JP7076276B2 - Theanine adsorbent - Google Patents

Theanine adsorbent Download PDF

Info

Publication number
JP7076276B2
JP7076276B2 JP2018083935A JP2018083935A JP7076276B2 JP 7076276 B2 JP7076276 B2 JP 7076276B2 JP 2018083935 A JP2018083935 A JP 2018083935A JP 2018083935 A JP2018083935 A JP 2018083935A JP 7076276 B2 JP7076276 B2 JP 7076276B2
Authority
JP
Japan
Prior art keywords
theanine
clay
acid
adsorbent
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083935A
Other languages
Japanese (ja)
Other versions
JP2019025472A (en
Inventor
大補 塚原
まどか 森谷
祐太 赤澤
達朗 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Publication of JP2019025472A publication Critical patent/JP2019025472A/en
Application granted granted Critical
Publication of JP7076276B2 publication Critical patent/JP7076276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、茶葉中に含まれるアミノ酸の一種であるテアニンの吸着剤に関する。 The present invention relates to an adsorbent for theanine, which is a kind of amino acid contained in tea leaves.

テアニン、即ち、γ-グルタミルエチルアミドは、茶葉中に多く含まれ、お茶の旨味成分の一つとして知られている。また、テアニンは、リラックス効果、抗ストレス効果、睡眠の質改善効果を有していることも報告されており、例えば、特許文献1には、テアニンを脳機能改善剤として使用することが提案されており、さらに、各種サプリメントや飲料などに添加して販売もされている。 Theanine, that is, γ-glutamylethylamide, is abundantly contained in tea leaves and is known as one of the umami components of tea. It has also been reported that theanine has a relaxing effect, an anti-stress effect, and a sleep quality improving effect. For example, Patent Document 1 proposes the use of theanine as a brain function improving agent. Furthermore, it is also sold by adding it to various supplements and beverages.

上記の特許文献1には、テアニンは、植物または微生物などの培養法により生合成されることや茶葉から抽出されること、さらには化学合成できることも記載されている。しかるに、生合成や化学合成などによりテアニンを得ることは、高コストとなってしまうため、工業的には茶葉からの抽出によりテアニンを得ることが望まれる。 The above-mentioned Patent Document 1 also describes that theanine can be biosynthesized by a culture method of a plant or a microorganism, extracted from tea leaves, and further chemically synthesized. However, obtaining theanine by biosynthesis or chemical synthesis is costly, so it is industrially desired to obtain theanine by extraction from tea leaves.

ところで、特許文献2には、活性炭、酸性白土、活性白土を用いて緑茶(茶成分抽出水性液)を精製することにより、カテキンとテアニンを高濃度で含む緑茶が開示されている。このことから理解されるように、酸性白土(ジオクタヘドラル型スメクタイト系粘土)や活性白土(酸性白土の酸処理物)は、テアニンに対して吸着性を有していない。 By the way, Patent Document 2 discloses green tea containing catechin and theanine at high concentrations by purifying green tea (tea component extraction aqueous solution) using activated carbon, acid clay, and activated clay. As can be understood from this, acid clay (dioctahedral type smectite clay) and activated clay (acid-treated product of acid clay) do not have adsorptivity to theanine.

特開平05-068578号Japanese Patent Application Laid-Open No. 05-068578 特開2009-274969号JP-A-2009-274969

本発明者等は、テアニンの吸着剤について検討した結果、酸処理の程度が調整されて得られたジオクタヘドラル型スメクタイト系粘土の酸処理物が、テアニンの水溶液からテアニンを有効に吸着し得るという極めて意外な知見を得た。 As a result of studying an adsorbent for theanine, the present inventors have found that an acid-treated product of dioctahedral smectite-based clay obtained by adjusting the degree of acid treatment can effectively adsorb theanine from an aqueous solution of theanine. I got an unexpected finding.

従って、本発明の目的は、テアニンの水溶液からテアニンを有効に吸着し得るテアニン吸着剤を提供することにある。 Therefore, an object of the present invention is to provide a theanine adsorbent capable of effectively adsorbing theanine from an aqueous solution of theanine.

本発明によれば、ジオクタヘドラル型スメクタイト系粘土の酸処理物からなり、水蒸気吸着法により測定されるBET比表面積(A)と窒素吸着法により測定されるBET比表面積(B)との比、(A)/(B)が1.10~5.00の範囲にあることを特徴とする、テアニン吸着剤が提供される。 According to the present invention, it is composed of an acid-treated product of dioctahedral smectite-based clay, and the ratio of the BET specific surface area (A) measured by the steam adsorption method to the BET specific surface area (B) measured by the nitrogen adsorption method, ( A theanine adsorbent is provided, characterized in that A) / (B) is in the range of 1.10 to 5.00.

