JP7081029B1 - Electrode device for ultra-high temperature heating furnace - Google Patents

Electrode device for ultra-high temperature heating furnace Download PDF

Info

Publication number
JP7081029B1
JP7081029B1 JP2021126292A JP2021126292A JP7081029B1 JP 7081029 B1 JP7081029 B1 JP 7081029B1 JP 2021126292 A JP2021126292 A JP 2021126292A JP 2021126292 A JP2021126292 A JP 2021126292A JP 7081029 B1 JP7081029 B1 JP 7081029B1
Authority
JP
Japan
Prior art keywords
electrode portion
high temperature
ultra
furnace
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021126292A
Other languages
Japanese (ja)
Other versions
JP2023020748A (en
Inventor
浩也 稲本
照昌 金井
上士 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2021126292A priority Critical patent/JP7081029B1/en
Application granted granted Critical
Publication of JP7081029B1 publication Critical patent/JP7081029B1/en
Publication of JP2023020748A publication Critical patent/JP2023020748A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

【課題】円管状のスリーブ内において黒鉛電極部を支持するセラミックス絶縁体の溶損を抑制することができる超高温加熱炉の電極装置を提供する。【解決手段】電極装置18のスリーブ64内の部分において、セラミックス絶縁体であるアルミナ磁器製の第2円管状碍子82とスリーブ64の開口との間に第2円管状碍子82を遮蔽するように設けられ、第2円管状碍子82よりも高融点を有するセラミックス遮蔽物84が、備えられている。これにより、円管状のスリーブ64内において黒鉛電極部68を支持する第2円管状碍子82の溶損を抑制することができる。【選択図】図5PROBLEM TO BE SOLVED: To provide an electrode device of an ultra-high temperature heating furnace capable of suppressing melting damage of a ceramic insulator supporting a graphite electrode portion in a circular tubular sleeve. SOLUTION: In a portion inside a sleeve 64 of an electrode device 18, a second circular tubular insulator 82 is shielded between a second circular tubular insulator 82 made of alumina porcelain, which is a ceramic insulator, and an opening of the sleeve 64. A ceramic shield 84 that is provided and has a higher melting point than the second circular tubular insulator 82 is provided. As a result, it is possible to suppress the melting damage of the second circular tubular insulator 82 that supports the graphite electrode portion 68 in the circular tubular sleeve 64. [Selection diagram] FIG. 5

Description

本発明は、ヒータを用いて熱処理を行なう超高温加熱炉の電極装置の構造に関する。 The present invention relates to the structure of an electrode device of an ultra-high temperature heating furnace that performs heat treatment using a heater.

カーボン繊維やグラファイトシート、燃料電池用ガス拡散層基材等を製造するための黒鉛化処理等では、2000℃以上の超高温領域で熱処理を行なうことが求められている。このような2000℃程度の超高温領域で熱処理が行なわれる超高温加熱炉では、炉内に設けられたカーボンヒータに給電する電極装置が、炉壁を貫通した状態で備えられる。このような超高温加熱炉に用いられる電極装置は、カーボンヒータに接続された黒鉛電極部と、その黒鉛電極部に高融点金属製の接続部を介して接続された水冷金属電極部とを備え、炉体に貫通する状態で設けられた円管状のスリーブ内に、たとえばアルミナ製の円環状或いは円筒状のセラミックス絶縁体を介して支持されている。たとえば特許文献1に記載された電極装置がそれである。 In the graphitization treatment for producing carbon fibers, graphite sheets, gas diffusion layer base materials for fuel cells, etc., it is required to perform heat treatment in an ultra-high temperature region of 2000 ° C. or higher. In such an ultra-high temperature heating furnace in which heat treatment is performed in an ultra-high temperature region of about 2000 ° C., an electrode device for supplying power to a carbon heater provided in the furnace is provided in a state of penetrating the furnace wall. The electrode device used in such an ultra-high temperature heating furnace includes a graphite electrode portion connected to a carbon heater and a water-cooled metal electrode portion connected to the graphite electrode portion via a connection portion made of refractory metal. It is supported in a circular tubular sleeve provided so as to penetrate the furnace body, for example, via an annular or cylindrical ceramic insulator made of alumina. For example, the electrode device described in Patent Document 1 is that.

これにより、水冷金属電極部の接続部が高温によって機械的強度が著しく損なわれることが抑制され、2000℃以上の超高温領域で熱処理を行なうことが可能になったとされている。 As a result, it is said that the connection portion of the water-cooled metal electrode portion is prevented from being significantly impaired in mechanical strength due to high temperature, and heat treatment can be performed in an ultra-high temperature region of 2000 ° C. or higher.

実開昭58-90694号公報Jikkai Sho 58-90694

ところで、上記電極装置では、黒鉛電極部、高融点金属製の接続部、および水冷金属電極部のうち、円管状のスリーブ内において少なくとも黒鉛電極部を支持するセラミックス絶縁体は、炉内からの輻射線を直接的に受けるので、溶損するという不都合が発生していた。このような不都合は、2500℃から3000℃の超高温領域となるほど、顕著となっていた。 By the way, in the above-mentioned electrode device, among the graphite electrode portion, the connection portion made of refractory metal, and the water-cooled metal electrode portion, the ceramic insulator that supports at least the graphite electrode portion in the circular tubular sleeve is radiated from the inside of the furnace. Since the wire is directly received, there is an inconvenience of melting. Such inconvenience became more remarkable in the ultra-high temperature region of 2500 ° C to 3000 ° C.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、円管状のスリーブ内において黒鉛電極部を支持するセラミックス絶縁体の溶損を抑制することができる超高温加熱炉の電極装置を提供することにある。 The present invention has been made in the background of the above circumstances, and an object thereof is an ultra-high temperature capable of suppressing melting damage of a ceramic insulator supporting a graphite electrode portion in a circular tubular sleeve. The purpose is to provide an electrode device for a heating furnace.

本発明者等は、以上の事情を背景として種々検討を重ねた結果、炉体を貫通して設けられたスリーブの開口とスリーブ内において黒鉛電極部等を支持するセラミックス絶縁体との間に、スリーブの開口から入射する輻射線を遮るようにセラミックス絶縁体よりも耐熱製の高い材料からなる遮蔽物を設けると、セラミックス絶縁体の溶損が好適に抑制されることを見出した。本発明はかかる知見に基づいてなされたものである。 As a result of repeated studies against the background of the above circumstances, the present inventors have put a sleeve opening provided through the furnace body between the sleeve opening and the ceramic insulator that supports the graphite electrode portion in the sleeve. It has been found that if a shield made of a material having a higher heat resistance than the ceramic insulator is provided so as to block the radiation incident from the opening of the sleeve, the melting damage of the ceramic insulator is suitably suppressed. The present invention has been made based on such findings.

