JP7077316B2 - Conductive composition and conductors using it and laminated structures - Google Patents

Conductive composition and conductors using it and laminated structures Download PDF

Info

Publication number
JP7077316B2
JP7077316B2 JP2019525567A JP2019525567A JP7077316B2 JP 7077316 B2 JP7077316 B2 JP 7077316B2 JP 2019525567 A JP2019525567 A JP 2019525567A JP 2019525567 A JP2019525567 A JP 2019525567A JP 7077316 B2 JP7077316 B2 JP 7077316B2
Authority
JP
Japan
Prior art keywords
silver powder
conductive composition
conductor
elastomer
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019525567A
Other languages
Japanese (ja)
Other versions
JPWO2018235734A1 (en
Inventor
直行 塩澤
真二 落合
征矢 山藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Ink Manufacturing Co Ltd
Original Assignee
Taiyo Ink Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Ink Manufacturing Co Ltd filed Critical Taiyo Ink Manufacturing Co Ltd
Publication of JPWO2018235734A1 publication Critical patent/JPWO2018235734A1/en
Application granted granted Critical
Publication of JP7077316B2 publication Critical patent/JP7077316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Description

本発明は、導電性組成物、および導電性組成物を固化させた導電体、該導電体の層を有する積層構造体、並びに該導電体または積層構造体を備えた電子部品に関する。 The present invention relates to a conductive composition, a conductor obtained by solidifying the conductive composition, a laminated structure having a layer of the conductor, and an electronic component provided with the conductor or the laminated structure.

プリント配線板等の電極等のパターン状の導電体を形成する材料として、有機バインダーに金属粉末を混合したペースト状の導電性組成物が用いられている。従来の導電性組成物によれば、パターン状に塗布した後に固化させることにより所望の導電体を形成することができるが、得られる導電体は一般的に高い硬度を有する。そのため、フレキシブルプリント配線板においては、固化した導電体が耐屈曲性を有するような導電性組成物が求められている。 As a material for forming a patterned conductor such as an electrode such as a printed wiring board, a paste-like conductive composition obtained by mixing a metal powder with an organic binder is used. According to the conventional conductive composition, a desired conductor can be formed by applying it in a pattern and then solidifying it, but the obtained conductor generally has a high hardness. Therefore, in a flexible printed wiring board, there is a demand for a conductive composition in which a solidified conductor has bending resistance.

一方、近年のウェアラブルデバイス分野の成長に伴い、導電体に伸縮性を付与することも求められている。特に、体との密着度が高いウェアラブルデバイスほど、高度な伸縮性が要求される。 On the other hand, with the growth of the wearable device field in recent years, it is also required to impart elasticity to the conductor. In particular, wearable devices with a higher degree of contact with the body are required to have a high degree of elasticity.

このような要求に対して、例えば、金属粉末を含有させる有機バインダーとしてエラストマーを用い、導電体に屈曲性だけでなく伸縮性を持たせた導電性組成物が提案されている(特許文献1参照等)。 In response to such a demand, for example, a conductive composition in which an elastomer is used as an organic binder containing a metal powder and the conductor has not only flexibility but also elasticity has been proposed (see Patent Document 1). etc).

国際公開第2015/005204号パンフレットInternational Publication No. 2015/005204 Pamphlet

しかしながら、上記のような導電性組成物を使用した導電体であっても、伸縮を繰り返したり、導電体がある程度伸ばされると抵抗値が急激に増大したり、場合によっては断線してしまうことがあり、伸縮の繰り返しや伸ばした場合であっても、電気抵抗の安定性に優れた導電体を得ることができる導電性組成物が求められている。 However, even a conductor using the above-mentioned conductive composition may repeatedly expand and contract, the resistance value may increase sharply when the conductor is stretched to some extent, and the wire may be broken in some cases. Therefore, there is a demand for a conductive composition capable of obtaining a conductor having excellent stability of electric resistance even when it is repeatedly expanded and contracted or stretched.

そこで、本発明の目的は、伸縮の繰り返しや伸張を大きくした場合であっても、電気抵抗の安定性に優れた導電体を得ることができる導電性組成物を提供することである。 Therefore, an object of the present invention is to provide a conductive composition capable of obtaining a conductor having excellent stability of electric resistance even when the expansion and contraction are repeated and the expansion and contraction are increased.

また、本発明の他の目的は、このような導電性組成物を固化させた導電体、該導電体の層を有する積層構造体、並びに該導電体または積層構造体を備えた電子部品を提供することである。 Another object of the present invention is to provide a conductor obtained by solidifying such a conductive composition, a laminated structure having a layer of the conductor, and an electronic component provided with the conductor or the laminated structure. It is to be.

本発明者らは、エラストマーに配合する導電性金属粉として、表面処理が施された特定の平均一次粒子径を有する銀粉を、組成物中で特定の凝集状態とすることにより、伸縮を繰り返した場合や、例えば400%以上に大きく伸張した場合であっても、電気抵抗の安定性に優れた導電体を得ることができる導電性組成物を実現できるとの知見を得た。本発明は係る知見に基づくものである。 The present inventors repeated expansion and contraction by setting a surface-treated silver powder having a specific average primary particle size as a conductive metal powder to be blended in an elastomer into a specific aggregated state in the composition. It has been found that a conductive composition capable of obtaining a conductor having excellent stability of electric resistance can be realized even in the case of a case or, for example, when it is greatly stretched to 400% or more. The present invention is based on such findings.

すなわち、本発明の導電性組成物は、エラストマーと銀粉とを含む導電性組成物であって、
前記銀粉が表面処理されたものであり、
前記銀粉は、その平均一次粒子径が1.0μm以下で、かつみかけ空隙率が50~95%であり、
導電性組成物中において、前記銀粉の二次粒子の粒度分布における累積95%粒子径(D95粒子径)が、3.0~25.0μmであることを特徴とするものである。
That is, the conductive composition of the present invention is a conductive composition containing an elastomer and silver powder.
The silver powder is surface-treated and
The silver powder has an average primary particle diameter of 1.0 μm or less and an apparent porosity of 50 to 95%.
In the conductive composition, the cumulative 95% particle size (D95 particle size) in the particle size distribution of the secondary particles of the silver powder is 3.0 to 25.0 μm.

本発明の実施態様においては、前記銀粉が、導電性組成物全体に対して固形分量で60~95質量%含まれることが好ましい。 In the embodiment of the present invention, it is preferable that the silver powder is contained in an amount of 60 to 95% by mass based on the total solid content of the conductive composition.

また、本発明の別の実施態様による導電体は、上記導電性組成物を固化させたものである。 Further, the conductor according to another embodiment of the present invention is a solidified conductive composition.

また、本発明の別の実施態様による積層構造体は、基材上に上記導電体の層を有するものである。 Further, the laminated structure according to another embodiment of the present invention has the above-mentioned conductor layer on the base material.

また、本発明の別の実施態様による電子部品は、上記導電体の層または上記積層構造体を備えたものである。 Further, the electronic component according to another embodiment of the present invention includes the above-mentioned conductor layer or the above-mentioned laminated structure.

本発明の導電性組成物によれば、エラストマーに配合する導電性金属粉として、表面処理が施された特定の平均一次粒子径を有する銀粉を、組成物中で特定の凝集状態とすることにより、伸縮の繰り返しや伸張を大きくした場合であっても、電気抵抗の安定性に優れた導電体を得ることができる。 According to the conductive composition of the present invention, as the conductive metal powder to be blended in the elastomer, a silver powder having a specific average primary particle size subjected to surface treatment is brought into a specific aggregated state in the composition. Even when the expansion and contraction are repeated or the expansion and contraction is increased, a conductor having excellent stability of electric resistance can be obtained.

本発明の導電性組成物は、エラストマーと銀粉とを含むものであり、エラストマーに特定の銀粉を配合することにより、屈曲した場合に限らず伸縮した場合や大きく伸張した場合であっても電気抵抗の安定性に優れる導電体等を得ることができる。その結果、本発明の導電性組成物は、このような特性を利用して、体外デバイス、体表デバイス、電子皮膚デバイス、体内デバイス等のウェアラブルデバイス用の導電体の形成に好適に用いることができる。以下、本発明の導電性組成物が含有する各成分について詳述する。 The conductive composition of the present invention contains an elastomer and silver powder, and by blending a specific silver powder with the elastomer, electrical resistance is obtained not only when the elastomer is bent but also when it is expanded or contracted or greatly expanded. It is possible to obtain a conductor or the like having excellent stability. As a result, the conductive composition of the present invention can be suitably used for forming a conductor for a wearable device such as an extracorporeal device, a body surface device, an electronic skin device, and an internal device by utilizing such a property. can. Hereinafter, each component contained in the conductive composition of the present invention will be described in detail.

