JPH11335113A - Electric furnace for graphitization - Google Patents

Electric furnace for graphitization

Info

Publication number
JPH11335113A
JPH11335113A JP10141904A JP14190498A JPH11335113A JP H11335113 A JPH11335113 A JP H11335113A JP 10141904 A JP10141904 A JP 10141904A JP 14190498 A JP14190498 A JP 14190498A JP H11335113 A JPH11335113 A JP H11335113A
Authority
JP
Japan
Prior art keywords
carbon powder
electrodes
furnace
electrode
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10141904A
Other languages
Japanese (ja)
Inventor
Tomotoshi Mochizuki
智俊 望月
Koichi Fujita
浩一 藤田
Kiyoshi Nehashi
清 根橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10141904A priority Critical patent/JPH11335113A/en
Publication of JPH11335113A publication Critical patent/JPH11335113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the durabilities of electrodes and supporting parts to hold and to insulate the electrodes by suppressing their thermal degradation to a minimum. SOLUTION: Plural sets of the electrodes 9a and 9b opposingly set between a carbon powder feed opening 4 and a graphite powder recovery port 7 in a furnace body 1 with a graphitization zone 8 between are installed so as to at least partially face to the interior of the furnace body 1, an electric current can be sent with staggering the timings of each set of the electrodes 9a and 9b. The electrodes 9a and 9b are attached to the inner ends of a heat transfer member 12 passing through the inside and outside of the furnace body 1 and the heat transfer member 12 can be cooled from its outer ends.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、黒鉛化電気炉に
関するものである。
The present invention relates to a graphitizing electric furnace.

【0002】[0002]

【従来の技術】従来より、カーボン粉末を不活性雰囲気
下で約3000℃以上に加熱処理することによって、前
記カーボン粉末を黒鉛化して工業的に人造の黒鉛粉末を
製造することが行われている。
2. Description of the Related Art Conventionally, carbon powder has been industrially manufactured by heat-treating carbon powder in an inert atmosphere at a temperature of about 3000 ° C. or higher to graphitize the carbon powder. .

【0003】この種の黒鉛粉末の製造には、アチソン炉
等の黒鉛化電気炉が用いられており、コークスに通電に
て発生するジュール熱で素材となるカーボン粉末を間接
的に加熱し、これを黒鉛化するようにしている。一般的
に、既存の黒鉛化電気炉は、バッチ式で黒鉛粉末の製造
を行うようにしたものであったために、生産性が悪く、
従って、連続的にカーボン粉末を加熱処理して黒鉛粉末
を製造し得るような黒鉛化電気炉の開発が望まれてい
た。
[0003] Graphite electric furnaces such as Acheson furnaces are used for the production of this type of graphite powder, and the carbon powder used as the material is indirectly heated by Joule heat generated when electricity is supplied to coke. Is graphitized. In general, the existing graphitizing electric furnace was designed to manufacture graphite powder in a batch system, so the productivity was poor,
Therefore, there has been a demand for the development of a graphitizing electric furnace capable of producing graphite powder by continuously heating carbon powder.

【0004】一方、これに対して、現時点で提案されて
いる連続式の黒鉛化電気炉として、例えば、対にした黒
鉛電極の相互間にカーボン粉末を充填し、該カーボン粉
末を移動させながら両黒鉛電極間に通電してジュール熱
により前記カーボン粉末を加熱するとともに、両黒鉛電
極自体もジュール熱により発熱させて積極的にヒータと
して利用しながら炉内を約3000℃以上に保持し、カ
ーボン粉末を連続的に黒鉛化するものがある。
[0004] On the other hand, as a continuous graphitizing electric furnace proposed at the present time, for example, a carbon powder is filled between a pair of graphite electrodes, and both electrodes are moved while moving the carbon powder. By energizing between the graphite electrodes and heating the carbon powder with Joule heat, the graphite electrodes themselves also generate heat with Joule heat and actively use as heaters to maintain the inside of the furnace at about 3000 ° C. or higher. Are continuously graphitized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
従来の黒鉛化電気炉にあっては、互いに対峙する黒鉛電
極などの各電極が、これらの各電極を介して流れる電流
により、カーボン粉末2に発生するジュール熱によって
高温に達するため、各電極とこれらに電流を供給する電
流供給回路の接続部の溶断に注意を払う必要があり、ま
た、各電極を炉本体1に対し絶縁支持する部材、電極材
料および炉壁などの熱的な品質劣化および耐久性の低下
が著しくなり、これの交換頻度が高くなり、保守管理コ
ストが高くなるという課題があった。
However, in such a conventional graphitizing electric furnace, electrodes facing each other, such as graphite electrodes, are generated on the carbon powder 2 by a current flowing through these electrodes. In order to reach a high temperature due to Joule heat, it is necessary to pay attention to the fusing of each electrode and a connection part of a current supply circuit for supplying a current to these electrodes. There has been a problem that thermal quality deterioration and durability of materials and furnace walls are remarkably deteriorated, the frequency of replacement thereof is increased, and maintenance management cost is increased.