すなわち、第1発明の要旨とするところは、(a)金属電極部と前記金属電極部に連ねて接続された黒鉛電極部とを備え、超高温加熱炉の炉壁を構成する水冷式の外殻および断熱パネルをそれぞれ貫通して固設された円管部材およびスリーブ内に前記黒鉛電極部の外側端部がセラミックス絶縁体を径方向に介して配置され、前記黒鉛電極部の内側端部が前記炉壁の内側に前記炉壁と平行に配置されている長手状の一対のカーボンヒータに接続された、超高温領域で黒鉛化処理を行なう超高温加熱炉の電極装置であって、(b)前記スリーブ内において、前記セラミックス絶縁体と前記スリーブの開口との間に前記セラミックス絶縁体を遮蔽するように設けられ、前記セラミックス絶縁体よりも高融点を有するセラミックス遮蔽物を、備え、(c)前記金属電極部は、前記炉壁に固定され、(d)前記金属電極部には、冷却水を循環させる配管が接続された止まり穴が形成され、(e)前記黒鉛電極部の内側端部は、前記炉壁の内側において、前記炉壁の内壁面と平行な長手状のブロックを介して前記カーボンヒータと接続され、(f)前記長手状のブロックは、前記黒鉛電極部の径よりも大きい幅寸法を有し、(g)前記長手状のブロックの長手方向の中央部に前記黒鉛電極部の内側端部が接続され、前記長手状のブロックの長手方向の両端部に前記一対のカーボンヒータの端部がそれぞれ接続されていることにある。 That is, the gist of the first invention is the outside of the water-cooled type, which includes (a) a metal electrode portion and a graphite electrode portion connected to the metal electrode portion in a row, and constitutes a furnace wall of an ultra-high temperature heating furnace. The outer end portion of the graphite electrode portion is arranged radially through the ceramic insulator in the circular tube member and the sleeve fixed through the shell and the heat insulating panel, respectively, and the inner end portion of the graphite electrode portion is arranged. It is an electrode device of an ultra-high temperature heating furnace that performs a graphite treatment in an ultra-high temperature region, which is connected to a pair of longitudinal carbon heaters arranged inside the furnace wall in parallel with the furnace wall (b). (C) A ceramic shield provided in the sleeve so as to shield the ceramic insulator between the ceramic insulator and the opening of the sleeve and has a higher melting point than the ceramic insulator (c). ) The metal electrode portion is fixed to the furnace wall, (d) the metal electrode portion is formed with a blind hole to which a pipe for circulating cooling water is connected , and (e) the inner end of the graphite electrode portion. The portion is connected to the carbon heater inside the furnace wall via a longitudinal block parallel to the inner wall surface of the furnace wall, and (f) the longitudinal block is from the diameter of the graphite electrode portion. Also has a large width dimension, (g) the inner end of the graphite electrode is connected to the longitudinal center of the longitudinal block, and the pair of longitudinal blocks at both ends of the longitudinal block. The ends of the carbon heaters are connected to each other.

第2発明の要旨とするところは、第1発明において、前記セラミックス絶縁体は、アルミナ磁器であり、前記セラミックス遮蔽物は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものである。 The gist of the second invention is that in the first invention, the ceramic insulator is an alumina porcelain, and the ceramic shield is made of any one of aluminum nitride, silicon carbide, zirconia, and boron nitride. It is manufactured.

第3発明の要旨とするところは、第1発明又は第2発明において、前記黒鉛電極部には、前記セラミックス遮蔽物と前記スリーブの開口との間に突き出して前記セラミックス遮蔽物の脱落を防止する突起が、形成されていることにある。 The gist of the third invention is that, in the first invention or the second invention, the graphite electrode portion protrudes between the ceramic shield and the opening of the sleeve to prevent the ceramic shield from falling off. The protrusions are formed.

第4発明の要旨とするところは、第1発明から第3発明のいずれか1の発明において、前記超高温加熱炉は、6面の炉壁で囲まれた炉室を有し、前記カーボンヒータは、前記6面の炉壁の内側にそれぞれ配置されていることにある。 The gist of the fourth invention is that in any one of the first to third inventions, the ultra-high temperature heating furnace has a furnace chamber surrounded by six furnace walls, and the carbon heater. Is located inside the six-sided furnace wall.

第1発明の超高温加熱炉の電極装置によれば、前記スリーブ内において、前記セラミックス絶縁体と前記スリーブの開口との間に前記セラミックス絶縁体を遮蔽するように設けられ、前記セラミックス絶縁体よりも高融点を有するセラミックス遮蔽物を、備え、前記金属電極部は、前記炉壁に固定され、前記金属電極部には、冷却水を循環させる配管が接続された止まり穴が形成され、前記黒鉛電極部の内側端部は、前記炉壁の内側において、前記炉壁の内壁面と平行な長手状のブロックを介して前記カーボンヒータと接続され、前記長手状のブロックは、前記黒鉛電極部の径よりも大きい幅寸法を有し、前記長手状のブロックの長手方向の中央部に前記黒鉛電極部の内側端部が接続され、前記長手状のブロックの長手方向の両端部に前記一対のカーボンヒータの端部がそれぞれ接続されているので、円管状のスリーブ内において黒鉛電極部を電気的絶縁状態で支持するセラミックス絶縁体の溶損を抑制することができる。 According to the electrode device of the ultra-high temperature heating furnace of the first invention, the ceramic insulator is provided so as to shield the ceramic insulator between the ceramic insulator and the opening of the sleeve in the sleeve, and the ceramic insulator is used. Also provided with a ceramic shield having a high melting point, the metal electrode portion is fixed to the furnace wall, and a blind hole to which a pipe for circulating cooling water is connected is formed in the metal electrode portion, and the graphite is formed. The inner end of the electrode portion is connected to the carbon heater inside the furnace wall via a longitudinal block parallel to the inner wall surface of the furnace wall, and the longitudinal block is the graphite electrode portion of the graphite electrode portion. The width dimension is larger than the diameter, the inner end portion of the graphite electrode portion is connected to the central portion in the longitudinal direction of the longitudinal block, and the pair of carbons are connected to both ends in the longitudinal direction of the longitudinal block. Since the ends of the heaters are connected to each other, it is possible to suppress the melting damage of the ceramic insulator that supports the graphite electrode portion in the electrically insulated state in the circular tubular sleeve.

第2発明の超高温加熱炉の電極装置によれば、前記セラミックス絶縁体は、アルミナ磁器であり、前記セラミックス遮蔽物は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものである。セラミックス絶縁体は、アルミナ磁器よりも高融点の窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素から構成されるので、円管状のスリーブ内において黒鉛電極部を支持するセラミックス絶縁体の溶損を抑制することができる。 According to the electrode device of the ultra-high temperature heating furnace of the second invention, the ceramic insulator is an alumina porcelain, and the ceramic shield is made of any one of aluminum nitride, silicon carbide, zirconia, and boron nitride. It is manufactured. Since the ceramic insulator is composed of aluminum nitride, silicon carbide, zirconia, and boron nitride, which have a higher melting point than alumina porcelain, it is possible to suppress melting damage of the ceramic insulator that supports the graphite electrode portion in the circular tubular sleeve. Can be done.

