 is provided on the ceiling of the outer shell 12 or the front side outer shell plate 28 functioning as a door, such an effect becomes remarkable.

また、本実施例の加熱炉10の電極装置18によれば、超高温加熱炉10は、6面の炉壁で囲まれた炉室を有し、カーボンヒータ20は、6面の炉壁の内側にそれぞれ配置されていることから、超高温の炉室内からの高いエネルギの輻射線が円管状のスリーブ64内へ入射しても、黒鉛電極部88の外周面から突き出す突起85によって、黒鉛電極部88を電気的絶縁状態で支持する第2円環状碍子(セラミックス絶縁体)82の溶損を抑制することができる。 Further, according to the electrode device 18 of the heating furnace 10 of the present embodiment, the ultra-high temperature heating furnace 10 has a furnace chamber surrounded by six furnace walls, and the carbon heater 20 has six furnace walls. Since they are arranged inside, even if high-energy radiation from the ultra-high temperature furnace chamber enters the circular tubular sleeve 64, the graphite electrode is provided by the protrusion 85 protruding from the outer peripheral surface of the graphite electrode portion 88. It is possible to suppress melting damage of the second annular furnace (ceramic insulator) 82 that supports the portion 88 in an electrically insulated state.

次に、本発明の他の実施例の電極装置118を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。 Next, the electrode device 118 of another embodiment of the present invention will be described. In the following description, the same reference numerals are given to the parts common to the above-described embodiments, and the description thereof will be omitted.

図6において、電極装置118は、電極装置18に対して、第2円管状碍子82と突起85との間に、カーボンヒータ20や炉内からの輻射線から第2円管状碍子82を遮蔽する円環状のセラミックス遮蔽物84が介在させられている点で相違し、他は同様に構成されている。 In FIG. 6, the electrode device 118 shields the second circular tubular porcelain 82 from the carbon heater 20 and the radiation rays from the inside of the furnace between the second circular tubular porcelain 82 and the protrusion 85 with respect to the electrode device 18. The difference is that the annular ceramic shield 84 is interposed, and the others are similarly configured.

電極装置118は、黒鉛製円管状のスリーブ64内において第2円管状碍子82と突起85との間に、カーボンヒータ20や炉内からの輻射線に対して第2円管状碍子82を遮蔽する円環状のセラミックス遮蔽物84を、備えている。セラミックス遮蔽物84は、第2円管状碍子82の融点よりも高い融点を有する物質、たとえば窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかのセラミック材料から構成されている。 The electrode device 118 shields the second circular tubular porcelain 82 from the carbon heater 20 and the radiation from the inside of the furnace between the second circular tubular porcelain 82 and the protrusion 85 in the graphite circular tubular sleeve 64. An annular ceramic shield 84 is provided. The ceramic shield 84 is composed of a substance having a melting point higher than the melting point of the second circular tubular porcelain 82, for example, a ceramic material of any one of aluminum nitride, silicon carbide, zirconia, and boron nitride.

本実施例の加熱炉10の電極装置118によれば、スリーブ64内において、セラミックス絶縁体であるアルミナ磁器製の第2円管状碍子82と突起85との間に、第2円管状碍子82を輻射線から遮蔽するセラミックス遮蔽物84が、備えられているので、円管状のスリーブ64内において黒鉛電極部68を支持する第2円管状碍子82の溶損が一層抑制される。 According to the electrode device 118 of the heating furnace 10 of this embodiment, the second circular tubular insulator 82 is placed between the second circular tubular insulator 82 made of alumina porcelain, which is a ceramic insulator, and the protrusion 85 in the sleeve 64. Since the ceramic shield 84 that shields from radiation is provided, the melting damage of the second circular tubular insulator 82 that supports the graphite electrode portion 68 in the circular tubular sleeve 64 is further suppressed.

また、本実施例の加熱炉10の電極装置18によれば、セラミックス遮蔽物84は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものである。それら窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素は、アルミナ磁器製の第2円管状碍子82よりも高融点であるので、円管状のスリーブ64内において黒鉛電極部68を支持する第2円管状碍子82の溶損を抑制することができる。 Further, according to the electrode device 18 of the heating furnace 10 of the present embodiment, the ceramic shield 84 is manufactured from any one of aluminum nitride, silicon carbide, zirconia, and boron nitride. Since these aluminum nitride, silicon carbide, zirconia, and boron nitride have a higher melting point than the second circular tubular insulator 82 made of alumina porcelain, the second circular tubular insulator that supports the graphite electrode portion 68 in the circular tubular sleeve 64. It is possible to suppress the melting damage of 82.