【0006】この発明は前記課題を解決するものであ
り、黒鉛電極や金属電極などの電極の温度をそれぞれ2
500℃以下および1000℃以下に抑えられるように
冷却することで、各電極と電流供給回路との電気的接続
部の溶断を防止できるとともに、電極材料や炉本体の炉
壁、さらにはこの炉壁にその電極を支持および絶縁する
支持部材の熱劣化を小さく抑えることで、これらの耐久
性を向上できる黒鉛化電気炉を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the temperature of each of electrodes such as a graphite electrode and a metal electrode is set to 2 points.
By cooling so as to be suppressed to 500 ° C. or less and 1000 ° C. or less, it is possible to prevent the electric connection between each electrode and the current supply circuit from being blown, and to prevent electrode materials, the furnace wall of the furnace body, and the furnace wall It is another object of the present invention to obtain a graphitizing electric furnace capable of improving the durability of a supporting member for supporting and insulating the electrode by minimizing thermal deterioration.

【0007】[0007]

【課題を解決するための手段】前記目的達成のため、こ
の発明は、炉本体に充填されたカーボン粉末に対し、該
カーボン粉末を挟んむように炉本体に対向配置された電
極に通電し、該通電によるカーボン粉末の発熱によって
カーボン粉末を黒鉛化するようにした黒鉛化電気炉にお
いて、電極が炉本体の内外に貫通する熱伝導部材の内端
に取り付けられ、該熱伝導部材がこれの外端から冷却さ
れるように構成したものである。
In order to achieve the above-mentioned object, the present invention relates to a method for supplying electricity to a carbon powder filled in a furnace main body through an electrode disposed opposite to the furnace main body so as to sandwich the carbon powder. In a graphitized electric furnace in which the carbon powder is graphitized by the heat generated by the carbon powder, an electrode is attached to an inner end of a heat conductive member penetrating inside and outside the furnace body, and the heat conductive member is moved from the outer end thereof. It is configured to be cooled.

【0008】従って、この発明では、電極の温度を希望
する温度に下げることができ、その電極およびその電極
を絶縁支持する絶縁支持部材の熱的な品質劣化を小さく
抑えることができるようにするとともに、電極と電気供
給回路との接続部の溶断や強度劣化を未然に防止し、大
電流供給部全体の耐久性の向上を実現可能にする。
Therefore, according to the present invention, the temperature of the electrode can be lowered to a desired temperature, and the deterioration of the thermal quality of the electrode and the insulating support member for insulating and supporting the electrode can be suppressed. Further, it is possible to prevent the fusing and the deterioration of the strength of the connection portion between the electrode and the electric supply circuit beforehand, and to improve the durability of the entire high current supply portion.

【0009】また、電極を炉本体の内外に貫通して、そ
の外端側から冷却するようにすることによっても、その
電極自身を中間部材を介在させることなく、その電極を
迅速,効率的に冷却可能にする。
Also, by passing the electrode through the inside and outside of the furnace body and cooling it from the outer end side, the electrode itself can be quickly and efficiently inserted without any intermediate member. Allow cooling.

【0010】そして、電極や熱伝導部材の外端に、冷却
水や冷媒ガスを循環させる冷媒ジャケットを有する冷却
部材を連設することで、電極を直接的または間接的に強
制的に冷却して、例えば金属電極では1000℃以下
に、黒鉛電極では2500℃以下に維持可能にする。
A cooling member having a refrigerant jacket for circulating cooling water or refrigerant gas is connected to the outer ends of the electrodes and the heat conducting member, thereby forcibly and directly cooling the electrodes. For example, the temperature can be maintained at 1000 ° C. or less for a metal electrode and 2500 ° C. or less for a graphite electrode.