第3発明の超高温加熱炉の電極装置によれば、前記黒鉛電極部には、前記セラミックス遮蔽物と前記スリーブの開口との間に突き出して前記セラミックス遮蔽物の脱落を防止する突起が、形成されていることから、特に電極装置が外殻の天井や扉に設けられる場合において、前記セラミックス遮蔽物や前記セラミックス絶縁体が前記スリーブ内から脱落することが抑制される。 According to the electrode device of the ultra-high temperature heating furnace of the third invention, the graphite electrode portion is formed with protrusions protruding between the ceramic shield and the opening of the sleeve to prevent the ceramic shield from falling off. Therefore, especially when the electrode device is provided on the ceiling or door of the outer shell, it is possible to prevent the ceramic shield and the ceramic insulator from falling out of the sleeve.

第4発明の超高温加熱炉の電極装置によれば、前記超高温加熱炉は、6面の炉壁で囲まれた炉室を有し、前記カーボンヒータは、前記6面の炉壁の内側にそれぞれ配置されていることから、超高温の炉室内からの高いエネルギの輻射線が円管状のスリーブ内へ入射しても、黒鉛電極部を電気的絶縁状態で支持するセラミックス絶縁体の溶損を抑制することができる。 According to the electrode device of the ultra-high temperature heating furnace of the fourth invention, the ultra-high temperature heating furnace has a furnace chamber surrounded by a six-sided furnace wall, and the carbon heater is inside the six-sided furnace wall. Even if high-energy radiation from the ultra-high temperature furnace chamber enters the circular tubular sleeve, the ceramic insulator that supports the graphite electrode in an electrically insulated state is melted. Can be suppressed.

本発明の一実施例の超高温加熱炉の一例を、一部を切り欠いて示す正面図である。It is a front view which shows an example of the ultra-high temperature heating furnace of one Example of this invention by cutting out a part. 図1の超高温加熱炉の平面断面図であって、図1のII-II視断面図である。It is a plan sectional view of the ultra-high temperature heating furnace of FIG. 1, and is the sectional view of II-II of FIG. 図1の超高温加熱炉の縦断面図であって、図1のIII-III視断面図である。It is a vertical sectional view of the ultra-high temperature heating furnace of FIG. 1, and is the sectional view III-III sectional view of FIG. 図1の超高温加熱炉に備えられている電極を拡大して説明する断面図である。It is sectional drawing explaining the electrode provided in the ultra-high temperature heating furnace of FIG. 1 in an enlarged manner. 図4の電極装置の要部を拡大して示す図である。It is a figure which shows the main part of the electrode device of FIG. 4 in an enlarged manner.

以下、本発明の一実施例を図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の超高温加熱炉(以下、加熱炉という)10を、一部を切り欠いて示す正面図である。図2は、加熱炉10の平面断面図を示し、図3は、加熱炉10の縦断面図を示している。加熱炉10は、基台11上に固設された箱型の外殻12と、外殻12の内側に設けられた角筒型断熱ユニット14および平型断熱ユニット16と、外殻12と角筒型断熱ユニット14または平型断熱ユニット16とを貫通する複数個の電極装置18の先端部に支持されることにより、角筒型断熱ユニット14および平型断熱ユニット16の内側において箱型の外殻12の6面に沿ってそれぞれ設けられたカーボンヒータ20と、カーボンヒータ20のそれぞれの内側において図示しない被処理物を6面加熱状態で載置するために外殻12に着脱可能に固定された載置台21とを備えている。 FIG. 1 is a front view showing an ultra-high temperature heating furnace (hereinafter referred to as a heating furnace) 10 according to an embodiment of the present invention with a part cut out. FIG. 2 shows a plan sectional view of the heating furnace 10, and FIG. 3 shows a vertical sectional view of the heating furnace 10. The heating furnace 10 includes a box-shaped outer shell 12 fixed on the base 11, a square tubular heat insulating unit 14 and a flat heat insulating unit 16 provided inside the outer shell 12, and an outer shell 12 and a corner. By being supported by the tips of a plurality of electrode devices 18 penetrating the tubular heat insulating unit 14 or the flat heat insulating unit 16, the inside of the square tubular heat insulating unit 14 and the flat heat insulating unit 16 is outside the box type. A carbon heater 20 provided along the six surfaces of the shell 12 and an object to be treated (not shown) are detachably fixed to the outer shell 12 inside each of the carbon heaters 20 so as to be placed in a heated state on the six surfaces. It is equipped with a mounting table 21.

箱型の外殻12は、その6面のうちの水平方向に対向する2面を除く4面に対応した角筒型の外殻本体22と、上記水平方向に対向する2面に対応する外殻本体22の正面側開口24および裏面側開口26をそれぞれ気密に閉じる一対の正面側外殻板28および裏面側外殻板30とを、備えている。正面側外殻板28の周縁部は、複数個のアクチュエータ付締結装置32によって着脱可能すなわち開閉可能に外殻本体22の正面側開口24に締結され、裏面側外殻板30の周縁部は、複数個のハンドル付締結装置34によって着脱可能すなわち開閉可能に外殻本体22の裏面側開口26に締結されている。なお、一対の正面側外殻板28および裏面側外殻板30の一方のみが開閉可能に外殻本体22に締結され、他方は外殻本体22に固定されていてもよい。 The box-shaped outer shell 12 has a square tube-shaped outer shell body 22 corresponding to four of the six surfaces excluding two horizontally facing each other, and an outer shell corresponding to the two horizontally facing surfaces. It includes a pair of front side outer shell plates 28 and back side outer shell plates 30 that airtightly close the front side opening 24 and the back side opening 26 of the shell body 22, respectively. The peripheral edge of the front outer shell plate 28 is fastened to the front opening 24 of the outer shell main body 22 so as to be detachable, that is, openable and closable by a plurality of actuator-attached fastening devices 32, and the peripheral edge of the back surface side outer shell plate 30 is attached. It is fastened to the back surface side opening 26 of the outer shell main body 22 so as to be detachable, that is, openable and closable by a plurality of fastening devices 34 with handles. In addition, only one of the pair of front side outer shell plates 28 and the back side outer shell plate 30 may be fastened to the outer shell main body 22 so as to be openable and closable, and the other may be fixed to the outer shell main body 22.