<銀粉>
本発明の導電性組成物を構成する銀粉は、表面処理されたものであり、その平均一次粒子径が1.0μm以下、好ましくは0.1~1.0μmであり、みかけ空隙率が50~95%、好ましくは60~95%のものを使用する。このような銀粉を用いて、組成物中での銀粉の二次粒子の粒度分布が後記するような範囲となるような凝集状態とすることにより、伸縮の繰り返しや伸張を大きくした場合であっても、電気抵抗の安定性を維持することができる。なお、本発明において、銀粉の平均一次粒子径とは、粉体状態にある銀粉を走査型電子顕微鏡にて10,000倍の倍率で観察し、ランダムに10個の一次粒子を抽出し、その粒子径を測定した際のそれらの粒子径の平均値を意味する。また、銀粉のみかけ空隙率は、銀粉の一次粒子が連結して適度な空隙が存在する凝集構造(二次粒子)の状態を表す指標となるものであり、以下のようにして測定することができる。
すなわち、
銀の密度をρ(g/cm)とし、
質量M(g)の銀粉に、1kg重の荷重をかけたときの銀粉体積をV(cm)とした場合に、みかけ密度ρ(g/cm)は、
ρ=M/V
と定義され、みかけ密度から、下記式によりみかけ空隙率(P)を算出することができる。
P=(1-ρ/ρ)×100
なお、銀の密度ρは10.49g/cmであり、1kg重荷重時の銀粉体積Vは、荷重を付加してから1時間経過した後の銀粉体積とする。
<Silver powder>
The silver powder constituting the conductive composition of the present invention is surface-treated, has an average primary particle diameter of 1.0 μm or less, preferably 0.1 to 1.0 μm, and an apparent porosity of 50 to 50. Use 95%, preferably 60-95%. In the case where such silver powder is used to bring the particle size distribution of the secondary particles of the silver powder into the agglomerated state within the range as described later in the composition, the expansion and contraction are repeated and the expansion and contraction are increased. However, the stability of electrical resistance can be maintained. In the present invention, the average primary particle diameter of silver powder is defined as the average primary particle diameter of silver powder, which is obtained by observing silver powder in a powder state at a magnification of 10,000 times with a scanning electron microscope and randomly extracting 10 primary particles thereof. It means the average value of those particle sizes when the particle sizes are measured. In addition, the apparent porosity of silver powder is an index showing the state of the aggregated structure (secondary particles) in which the primary particles of silver powder are connected and an appropriate void is present, and can be measured as follows. can.
That is,
The density of silver is ρ 0 (g / cm 3 ).
When the volume of silver powder when a load of 1 kg is applied to silver powder having a mass of M (g) is V (cm 3 ), the apparent density ρ (g / cm 3 ) is
ρ = M / V
The apparent porosity (P) can be calculated from the apparent density by the following formula.
P = (1-ρ / ρ 0 ) × 100
The silver density ρ 0 is 10.49 g / cm 3 , and the silver powder volume V under a heavy load of 1 kg is the silver powder volume 1 hour after the load is applied.

上記したみかけ空隙率Pは、本発明において、エラストマーと混合する前の銀粉の一次粒子どうしの凝集状態を表す指標となる。銀粉に対して一定荷重をかけると充填された銀粉の圧縮が進む。このとき、銀粉が凝集状態ではなく一次粒子どうしが分離している状態の場合は、圧縮後のみかけ空隙率は小さくなる。一方、銀粉が凝集状態を形成している場合は、凝集内部の空隙のため、みかけ空隙率は大きくなる。これにより、銀粉の一次粒子どうしの凝集状態をみかけ空隙率として評価することができる。 In the present invention, the above-mentioned apparent porosity P is an index showing the aggregated state of the primary particles of silver powder before being mixed with the elastomer. When a constant load is applied to the silver powder, the filled silver powder is compressed. At this time, when the silver powder is not in the aggregated state but in the state where the primary particles are separated from each other, the apparent porosity after compression becomes small. On the other hand, when the silver powder forms an aggregated state, the apparent porosity increases due to the voids inside the aggregate. This makes it possible to evaluate the agglomerated state of the primary particles of silver powder as the apparent porosity.

また、本発明において、銀粉の一次粒子の形状は、略球状であることが好ましく、略球状の一次粒子が三次元かつランダムに連結した二次粒子の形態で導電性組成物中に存在することで、上記したように、導電性組成物の固化物が大きく伸張した際にも一次粒子どうしの接点を減少することなく銀粉が導電性組成物の固化物中のエラストマーの伸張変形に追随できる。 Further, in the present invention, the shape of the primary particles of the silver powder is preferably substantially spherical, and the substantially spherical primary particles are present in the conductive composition in the form of secondary particles in which the substantially spherical primary particles are connected three-dimensionally and randomly. As described above, even when the solidified material of the conductive composition is greatly stretched, the silver powder can follow the stretched deformation of the elastomer in the solidified material of the conductive composition without reducing the contact points between the primary particles.

なお、銀粉の一次粒子の形状は、略球状であるものに限定されるものではなく、本発明の効果を損なわない範囲で略球状以外の形状の銀粉が含まれていてもよいことは言うまでもない。 It is needless to say that the shape of the primary particles of the silver powder is not limited to those having a substantially spherical shape, and silver powder having a shape other than the substantially spherical shape may be contained as long as the effect of the present invention is not impaired. ..

平均一次粒子径およびみかけ空隙率が上記範囲にあるような銀粉は、市販されているものを使用することができ、また、市販されている銀粉を、分級機等を用いて特定の平均一次粒子径およびみかけ空隙率を有する銀粉に分級することで得てもよい。 Commercially available silver powder having an average primary particle diameter and apparent porosity within the above ranges can be used, and commercially available silver powder can be used as a specific average primary particle using a classifier or the like. It may be obtained by classifying into silver powder having a diameter and an apparent porosity.

本発明において使用する銀粉(すなわち、導電性組成物として調製される前の銀粉)は、その平均二次粒子径が5.0~40.0μmであることが好ましく、より好ましくは10.0超~40.0μmであり、さらに好ましくは15.0超~40.0μmである。平均二次粒子径が上記範囲にあることで、銀粉を組成物中に分散させた際に、後記するような特定範囲の粒子径に調整し易くなる。なお、導電性組成物として調製される前の銀粉の平均二次粒子径とは、粉体状態にある銀粉をレーザー回折散乱式粒度分布測定法によって測定した粒子径の平均値(D50)を意味する。 The silver powder used in the present invention (that is, the silver powder before being prepared as a conductive composition) preferably has an average secondary particle diameter of 5.0 to 40.0 μm, more preferably more than 10.0. It is about 40.0 μm, more preferably more than 15.0 to 40.0 μm. When the average secondary particle size is in the above range, it becomes easy to adjust the particle size to a specific range as described later when the silver powder is dispersed in the composition. The average secondary particle size of the silver powder before being prepared as the conductive composition means the average value (D50) of the particle size of the silver powder in the powder state measured by the laser diffraction / scattering type particle size distribution measurement method. do.

また、本発明において使用する銀粉(導電性組成物として調製される前の銀粉)は、JIS K 6217-4(2017)に準拠して測定されたDBP吸油量が30~200ml/100gであることが好ましい。銀粉のDBP吸油量とは、JIS K 6217-4に準拠して、100gの銀粉に吸収されるフタル酸ジブチルの量を測定した値を意味し、本発明においては、銀粉の一次粒子の連結度合いや凝集の程度を示す指標としている。DBP吸油量が上記範囲にある銀粉を使用することで、銀粉を組成物中に分散させた際に、後記するような特定範囲の粒子径に調整し易くなる。 Further, the silver powder used in the present invention (silver powder before being prepared as a conductive composition) has a DBP oil absorption amount of 30 to 200 ml / 100 g measured according to JIS K 6217-4 (2017). Is preferable. The DBP oil absorption amount of silver powder means a value obtained by measuring the amount of dibutyl phthalate absorbed by 100 g of silver powder in accordance with JIS K 6217-4, and in the present invention, the degree of connection of primary particles of silver powder. It is used as an index showing the degree of aggregation. By using silver powder having a DBP oil absorption amount in the above range, it becomes easy to adjust the particle size to a specific range as described later when the silver powder is dispersed in the composition.

本発明の導電性組成物は、上記した銀粉を用いてエラストマー中に分散させたものであり、導電性組成物中において銀粉の二次粒子の粒度分布における累積95%粒子径(D95粒子径)が、3.0~25.0μmの範囲としたものである。本発明は、後述するような表面処理された特定の平均一次粒子径を有する銀粉であって、かつ特定の凝集状態(即ち、特定のみかけ空隙率)にある、好ましくは特定のDBP吸油量を有する銀粉をエラストマーに配合して組成物とした際に、組成物中での銀粉の凝集状態を制御する(即ち、二次粒子の粒度分布における累積95%粒子径を特定の範囲とする)ことにより、導電性組成物を固化させた硬化物の導電性を改善したものであり、伸縮の繰り返しや伸張を大きくした場合であっても、電気抵抗の安定性に優れた導電体とすることができる。 The conductive composition of the present invention is dispersed in an elastomer using the above-mentioned silver powder, and has a cumulative 95% particle size (D95 particle size) in the particle size distribution of secondary particles of silver powder in the conductive composition. However, it is in the range of 3.0 to 25.0 μm. The present invention is a silver powder having a specific average primary particle size surface-treated as described later, and is in a specific aggregated state (that is, a specific apparent void ratio), preferably a specific DBP oil absorption amount. Controlling the aggregated state of silver powder in the composition when the silver powder to be possessed is blended with an elastomer (that is, the cumulative 95% particle diameter in the particle size distribution of secondary particles is within a specific range). As a result, the conductivity of the cured product obtained by solidifying the conductive composition is improved, and even when the expansion and contraction are repeated and the expansion and contraction are increased, the conductor can be made into a conductor having excellent stability of electrical resistance. can.

本発明の導電性組成物を構成する銀粉は、エラストマーと混合ないし混練した際にも、複数の一次粒子が三次元かつランダムに連結した一定の凝集状態を維持しながら、導電性組成物中に分散すると考えられる。即ち、特定のみかけ空隙率を有する銀粉をエラストマーに混合ないし混練すると、銀粉の一次粒子の凝集した二次粒子のうち、粒子径の大きい二次粒子は崩壊してある程度小さくなる。その際の二次粒子の粒度分布における累積95%粒子径が3.0~25.0μmとなるように調整することにより、銀粉の二次粒子にみかけ上の空隙が適度に残存し、その空隙にエラストマーが入り込むため、本発明特有の効果を発揮し得るものと考えられる。 The silver powder constituting the conductive composition of the present invention is contained in the conductive composition while maintaining a constant aggregated state in which a plurality of primary particles are three-dimensionally and randomly connected even when mixed or kneaded with the elastomer. It is considered to be dispersed. That is, when silver powder having a specific apparent porosity is mixed or kneaded with an elastomer, among the aggregated secondary particles of the primary particles of the silver powder, the secondary particles having a large particle size are disintegrated and become smaller to some extent. By adjusting the cumulative 95% particle size in the particle size distribution of the secondary particles to be 3.0 to 25.0 μm, apparent voids remain in the secondary particles of silver powder, and the voids remain appropriately. It is considered that the effect peculiar to the present invention can be exhibited because the elastomer enters the particle size.