【0011】[0011]

【発明の実施の形態】以下、この発明の一実施形態につ
いて図面を参照して説明する。図1は、本実施形態の黒
鉛化電気炉を示す断面図、図2は図1のA―A線断面図
であり、図中、1は水冷構造とした炉本体を示す。この
炉本体1の上部中央には、原料であるカーボン粉末2を
スクリューコンベア3により投入し得るようにしたカー
ボン粉末投入口4が設けられている。前記炉本体1の下
部中央には、前記カーボン粉末2を加熱処理した後の黒
鉛粉末5をスクリューコンベア6により回収する黒鉛粉
末回収口7が設けられている。かかる炉本体1の内部
は、アルゴンガス等の不活性ガスの雰囲気もしくは真空
とされて、外気と遮断されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a graphitizing electric furnace according to the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG. 1. In the figure, reference numeral 1 denotes a water-cooled furnace main body. In the center of the upper part of the furnace main body 1 is provided a carbon powder inlet 4 through which a carbon powder 2 as a raw material can be charged by a screw conveyor 3. In the center of the lower part of the furnace main body 1, a graphite powder recovery port 7 for recovering the graphite powder 5 after the carbon powder 2 has been heat-treated by a screw conveyor 6 is provided. The inside of the furnace main body 1 is kept in an atmosphere of an inert gas such as an argon gas or a vacuum, and is isolated from the outside air.

【0012】ここで、図示する例における炉本体1は、
カーボン粉末投入口4と黒鉛粉末回収7とを縦方向に結
ぶ軸線Oを中心として、その胴部を円筒状に、また、そ
の上部を円錐状に夫々形成してあり、その底部について
は、平坦な円盤状に形成してある。
Here, the furnace main body 1 in the example shown in FIG.
The body is formed in a cylindrical shape and the upper portion is formed in a conical shape with an axis O connecting the carbon powder input port 4 and the graphite powder recovery 7 in the longitudinal direction as a center, and the bottom is flat. It is formed in a simple disk shape.

【0013】なお、炉本体1の水冷構造については、周
知の水冷手段を講じればよく、炉本体1の壁部分を水冷
ジャケットとしたり、あるいは、壁部分に多数の流路を
形成する等して、これらの水冷ジャケットや流路に冷水
を循環供給し得るようにすればよい。
As for the water cooling structure of the furnace body 1, well-known water cooling means may be employed, and a wall portion of the furnace body 1 may be a water cooling jacket, or a number of flow paths may be formed in the wall portion. What is necessary is just to be able to circulate and supply cold water to these water cooling jackets and flow paths.

【0014】さらに、この実施形態においては、前記炉
本体1内におけるカーボン粉末投入口4と黒鉛粉末回収
口7との間の適宜な中途位置を、黒鉛化領域8(図中の
クロスハッチ部分)としている。該黒鉛化領域8と同じ
高さ位置における炉本体1の胴部内側壁には、該胴部の
直径方向に対峙する、すなわち、前記黒鉛化領域8を挟
んで対峙する、銅等の導電性材料による電極9a,9b
が、複数組環状に配設されている。また、各組の電極9
a,9bには、これらにタイミングをずらして通電する
電流制御装置10および電源11が順次接続されてい
る。
Further, in this embodiment, an appropriate halfway position between the carbon powder input port 4 and the graphite powder recovery port 7 in the furnace main body 1 is defined as a graphitized region 8 (cross hatched portion in the figure). And On the inner wall of the body of the furnace body 1 at the same height position as the graphitized region 8, a conductive material such as copper facing the diametrical direction of the body, that is, facing the graphitized region 8 therebetween. Electrodes 9a, 9b made of material
Are arranged in a plurality of annular sets. Also, each set of electrodes 9
A current control device 10 and a power supply 11 are connected to a and 9b, which are energized at different timings.

【0015】また、前記電極9a,9bは、図3にも示
すように、炉本体1の炉壁1aを内外に貫通する棒状の
熱伝導部材12の内端に取り付けられている。具体的に
は、各電極9a,9bの一側の中央部に取付穴Hが設け
られており、この取付穴H内に、銅合金などの導電性金
属からなる前記熱伝導部材12の内端が、圧入などによ
って嵌合されている。なお、前記電極9a,9bが黒鉛
電極である場合には、これらの成形後の表面が粗面とな
っているため、このような嵌合による取り付けで略十分
な保持力が得られる。
As shown in FIG. 3, the electrodes 9a and 9b are attached to the inner end of a rod-shaped heat conducting member 12 penetrating the inside and outside of the furnace wall 1a of the furnace body 1. Specifically, a mounting hole H is provided in the center of one side of each of the electrodes 9a and 9b, and inside the mounting hole H, the inner end of the heat conductive member 12 made of a conductive metal such as a copper alloy. Are fitted by press fitting or the like. In the case where the electrodes 9a and 9b are graphite electrodes, their surfaces after forming are rough, so that a substantially sufficient holding force can be obtained by such fitting.