外殻本体22と一対の正面側外殻板28および裏面側外殻板30とは、複数の補強リブ板36を有する外板38と、外板38との間に冷媒を通る間隙Dを隔てて外板38に液密に固定された内板40とを、それぞれ備えている。外殻本体22と正面側外殻板28および裏面側外殻板30とは、それぞれ耐熱鋼板たとえばステンレス鋼板製であって、外殻12の温度上昇を抑制し、角筒型断熱ユニット14および平型断熱ユニット16を冷却するための液冷ジャケットとしても機能している。正面側外殻板28は、被処理物を出し入れするときに開閉される扉として機能し、裏面側外殻板30は、複数枚のカーボン繊維製のフェルト46、および、一対の外側挟持板48および内側挟持板50等の断熱部材を交換する作業を行なうときに開閉される扉として機能する。 The outer shell main body 22, the pair of front side outer shell plates 28, and the back side outer shell plate 30 are separated from each other by a gap D through which a refrigerant passes between the outer plate 38 having a plurality of reinforcing rib plates 36 and the outer plate 38. An inner plate 40, which is liquid-tightly fixed to the outer plate 38, is provided. The outer shell main body 22, the front side outer shell plate 28, and the back side outer shell plate 30 are each made of a heat-resistant steel plate, for example, a stainless steel plate, and suppress the temperature rise of the outer shell 12, and the square tube type heat insulating unit 14 and the flat surface. It also functions as a liquid-cooled jacket for cooling the mold insulation unit 16. The front side outer shell plate 28 functions as a door that is opened and closed when the object to be processed is taken in and out, and the back side outer shell plate 30 is a plurality of carbon fiber felt 46s and a pair of outer holding plates 48. It also functions as a door that is opened and closed when the heat insulating member such as the inner holding plate 50 is replaced.

角筒型断熱ユニット14は、外殻12の6面のうちの前記相対向する2面を除く4面に対応する外殻本体22内に位置し、複数の電極装置18により外殻本体22着脱可能に設けられた、耐熱鋼製たとえばステンレス鋼製の内枠材42と、外殻12の4面の内壁面すなわち外殻本体22の4面に対向するように内枠材42に固定された複数個の断熱パネル44とを、一体的に有し、外殻本体22内に載置されている。本実施例では、外殻12および断熱パネル44が、加熱炉10の6面の炉壁を構成し、6面の炉壁の内側にはカーボンヒータ20が設けられ、加熱炉10内には、その6面の炉壁に囲まれた炉室が形成されている。炉室内において、カーボンヒータ20により囲まれた空間が、超高温とされるようになっている。 The square tube type heat insulating unit 14 is located in the outer shell main body 22 corresponding to four of the six surfaces of the outer shell 12 excluding the two facing surfaces thereof, and the outer shell main body 22 is attached and detached by a plurality of electrode devices 18. The inner frame material 42 made of heat-resistant steel, for example, stainless steel, which was provided as possible, was fixed to the inner frame material 42 so as to face the inner wall surface of the four surfaces of the outer shell 12, that is, the four surfaces of the outer shell main body 22. A plurality of heat insulating panels 44 are integrally provided and placed in the outer shell main body 22. In this embodiment, the outer shell 12 and the heat insulating panel 44 form the six-sided furnace wall of the heating furnace 10, the carbon heater 20 is provided inside the six-sided furnace wall, and the inside of the heating furnace 10 is provided with a carbon heater 20. A furnace chamber surrounded by the six furnace walls is formed. In the furnace chamber, the space surrounded by the carbon heater 20 is heated to an ultra-high temperature.

断熱パネル44は、所定厚みに積層された複数枚のカーボン繊維製のフェルト46が、一対の外側挟持板48および内側挟持板50の積層体によりカーボン繊維製のフェルト46の厚み方向に挟持されたものであり、それらを貫通耐熱ボルト52によって内枠材42に着脱可能に固定されている。本実施例では、それら複数枚のカーボン繊維製のフェルト46、および、一対の外側挟持板48および内側挟持板50が、断熱部材として機能している。 In the heat insulating panel 44, a plurality of carbon fiber felts 46 laminated to a predetermined thickness were sandwiched in the thickness direction of the carbon fiber felt 46 by a laminated body of a pair of outer holding plates 48 and inner holding plates 50. These are detachably fixed to the inner frame material 42 by the through heat resistant bolts 52. In this embodiment, the plurality of carbon fiber felts 46, and the pair of outer holding plates 48 and inner holding plates 50 function as heat insulating members.

図4は、外殻12に固定されてカーボンヒータ20を支持する電極装置18の断面を示している。電極装置18は、炉壁を構成する外殻本体22、および正面側外殻板28または裏面側外殻板30と断熱パネル44とにそれぞれ貫通した状態で設けられているが、相互に同様に構成されているので、図9では外殻本体22に設けられた例を代表して示している。図9において、外殻本体22には、電極装置18を通すための円管部材62が外殻本体22を貫通した状態で外殻本体22に溶接によって液密に設けられており、断熱パネル44には、黒鉛製円管状のスリーブ64が断熱パネル44を貫通した状態で固設されている。 FIG. 4 shows a cross section of the electrode device 18 fixed to the outer shell 12 and supporting the carbon heater 20. The electrode device 18 is provided so as to penetrate the outer shell main body 22 constituting the furnace wall, the front side outer shell plate 28 or the back side outer shell plate 30, and the heat insulating panel 44, respectively. Since it is configured, FIG. 9 shows an example provided on the outer shell main body 22 as a representative. In FIG. 9, the outer shell main body 22 is provided with a circular tube member 62 for passing the electrode device 18 through the outer shell main body 22 by welding, and the heat insulating panel 44 is provided. In a state in which a graphite circular tubular sleeve 64 is fixed so as to penetrate the heat insulating panel 44.

電極装置18は、短円柱状の金属電極部66と、金属電極部66に同心状態で連ねて固定された円柱状の黒鉛電極部68とを、備えている。金属電極部66には、外側端面に開口する止まり穴70が形成されており、止まり穴70には、止まり穴70内に冷却水を循環させる配管72が接続されている。金属電極部66は、熱良導体である銅、銅合金、アルミニウム合金等の金属導電体から構成されており、加熱炉10の稼働時には水等の冷媒により常時冷却される水冷電極部である。 The electrode device 18 includes a short columnar metal electrode portion 66 and a columnar graphite electrode portion 68 concentrically connected and fixed to the metal electrode portion 66. The metal electrode portion 66 is formed with a blind hole 70 that opens on the outer end surface, and the blind hole 70 is connected to a pipe 72 that circulates cooling water in the blind hole 70. The metal electrode portion 66 is composed of a metal conductor such as copper, a copper alloy, and an aluminum alloy, which are thermal conductors, and is a water-cooled electrode portion that is constantly cooled by a refrigerant such as water when the heating furnace 10 is in operation.