以上、本発明を図面に基づいて説明したが、本発明はその他の態様においても適用される。 Although the present invention has been described above with reference to the drawings, the present invention is also applicable to other aspects.

たとえば、前述の実施例において、スリーブ64内において、円環状のセラミックス遮蔽物84が、第2円管状碍子82とスリーブ64の開口との間に1個配置されていたが、複数個のセラミックス遮蔽物84が配置されていてもよい。 For example, in the above-described embodiment, one annular ceramic shield 84 is arranged between the second circular tubular insulator 82 and the opening of the sleeve 64 in the sleeve 64, but a plurality of ceramic shields are provided. The thing 84 may be arranged.

また、前述の実施例において、円環状の突起85あるいはセラミックス遮蔽物84は、第2円管状碍子82に隣接した位置に配設されていたが、必ずしも隣接した位置でなく、スリーブ64内であれば、第2円管状碍子82から離隔した位置であってもよい。 Further, in the above-described embodiment, the annular protrusion 85 or the ceramic shield 84 is arranged at a position adjacent to the second circular tubular insulator 82, but is not necessarily adjacent to the second circular tubular insulator 82, but may be inside the sleeve 64. For example, the position may be separated from the second circular tubular insulator 82.

また、前述の実施例において、金属電極部66と金属電極部66に接続された黒鉛電極部68とが直接接続されていたが、たとえばモリブデン等の高融点金属製の接続部材を介して間接的に接続されていてもよい。 Further, in the above-described embodiment, the metal electrode portion 66 and the graphite electrode portion 68 connected to the metal electrode portion 66 are directly connected, but indirectly via a connecting member made of a refractory metal such as molybdenum. It may be connected to.

また、前述の実施例において、突起85の高さは、第2円管状碍子82と同程度の高さであったが、第2円管状碍子82の高さより低くてもよい。この場合でも、突起85が、輻射線を遮蔽する機能を持つ。 Further, in the above-described embodiment, the height of the protrusion 85 is about the same as that of the second circular tubular insulator 82, but it may be lower than the height of the second circular tubular insulator 82. Even in this case, the protrusion 85 has a function of shielding the radiation line.

また、前述の実施例において、突起85は、黒鉛電極部68の外周面のうちの第2円管状碍子82又はセラミックス遮蔽物84に隣接した位置から突設されていたが、セラミックス遮蔽物84とスリーブ64の開口との間の位置に突設されていてもよい。 Further, in the above-described embodiment, the protrusion 85 is projected from a position adjacent to the second circular tubular insulator 82 or the ceramic shield 84 on the outer peripheral surface of the graphite electrode portion 68, but the protrusion 85 is projected from the position adjacent to the ceramic shield 84. It may be projected at a position between the sleeve 64 and the opening.

また、前述の実施例の電極装置18は、単独炉形式の超高温加熱炉10の炉室を囲む炉壁に備えられていたが、たとえば連続炉形式の超高温加熱炉やシャトル炉形式の超高温加熱炉の炉壁に備えられていてもよい。 Further, the electrode device 18 of the above-described embodiment is provided on the furnace wall surrounding the furnace chamber of the single furnace type ultra-high temperature heating furnace 10, but for example, a continuous furnace type ultra-high temperature heating furnace or a shuttle furnace type super high temperature heating furnace. It may be provided on the furnace wall of the high temperature heating furnace.

その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the present invention is carried out with various modifications within a range not deviating from the gist thereof.