【0016】また、前記熱伝導部材12は炉壁1aに対
して、セラミックなどの耐熱性および電気絶縁性に富む
材料からなる支持部材13によって、気密的に支持され
ている。すなわち、熱伝導部材12を用いることで、炉
壁1aに対する気密性を確保しながら、大電流を黒鉛電
極などの電極9a,9bへ導くことができる。そして、
前記熱伝導部材12の外端部には取付フランジ12aが
一体に設けられ、この取付フランジ12aに、冷媒ジャ
ケット14を有する冷却部材15の取付フランジ15a
が、図示のように当接されて、ボルト・ナットなどの締
結具により密接に連結されている。なお、冷媒ジャケッ
ト14内には、図示しないポンプ手段によって冷却水や
NH3 などの冷媒ガスなどが強制循環される。
The heat conducting member 12 is hermetically supported on the furnace wall 1a by a supporting member 13 made of a material having high heat resistance and electrical insulation such as ceramic. That is, by using the heat conductive member 12, it is possible to guide a large current to the electrodes 9a and 9b such as graphite electrodes while ensuring airtightness with respect to the furnace wall 1a. And
At the outer end of the heat conducting member 12, a mounting flange 12a is integrally provided. The mounting flange 12a is attached to the mounting flange 15a of the cooling member 15 having the refrigerant jacket 14.
Are abutted as shown in the figure and are closely connected by fasteners such as bolts and nuts. In the coolant jacket 14, cooling water, coolant gas such as NH3 and the like are forcibly circulated by a pump means (not shown).

【0017】また、炉本体1自体の材質を工業用硬質プ
ラスチックあるいはセラミックス等の絶縁材質としてお
くことは勿論であり、また、電源11は交流であっても
直流であってもよい。
The material of the furnace body 1 itself may be an insulating material such as industrial hard plastic or ceramics, and the power source 11 may be AC or DC.

【0018】次に、本実施形態の動作について説明す
る。まず、カーボン粉末投入口4から炉本体1内にカー
ボン粉末2を充填し、各組の電極9a,9bに対し電流
制御装置10により順次タイミングをずらして通電する
と、図2に示す如く、各組の電極9a,9b間を流れる
電流は全て黒鉛化領域8を通過して流れる。このため、
該黒鉛化領域8における電流密度がその外周より高めら
れて、ジュール熱による発熱量が増加する。一方、水冷
構造となっている炉本体1付近では、水冷により冷却さ
れる。この結果、炉本体1内に充填されたカーボン粉末
2は、黒鉛化領域8においてのみ局所的に高温加熱され
て黒鉛化されることになる。
Next, the operation of this embodiment will be described. First, the carbon powder 2 is charged into the furnace main body 1 from the carbon powder input port 4, and current is sequentially supplied to the electrodes 9a and 9b of each set at a different timing by the current control device 10, and as shown in FIG. All the current flowing between the electrodes 9a and 9b flows through the graphitized region 8. For this reason,
The current density in the graphitized region 8 is higher than its outer periphery, and the amount of heat generated by Joule heat increases. On the other hand, in the vicinity of the furnace main body 1 having a water cooling structure, it is cooled by water cooling. As a result, the carbon powder 2 filled in the furnace main body 1 is locally heated to a high temperature only in the graphitized region 8 and is graphitized.

【0019】よって、カーボン粉末投入口4から新たな
カーボン粉末2を投入しながら、黒鉛化領域8で黒鉛化
した黒鉛粉末5を黒鉛粉末回収口7から回収するように
すれば、連続的に黒鉛粉末5を製造することが可能とな
る。
Therefore, if the graphite powder 5 graphitized in the graphitized area 8 is recovered from the graphite powder recovery port 7 while the new carbon powder 2 is charged from the carbon powder input port 4, the graphite can be continuously obtained. Powder 5 can be produced.