本発明のテアニン吸着剤においては、
(1)Ho≦-3.0の固体酸量が0.10~0.70mmol/g-dry clayの範囲にあること、
(2)窒素吸着法により測定されるBET比表面積の値が65~400m/gの範囲にあること、
(3)前記(A)/(B)が1.10~2.80の範囲にあること、
が好適である。
In the theanine adsorbent of the present invention,
(1) The amount of solid acid of Ho ≦ -3.0 is in the range of 0.10 to 0.70 mmol / g-dry cry.
(2) The value of the BET specific surface area measured by the nitrogen adsorption method is in the range of 65 to 400 m 2 / g.
(3) The above (A) / (B) is in the range of 1.10 to 2.80.
Is preferable.

本発明において、テアニン吸着剤として用いるジオクタヘドラル型スメクタイト系粘土の酸処理物は、種々の用途に使用されている従来公知の活性白土と呼ばれる領域までの酸処理をせず、それよりも弱いレベルで酸処理されているものである。即ち、特許文献2に記載されているように、酸処理されていないジオクタヘドラル型スメクタイト系粘土(酸性白土)や、あるレベル以上に酸処理されている活性白土は、テアニン吸着剤としては全く機能しないのであるが、本発明では、あるレベル以下に酸処理の程度が調整されている結果、テアニンの水溶液からテアニンを有効に吸着することができる。 In the present invention, the acid-treated product of dioctahedral type smectite clay used as a theanine adsorbent does not undergo acid treatment up to a conventionally known region called activated clay, which is used for various purposes, and at a weaker level. It is acid-treated. That is, as described in Patent Document 2, dioctahedral smectite-based clay (acidic clay) that has not been acid-treated and activated clay that has been acid-treated above a certain level do not function as a theanine adsorbent at all. However, in the present invention, as a result of adjusting the degree of acid treatment to a certain level or less, theanin can be effectively adsorbed from the aqueous solution of theanin.

従って、茶葉が投入されている茶成分抽出水性液や、酵素等を用いての合成反応等により得られたテアニンを含む水溶液に、本発明のテアニン吸着剤を投入することにより、これらの液中からテアニンを吸着することができる。 Therefore, by adding the theanine adsorbent of the present invention to an aqueous solution containing tea components containing tea leaves or an aqueous solution containing theanine obtained by a synthetic reaction using an enzyme or the like, the solution is contained in these solutions. Can adsorb theanine from.

また、本発明のテアニン吸着剤は、酸性白土に比して濾過性も高く、吸着処理後の溶液から容易に分離され、かかる使用済み吸着剤からテアニンを放出させることにより、テアニンを容易に回収することができる。 In addition, the theanine adsorbent of the present invention has higher filterability than acidic clay, is easily separated from the solution after the adsorption treatment, and easily recovers theanine by releasing theanine from the used adsorbent. can do.

実施例1で用いた本発明の吸着剤の面指数(06)に由来するX線回折チャートである。6 is an X-ray diffraction chart derived from the surface index (06) of the adsorbent of the present invention used in Example 1.

<テアニン吸着剤(弱酸処理白土)>
本発明の吸着剤は、ジオクタヘドラル型スメクタイト系粘土の酸処理物からなるものであるが、一般的に活性白土と称されるものに比して弱い酸処理によって得られ、弱酸処理白土というべきものである。従って、以下、テアニン吸着剤として使用される酸処理物を「弱酸処理白土」と呼ぶことがある。
例えば、本出願人による特開2009-072759には、ジオクタヘドラル型粘土を酸処理して得られる半活性白土と呼ばれる酸処理物がポリ乳酸解重合用触媒として使用されることが開示されているが、本発明で使用する弱酸処理白土は、この半活性白土よりも更に弱い酸処理によって得られる。
即ち、本発明で吸着剤として用いる上記の弱酸処理白土は、ジオクタヘドラル型スメクタイト系粘土の結晶構造に由来する特有のX線回折ピークを示し、例えば、X線回折測定において、面指数(06)に由来する回折ピークを2θ=62度(d=1.49~1.50Å)付近に有している。
<Theanine adsorbent (weak acid treated white clay)>
The adsorbent of the present invention is made of an acid-treated product of dioctahedral type smectite clay, but it is obtained by a weak acid treatment as compared with what is generally called active clay, and should be called weak acid-treated clay. Is. Therefore, hereinafter, the acid-treated product used as the theanine adsorbent may be referred to as "weak acid-treated white clay".
For example, Japanese Patent Application Laid-Open No. 2009-072759 by the present applicant discloses that an acid-treated product called semi-active clay obtained by acid-treating dioctahedral clay is used as a catalyst for polylactic acid depolymerization. The weak acid-treated clay used in the present invention is obtained by a weaker acid treatment than this semi-active clay.
That is, the above-mentioned weak acid-treated clay used as an adsorbent in the present invention shows a peculiar X-ray diffraction peak derived from the crystal structure of the dioctahedral type smectite clay, and has a plane index (06) in, for example, X-ray diffraction measurement. The resulting diffraction peak is around 2θ = 62 degrees (d = 1.49 to 1.50 Å).