この本発明特有の効果が奏される詳細なメカニズムは明らかではないが、以下のように考えられる。即ち、後述するような表面処理された平均一次粒子径が1.0μm以下である銀粉であって、かつみかけ空隙率が50~95%であり、好ましくはDBP吸油量が上記した範囲にある銀粉をエラストマーに配合し分散させて組成物を調製する際に、適度に銀粉の凝集を崩壊させて、D95粒子径が3.0~25.0μmとなるように組成物を撹拌ないし混練することにより、銀粉の二次粒子は、みかけ上の空隙が適度に存在し、かかる空隙にエラストマーが十分に入り込むことから、導電性組成物の固化物が大きく伸張した際にも一次粒子どうしの接点が減少することなく、銀粉がエラストマーの伸張変形に追随できるものと考えられる。 Although the detailed mechanism by which the effect peculiar to the present invention is exerted is not clear, it is considered as follows. That is, it is a silver powder having an average primary particle diameter of 1.0 μm or less and having an apparent void ratio of 50 to 95%, preferably having a DBP oil absorption amount in the above range, as described later. When preparing a composition by blending and dispersing the above in an elastomer, the agglomeration of silver powder is appropriately disintegrated, and the composition is stirred or kneaded so that the D95 particle size becomes 3.0 to 25.0 μm. In the secondary particles of silver powder, apparent voids are appropriately present, and the elastomer sufficiently penetrates into the voids, so that the contact points between the primary particles are reduced even when the solidified material of the conductive composition is greatly stretched. It is considered that the silver powder can follow the stretch deformation of the elastomer without doing so.

導電性組成物中における銀粉の二次粒子の粒度分布における累積95%粒子径(D95粒子径)は、銀粉とエラストマーとを混合ないし混練して得られた導電性組成物をレーザー回折散乱式粒度分布測定法により測定することができる。具体的には、測定溶媒としてプロピレングリコールモノメチルエーテルアセテートを用い、導電性組成物を3000質量%となるように測定溶媒(プロピレングリコールモノメチルエーテルアセテート)で希釈し、スパチュラなどで銀粉の二次粒子が崩壊しないよう適度に撹拌した後速やかに、測定範囲0.020μm~1000.00μmで、粒子の屈折率を1.33、溶媒の屈折率を1.40として、粒度分布を測定し、当該粒度分布の累積95%の粒子径として算出された値をD95粒子径として定義する。 The cumulative 95% particle size (D95 particle size) in the particle size distribution of the secondary particles of silver powder in the conductive composition is a laser diffraction / scattering type particle size of the conductive composition obtained by mixing or kneading silver powder and an elastomer. It can be measured by the distribution measurement method. Specifically, propylene glycol monomethyl ether acetate is used as the measurement solvent, the conductive composition is diluted with the measurement solvent (propylene glycol monomethyl ether acetate) so as to be 3000% by mass, and the secondary particles of silver powder are formed with a spatula or the like. Immediately after stirring appropriately so as not to disintegrate, the particle size distribution was measured in the measurement range of 0.020 μm to 1000.00 μm, with the refractive index of the particles set to 1.33 and the refractive index of the solvent set to 1.40, and the particle size distribution was measured. The value calculated as the cumulative 95% of the particle size of is defined as the D95 particle size.

このように、本発明の導電性組成物によれば、D95粒子径が上記範囲になるように表面処理された銀粉が導電性組成物中に分散されているので、かかる導電性組成物からなる固化物が伸縮の繰り返しや大きく伸張した場合であっても、電気抵抗の安定性に優れた導電体を得ることができるものと考えられる。 As described above, according to the conductive composition of the present invention, the silver powder surface-treated so that the D95 particle size is within the above range is dispersed in the conductive composition, and thus it is composed of such a conductive composition. It is considered that a conductor having excellent stability of electric resistance can be obtained even when the solidified material is repeatedly expanded and contracted or greatly expanded.

通常の銀粉ではエラストマー中に分散させると、導電性組成物中の銀粉の凝集状態が崩壊しすぎるので、かかる導電性組成物の固化物が大きく伸張した際には、この伸張変形によって銀粉の一次粒子どうしの接点は減少してしまう。この点、上述したような本発明の特徴的構成によれば、導電性組成物中の銀粉の二次粒子には、みかけ上の空隙が適度に存在し、かかる空隙にエラストマーが十分に入り込むので、このような導電性組成物からなる固化物が大きく伸張した際にも一次粒子どうしの接点を減少することなく銀粉がエラストマーの伸張変形に追随できるものと考えられる。 When ordinary silver powder is dispersed in an elastomer, the aggregated state of the silver powder in the conductive composition collapses too much. Therefore, when the solidified product of the conductive composition is greatly stretched, this stretching deformation causes the silver powder to be primary. The contact points between particles are reduced. In this regard, according to the characteristic configuration of the present invention as described above, the secondary particles of the silver powder in the conductive composition have appropriate apparent voids, and the elastomer sufficiently penetrates into the voids. It is considered that the silver powder can follow the stretch deformation of the elastomer without reducing the contact points between the primary particles even when the solidified product made of such a conductive composition is greatly stretched.

本発明の導電性組成物中において、銀粉が上記のような形態で存在するためには、銀粉が表面処理によってエラストマーと親和性が高く、かつ銀粉の一次粒子が互いに連結し空隙が適度に存在する凝集構造(二次粒子)を有している必要がある。 In order for the silver powder to exist in the above-mentioned form in the conductive composition of the present invention, the silver powder has a high affinity with the elastomer by surface treatment, and the primary particles of the silver powder are connected to each other and voids are appropriately present. It is necessary to have an agglomerated structure (secondary particles).

そのため、本発明においては、上述したDBP吸油量および銀粉とエラストマーとの親和性を調整するため、表面処理された銀粉を使用する。この銀粉の表面処理としては、分散液を含む溶液中に銀粉を投入して撹拌する湿式法や、銀粉を撹拌しながら分散液を含む溶液噴霧する乾式法などの方法が挙げられる。さらに、界面活性剤を併用して表面処理をしてもよい。 Therefore, in the present invention, a surface-treated silver powder is used in order to adjust the above-mentioned DBP oil absorption amount and the affinity between the silver powder and the elastomer. Examples of the surface treatment of the silver powder include a wet method in which the silver powder is put into a solution containing the dispersion liquid and stirred, and a dry method in which the silver powder is agitated and sprayed with the solution containing the dispersion liquid. Further, the surface treatment may be performed in combination with a surfactant.

このような表面処理に使用する分散剤としては、例えば、脂肪酸、有機金属、ゼラチン等の保護コロイドを用いることができるが、不純物混入のおそれや疎水基との吸着性の向上を考慮すると、脂肪酸またはその塩であることが好ましい。また、この分散剤としては、脂肪酸またはその塩を界面活性剤でエマルション化したものを用いてもよい。好ましい分散剤としては、炭素原子数6~24の脂肪酸であり、ステアリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸等をより好ましく使用することができる。これらの脂肪酸は、導電性組成物を用いた配線層や電極への悪影響が少ないと考えられる。上記した脂肪酸は、単独で使用してもよくまた複数を組み合わせて使用してもよい。 As the dispersant used for such surface treatment, for example, protective colloids such as fatty acids, organic metals and gelatin can be used, but in consideration of the risk of contamination with impurities and the improvement of adsorptivity with hydrophobic groups, fatty acids Or it is preferably a salt thereof. Further, as the dispersant, a fatty acid or a salt thereof emulsified with a surfactant may be used. Preferred dispersants are fatty acids having 6 to 24 carbon atoms, and stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, linolenic acid and the like can be more preferably used. It is considered that these fatty acids have little adverse effect on the wiring layer and electrodes using the conductive composition. The above-mentioned fatty acids may be used alone or in combination of two or more.

以上説明したような銀粉は後記するエラストマーおよび必要に応じて溶剤を配合、撹拌ないし混練することにより、銀粉の二次粒子のD95粒子径が3.0~25.0μmの範囲になるように調整する。例えば、ディゾルバーやバタフライミキサー等の撹拌機やロールミルやビーズミル等の混練機を用いて撹拌ないし混練を行うことができるが、その際の撹拌機および/または混練機の回転速度、撹拌羽や混練装置の形状、撹拌ないし混練時間、撹拌ないし混練時の温度、ビーズ充填率やロール間隔など、種々の条件により調整することができる。 The silver powder as described above is adjusted so that the D95 particle size of the secondary particles of the silver powder is in the range of 3.0 to 25.0 μm by blending the elastomer described later and a solvent as necessary, stirring or kneading. do. For example, stirring or kneading can be performed using a stirrer such as a dissolver or a butterfly mixer, or a kneader such as a roll mill or a bead mill. It can be adjusted according to various conditions such as the shape, stirring or kneading time, temperature at the time of stirring or kneading, bead filling rate and roll interval.

この導電性組成物中における銀粉の配合量は、導電性組成物に含まれる全固形分量を基準として、60~95質量%であることが好ましい。60質量%以上であると、低い抵抗値の導電体を容易に得ることができる。95質量%以下であると、伸縮時に断線がより生じにくくなる。
なお、本発明の導電性組成物は、本発明の効果を損なわない範囲で、銀粉以外のカーボン等の他の導電粉を併用してもよい。
The blending amount of the silver powder in the conductive composition is preferably 60 to 95% by mass based on the total solid content contained in the conductive composition. When it is 60% by mass or more, a conductor having a low resistance value can be easily obtained. When it is 95% by mass or less, disconnection is less likely to occur during expansion and contraction.
The conductive composition of the present invention may be used in combination with other conductive powders such as carbon other than silver powder as long as the effects of the present invention are not impaired.