【0020】このとき、黒鉛化領域8におけるカーボン
粉末2は、通電によるジュール熱で自ら発熱して黒鉛化
する。しかも、その周囲のカーボン粉末2は、カーボン
粉末投入口4から黒鉛粉末回収口7へ向かうカーボン粉
末2または黒鉛粉末5の流れを取り囲んで炉本体1内に
留まり、内側から徐々に黒鉛化しつつ、炉本体1側に対
する断熱材として機能する。炉本体1内は、素材である
カーボン粉末2のみであるため、黒鉛粉末回収口7から
回収される黒鉛粉末5に不純物が紛れ込む余地がなく、
純粋な黒鉛粉末5のみを確実に回収することが可能とな
る。また、炉本体1や電極9a,9bに対する焼損が緩
和されて、該炉本体1や電極9a,9bの耐久性を向上
することが可能となる。
At this time, the carbon powder 2 in the graphitized region 8 generates heat by Joule heat by energization and becomes graphitized. Moreover, the surrounding carbon powder 2 stays in the furnace main body 1 surrounding the flow of the carbon powder 2 or the graphite powder 5 from the carbon powder input port 4 to the graphite powder recovery port 7, while gradually graphitizing from the inside, It functions as a heat insulator for the furnace body 1 side. Since the furnace body 1 contains only the carbon powder 2 as a raw material, there is no room for impurities to be mixed into the graphite powder 5 recovered from the graphite powder recovery port 7.
Only the pure graphite powder 5 can be reliably recovered. In addition, burnout of the furnace body 1 and the electrodes 9a and 9b is reduced, and the durability of the furnace body 1 and the electrodes 9a and 9b can be improved.

【0021】また、黒鉛粉末回収口7から回収される黒
鉛粉末5に、前記のように不純物が紛れ込む余地をなく
し、純粋な黒鉛粉末5のみを良好に回収することができ
るので、製造される黒鉛粉末5の品質の安定性を大幅に
向上することができる。
Further, since there is no room for impurities to be mixed into the graphite powder 5 recovered from the graphite powder recovery port 7 as described above, only the pure graphite powder 5 can be recovered satisfactorily. The stability of the quality of the powder 5 can be greatly improved.

【0022】そして、かかる黒鉛粉末の製造中において
は、互いに対峙する各電極9a,9bには、電源11か
ら電流制御装置10、冷却部材15、熱伝導部材12を
介して大電流が供給される。このとき、各電極9a,9
bは、前記のようにカーボン粉末2が自身で発生するジ
ュール熱が加わって高温に加熱される。
During the production of the graphite powder, a large current is supplied to the electrodes 9a and 9b facing each other from the power supply 11 via the current control device 10, the cooling member 15, and the heat conduction member 12. . At this time, each electrode 9a, 9
b is heated to a high temperature by the Joule heat generated by the carbon powder 2 itself as described above.

【0023】一方、前記冷却部材15は冷媒ジャケット
14内に常時循環するように供給される冷媒によって冷
却されているため、この冷熱はその冷却部材15に密接
されている熱伝導部材12を伝わり、さらに電極9a,
9bにも伝えられる。従って、これらの電極9a,9b
の温度上昇が抑制され、熱伝導部材12とともに高温加
熱による品質劣化を回避できる。
On the other hand, since the cooling member 15 is cooled by the refrigerant supplied so as to always circulate in the refrigerant jacket 14, this cold heat is transmitted through the heat conducting member 12 which is in close contact with the cooling member 15. Further, the electrodes 9a,
9b. Therefore, these electrodes 9a, 9b
Temperature rise is suppressed, and quality deterioration due to high-temperature heating can be avoided together with the heat conduction member 12.

【0024】また、前記のように熱伝導部材12自身も
温度上昇が阻まれるため、これの支持部材13やこの支
持部材13を取り付けている炉本体1の炉壁1aへの熱
伝導が妨げられ、これが前記のような工業用硬質プラス
チック等の絶縁材で作られている場合には、その高温加
熱による品質劣化を防止できる。
Further, since the temperature rise of the heat conducting member 12 itself is prevented as described above, the heat conduction to the supporting member 13 and the furnace wall 1a of the furnace body 1 to which the supporting member 13 is attached is hindered. When it is made of an insulating material such as an industrial hard plastic as described above, it is possible to prevent quality deterioration due to high-temperature heating.

【0025】さらに、前記熱伝導部材12または冷却部
材15には各電極9a,9b間に電流を流すケーブル端
が接続されるが、このケーブル端をろう付けしたり、締
結具により固定したりする部位の溶断や熱変形による電
気回路の切断などの事故を未然に回避することができ
る。
Further, a cable end through which a current flows between the electrodes 9a and 9b is connected to the heat conducting member 12 or the cooling member 15, and the cable end is brazed or fixed with a fastener. Accidents such as melting of a part or cutting of an electric circuit due to thermal deformation can be avoided beforehand.