外殻本体22の外側には、電極装置18を固定するための所定厚みの座板74が溶接によって固定されており、金属電極部66から外周側に一体的に突き出した取付フランジ76が絶縁シート78を介して締結ねじ79によって座板74に締結されることにより、電極装置18が円管部材62を貫通した状態で外殻本体22に固定されている。円管部材62の内周面と金属電極部66の外周面との間には、円管部材62よりも小径の第1円管状碍子80が径方向に介在させられており、円管部材62と金属電極部66との間の電気的な絶縁が維持されている。 A seat plate 74 having a predetermined thickness for fixing the electrode device 18 is fixed to the outside of the outer shell main body 22 by welding, and a mounting flange 76 integrally protruding from the metal electrode portion 66 to the outer peripheral side is an insulating sheet. The electrode device 18 is fixed to the outer shell main body 22 in a state of penetrating the circular tube member 62 by being fastened to the seat plate 74 by the fastening screw 79 via the 78. A first circular tubular porcelain 80 having a diameter smaller than that of the circular tube member 62 is interposed between the inner peripheral surface of the circular tube member 62 and the outer peripheral surface of the metal electrode portion 66 in the radial direction. The electrical insulation between the metal electrode portion 66 and the metal electrode portion 66 is maintained.

金属電極部66に同心状態で連ねて固定された円柱状の黒鉛電極部68は、好適には、金属電極部66よりも大径で、第1円管状碍子80の外径と略同径である。黒鉛電極部68の外側端部には、黒鉛電極部68の外周面とスリーブ64の内周面との間で径方向に介在する状態で、第1円管状碍子80の端部と重なる第2円管状碍子82が嵌め着けられて、黒鉛電極部68の電気的な絶縁が維持されている。第2円管状碍子82は、その外側端部を除いて黒鉛製円管状のスリーブ64内に嵌め入れられ、黒鉛電極部68の外周面とスリーブ64の内周面との間においてセラミックス絶縁体として機能している。これにより、黒鉛電極部68の外側端部が、第2円筒状碍子82によって被覆されている。また、黒鉛製円管状のスリーブ64とその内側に挿入されている円柱状の黒鉛電極部68との間に、所定の隙間Pが形成されている。第1円管状碍子80および第2円管状碍子82は、それぞれセラミック絶縁体であり、好適にはアルミナ磁器製である。 The columnar graphite electrode portion 68, which is concentrically fixed to the metal electrode portion 66 in a concentric state, preferably has a larger diameter than the metal electrode portion 66 and substantially the same diameter as the outer diameter of the first circular tubular porcelain 80. be. A second portion of the outer end of the graphite electrode portion 68 overlaps the end of the first circular tubular insulator 80 in a state of being radially interposed between the outer peripheral surface of the graphite electrode portion 68 and the inner peripheral surface of the sleeve 64. A circular tubular insulator 82 is fitted to maintain electrical insulation of the graphite electrode portion 68. The second circular tubular insulator 82 is fitted in a graphite circular tubular sleeve 64 except for its outer end portion, and serves as a ceramic insulator between the outer peripheral surface of the graphite electrode portion 68 and the inner peripheral surface of the sleeve 64. It is functioning. As a result, the outer end of the graphite electrode portion 68 is covered with the second cylindrical insulator 82. Further, a predetermined gap P is formed between the graphite circular tubular sleeve 64 and the columnar graphite electrode portion 68 inserted inside the sleeve 64. The first circular tubular insulator 80 and the second circular tubular insulator 82 are ceramic insulators, respectively, and are preferably made of alumina porcelain.

図5に拡大して示すように、黒鉛製円管状のスリーブ64内において第2円管状碍子82とスリーブ64の内側開口との間には、第2円管状碍子82に対してカーボンヒータ20や炉内からの輻射線を遮蔽する円環状のセラミックス遮蔽物84が、黒鉛電極部68の外周面に嵌めつけられた状態で第2円管状碍子82に隣接した位置に配置されている。セラミックス遮蔽物84は、第2円管状碍子82の融点よりも高い融点を有する物質、たとえば窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかのセラミック材料から構成されている。セラミックス遮蔽物84の径方向の幅寸法は、黒鉛製円管状のスリーブ64とその内側に挿入されている円柱状の黒鉛電極部68との間の隙間P以下であって、隙間Pの半分程度の寸法でも一応の効果が得られる。 As shown in an enlarged manner in FIG. 5, in the graphite circular tubular sleeve 64, between the second circular tubular insulator 82 and the inner opening of the sleeve 64, the carbon heater 20 and the carbon heater 20 with respect to the second circular tubular insulator 82 An annular ceramic shield 84 that shields radiation from the inside of the furnace is arranged at a position adjacent to the second circular tubular insulator 82 in a state of being fitted to the outer peripheral surface of the graphite electrode portion 68. The ceramic shield 84 is composed of a substance having a melting point higher than the melting point of the second circular tubular porcelain 82, for example, a ceramic material of any one of aluminum nitride, silicon carbide, zirconia, and boron nitride. The radial width dimension of the ceramic shield 84 is less than or equal to the gap P between the graphite circular tubular sleeve 64 and the cylindrical graphite electrode portion 68 inserted inside the sleeve 64, and is about half of the gap P. Even with the dimensions of, a tentative effect can be obtained.

また、黒鉛製円管状のスリーブ64内において、セラミックス遮蔽物84および第2円管状碍子82とスリーブ64の内側開口との間の黒鉛電極部68の外周面には、セラミックス遮蔽物84とスリーブ64の開口との間に突き出してセラミックス遮蔽物84の移動や脱落を防止するための突起85が、径方向内側へ突き出した状態で形成されている。この突起85は、周方向において連続した形状であってもよいが、周方向において不連続或いは1箇所に突き出した形状であってもよい。突起85の形状は、セラミックス遮蔽物84と係合可能な高さおよび周方向長さであればよい。 Further, in the graphite circular tubular sleeve 64, the ceramic shield 84 and the sleeve 64 are on the outer peripheral surface of the graphite electrode portion 68 between the ceramic shield 84 and the second circular tubular porcelain 82 and the inner opening of the sleeve 64. A protrusion 85 for preventing the ceramic shield 84 from moving or falling off is formed so as to protrude inward in the radial direction. The protrusion 85 may have a continuous shape in the circumferential direction, but may have a discontinuous shape in the circumferential direction or a shape protruding at one place. The shape of the protrusion 85 may be a height and a circumferential length that can be engaged with the ceramic shield 84.

図4に戻って、黒鉛電極部68の内側端部が、カーボンヒータ20の端部が連結されたブロック90に着脱可能に連結されることで、電極装置18がカーボンヒータ20を支持した状態でカーボンヒータ20に接続されている。カーボンヒータ20は、電極装置18から低電圧且つ高電流の電力が供給されることにより、2000℃~3000℃の超高温領域で発熱させられる。 Returning to FIG. 4, the inner end portion of the graphite electrode portion 68 is detachably connected to the block 90 to which the end portion of the carbon heater 20 is connected, so that the electrode device 18 supports the carbon heater 20. It is connected to the carbon heater 20. The carbon heater 20 is heated in an ultra-high temperature region of 2000 ° C. to 3000 ° C. by supplying low voltage and high current power from the electrode device 18.