10:超高温加熱炉
18、118:電極装置
64:スリーブ
64a:スリーブの開口
66:金属電極部
68:黒鉛電極部
82:第2アルミナ碍子(セラミックス絶縁体)
84:セラミックス遮蔽物
85:突起
10: Ultra-high temperature heating furnace 18, 118: Electrode device 64: Sleeve 64a: Sleeve opening 66: Metal electrode part 68: Graphite electrode part 82: Second alumina insulator (ceramic insulator)
84: Ceramic shield 85: Protrusion

Claims (4)

金属電極部と前記金属電極部に連ねて接続された黒鉛電極部とを備え、超高温加熱炉の炉壁を構成する水冷式の外殻および断熱パネルをそれぞれ貫通して固設された円管部材およびスリーブ内に、前記黒鉛電極部の外側端部がセラミックス絶縁体を径方向に介して配置され、前記黒鉛電極部の内側端部が前記炉壁の内側に前記炉壁の内壁面と平行に配置されている長手状の一対のカーボンヒータに接続された、超高温領域で黒鉛化処理を行なう超高温加熱炉の電極装置であって、
前記スリーブ内において、前記セラミックス絶縁体と前記スリーブの開口との間に黒鉛電極部の外周面から突き出す突起を、備え、
前記金属電極部は、前記炉壁に固定され、
前記金属電極部には、冷却水を循環させる配管が接続された止まり穴が形成され
前記黒鉛電極部の内側端部は、前記炉壁の内側において、前記炉壁の内壁面と平行な長手状のブロックを介して前記一対のカーボンヒータの端部と接続され、
前記長手状のブロックは、前記黒鉛電極部の径よりも大きい幅寸法を有し、
前記長手状のブロックの長手方向の中央部に前記黒鉛電極部の内側端部が接続され、前記長手状のブロックの長手方向の両端部に前記一対のカーボンヒータの端部がそれぞれ接続されている
ことを特徴とする超高温加熱炉の電極装置。
A circular tube provided with a metal electrode portion and a graphite electrode portion connected to the metal electrode portion, penetrating a water-cooled outer shell and a heat insulating panel constituting the furnace wall of an ultra-high temperature heating furnace, respectively. In the member and the sleeve, the outer end portion of the graphite electrode portion is arranged with the ceramic insulator radially interposed therebetween, and the inner end portion of the graphite electrode portion is parallel to the inner wall surface of the furnace wall inside the furnace wall. It is an electrode device of an ultra-high temperature heating furnace that performs graphitization treatment in an ultra-high temperature region, which is connected to a pair of long carbon heaters arranged in.
In the sleeve, a protrusion protruding from the outer peripheral surface of the graphite electrode portion is provided between the ceramic insulator and the opening of the sleeve.
The metal electrode portion is fixed to the furnace wall and is fixed to the furnace wall.
A blind hole is formed in the metal electrode portion to which a pipe for circulating cooling water is connected.
The inner end of the graphite electrode portion is connected to the end of the pair of carbon heaters inside the furnace wall via a longitudinal block parallel to the inner wall surface of the furnace wall.
The longitudinal block has a width dimension larger than the diameter of the graphite electrode portion.
The inner ends of the graphite electrodes are connected to the central portion of the longitudinal block in the longitudinal direction, and the ends of the pair of carbon heaters are connected to both ends of the longitudinal block in the longitudinal direction . An electrode device for an ultra-high temperature heating furnace.
第2発明の要旨とするところは、第1発明において、前記超高温加熱炉は、6面の炉壁で囲まれた炉室を有し、前記カーボンヒータは、前記6面の炉壁の内側にそれぞれ配置されている
ことを特徴とする請求項1の超高温加熱炉の電極装置。
The gist of the second invention is that, in the first invention, the ultra-high temperature heating furnace has a furnace chamber surrounded by six furnace walls, and the carbon heater is inside the six furnace walls. The electrode device of the ultra-high temperature heating furnace according to claim 1, wherein each of them is arranged in an ultra-high temperature heating furnace.
前記スリーブ内において、前記セラミックス絶縁体と突起との間に、前記セラミックス絶縁体よりも高融点を有するセラミックス遮蔽物が、配置されている
ことを特徴とする請求項1又は2の超高温加熱炉の電極装置。
In the sleeve, a ceramic shield having a melting point higher than that of the ceramic insulator is arranged between the ceramic insulator and the protrusion.
The electrode device for an ultra-high temperature heating furnace according to claim 1 or 2.
前記セラミックス絶縁体は、アルミナ磁器であり、
前記セラミックス遮蔽物は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものである
ことを特徴とする請求項3の超高温加熱炉の電極装置。
The ceramic insulator is alumina porcelain.
The electrode device for an ultra-high temperature heating furnace according to claim 3, wherein the ceramic shield is manufactured from any one of aluminum nitride, silicon carbide, zirconia, and boron nitride.
JP2021126293A 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace Active JP7081030B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021126293A JP7081030B1 (en) 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021126293A JP7081030B1 (en) 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace

Publications (2)

Publication Number Publication Date
JP7081030B1 true JP7081030B1 (en) 2022-06-06
JP2023020749A JP2023020749A (en) 2023-02-09

Family

ID=81892201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021126293A Active JP7081030B1 (en) 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace

Country Status (1)

Country Link
JP (1) JP7081030B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890694U (en) * 1981-12-15 1983-06-20 富士電波工業株式会社 Electric furnace power supply device
WO2006022131A1 (en) * 2004-08-25 2006-03-02 Ibiden Co., Ltd. Kiln and method of manufacturing porous ceramic baked body using the kiln
CN201533425U (en) * 2009-09-30 2010-07-21 西安电炉研究所有限公司 Movable water cooling sealed guiding device
CN105241256A (en) * 2015-11-16 2016-01-13 西安电炉研究所有限公司 Elastic adjustment electrode sealing device for sealed electric furnace
CN205607164U (en) * 2016-05-04 2016-09-28 自贡长城装备技术有限责任公司 High temperature graphitizing furnace water cooled electrode
CN212367546U (en) * 2020-07-20 2021-01-15 陕西华业高压电气有限责任公司 Leading-out electrode connecting seat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890694U (en) * 1981-12-15 1983-06-20 富士電波工業株式会社 Electric furnace power supply device
WO2006022131A1 (en) * 2004-08-25 2006-03-02 Ibiden Co., Ltd. Kiln and method of manufacturing porous ceramic baked body using the kiln
CN201533425U (en) * 2009-09-30 2010-07-21 西安电炉研究所有限公司 Movable water cooling sealed guiding device
CN105241256A (en) * 2015-11-16 2016-01-13 西安电炉研究所有限公司 Elastic adjustment electrode sealing device for sealed electric furnace
CN205607164U (en) * 2016-05-04 2016-09-28 自贡长城装备技术有限责任公司 High temperature graphitizing furnace water cooled electrode
CN212367546U (en) * 2020-07-20 2021-01-15 陕西华业高压电气有限责任公司 Leading-out electrode connecting seat

Also Published As

Publication number Publication date
JP2023020749A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US20140008352A1 (en) Heat treatment apparatus
KR101078626B1 (en) An electric heating element that includes a radiant tube
JP7081030B1 (en) Electrode device for ultra-high temperature heating furnace
JP7081029B1 (en) Electrode device for ultra-high temperature heating furnace
KR20010076133A (en) Ultra-high-temperature heat treatment apparatus
TW201321564A (en) Heating a furnace for the growth of semiconductor material
US3891828A (en) Graphite-lined inert gas arc heater
JP4926444B2 (en) Graphite material high purity treatment furnace and graphite material high purity treatment method
JP6365700B2 (en) Single crystal pulling device
JP7008155B1 (en) heating furnace
CN106282914A (en) Heating chamber and semiconductor processing equipment
RU2756845C1 (en) Cathode-heating unit for an electron beam gun
US5097114A (en) Low-voltage heating device
US3285593A (en) Furnace heat shield
EP0452561A2 (en) Electric heating device
JP3956888B2 (en) Heat treatment method and apparatus, and heat treatment furnace used for heat treatment method
JP5268103B2 (en) Heater unit and heat treatment device
CN217330652U (en) Sintering furnace heat-generating body structure
JP2995049B1 (en) Heat shield plate for internal heat type electric furnace
JPH10172487A (en) Sample heating device
JP4907222B2 (en) Semiconductor wafer heating device
JPS624872Y2 (en)
KR20080005986A (en) An improved plasma torch for use in a waste processing chamber
JPWO2019087732A1 (en) Carburizing equipment
US20100135351A1 (en) Cooling Device for the Electrodes of a Metallurgical Furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220331

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220408

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220525

R150 Certificate of patent or registration of utility model

Ref document number: 7081030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150