<エラストマー>
本発明による導電性組成物に含まれるエラストマーは、室温においてゴム弾性を有する材料であれば特に制限なく使用することができ、例えばゴム、熱可塑性エラストマー、官能基含有エラストマー、ブロック共重合体等を好適に使用することができる。
<Elastomer>
The elastomer contained in the conductive composition according to the present invention can be used without particular limitation as long as it is a material having rubber elasticity at room temperature. For example, rubber, thermoplastic elastomer, functional group-containing elastomer, block copolymer and the like can be used. It can be suitably used.

ゴムとしては、ジエン系ゴム、非ジエン系ゴムの何れでもよく、公知慣用のものを単独または二種以上を混合して用いることができる。 The rubber may be either a diene-based rubber or a non-diene-based rubber, and known and commonly used rubbers may be used alone or in combination of two or more.

また、熱可塑性エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマーなどが挙げられ、単独または二種以上を混合して用いることができる。 Examples of the thermoplastic elastomer include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, acrylic-based elastomers, and silicone-based elastomers, which may be used alone or in combination of two or more. be able to.

官能基含有エラストマーとしては、伸縮性の観点から、ウレタン系、オレフィン系が好ましく、耐溶剤性の観点から、(メタ)アクリロイル基や酸無水物基、カルボキシル基、エポキシ基などの官能基を有するものが好ましい。 The functional group-containing elastomer is preferably urethane-based or olefin-based from the viewpoint of elasticity, and has functional groups such as (meth) acryloyl group, acid anhydride group, carboxyl group, and epoxy group from the viewpoint of solvent resistance. The one is preferable.

ブロック共重合体としては、ハードセグメントとソフトセグメントとのブロック共重合体であれば用いることができ、単独または二種以上を混合して用いることができる。 As the block copolymer, any block copolymer of a hard segment and a soft segment can be used, and it can be used alone or in combination of two or more.

上述したエラストマーのなかでも、ブロック共重合体は、結晶性が低く分子間力が弱いため、他のゴムと比較してガラス転移点(以下、Tgと略す。)が低く、銀粉と混合した場合には柔軟で伸びがよく、好ましい。そのため、ブロック共重合体はウェアラブルデバイス用の導電体の形成に好適である。特に、Tgが150℃未満のハードセグメントと、Tgが0℃未満のソフトセグメントとのブロック共重合体がより好適である。なお、ガラス転移点Tgは示差走査熱量測定(DSC)により測定される。 Among the above-mentioned elastomers, block copolymers have low crystallinity and weak intramolecular force, and therefore have a lower glass transition point (hereinafter abbreviated as Tg) as compared with other rubbers, and when mixed with silver powder. It is flexible and stretchable, which is preferable. Therefore, block copolymers are suitable for forming conductors for wearable devices. In particular, a block copolymer having a hard segment having a Tg of less than 150 ° C. and a soft segment having a Tg of less than 0 ° C. is more preferable. The glass transition point Tg is measured by differential scanning calorimetry (DSC).

このようなブロック共重合体におけるハードセグメントとソフトセグメントとの比率は20:80~50:50の範囲であることが好ましい。この範囲内にあれば、導電性組成物を固化した導電体の伸長時に断線が生じにくくなるため好ましい。より好ましくは、25:75~40:60である。 The ratio of the hard segment to the soft segment in such a block copolymer is preferably in the range of 20:80 to 50:50. When it is within this range, it is preferable because disconnection is less likely to occur when the conductor obtained by solidifying the conductive composition is stretched. More preferably, it is 25:75 to 40:60.

ここで、ブロック共重合体におけるハードセグメントとしては、メチル(メタ)アクリレート単位やスチレン単位などが挙げられる。また、ソフトセグメント単位としては、n-ブチルアクリレートやブタジエン単位などが挙げられる。ブロック共重合体は、ポリメチル(メタ)アクリレート/ポリn-ブチル(メタ)アクリレート/ポリメチル(メタ)アクリレートのトリブロック共重合体であることが好ましい。ブロック共重合体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、本願明細書において(メタ)アクリレートとは、アクリレートおよびメタクリレートを総称する用語であり、他の類似の表現についても同様である。 Here, examples of the hard segment in the block copolymer include a methyl (meth) acrylate unit and a styrene unit. Further, examples of the soft segment unit include n-butyl acrylate and butadiene units. The block copolymer is preferably a triblock copolymer of polymethyl (meth) acrylate / poly n-butyl (meth) acrylate / polymethyl (meth) acrylate. One type of block copolymer may be used alone, or two or more types may be used in combination. In addition, in the present specification, (meth) acrylate is a general term for acrylate and methacrylate, and the same applies to other similar expressions.

ブロック共重合体は、市販品であってよい。市販品の例は、アルケマ社製のリビング重合を用いて製造されるアクリル系トリブロックコポリマーである。具体的には、ポリスチレン-ポリブタジエン-ポリメチルメタアクリレートに代表されるSBMタイプ、ポリメチルメタアクリレート-ポリブチルアクリレート-ポリメチルメタアクリレートに代表されるMAMタイプ、およびカルボン酸変性処理または親水基変性処理されたMAM NタイプまたはMAM Aタイプを使用することができる。SBMタイプの例は、E41、E40、E21およびE20である。MAMタイプの例は、M51、M52、M53およびM22である。MAM Nタイプの例は、52Nおよび22Nである。MAM Aタイプの例は、SM4032XM10である。市販品の別の例は、クラレ社製のクラリティである。このクラリティは、メタクリル酸メチルおよびアクリル酸ブチルから誘導されるブロック共重合体である。 The block copolymer may be a commercially available product. An example of a commercial product is an acrylic triblock copolymer manufactured by Arkema using living polymerization. Specifically, SBM type represented by polystyrene-polybutadiene-polymethyl methacrylate, MAM type represented by polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate, and carboxylic acid modification treatment or hydrophilic group modification treatment. MAM N type or MAM A type can be used. Examples of SBM types are E41, E40, E21 and E20. Examples of MAM types are M51, M52, M53 and M22. Examples of MAM N types are 52N and 22N. An example of MAM A type is SM4032XM10. Another example of a commercial product is Kuraray's Clarity. This clarity is a block copolymer derived from methyl methacrylate and butyl acrylate.

上記のような(メタ)アクリレートポリマーブロックを含むブロック共重合体は、例えば、特表2007-516326号公報または特表2005-515281号公報に記載される方法により得ることができる。 The block copolymer containing the (meth) acrylate polymer block as described above can be obtained, for example, by the method described in JP-A-2007-516326 or JP-A-2005-515281.

ブロック共重合体の重量平均分子量は、好ましくは20,000~400,000であり、より好ましくは50,000~300,000である。重量平均分子量が20,000以上であることで、目的とする強靭性および柔軟性の効果が得られ、導電性組成物をフィルム状に成形乾燥したときや基板に塗布して乾燥したときに優れたタック性が得られる。また、重量平均分子量が400,000以下であることで、導電性組成物が良好な粘度を有し、より高い印刷性および加工性を達成できる。また、重量平均分子量が50,000以上である場合には、外部からの衝撃に対する緩和性において優れた効果が得られる。 The weight average molecular weight of the block copolymer is preferably 20,000 to 400,000, more preferably 50,000 to 300,000. When the weight average molecular weight is 20,000 or more, the desired toughness and flexibility effects can be obtained, and it is excellent when the conductive composition is formed into a film and dried, or when it is applied to a substrate and dried. Tackiness can be obtained. Further, when the weight average molecular weight is 400,000 or less, the conductive composition has a good viscosity, and higher printability and processability can be achieved. Further, when the weight average molecular weight is 50,000 or more, an excellent effect in mitigation against an impact from the outside can be obtained.

ブロック共重合体の、国際標準化機構の国際規格ISO 37の測定方法による引っ張り破断伸び率は、好ましくは100~600%である。引っ張り破断伸び率が100~600%だと、導電体の伸縮性および電気抵抗の安定性により優れる。より好ましくは300~600%である。
引っ張り破断伸び率(%)=(破断点伸び(mm)-初期寸法mm)/(初期寸法mm)×100
The tensile elongation at break of the block copolymer according to the measurement method of the international standard ISO 37 of the International Organization for Standardization is preferably 100 to 600%. When the tensile elongation at break is 100 to 600%, the elasticity of the conductor and the stability of the electric resistance are more excellent. More preferably, it is 300 to 600%.
Tensile breaking elongation rate (%) = (breaking point elongation (mm) -initial dimension mm) / (initial dimension mm) x 100

上記したエラストマーのうちゴムや官能基含有エラストマーには、通常、硫黄系加硫剤や非硫黄系加硫剤などが用いられる。本発明のような銀粉とエラストマーを含む導電性組成物では、エラストマー中の加硫剤に含まれる硫黄により、配線中の銀粉が酸化や硫化によって腐食する恐れがあり、かかる観点からは、本発明においては硫黄系加硫剤を含まないことが好ましい。 Of the above-mentioned elastomers, sulfur-based vulcanizers, non-sulfur-based vulcanizers, and the like are usually used for rubbers and functional group-containing elastomers. In a conductive composition containing silver powder and an elastomer as in the present invention, sulfur contained in the vulcanizing agent in the elastomer may cause the silver powder in the wiring to be corroded by oxidation or sulfurization. It is preferable that the sulfur-based vulcanizing agent is not contained in the above.

本発明の導電性組成物は、導電性に悪影響を及ぼさない範囲内で(本発明特有の効果を損なわない範囲内で)若干量の硫黄化合物を配合してもよい。 The conductive composition of the present invention may contain a slight amount of the sulfur compound within a range that does not adversely affect the conductivity (within a range that does not impair the effects peculiar to the present invention).