加熱炉10では、載置台21上の被処理物に対して、非酸化性雰囲気たとえば窒素やアルゴン等の不活性ガス雰囲気下において2000℃~3000℃の超高温領域、好ましくは2500℃~3000℃の超高温領域で黒鉛化処理が繰り替えされると、カーボン繊維製のフェルト46、断熱ボード54、黒鉛板56などの断熱部材が消耗するので、所定の周期で、角筒型断熱ユニット14および平型断熱ユニット16の交換が行なわれる。このとき、載置台21、カーボンヒータ20、電極装置18、図示しない温度センサ等を取り外すことで、断熱部材が消耗した角筒型断熱ユニット14および平型断熱ユニット16を容易に取り外すことができ、且つ新たな角筒型断熱ユニット14および平型断熱ユニット16を位置決めして電極装置18、カーボンヒータ20等を装着することで、位置決めされ且つ固定される。 In the heating furnace 10, the object to be treated on the mounting table 21 has an ultra-high temperature region of 2000 ° C. to 3000 ° C., preferably 2500 ° C. to 3000 ° C. in a non-oxidizing atmosphere, for example, an inert gas atmosphere such as nitrogen or argon. When the graphitization treatment is repeated in the ultra-high temperature region of the above, the heat insulating members such as the carbon fiber felt 46, the heat insulating board 54, and the graphite plate 56 are consumed. The mold insulation unit 16 is replaced. At this time, by removing the mounting table 21, the carbon heater 20, the electrode device 18, the temperature sensor (not shown), and the like, the square tubular heat insulating unit 14 and the flat heat insulating unit 16 whose heat insulating members have been consumed can be easily removed. The new square tube type heat insulating unit 14 and the flat type heat insulating unit 16 are positioned and the electrode device 18, the carbon heater 20, and the like are mounted to position and fix the new square tube type heat insulating unit 14.

以上のように構成された加熱炉10では、載置台21上の被処理物に対して、非酸化性雰囲気下たとえば窒素やアルゴン等の不活性ガス雰囲気下において2000℃~3000℃の超高温領域、たとえば2500℃~3000℃の超高温領域で黒鉛化処理が行なわれる場合には、炉内のカーボンヒータ20等から高エネルギの輻射線が発生し、スリーブ64の内側開口内へ入り込む。このとき、アルミナ磁器製の第2円管状碍子82よりも高融点を有するセラミックス遮蔽物84によって高エネルギの輻射線が受けられ、第2円管状碍子82が高エネルギの輻射線を受けることが回避されるので、第2円管状碍子82の溶損が抑制される。 In the heating furnace 10 configured as described above, the object to be treated on the mounting table 21 has an ultra-high temperature region of 2000 ° C. to 3000 ° C. under a non-oxidizing atmosphere, for example, under an inert gas atmosphere such as nitrogen or argon. For example, when the graphitization treatment is performed in an ultra-high temperature region of 2500 ° C. to 3000 ° C., high-energy radiation rays are generated from the carbon heater 20 or the like in the furnace and enter the inner opening of the sleeve 64. At this time, high energy radiation is received by the ceramic shield 84 having a higher melting point than the second circular tubular insulator 82 made of alumina porcelain, and it is avoided that the second circular tubular insulator 82 receives high energy radiation. Therefore, the melting damage of the second circular tubular insulator 82 is suppressed.

上述のように、本実施例の加熱炉10の電極装置18によれば、スリーブ64内において、セラミックス絶縁体であるアルミナ磁器製の第2円管状碍子82とスリーブ64の開口との間に、第2円管状碍子82を遮蔽するように設けられ、第2円管状碍子82よりも高融点を有するセラミックス遮蔽物84が、備えられている。これにより、円管状のスリーブ64内において黒鉛電極部68を支持する第2円管状碍子82の溶損を抑制することができる。 As described above, according to the electrode device 18 of the heating furnace 10 of the present embodiment, in the sleeve 64, between the second circular tubular insulator 82 made of alumina porcelain, which is a ceramic insulator, and the opening of the sleeve 64. A ceramic shield 84 which is provided so as to shield the second circular tubular insulator 82 and has a higher melting point than the second circular tubular insulator 82 is provided. As a result, it is possible to suppress the melting damage of the second circular tubular insulator 82 that supports the graphite electrode portion 68 in the circular tubular sleeve 64.

また、本実施例の加熱炉10の電極装置18によれば、セラミックス遮蔽物84は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものである。それら窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素は、アルミナ磁器製の第2円管状碍子82よりも高融点であるので、円管状のスリーブ64内において黒鉛電極部68を支持する第2円管状碍子82の溶損を抑制することができる。 Further, according to the electrode device 18 of the heating furnace 10 of the present embodiment, the ceramic shield 84 is manufactured from any one of aluminum nitride, silicon carbide, zirconia, and boron nitride. Since these aluminum nitride, silicon carbide, zirconia, and boron nitride have a higher melting point than the second circular tubular insulator 82 made of alumina porcelain, the second circular tubular insulator that supports the graphite electrode portion 68 in the circular tubular sleeve 64. It is possible to suppress the melting damage of 82.

また、本実施例の加熱炉10の電極装置18によれば、スリーブ64内において、黒鉛電極部68には、セラミックス遮蔽物84とスリーブ64の開口との間に突き出してセラミックス遮蔽物84の脱落を防止する突起85が、形成されていることから、セラミックス遮蔽物84や第2円管状碍子82がスリーブ64内から脱落することが抑制される。特に電極装置18が外殻12の天井や、扉として機能する正面側外殻板28に設けられる場合には、そのような効果が顕著となる。 Further, according to the electrode device 18 of the heating furnace 10 of the present embodiment, in the sleeve 64, the graphite electrode portion 68 protrudes between the ceramic shield 84 and the opening of the sleeve 64, and the ceramic shield 84 falls off. Since the protrusion 85 for preventing the above-mentioned is formed, it is possible to prevent the ceramic shield 84 and the second circular tubular furnace 82 from falling out of the sleeve 64. In particular, when the electrode device 18 is provided on the ceiling of the outer shell 12 or the front side outer shell plate 28 functioning as a door, such an effect becomes remarkable.

以上、本発明を図面に基づいて説明したが、本発明はその他の態様においても適用される。 Although the present invention has been described above with reference to the drawings, the present invention is also applicable to other aspects.