【0026】なお、前記においては熱伝導部材12およ
び冷却部材15を別体として連結した場合について説明
したが、これらが初めから一体物として構成されたもの
を使用することも、任意である。しかし、この場合に
は、冷媒ジャケット14が炉本体1内に入らないように
することが肝要である。炉本体1内の高温加熱によっ
て、冷媒ジャケット14内の冷媒が蒸気暴発するのを回
避するためである。
In the above description, the case where the heat conducting member 12 and the cooling member 15 are connected as separate bodies has been described. However, it is also optional to use a structure in which these are integrally formed from the beginning. However, in this case, it is important to prevent the refrigerant jacket 14 from entering the furnace body 1. This is to prevent the refrigerant in the refrigerant jacket 14 from vaporizing due to the high-temperature heating in the furnace body 1.

【0027】図4は、この発明の他の実施形態を示すも
のである。これは、黒鉛電極や金属電極などの電極9
a,9b自身を、電気絶縁性,耐熱性を有する支持部材
13を介して、炉本体1の炉壁1aに貫通,支持させた
ものである。従って、その電極9a,9bの一端は炉本
体1内に突出するように臨み、他端である外端には、冷
媒ジャケット14を有する冷却部材15が取り付けられ
る。具体的には、この冷却部材15に形成された取付穴
Jに電極9a,9bの外端が圧入などの方法によって固
定されている。
FIG. 4 shows another embodiment of the present invention. This is an electrode 9 such as a graphite electrode or a metal electrode.
a and 9b themselves are penetrated and supported on the furnace wall 1a of the furnace body 1 via a support member 13 having electrical insulation and heat resistance. Therefore, one end of each of the electrodes 9a and 9b faces so as to protrude into the furnace main body 1, and a cooling member 15 having a refrigerant jacket 14 is attached to an outer end which is the other end. Specifically, the outer ends of the electrodes 9a and 9b are fixed to the mounting holes J formed in the cooling member 15 by a method such as press fitting.

【0028】この冷却部材15は、図示のように大部分
が炉壁1aに対し僅かの空間をおいて、これに沿って案
内されることとなる。従って、炉壁1aの外方へ大きく
突出することはない。
Most of the cooling member 15 is guided along a small space with respect to the furnace wall 1a, as shown in the figure. Therefore, it does not protrude greatly outside the furnace wall 1a.

【0029】この実施の形態では、電極9a,9bが冷
却部材15によって直接冷却されるため、各電極9a,
9bおよび炉壁1aなどの冷却効率が一段と高められ
る。
In this embodiment, since the electrodes 9a, 9b are directly cooled by the cooling member 15, each electrode 9a, 9b is cooled.
The cooling efficiency of the furnace 9b and the furnace wall 1a is further enhanced.

【0030】[0030]

【発明の効果】以上のように、この発明によれば、電極
を炉本体の内外に貫通する熱伝導部材の内端に取り付
け、該熱伝導部材をこれの外端から冷却するように構成
したので、炉本体の炉壁に対する取り付けを、シール性
を十分に確保しながら行えるとともに、熱伝導部材を介
して炉本体内にある電極を確実に冷却することができ、
これにより、電極自体のほか熱伝導部材、この熱伝導部
材用の支持部材、炉壁、電流供給ケーブルの接続部の熱
的品質劣化、破損を十分に抑制できるという効果が得ら
れる。
As described above, according to the present invention, the electrode is attached to the inner end of the heat conducting member penetrating into and out of the furnace body, and the heat conducting member is cooled from the outer end thereof. Therefore, the furnace body can be attached to the furnace wall while ensuring sufficient sealing performance, and the electrodes in the furnace body can be reliably cooled via the heat conducting member.
As a result, there is obtained an effect that thermal quality deterioration and breakage of not only the electrode itself but also the heat conductive member, the support member for the heat conductive member, the furnace wall, and the connection portion of the current supply cable can be sufficiently suppressed.