また、エラストマーには、軟化剤、可塑剤等の公知の添加剤が含まれていてもよい。軟化剤としては、鉱物油系軟化剤と植物油系軟化剤が挙げられ、例えば、鉱物油系軟化剤として、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどの各種オイルである。植物油系軟化剤としては、ひまし油、錦実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、パイン油、トール油等が挙げられ、これら軟化剤はは、単独あるいは二種以上を併用してもよい。軟化剤の添加量により、所望のゴム弾性や伸張性を調整することができる。 Further, the elastomer may contain known additives such as softeners and plasticizers. Examples of the softening agent include mineral oil-based softeners and vegetable oil-based softeners. For example, mineral oil-based softeners include various oils such as paraffin-based process oils, naphthen-based process oils, and aromatic process oils. Examples of vegetable oil-based softeners include castor oil, brocade oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, pine oil, tall oil, etc., and these softeners may be used alone or. Two or more kinds may be used together. The desired rubber elasticity and extensibility can be adjusted by the amount of the softener added.

以上説明したようなエラストマーは、導電性組成物中に含まれる全固形分量を基準として、それぞれ5~40質量%の割合で配合することが好ましく、14~28質量%であることがより好ましい。特に、上記したようなブロック共重合体を含有する場合には、他のエラストマーを含めた全エラストマーに対して、これらブロック共重合体の配合量が85~100質量%であることが好ましい。配合量が上記範囲内にあると、形成された塗膜の伸縮性がより良好となる。
なお、本発明の導電性組成物は、本発明の効果を損なわない範囲で、エラストマー以外の熱可塑性樹脂等の他の有機バインダーを併用してもよい。
The elastomer as described above is preferably blended in a proportion of 5 to 40% by mass, more preferably 14 to 28% by mass, based on the total solid content contained in the conductive composition. In particular, when the block copolymer as described above is contained, it is preferable that the blending amount of these block copolymers is 85 to 100% by mass with respect to all the elastomers including other elastomers. When the blending amount is within the above range, the elasticity of the formed coating film becomes better.
The conductive composition of the present invention may be used in combination with other organic binders such as thermoplastic resins other than elastomers as long as the effects of the present invention are not impaired.

本発明の導電性組成物は、組成物の調整のため、または基板に塗布するための粘度調整のため、有機溶剤を使用することができる。 The conductive composition of the present invention can use an organic solvent for adjusting the composition or for adjusting the viscosity for coating on a substrate.

このような有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などが挙げることができる。より具体的には、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなどのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコール等のアルコール類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などである。このような有機溶剤は、単独でまたは2種以上の混合物として用いられる。この中でも、塗布性の観点より、ジエチレングリコールモノエチルエーテルアセテートが好ましい。 Examples of such organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum-based solvents and the like. More specifically, ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethyl benzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol and propylene glycol monomethyl. Glycol ethers such as ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate , Esters such as propylene glycol ethyl ether acetate and propylene glycol butyl ether acetate; alcohols such as ethanol, propanol, ethylene glycol and propylene glycol; aliphatic hydrocarbons such as octane and decane; petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha , Solvent naphtha and other petroleum-based solvents. Such organic solvents are used alone or as a mixture of two or more. Of these, diethylene glycol monoethyl ether acetate is preferable from the viewpoint of coatability.

本発明の導電性組成物は、熱硬化成分をさらに含んでよい。熱硬化成分の例は、硬化反応による分子量増加、架橋形成によりフィルム形成可能なポリエステル樹脂(ウレタン変性体、エポキシ変性体、アクリル変性体等)、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、メラミン樹脂、ビニル系樹脂およびシリコーン樹脂である。 The conductive composition of the present invention may further contain a thermosetting component. Examples of heat-curable components include polyester resins (urethane-modified, epoxy-modified, acrylic-modified, etc.), epoxy resins, urethane resins, phenolic resins, melamine resins, and vinyls that can be formed into films by increasing molecular weight due to curing reaction and forming crosslinks. Phenolic resin and silicone resin.

本発明の導電性組成物は、本発明の効果を損なわない範囲で、その他の成分を含んでいてもよい。例えば、カップリング剤、光重合開始剤等の添加剤を含んでいてよい。 The conductive composition of the present invention may contain other components as long as the effects of the present invention are not impaired. For example, it may contain additives such as a coupling agent and a photopolymerization initiator.

本発明の導電性組成物は、例えば、溶剤に溶解したエラストマーと上記した銀粉とを混練することで製造することができる。混練方法としては、例えばロールミルといった撹拌混合装置を使用する方法が挙げられる。具体的には、エラストマーを有機溶剤に溶解した固形分50質量%の樹脂溶液を調製し、この樹脂溶液に銀粉を配合し、攪拌機にて予備撹拌混合した後、3本ロールミルにて混練することで、導電性組成物を得ることができる。使用するエラストマーの種類や有機溶剤の配合割合によって、液状の導電性組成物としたり、ペースト状(半固形状)の導電性組成物とすることができる。 The conductive composition of the present invention can be produced, for example, by kneading an elastomer dissolved in a solvent with the above-mentioned silver powder. Examples of the kneading method include a method using a stirring and mixing device such as a roll mill. Specifically, a resin solution having a solid content of 50% by mass in which an elastomer is dissolved in an organic solvent is prepared, silver powder is mixed with this resin solution, pre-stirring and mixing with a stirrer, and then kneading with a three-roll mill. Therefore, a conductive composition can be obtained. Depending on the type of elastomer used and the blending ratio of the organic solvent, a liquid conductive composition or a paste-like (semi-solid) conductive composition can be obtained.

本発明において、上述したような導電性組成物は、例えば基材上にパターン塗布し、熱処理を行うことで、導電体を形成することができる。この熱処理としては、乾燥処理や熱硬化処理などが挙げられる。 In the present invention, the conductive composition as described above can form a conductor by, for example, applying a pattern on a substrate and performing a heat treatment. Examples of this heat treatment include a drying treatment and a thermosetting treatment.

このように、本発明の導電性組成物によれば、伸縮性および電気抵抗の安定性に優れた導電体を得ることができる。また、上記のような銀粉を用いることによって、塗布適性も向上する。 As described above, according to the conductive composition of the present invention, it is possible to obtain a conductor having excellent elasticity and stability of electrical resistance. Further, by using the silver powder as described above, the coating suitability is also improved.

<導電体の層およびその用途>
上述した導電性組成物は、固化させて導電体とすることができる。例えば、導電性組成物からなる塗布膜を形成し、乾燥、固化させることにより導電体の層とすることができる。導電性組成物の固化は、導電性組成物を乾燥または熱処理することで行われる。熱処理の例は、熱風乾燥または熱硬化である。熱処理に先立ち、成形を行ってもよい。例えば、導電体の層は、基材上に上記の導電性組成物を所望の形状となるように塗布した後、固化させることにより導電体の層を得ることができる。導電体の層は、使用される用途に応じた種々の形状であってよい。例えば、導体回路および配線などに好適に適用できる。
<Conductor layer and its uses>
The above-mentioned conductive composition can be solidified into a conductor. For example, a coating film made of a conductive composition can be formed, dried, and solidified to form a conductive layer. The solidification of the conductive composition is carried out by drying or heat-treating the conductive composition. Examples of heat treatments are hot air drying or thermosetting. Molding may be performed prior to the heat treatment. For example, the conductor layer can be obtained by applying the above-mentioned conductive composition on a substrate so as to have a desired shape and then solidifying the conductor layer. The conductor layer may have various shapes depending on the intended use. For example, it can be suitably applied to conductor circuits and wiring.

導体回路を製造する場合、上記の導電性組成物を基材上に印刷または塗布して塗膜パターンを形成するパターン形成工程と、パターニングされた塗膜を固化させる工程とを含む。塗膜パターンの形成には、マスキング法またはレジストを用いる方法等を使用できる。 The case of manufacturing a conductor circuit includes a pattern forming step of printing or applying the above conductive composition on a substrate to form a coating film pattern, and a step of solidifying the patterned coating film. A masking method, a method using a resist, or the like can be used to form the coating film pattern.

パターン形成工程としては、印刷方法およびディスペンス方法が挙げられる。印刷方法としては、例えば、グラビア印刷、オフセット印刷、スクリーン印刷等が挙げられ、微細な回路を形成する場合、スクリーン印刷が好ましい。また、大面積の塗布方法としては、グラビア印刷およびオフセット印刷が適している。ディスペンス方法とは、導電性組成物の塗布量をコントロールしてニードルから押し出しパターンを形成する方法であり、アース配線等の部分的なパターン形成や凹凸のある部分へのパターン形成に適している。 Examples of the pattern forming step include a printing method and a dispensing method. Examples of the printing method include gravure printing, offset printing, screen printing, and the like, and screen printing is preferable when forming a fine circuit. Further, as a large area coating method, gravure printing and offset printing are suitable. The dispensing method is a method of forming an extrusion pattern from a needle by controlling the amount of the conductive composition applied, and is suitable for forming a partial pattern such as a ground wiring or forming a pattern on an uneven portion.

導電性組成物を塗布する基材としては、電気絶縁性のものであれば特に制限なく使用することができ、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布-エポキシ樹脂、ガラス-ポリイミド、ガラス布/不織布-エポキシ樹脂、ガラス布/紙-エポキシ樹脂、合成繊維-エポキシ樹脂、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル、ポリフェニレンオキシド・シアネートエステル等の複合材を用いた全てのグレード(FR-4等)の銅張積層板、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリイミド、ポリフェニレンスルフィド、ポリアミドなどのプラスチックからなるシートまたはフィルム、ウレタン、シリコンゴム、アクリルゴム、ブタジエンゴムなどの架橋ゴムからなるシートまたはフィルム、ポリエステル系、ポリウレタン系、ポリオレフィン系、スチレン系ブロックコポリマー系などの熱可塑性エラストマーからなるシートまたはフィルムなどが挙げられる。これらの中でも、屈曲性がある材料だけでなく、伸縮性を有する材料(例えばゴムや熱可塑性エラストマー)を基材として用いることにより、後記するような用途に導電体を適用できるようになる。伸縮性を有する材料としては、上記したエラストマー成分と同様のものを使用することができる。 As the base material to which the conductive composition is applied, any electrically insulating material can be used without particular limitation, and paper-phenol resin, paper-epoxy resin, glass cloth-epoxy resin, glass-polyimide, and glass. All grades (FR-4, etc.) using composite materials such as cloth / non-woven fabric-epoxy resin, glass cloth / paper-epoxy resin, synthetic fiber-epoxy resin, fluororesin / polyethylene / polyphenylene ether, polyphenylene oxide / cyanate ester, etc. Copper-clad laminate, polyethylene terephthalate (PET), polybutylene terephthalate, polyester such as polyethylene naphthalate, sheet or film made of plastic such as polyimide, polyphenylene sulfide, polyamide, urethane, silicon rubber, acrylic rubber, butadiene rubber, etc. Examples thereof include sheets or films made of crosslinked rubber, sheets or films made of thermoplastic elastomers such as polyester-based, polyurethane-based, polyolefin-based, and styrene-based block copolymers. Among these, by using not only a flexible material but also a stretchable material (for example, rubber or thermoplastic elastomer) as a base material, the conductor can be applied to the applications described later. As the stretchable material, the same material as the above-mentioned elastomer component can be used.