たとえば、前述の実施例において、第2円管状碍子82をカーボンヒータ20や炉内からの輻射線から遮蔽する円環状のセラミックス遮蔽物84は、第2円管状碍子82の径方向高さと同様の高さを有するものであったが、必ずしも同様の高さを有する必要はない。セラミックス遮蔽物84が第2円管状碍子82の径方向高さよりも低い形状であって、第2円管状碍子82の高さがを所定の割合の面積で遮蔽するものであっても、一応の効果が得られる。 For example, in the above-described embodiment, the annular ceramic shield 84 that shields the second circular tubular insulator 82 from the carbon heater 20 and the radiation rays from the inside of the furnace has the same radial height as the second circular tubular insulator 82. It had a height, but it does not necessarily have to have a similar height. Even if the ceramic shield 84 has a shape lower than the radial height of the second circular tubular insulator 82 and the height of the second circular tubular insulator 82 shields the area at a predetermined ratio, it is tentative. The effect is obtained.

また、前述の実施例において、スリーブ64内において、円環状のセラミックス遮蔽物84が、第2円管状碍子82とスリーブ64の開口との間に1個配置されていたが、複数個のセラミックス遮蔽物84が配置されていてもよい。 Further, in the above-described embodiment, one annular ceramic shield 84 is arranged between the second circular tubular insulator 82 and the opening of the sleeve 64 in the sleeve 64, but a plurality of ceramic shields are provided. The thing 84 may be arranged.

また、前述の実施例において、円環状のセラミックス遮蔽物84は、第2円管状碍子82に隣接した位置に配設されていたが、必ずしも隣接した位置でなく、スリーブ64内であれば、第2円管状碍子82から離隔した位置であってもよい。 Further, in the above-described embodiment, the annular ceramic shield 84 is arranged at a position adjacent to the second circular tubular insulator 82, but is not necessarily adjacent to the second circular tubular insulator 82, but is not necessarily adjacent to the sleeve 64. The position may be separated from the 2-circular tubular insulator 82.

また、前述の実施例において、金属電極部66と金属電極部66に接続された黒鉛電極部68とが直接接続されていたが、たとえばモリブデン等の高融点金属製の接続部材を介して間接的に接続されていてもよい。 Further, in the above-described embodiment, the metal electrode portion 66 and the graphite electrode portion 68 connected to the metal electrode portion 66 are directly connected, but indirectly via a connecting member made of a refractory metal such as molybdenum. It may be connected to.

また、前述の実施例において、突起85の高さは、セラミックス遮蔽物84の脱落防止のためにはセラミックス遮蔽物84と係合可能な程度の高さであればよいが、第2円管状碍子82と同程度の高さであってもよい。この場合には、突起85も、輻射線を遮蔽する機能を持つことになる。 Further, in the above-described embodiment, the height of the protrusion 85 may be such that it can engage with the ceramic shield 84 in order to prevent the ceramic shield 84 from falling off, but the second circular tubular insulator may be used. It may be as high as 82. In this case, the protrusion 85 also has a function of shielding the radiation line.

また、前述の実施例において、突起85は黒鉛電極部68の外周面からセラミックス遮蔽物84とスリーブ64の開口との間に突設されていたが、スリーブ64の内周面からセラミックス遮蔽物84とスリーブ64の開口との間に突設されていてもよい。 Further, in the above-described embodiment, the protrusion 85 is projected from the outer peripheral surface of the graphite electrode portion 68 between the ceramic shield 84 and the opening of the sleeve 64, but the ceramic shield 84 is projected from the inner peripheral surface of the sleeve 64. It may be projected between the sleeve 64 and the opening of the sleeve 64.

また、前述の実施例の電極装置18の黒鉛電極部68の外周面には、セラミックス遮蔽物84の脱落防止のための突起85が設けられていたが、電極装置18が加熱炉12の側面の炉壁に取り付けられる等の場合には、必ずしも設けられていなくてもよい。 Further, a protrusion 85 for preventing the ceramic shield 84 from falling off was provided on the outer peripheral surface of the graphite electrode portion 68 of the electrode device 18 of the above-mentioned embodiment, but the electrode device 18 is on the side surface of the heating furnace 12. When it is attached to the furnace wall, it does not necessarily have to be provided.

また、前述の実施例の電極装置18は、単独炉形式の超高温加熱炉10の炉室を囲む炉壁に備えられていたが、たとえば連続炉形式の超高温加熱炉やシャトル炉形式の超高温加熱炉の炉壁に備えられていてもよい。 Further, the electrode device 18 of the above-described embodiment is provided on the furnace wall surrounding the furnace chamber of the single furnace type ultra-high temperature heating furnace 10, but for example, a continuous furnace type ultra-high temperature heating furnace or a shuttle furnace type super high temperature heating furnace. It may be provided on the furnace wall of the high temperature heating furnace.

その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the present invention is carried out with various modifications within a range not deviating from the gist thereof.

10:超高温加熱炉
18:電極装置
20:カーボンヒータ
54:炉室
64:スリーブ
64a:スリーブの開口
66:金属電極部
68:黒鉛電極部
82:第2円管状碍子(セラミックス絶縁体)
84:セラミックス遮蔽物
85:突起
10: Ultra-high temperature heating furnace 18: Electrode device 20: Carbon heater 54: Furnace chamber 64: Sleeve 64a: Sleeve opening 66: Metal electrode part 68: Graphite electrode part 82: Second circular tubular insulator (ceramic insulator)
84: Ceramic shield 85: Protrusion

Claims (4)