【0031】また、前記熱伝導部材の外端に、冷媒ジャ
ケットを有する冷却部材を一体にまたは分離可能に連設
するようにしたので、冷媒ジャケットを流れる冷媒を利
用して、熱伝導部材および電極をより効率的に冷却する
ことができ、特に、電極の温度を任意に選定したレベル
以下に確実にコントロールできるという効果が得られ
る。
Further, since a cooling member having a cooling jacket is integrally or separably connected to the outer end of the heat conducting member, the cooling medium flowing through the cooling jacket is used to make the heat conductive member and the electrode. Can be cooled more efficiently, and in particular, the effect that the temperature of the electrode can be surely controlled to an arbitrarily selected level or less can be obtained.

【0032】また、前記電極を炉本体の内外に貫通し、
これらの電極の外端から冷却するようにしたので、電極
の外端に対し直接冷熱を加えることが可能になり、これ
により電極自体のほか、熱伝導部材およびこれの支持部
材の温度上昇をさらに効率的に抑制できる。そして、前
記電極の外端に冷却ジャケットを有する冷却部材を連設
することによって、冷媒ジャケットを流れる冷媒を利用
して、前記電極自体およびこれに関連する各種部品をさ
らに一段と効率的に冷却できるという効果が得られる。
Further, the electrode penetrates into and out of the furnace body,
Since cooling is performed from the outer ends of these electrodes, it is possible to apply cold heat directly to the outer ends of the electrodes, thereby further increasing the temperature of not only the electrodes themselves, but also the heat conducting members and supporting members thereof. It can be suppressed efficiently. By connecting a cooling member having a cooling jacket to the outer end of the electrode, the electrode itself and various components related thereto can be more efficiently cooled by using a refrigerant flowing through a refrigerant jacket. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の一実施形態による黒鉛化電気炉を
示す断面図である。
FIG. 1 is a sectional view showing a graphitizing electric furnace according to an embodiment of the present invention.

【図2】 図1における黒鉛化電気炉のA―A線断面図
である。
FIG. 2 is a sectional view taken along line AA of the graphitizing electric furnace in FIG.

【図3】 図1における電極の取付構造を示す拡大断面
図である。
FIG. 3 is an enlarged cross-sectional view showing an electrode mounting structure in FIG.

【図4】 図1における電極の他の取付構造を示す拡大
断面図である。
FIG. 4 is an enlarged sectional view showing another mounting structure of the electrode in FIG.

【符号の説明】[Explanation of symbols]

1……炉本体 2……カーボン粉末 3,6……スクリューコンベア 4……カーボン粉末投入口 5……黒鉛粉末 7……黒鉛粉末回収口 8……黒鉛化領域 9a,9b……電極 10……電流制御装置 11……電源 12……熱伝導部材 13……支持部材 14……冷媒ジャケット 15……冷却部材 DESCRIPTION OF SYMBOLS 1 ... Furnace main body 2 ... Carbon powder 3, 6 ... Screw conveyor 4 ... Carbon powder input port 5 ... Graphite powder 7 ... Graphite powder recovery port 8 ... Graphitized area 9a, 9b ... Electrode 10 ... ... Current control device 11 ... Power supply 12 ... Heat conduction member 13 ... Support member 14 ... Refrigerant jacket 15 ... Cooling member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炉本体に充填されたカーボン粉末に対
し、該カーボン粉末を挟んむように炉本体に対向配置さ
れた電極に通電し、該通電によるカーボン粉末の発熱に
よってカーボン粉末を黒鉛化するようにした黒鉛化電気
炉において、 前記電極が前記炉本体の内外に貫通する熱伝導部材の内
端に取り付けられ、該熱伝導部材がこれの外端から冷却
されることを特徴とする黒鉛化電気炉。
An electric power is supplied to an electrode arranged opposite to a furnace body so as to sandwich the carbon powder in the furnace body so as to sandwich the carbon powder, and the carbon powder is graphitized by heat generation of the carbon powder by the energization. In the graphitized electric furnace, the electrode is attached to an inner end of a heat conducting member penetrating inside and outside of the furnace main body, and the heat conducting member is cooled from an outer end thereof. .
【請求項2】 前記熱伝導部材の外端に冷媒ジャケット
を有する冷却部材が一体にまたは分離可能に連設されて
いることを特徴とする請求項1に記載の黒鉛化電気炉。
2. The graphitizing electric furnace according to claim 1, wherein a cooling member having a refrigerant jacket is integrally or separably connected to an outer end of the heat conducting member.
【請求項3】 炉本体に充填されたカーボン粉末に対
し、該カーボン粉末を挟んむように炉本体に対向配置さ
れた電極に通電し、該通電によるカーボン粉末の発熱に
よってカーボン粉末を黒鉛化するようにした黒鉛化電気
炉において、 前記電極が前記炉本体の内外に貫通されて、前記電極の
外端から冷却されることを特徴とする黒鉛化電気炉。
3. An electric power is supplied to an electrode, which is disposed opposite to the furnace body so as to sandwich the carbon powder, with respect to the carbon powder filled in the furnace body, and the carbon powder is graphitized by heat generation of the carbon powder due to the energization. In the graphitized electric furnace, the electrode is penetrated into and out of the furnace main body, and is cooled from an outer end of the electrode.
【請求項4】 前記電極の外端に冷却ジャケットを有す
る冷却部材が連設されていることを特徴とする請求項3
に記載の黒鉛化電気炉。
4. A cooling member having a cooling jacket is continuously provided at an outer end of said electrode.
2. The graphitizing electric furnace according to 1.
JP10141904A 1998-05-22 1998-05-22 Electric furnace for graphitization Pending JPH11335113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10141904A JPH11335113A (en) 1998-05-22 1998-05-22 Electric furnace for graphitization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10141904A JPH11335113A (en) 1998-05-22 1998-05-22 Electric furnace for graphitization