本発明による導電体の層は、上記したように伸縮の繰り返しや伸ばした場合であっても、電気抵抗の安定性に優れているため、導体回路および配線以外にも、体外デバイス、体表デバイス、電子皮膚デバイス、体内デバイス等のウェアラブルデバイス用の導電体の形成に好適に用いることができる。また、導電体の層をフレキシブルプリント基板の電極に適用することもできる。さらに、本発明の導電性組成物は、アクチュエーター電極等の導電体の層を形成するのにも適している。また、従来は伸縮性や電気抵抗の安定性が足りずに実現が困難であったデザインの導電体の形成にも適している。例えば、以下のようなものが挙げられる。 Since the conductor layer according to the present invention has excellent stability of electrical resistance even when it is repeatedly expanded and contracted or stretched as described above, it is not only a conductor circuit and wiring, but also an extracorporeal device and a body surface device. , Electronic skin devices, internal devices and the like, can be suitably used for forming conductors for wearable devices. Further, the layer of the conductor can be applied to the electrodes of the flexible printed circuit board. Further, the conductive composition of the present invention is also suitable for forming a layer of a conductor such as an actuator electrode. It is also suitable for forming a conductor with a design that was difficult to realize in the past due to insufficient elasticity and stability of electrical resistance. For example, the following can be mentioned.

<ウェアラブル生体センサー>
人間を含めた動植物から発生する活動電位/生体情報を取得/伝達する為に身に着けるウェアラブル生体センサー用配線材料として、本発明の導電体を適用することができる。センサーの装着箇所は、人間を含めた動植物の表層組織に密着ないしは近接する場所であることが必須となるが、表層組織は伸び縮みが発生する。従来の硬質基板やフレキシブル基板では、伸び縮みする装着箇所への追従性が無く、センサーの装着箇所も限定的となり、結果として得られる生体情報も限られていた。本発明の導電体によれば、人間を含めた動植物の表層組織にもセンサー用配線材料を適用できるため、伸び縮みが発生する箇所にも装着可能なウェアラブル生体センサーとすることができる。
<Wearable biosensor>
The conductor of the present invention can be applied as a wiring material for a wearable biological sensor that can be worn to acquire / transmit action potentials / biological information generated from animals and plants including humans. It is essential that the sensor is attached to a place that is in close contact with or close to the surface tissue of animals and plants including humans, but the surface tissue expands and contracts. In the conventional hard substrate and flexible substrate, there is no followability to the mounting location that expands and contracts, the mounting location of the sensor is limited, and the biological information obtained as a result is also limited. According to the conductor of the present invention, since the wiring material for the sensor can be applied to the surface tissue of animals and plants including humans, it is possible to make a wearable biosensor that can be attached to a place where expansion and contraction occurs.

ウェアラブル生体センサーに使う配線は、スクリーン印刷或いはディスペンス工法によって配線形成が可能であることから、信号配線の微細化も可能となり、センサーデバイスの小型化に寄与すると考えられる。 Since the wiring used for the wearable biosensor can be formed by screen printing or the dispense method, it is possible to miniaturize the signal wiring, which is considered to contribute to the miniaturization of the sensor device.

<スマートテキスタイル用配線材料>
近年、布帛生地をセンサーとして用いるいわゆる「スマートテキスタイル」という分野広がりを見せつつある。本発明の導電体を用いて伸縮性があり熱圧着等が可能な基材上に配線形成を行なった配線板ないしセンサーは、伸縮時での電気抵抗の安定性に優れているため、伸縮性を持つ布帛生地の表面に貼りつけることで、エレクトロニクス・デバイスの機能を持った布帛生地、すなわちスマートテキスタイルの開発が可能となる。スマートテキスタイルとしては、感圧センサーやタッチセンサー、アンテナ配線等の機能を布帛生地に付与することができる。
<Wiring material for smart textiles>
In recent years, the field of so-called "smart textiles" that use fabrics as sensors is expanding. The wiring plate or sensor in which wiring is formed on a base material that is elastic and can be thermocompression bonded using the conductor of the present invention is excellent in stability of electrical resistance during expansion and contraction, and therefore is elastic. By sticking it on the surface of the cloth cloth with, it becomes possible to develop a cloth cloth having the function of an electronic device, that is, a smart textile. As a smart textile, functions such as a pressure sensor, a touch sensor, and antenna wiring can be added to the fabric.

<3D造形成形品用配線>
従来のFIM(フィルム・インサート・モールド成型)工法による電子機器の筐体等向けのプラスチック成型品では、ポリカーボネート等のプラスチックフィルムをベース基材とし、意匠印刷の後、熱プレス加工したものが採用されている。本発明の導電体を伸縮性の基材上に設けた積層構造体からなる導体配線は伸長時の断線が無く、抵抗値変化が抑制されている特性を持つため、プラスチック成型品の意匠印刷時に導体配線を形成し、その後の熱プレス(部分的に伸びが発生)による成型加工を行なうことで3D形状の配線を内蔵したエレクトロニクス・デバイスを実現することができる。
<Wiring for 3D molded products>
For plastic molded products for housings of electronic devices by the conventional FIM (film insert mold molding) method, a plastic film such as polycarbonate is used as a base material, and after design printing, heat press processing is adopted. ing. Since the conductor wiring made of a laminated structure in which the conductor of the present invention is provided on an elastic base material has the property that there is no disconnection during elongation and the change in resistance value is suppressed, when printing a design of a plastic molded product. An electronic device having a built-in 3D-shaped wiring can be realized by forming a conductor wiring and then performing a molding process by hot pressing (partially stretching occurs).

また、上記したようなエラストマー等のような伸縮性の基材を用いて熱プレス加工を行なうことで、柔らかい筐体内に柔らかい配線を備えた伸縮変形可能なエレクトロニクス・デバイスを実現することができる。感圧センサーやタッチセンサー、またはアンテナ配線用等として好適に利用することができる。 Further, by performing heat press working using a stretchable base material such as an elastomer as described above, it is possible to realize a stretchable and deformable electronic device having soft wiring in a soft housing. It can be suitably used for a pressure sensor, a touch sensor, antenna wiring, or the like.

<伸縮変形可能な配線シートないし配線基板>
本発明の導電体の層を伸縮性の基材上に設けた積層構造体からなる導体配線は、伸縮変形可能な配線板シートとして利用することができる。例えば、このような導体配線を成型加工品などの立体的形状を持つ対象物の表面へ、配線の断線を発生させること無く、伸張ないし変形させながら対象物に貼りつけることが可能となる。したがって、本発明の導電体の層を伸縮性の基材上に設けた積層構造体は、感圧センサーやタッチセンサー、またはアンテナ配線用として好適に利用することができる。
<Wiring sheet or wiring board that can be expanded and contracted>
The conductor wiring made of a laminated structure in which the conductor layer of the present invention is provided on an elastic base material can be used as a wiring board sheet that can be expanded and contracted. For example, such a conductor wiring can be attached to the surface of an object having a three-dimensional shape such as a molded product while being stretched or deformed without causing disconnection of the wiring. Therefore, the laminated structure in which the conductor layer of the present invention is provided on the stretchable base material can be suitably used for a pressure-sensitive sensor, a touch sensor, or an antenna wiring.

<フレキシブル配線シートないし配線基板>
従来の導電性ペーストを使ったフレキシブル配線シートないし配線基板では、爪折りという極端な折り曲げを行なった際、配線の断線が発生するという事象が発生する。この点本発明の導電体を使用した場合、伸び特性を持たせた導電材料であることから、これまでの導電ペーストでは対応仕切れなかった領域の折り曲げ性にも対応することができ、爪折り時でも、配線の断線は発生しないフレキシブル配線シートないし配線基板を実現することができる。
<Flexible wiring sheet or wiring board>
In a flexible wiring sheet or wiring board using a conventional conductive paste, a phenomenon occurs in which wiring is broken when an extreme bending such as claw folding is performed. In this respect, when the conductor of the present invention is used, since it is a conductive material having elongation characteristics, it is possible to cope with the bendability of a region that cannot be separated by the conventional conductive paste, and when the nail is folded. However, it is possible to realize a flexible wiring sheet or wiring board that does not cause disconnection of wiring.

次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<銀粉の準備>
導電性組成物を調製するための銀粉として、以下の3種の銀粉を準備した。
銀粉A:平均一次粒子径0.3μm、みかけ空隙率が92%の銀粉であって、リノレン酸で表面処理が施されたもの。
銀粉B:平均一次粒子径0.5μm、みかけ空隙率が63%の銀粉であって、リノレン酸で表面処理が施されたもの。
銀粉C:平均一次粒子径1.3μm、みかけ空隙率が44%の銀粉であって、リノレン酸で表面処理が施されたもの。
<Preparation of silver powder>
The following three types of silver powder were prepared as silver powder for preparing the conductive composition.
Silver powder A: Silver powder having an average primary particle diameter of 0.3 μm and an apparent porosity of 92%, which has been surface-treated with linolenic acid.
Silver powder B: Silver powder having an average primary particle diameter of 0.5 μm and an apparent porosity of 63%, which has been surface-treated with linolenic acid.
Silver powder C: Silver powder having an average primary particle diameter of 1.3 μm and an apparent porosity of 44%, which has been surface-treated with linolenic acid.