金属電極部と前記金属電極部に連ねて接続された黒鉛電極部とを備え、超高温加熱炉の炉壁を構成する水冷式の外殻および断熱パネルをそれぞれ貫通して固設された円管部材およびスリーブ内に前記黒鉛電極部の外側端部がセラミックス絶縁体を径方向に介して配置され、前記黒鉛電極部の内側端部が前記炉壁の内側に前記炉壁の内壁面と平行に配置されている長手状の一対のカーボンヒータに接続された、超高温領域で黒鉛化処理を行なう超高温加熱炉の電極装置であって、
前記スリーブ内において、前記セラミックス絶縁体と前記スリーブの開口との間に前記セラミックス絶縁体を遮蔽するように設けられ、前記セラミックス絶縁体よりも高融点を有するセラミックス遮蔽物を、備え、
前記金属電極部は、前記炉壁に固定され、
前記金属電極部には、冷却水を循環させる配管が接続された止まり穴が形成され
前記黒鉛電極部の内側端部は、前記炉壁の内側において、前記炉壁の内壁面と平行な長手状のブロックを介して前記一対のカーボンヒータの端部と接続され、
前記長手状のブロックは、前記黒鉛電極部の径よりも大きい幅寸法を有し、
前記長手状のブロックの長手方向の中央部に前記黒鉛電極部の内側端部が接続され、前記長手状のブロックの長手方向の両端部に前記一対のカーボンヒータの端部がそれぞれ接続されている
ことを特徴とする超高温加熱炉の電極装置。
A circular tube provided with a metal electrode portion and a graphite electrode portion connected to the metal electrode portion, penetrating a water-cooled outer shell and a heat insulating panel constituting the furnace wall of an ultra-high temperature heating furnace, respectively. The outer end of the graphite electrode portion is arranged in the member and the sleeve via the ceramic insulator in the radial direction, and the inner end portion of the graphite electrode portion is arranged inside the furnace wall in parallel with the inner wall surface of the furnace wall. It is an electrode device of an ultra-high temperature heating furnace that performs graphitization treatment in an ultra-high temperature region, which is connected to a pair of long carbon heaters arranged.
A ceramic shield provided in the sleeve so as to shield the ceramic insulator between the ceramic insulator and the opening of the sleeve and has a melting point higher than that of the ceramic insulator is provided.
The metal electrode portion is fixed to the furnace wall and is fixed to the furnace wall.
A blind hole is formed in the metal electrode portion to which a pipe for circulating cooling water is connected.
The inner end of the graphite electrode portion is connected to the end of the pair of carbon heaters inside the furnace wall via a longitudinal block parallel to the inner wall surface of the furnace wall.
The longitudinal block has a width dimension larger than the diameter of the graphite electrode portion.
The inner ends of the graphite electrodes are connected to the central portion of the longitudinal block in the longitudinal direction, and the ends of the pair of carbon heaters are connected to both ends of the longitudinal block in the longitudinal direction . An electrode device for an ultra-high temperature heating furnace.
前記セラミックス遮蔽物は、窒化アルミニウム、炭化珪素、ジルコニア、窒化ホウ素のうちのいずれかの材料から製造されたものである
ことを特徴とする請求項1の超高温加熱炉の電極装置。
The electrode device for an ultra-high temperature heating furnace according to claim 1, wherein the ceramic shield is manufactured from any one of aluminum nitride, silicon carbide, zirconia, and boron nitride.
前記黒鉛電極部には、前記セラミックス遮蔽物と前記スリーブの開口との間に突き出して前記セラミックス遮蔽物の脱落を防止する突起が、形成されている
ことを特徴とする請求項1又は2の超高温加熱炉の電極装置。
The superimposition of claim 1 or 2, wherein the graphite electrode portion is formed with a protrusion protruding between the ceramic shield and the opening of the sleeve to prevent the ceramic shield from falling off. Electrode device for high temperature heating furnace.
前記超高温加熱路は、6面の炉壁で囲まれた炉室を有し、
前記カーボンヒータは、前記6面の炉壁の内側にそれぞれ配置されている
ことを特徴とする請求項1から3のいずれか1の超高温加熱炉の電極装置。
The ultra-high temperature heating path has a furnace chamber surrounded by six furnace walls.
The electrode device for an ultra-high temperature heating furnace according to any one of claims 1 to 3, wherein the carbon heaters are respectively arranged inside the six-sided furnace wall.
JP2021126292A 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace Active JP7081029B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021126292A JP7081029B1 (en) 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021126292A JP7081029B1 (en) 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace

Publications (2)

Publication Number Publication Date
JP7081029B1 true JP7081029B1 (en) 2022-06-06
JP2023020748A JP2023020748A (en) 2023-02-09

Family

ID=81892203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021126292A Active JP7081029B1 (en) 2021-07-30 2021-07-30 Electrode device for ultra-high temperature heating furnace

Country Status (1)

Country Link
JP (1) JP7081029B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890694U (en) * 1981-12-15 1983-06-20 富士電波工業株式会社 Electric furnace power supply device
WO2006022131A1 (en) * 2004-08-25 2006-03-02 Ibiden Co., Ltd. Kiln and method of manufacturing porous ceramic baked body using the kiln
CN201533425U (en) * 2009-09-30 2010-07-21 西安电炉研究所有限公司 Movable water cooling sealed guiding device
CN105241256A (en) * 2015-11-16 2016-01-13 西安电炉研究所有限公司 Elastic adjustment electrode sealing device for sealed electric furnace
CN205607164U (en) * 2016-05-04 2016-09-28 自贡长城装备技术有限责任公司 High temperature graphitizing furnace water cooled electrode
CN212367546U (en) * 2020-07-20 2021-01-15 陕西华业高压电气有限责任公司 Leading-out electrode connecting seat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890694U (en) * 1981-12-15 1983-06-20 富士電波工業株式会社 Electric furnace power supply device
WO2006022131A1 (en) * 2004-08-25 2006-03-02 Ibiden Co., Ltd. Kiln and method of manufacturing porous ceramic baked body using the kiln
CN201533425U (en) * 2009-09-30 2010-07-21 西安电炉研究所有限公司 Movable water cooling sealed guiding device
CN105241256A (en) * 2015-11-16 2016-01-13 西安电炉研究所有限公司 Elastic adjustment electrode sealing device for sealed electric furnace
CN205607164U (en) * 2016-05-04 2016-09-28 自贡长城装备技术有限责任公司 High temperature graphitizing furnace water cooled electrode
CN212367546U (en) * 2020-07-20 2021-01-15 陕西华业高压电气有限责任公司 Leading-out electrode connecting seat

Also Published As

Publication number Publication date
JP2023020748A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
KR101078626B1 (en) An electric heating element that includes a radiant tube
US4291190A (en) Fluid-cooled holder for an electrode tip
JP7081029B1 (en) Electrode device for ultra-high temperature heating furnace
JP7081030B1 (en) Electrode device for ultra-high temperature heating furnace
JP5653830B2 (en) Polycrystalline silicon manufacturing apparatus and polycrystalline silicon manufacturing method
JP7008155B1 (en) heating furnace
US3891828A (en) Graphite-lined inert gas arc heater
US4055723A (en) Heater support element for electric furnace
JP6365700B2 (en) Single crystal pulling device
JPH0773078B2 (en) DC arc furnace equipment
CN212720792U (en) Dangerous section compensation type metal heating body for vacuum resistance furnace
RU2756845C1 (en) Cathode-heating unit for an electron beam gun
US5097114A (en) Low-voltage heating device
US4119876A (en) Electrode structure for an electric discharge device
EP0452561A2 (en) Electric heating device
CN217330652U (en) Sintering furnace heat-generating body structure
CN114923343B (en) Partition arrangement method of sintering furnace heating bodies
US3263015A (en) Heating elements for high vacuum furnaces
TWI418260B (en) An improved plasma torch for use in a waste processing chamber
JP2005072468A (en) Heat treatment apparatus of semiconductor wafer
JPH11335113A (en) Electric furnace for graphitization
JPH01208414A (en) Vacuum heat treating furnace
JP4907222B2 (en) Semiconductor wafer heating device
JP3768093B2 (en) MoSi2 module heater with excellent heat uniformity
US855441A (en) Cooling-jacket for electric-furnace electrodes.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220331

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220408

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220525

R150 Certificate of patent or registration of utility model

Ref document number: 7081029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350