Publications (1)

Publication Number Publication Date
JPH11335113A true JPH11335113A (en) 1999-12-07

Family

ID=15302874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10141904A Pending JPH11335113A (en) 1998-05-22 1998-05-22 Electric furnace for graphitization

Country Status (1)

Country Link
JP (1) JPH11335113A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058348A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
WO2013058347A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
JP2015189645A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Two-stage heating type vertical graphitization furnace and method for producing graphite

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058348A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
WO2013058347A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Method for producing electrode material for lithium ion batteries
JP5401632B2 (en) * 2011-10-21 2014-01-29 昭和電工株式会社 Method for producing electrode material for lithium ion battery
JP5401631B2 (en) * 2011-10-21 2014-01-29 昭和電工株式会社 Method for producing electrode material for lithium ion battery
JP2014029874A (en) * 2011-10-21 2014-02-13 Showa Denko Kk Manufacturing method of graphite material for lithium ion battery electrode material
JP2014053314A (en) * 2011-10-21 2014-03-20 Showa Denko Kk Method for producing graphite material for lithium ion battery electrode material
JPWO2013058348A1 (en) * 2011-10-21 2015-04-02 昭和電工株式会社 Method for producing electrode material for lithium ion battery
JPWO2013058347A1 (en) * 2011-10-21 2015-04-02 昭和電工株式会社 Method for producing electrode material for lithium ion battery
US9059467B2 (en) 2011-10-21 2015-06-16 Showa Denko K.K. Method for producing electrode material for lithium ion batteries
US9284192B2 (en) 2011-10-21 2016-03-15 Showa Denko K.K. Method for producing electrode material for lithium ion batteries
JP2015189645A (en) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 Two-stage heating type vertical graphitization furnace and method for producing graphite

Similar Documents

Publication Publication Date Title
KR20140129330A (en) Graphitization furnace and method for producing graphite
SU1419522A3 (en) Steel current-lead rod of aluminium electrolyzer
US4754464A (en) Bottom electrodes for arc furnaces
US6038247A (en) Graphitizing electric furnace
JPH11335113A (en) Electric furnace for graphitization
US4304980A (en) Non-consumable electrode
JP4751329B2 (en) Conductive heating and melting unit
US6980580B2 (en) Electrode arrangement as substitute bottom for an electrothermic slag smelting furnace
JP5268103B2 (en) Heater unit and heat treatment device
JPH11335107A (en) Electric furnace for graphitization
JP4147617B2 (en) Graphitized electric furnace
JP2002167208A (en) Continuous type graphitization furnace
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
JPH11335112A (en) Electric furnace for graphitization
CN2613123Y (en) DC arc hearth electrode
JPH10338512A (en) Graphitization electric furnace
JP3134560B2 (en) heating furnace
JPH11335111A (en) Electric furnace for graphitization
JPH11325744A (en) Graphitization electric furnace
JPH11325745A (en) Graphitization electric furnace
JP7081029B1 (en) Electrode device for ultra-high temperature heating furnace
JP2624419B2 (en) DC arc furnace power supply method
US855441A (en) Cooling-jacket for electric-furnace electrodes.
KR101731990B1 (en) Direct Current Arc Furnace for producing Metallurgical Grade Silicon
CA2341749C (en) Soderberg-type composite electrode for arc smelting furnace