なお、銀粉の平均一次粒子径は、走査型電子顕微鏡(日本電子株式会社製、JSM-6360L)を用いて10,000倍にて銀粉を観察し、ランダムに抽出した10個の銀粉粒子の粒子径を測定し、その平均値とした。
また、各銀粉のみかけ空隙率Pは以下のようにして算出した。すなわち、銀粉を円筒状の容器に充填し、容器を数回振動させて銀粉の上面が一定の高さになるまで銀粉を補充し、容器に充填された銀粉の量をM(g)とし、容器内径にあわせた外径を有する円柱を用いて銀粉の上面に1kg重の荷重をかけ、1時間放置した後の銀粉体積(円筒状容器の底面積と、容器底から銀粉の上面までの高さの積)をV(cm)として、ρ=M/Vで定義されるみかけ密度ρ(g/cm)を算出し、銀の真密度ρ(10.49g/cm)を用いて、下記式:
P=(1-ρ/ρ)×100
で表される銀粉のみかけ空隙率P(%)を算出した。
The average primary particle size of the silver powder was 10,000 times by observing the silver powder using a scanning electron microscope (JSM-6360L, manufactured by Nippon Denshi Co., Ltd.), and 10 particles of silver powder particles randomly extracted. The diameter was measured and used as the average value.
The apparent porosity P of each silver powder was calculated as follows. That is, the silver powder is filled in a cylindrical container, the container is vibrated several times to replenish the silver powder until the upper surface of the silver powder reaches a certain height, and the amount of the silver powder filled in the container is M (g). Using a cylinder with an outer diameter that matches the inner diameter of the container, apply a load of 1 kg to the upper surface of the silver powder and leave it for 1 hour. The apparent density ρ (g / cm 3 ) defined by ρ = M / V is calculated with V (cm 3 ) as the product of the container, and the true density of silver ρ 0 (10.49 g / cm 3 ) is used. The following formula:
P = (1-ρ / ρ 0 ) × 100
The apparent porosity P (%) of the silver powder represented by is calculated.

<導電性組成物の調製>
導電性組成物を調製するためのエラストマーとして、以下の2種を準備した。
・エラストマーA(クラレ株式会社製、LA2330)
・エラストマーB(クラレ株式会社製、LA2250)
・ポリエステルC(東洋紡株式会社製、バイロン290)
上記したエラストマーAおよびBについては、エラストマーをジエチレングリコールモノエチルエーテルアセテートに溶解させて、固形分50質量%となるように樹脂溶液を調製した。また、ポリエステルCについては、ジエチレングリコールモノエチルエーテルアセテートに溶解させて、固形分30質量%となるように樹脂溶液を調製した。
<Preparation of conductive composition>
The following two types were prepared as elastomers for preparing a conductive composition.
-Elastomer A (manufactured by Kuraray Co., Ltd., LA2330)
-Elastomer B (manufactured by Kuraray Co., Ltd., LA2250)
-Polyester C (manufactured by Toyobo Co., Ltd., Byron 290)
For the above-mentioned elastomers A and B, the elastomer was dissolved in diethylene glycol monoethyl ether acetate to prepare a resin solution having a solid content of 50% by mass. Further, polyester C was dissolved in diethylene glycol monoethyl ether acetate to prepare a resin solution having a solid content of 30% by mass.

上記した銀粉とエラストマーまたはポリエステルの樹脂溶液とを、下記表1に示した組成に従って配合し、攪拌機にて予備撹拌混合した後、3本ロールミル(EXAKT社製、EXAKT50)を用いて、3本ロールミルの混練回数、回転速度、ロール間隔等の条件を変えて混練することで、実施形態に係る導電性組成物を得た。なお、表1中、エラストマーまたはポリエステルと銀粉の配合量の数値は質量部を表す。 The above-mentioned silver powder and an elastomer or polyester resin solution are mixed according to the composition shown in Table 1 below, and after pre-stirring and mixing with a stirrer, a 3-roll mill (EXAKT50 manufactured by EXAKT) is used. The conductive composition according to the embodiment was obtained by kneading while changing the conditions such as the number of kneading times, the rotation speed, and the roll interval. In Table 1, the numerical value of the blending amount of the elastomer or polyester and the silver powder represents a part by mass.

得られた導電性組成物中に含まれる銀粉の二次粒子D95粒子径を測定した。D95粒子径は以下のようにして行った。先ず、導電性組成物を3000質量%のプロピレングリコールモノメチルエーテルアセテートで希釈して溶液を調製した。当該溶液を、レーザー回折散乱式粒度分布測定装置(マイクロトラック・ベル社製、TM3000)を用いて、粒子の屈折率を1.33、溶媒の屈折率を1.40として、0.020μm~1000.00μmの測定範囲で、粒度分布の測定を行い、当該粒度分布から、累積95%の粒子径を求め、D95粒子径とした。 The secondary particle D95 particle diameter of the silver powder contained in the obtained conductive composition was measured. The D95 particle size was set as follows. First, the conductive composition was diluted with 3000% by mass of propylene glycol monomethyl ether acetate to prepare a solution. Using a laser diffraction / scattering particle size distribution measuring device (TM3000, manufactured by Microtrac Bell), the solution is 0.020 μm to 1000, with the refractive index of the particles set to 1.33 and the refractive index of the solvent set to 1.40. The particle size distribution was measured within a measurement range of .00 μm, and a cumulative 95% particle size was obtained from the particle size distribution and used as the D95 particle size.

<導電性組成物の評価>
(1)比抵抗の測定
各導電性組成物を、基材にスクリーン印刷で塗布し、80℃で30分間熱処理して導電体を得た。基材としては、PETフィルムを使用した。得られた導電体の両端の抵抗値を4端子法で測定し、さらに線幅、線長および厚さを測定し、比抵抗(体積抵抗率)を求めた。結果を表1に示す。
<Evaluation of conductive composition>
(1) Measurement of Specific Resistance Each conductive composition was applied to a substrate by screen printing and heat-treated at 80 ° C. for 30 minutes to obtain a conductor. A PET film was used as the base material. The resistance values at both ends of the obtained conductor were measured by the 4-terminal method, and the line width, line length and thickness were further measured to determine the specific resistance (volume resistivity). The results are shown in Table 1.

(2)20%伸縮試験での最大抵抗値の測定
各導電性組成物を、基材にスクリーン印刷で塗布し、80℃で30分間熱処理して、線幅1mm、厚さ20μm、長さ40mmの導電体を基材上に形成した。基材としては、ウレタンフィルム(武田産業株式会社製、TG88-I、厚さ70μm)を使用した。2.5%の伸縮状態(撓みが無い状態)から20%の伸縮を250秒かけて100往復繰り返しながら、導電体の抵抗値を測定した。その間の最大の抵抗値を表1に示す。
(2) Measurement of maximum resistance value in 20% expansion / contraction test Each conductive composition is applied to a substrate by screen printing and heat-treated at 80 ° C. for 30 minutes to have a line width of 1 mm, a thickness of 20 μm, and a length of 40 mm. Conductor was formed on the substrate. As a base material, a urethane film (manufactured by Takeda Sangyo Co., Ltd., TG88-I, thickness 70 μm) was used. The resistance value of the conductor was measured while repeating 100 reciprocations from a 2.5% expansion / contraction state (no bending state) to a 20% expansion / contraction state over 250 seconds. Table 1 shows the maximum resistance values during that period.

(3)50%伸縮試験での断線の有無
各導電性組成物を、基材にスクリーン印刷で塗布し、80℃で30分間熱処理して、線幅1mm、厚さ20μm、長さ40mmの導電体を基材上に形成した。基材としては、ウレタンフィルム(武田産業株式会社製、TG88-I、厚さ70μm)を使用した。0%の非伸縮状態から50%の伸縮を700秒かけて100往復繰り返し、断線の有無を評価した。測定結果を表1に示す。
(3) Presence or absence of disconnection in 50% expansion / contraction test Each conductive composition is applied to a substrate by screen printing and heat-treated at 80 ° C. for 30 minutes to conduct conductivity having a line width of 1 mm, a thickness of 20 μm, and a length of 40 mm. The body was formed on the substrate. As a base material, a urethane film (manufactured by Takeda Sangyo Co., Ltd., TG88-I, thickness 70 μm) was used. The presence or absence of disconnection was evaluated by repeating 100 round trips from a non-stretchable state of 0% to a stretch of 50% over 700 seconds. The measurement results are shown in Table 1.

(4)400%伸張時の抵抗値
各導電性組成物を、それぞれ基材にスクリーン印刷で塗布し、80℃で30分間熱処理して、線幅1mm、厚さ20μm、長さ40mmの導電体を基材上に形成した。基材としては、ウレタンフィルム(武田産業株式会社製、TG88-I、厚さ70μm)を使用した。5mm/秒の速度で25%伸張した後、15秒保持して断線の有無を評価した。この操作を繰り返し、導電体が400%伸長するまで行った。評価結果を表1に示す。
(4) Resistance value at 400% elongation Each conductive composition is applied to a substrate by screen printing and heat-treated at 80 ° C. for 30 minutes to form a conductor having a line width of 1 mm, a thickness of 20 μm, and a length of 40 mm. Was formed on the substrate. As a base material, a urethane film (manufactured by Takeda Sangyo Co., Ltd., TG88-I, thickness 70 μm) was used. After stretching 25% at a speed of 5 mm / sec, it was held for 15 seconds to evaluate the presence or absence of disconnection. This operation was repeated until the conductor was stretched by 400%. The evaluation results are shown in Table 1.

Figure 0007077316000001
Figure 0007077316000001

表1に示す結果から明らかなように、平均一次粒径が1.0μm以下、みかけ空隙率が50~95%である銀粉とエラストマーとを用いて、D95粒子径が3.0~25μmとなるように撹拌ないし混練した導電性組成物(実施例1~4)は、伸縮の繰り返しや伸ばした場合であっても、電気抵抗の安定性に優れ、断線のない導電体を得ることができることが分かる。 As is clear from the results shown in Table 1, the D95 particle size is 3.0 to 25 μm by using silver powder having an average primary particle size of 1.0 μm or less and an apparent porosity of 50 to 95% and an elastomer. The conductive compositions (Examples 1 to 4) that have been stirred or kneaded as described above have excellent stability of electrical resistance and can be obtained without disconnection even when they are repeatedly expanded and contracted or stretched. I understand.

一方、平均一次粒径が1.0μm以下、みかけ空隙率が50~95%である銀粉とエラストマーとを用いた場合であっても、D95粒子径が3.0~25μmの範囲にない導電性組成物(比較例2)は、初期の導電性は良好であるものの、伸縮の繰り返しや伸ばした場合に、導電性が急激に低下してしまうことが分かる。また、平均一次粒径が1.0μm以下、みかけ空隙率が50~95%の範囲にない銀粉を用いた場合(比較例1および比較例3)は、初期の導電性も不十分であり、伸縮の繰り返しや伸ばした場合も導電性が急激に低下してしまうことが分かる。 On the other hand, even when silver powder having an average primary particle size of 1.0 μm or less and an apparent porosity of 50 to 95% and an elastomer are used, the D95 particle size is not in the range of 3.0 to 25 μm. It can be seen that although the composition (Comparative Example 2) has good initial conductivity, its conductivity drops sharply when it is repeatedly expanded and contracted or stretched. Further, when silver powder having an average primary particle size of 1.0 μm or less and an apparent porosity not in the range of 50 to 95% is used (Comparative Example 1 and Comparative Example 3), the initial conductivity is also insufficient. It can be seen that the conductivity drops sharply even when the expansion and contraction are repeated and the expansion and contraction are repeated.

Claims (4)

エラストマーと銀粉とを含む導電性組成物であって、
前記銀粉が、分散剤又は界面活性剤により表面処理されたものであり、
前記銀粉は、その導電性組成物として調製される前の平均一次粒子径が1.0μm以下であり、その導電性組成物として調製される前の平均二次粒子径が15.0μm超40.0μm以下であり、かつ導電性組成物として調製される前のみかけ空隙率が60~95%であり、
前記銀粉が、導電性組成物全体に対して固形分量で60~95質量%含まれ、
導電性組成物中において、前記銀粉の二次粒子の粒度分布における累積95%粒子径(D95粒子径)が、3.0~25.0μmであることを特徴とする、導電性組成物。
A conductive composition containing an elastomer and silver powder.
The silver powder is surface-treated with a dispersant or a surfactant .
The silver powder has an average primary particle diameter of 1.0 μm or less before being prepared as the conductive composition, and an average secondary particle diameter of more than 15.0 μm before being prepared as the conductive composition. It is 0 μm or less and has an apparent porosity of 60 to 95% before being prepared as a conductive composition .
The silver powder is contained in an amount of 60 to 95% by mass in terms of solid content with respect to the entire conductive composition.
A conductive composition having a cumulative 95% particle diameter (D95 particle diameter) of 3.0 to 25.0 μm in the particle size distribution of the secondary particles of the silver powder in the conductive composition.
請求項1に記載の導電性組成物を固化させてなることを特徴とする、導電体。 A conductor characterized by solidifying the conductive composition according to claim 1. 基材上に、請求項2に記載の導電体の層を設けてなることを特徴とする、積層構造体。 A laminated structure characterized in that a layer of the conductor according to claim 2 is provided on a base material. 請求項2に記載の導電体の層または請求項3に記載の積層構造体を備えてなることを特徴とする、電子部品。 An electronic component comprising the layer of the conductor according to claim 2 or the laminated structure according to claim 3.
JP2019525567A 2017-06-19 2018-06-15 Conductive composition and conductors using it and laminated structures Active JP7077316B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017119896 2017-06-19
JP2017119896 2017-06-19
PCT/JP2018/022909 WO2018235734A1 (en) 2017-06-19 2018-06-15 Electroconductive composition, conductor using same, and layered structure

Publications (2)

Publication Number Publication Date
JPWO2018235734A1 JPWO2018235734A1 (en) 2020-04-23
JP7077316B2 true JP7077316B2 (en) 2022-05-30

Family

ID=64737195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019525567A Active JP7077316B2 (en) 2017-06-19 2018-06-15 Conductive composition and conductors using it and laminated structures

Country Status (5)

Country Link
JP (1) JP7077316B2 (en)
KR (2) KR102616622B1 (en)
CN (1) CN110799583B (en)
TW (1) TWI761533B (en)
WO (1) WO2018235734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200135120A (en) * 2019-05-22 2020-12-02 베아크 가부시끼가이샤 Bonding apparatus and bonding method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305102B2 (en) * 2019-02-19 2023-07-10 太陽ホールディングス株式会社 Conductive composition, conductor and laminated structure using the same
JP2022078861A (en) 2020-11-13 2022-05-25 信越化学工業株式会社 Polyurethane, polyurethane production method, conductive paste composition, conductive wire, and method for producing conductive wire
JP7150962B1 (en) 2021-10-15 2022-10-11 信越化学工業株式会社 Polyurethane, method for producing polyurethane, conductive paste composition, conductive wiring, and method for producing conductive wiring
WO2023120484A1 (en) * 2021-12-20 2023-06-29 太陽ホールディングス株式会社 Electroconductive composition, conductor using same, laminated structure, and electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102304A1 (en) 2011-01-26 2012-08-02 ナミックス株式会社 Electroconductive paste and method for manufacturing same
WO2017026420A1 (en) 2015-08-07 2017-02-16 太陽インキ製造株式会社 Electroconductive composition, conductor, and flexible printed wiring board
WO2017026130A1 (en) 2015-08-07 2017-02-16 太陽インキ製造株式会社 Conductive composition, conductor and base

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916633B2 (en) * 1977-02-28 1984-04-17 松下電工株式会社 Folding door with return prevention device
JPS56149006A (en) * 1980-04-21 1981-11-18 Nippon Telegr & Teleph Corp <Ntt> Production of single polarization mode optical fiber
US9761349B2 (en) * 2013-07-08 2017-09-12 Toyobo Co., Ltd. Electrically conductive paste
JP6103404B1 (en) * 2016-03-11 2017-03-29 福田金属箔粉工業株式会社 Conductive paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102304A1 (en) 2011-01-26 2012-08-02 ナミックス株式会社 Electroconductive paste and method for manufacturing same
WO2017026420A1 (en) 2015-08-07 2017-02-16 太陽インキ製造株式会社 Electroconductive composition, conductor, and flexible printed wiring board
WO2017026130A1 (en) 2015-08-07 2017-02-16 太陽インキ製造株式会社 Conductive composition, conductor and base

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKURIKI TECHNICAL DATA「シルベスト E-20」,2018年08月10日,http://www.e-tokuriki.co.jp,[online], [検索日 2018.8.10]

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200135120A (en) * 2019-05-22 2020-12-02 베아크 가부시끼가이샤 Bonding apparatus and bonding method
KR102298472B1 (en) * 2019-05-22 2021-09-03 베아크 가부시끼가이샤 Bonding apparatus and bonding method

Also Published As

Publication number Publication date
CN110799583A (en) 2020-02-14
CN110799583B (en) 2022-12-13
JPWO2018235734A1 (en) 2020-04-23
KR20230141912A (en) 2023-10-10
KR102616622B1 (en) 2023-12-26
TW201907764A (en) 2019-02-16
WO2018235734A1 (en) 2018-12-27
KR20200020719A (en) 2020-02-26
TWI761533B (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JP7077316B2 (en) Conductive composition and conductors using it and laminated structures
JP7170484B2 (en) Conductive composition, conductor and laminated structure using the same
JP2023095877A (en) Conductive composition, conductive body using the same, and laminate structure
JP2021104670A (en) Laminate
JP6521138B1 (en) CONDUCTIVE COMPOSITION FOR MOLDED FILM, MOLDED FILM, MOLDED BODY, AND METHOD FOR PRODUCING THE SAME
JP5916547B2 (en) Ultra-thin flaky silver powder and method for producing the same
CN108668431A (en) The preparation method and purposes of flexible extensible conducting wire and circuit
CN110099963B (en) Resin composition, cured product, conductive film, conductive pattern, and garment
CN109478441A (en) Conductive composition
JP5220029B2 (en) Aqueous conductive composition
JPWO2015083421A1 (en) Conductive material and transducer using the same
JP2018198133A (en) Conductive paste, and method for producing three-dimensional circuit
KR102485551B1 (en) Silver powder mixture, manufacturing method and conductive paste
WO2017026130A1 (en) Conductive composition, conductor and base
JP2022047979A (en) Conductive composition and conductor including the same, laminate structure and electronic component
WO2023120484A1 (en) Electroconductive composition, conductor using same, laminated structure, and electronic component
JP2023091380A (en) Conductive composition and conductor using the same, laminate structure and electronic component
JP2021109901A (en) Conductive composition and solid matter thereof, as well as transducer
KR102226306B1 (en) Naturally curable, conductive paste containing a lacquer-based binder excellent in conductivity, adhesion, hardness, durability and yellowing resistance and use thereof
JP2021138862A (en) Conductive silicone rubber composition and composite using the same
CN117479811A (en) Method for preparing pressure sensor by printing silica gel-liquid metal composite ink
TWI837091B (en) conductive foam
TWI514422B (en) Conductive particles and methods for producing the same
KR102098666B1 (en) Carbon Nano-tube Golf Ball Improved Soft Felling, Durability And Anti-static Electricity
TW202222996A (en) Stretchable conductive paste and film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350