かかる弱酸処理白土は、ジオクタヘドラル型スメクタイト系粘土の酸処理レベルが非常に低いため、水蒸気吸着法により測定されるBET比表面積(A)と窒素吸着法により測定されるBET比表面積(B)との比(A)/(B)が0.90以上であり、吸着性の観点から、好ましくは1.10以上、特に好ましくは1.20以上である。また、5.00以下であり、濾過性の観点から、好ましくは4.20以下、特に好ましくは3.30以下、最も好ましくは2.80以下である。 Since the acid treatment level of the dioctahedral smectite clay is very low in such weak acid-treated white clay, the BET specific surface area (A) measured by the steam adsorption method and the BET specific surface area (B) measured by the nitrogen adsorption method are different. The ratio (A) / (B) is 0.90 or more, preferably 1.10 or more, and particularly preferably 1.20 or more, from the viewpoint of adsorptivity. Further, it is 5.00 or less, preferably 4.20 or less, particularly preferably 3.30 or less, and most preferably 2.80 or less from the viewpoint of filterability.

本発明においては、かかる弱酸処理白土が、上記範囲のBET比表面積比(A/B)を有することが、テアニンに対して優れた吸着性能を発揮する一因であるものと推察される。
即ち、BET比表面積を測定する方法として、窒素を用いた方法(窒素法)が一般的であるが、水蒸気を用いて測定する方法(水蒸気法)も存在する。粘土ハンドブック(第三版)によれば、窒素法では、単位質量当たりの端面を含む全外部表面積が測定され、ジオクタヘドラル型スメクタイト系粘土のように三層構造を有するものでは、窒素分子が液体窒素温度で層間に侵入しないので、外部表面積のみが測定される。一方、水蒸気のような極性の吸着質を用いた水蒸気法においては、かかる吸着質が粘土の層間に十分侵入するので、内部表面が測定される。従って、A/Bが上記範囲内にあるということは、非常に弱い酸処理によって微細孔が増大し、且つ、スメクタイト系粘土の基本三層の層間が拡大していることを意味している。微細孔の増大はテアニンのような比較的分子の小さいアミノ酸化合物に対する選択吸着性を向上させ、基本三層の層間の拡大は、適度な表面親水性をもたらし、水溶液中からのテアニンに対する吸着性を高めている。
即ち、上記A/Bの値を有する本発明の吸着剤(弱酸処理白土)は、酸処理工程において基本三層の層間の適度な拡大と層間内での微細孔の形成がバランスよく生じるため、テアニンに対して極めて高い選択吸着性を示すものと信じられる。
例えば、強い酸で処理して得られる従来公知の活性白土や半活性白土では、基本三層の層間の拡がりが大きくなり、しかも層間に形成されている微細孔をつぶしてしまう。そのため、A/Bの値は小さくなり、従って、特許文献2にも記載されているようにテアニンに対する吸着性はほとんど示さない。
In the present invention, it is presumed that the weak acid-treated white clay having a BET specific surface area ratio (A / B) in the above range is one of the reasons for exhibiting excellent adsorption performance for theanine.
That is, as a method for measuring the BET specific surface area, a method using nitrogen (nitrogen method) is common, but there is also a method for measuring using steam (steam method). According to the Clay Handbook (3rd edition), the nitrogen method measures the total external surface area including the end face per unit mass, and in the case of dioctahedral smectite-based clay having a three-layer structure, the nitrogen molecule is liquid nitrogen. Only the external surface area is measured as it does not penetrate between layers at temperature. On the other hand, in the steam method using a polar adsorbent such as steam, the adsorbent sufficiently penetrates between the layers of the clay, so that the internal surface is measured. Therefore, the fact that the A / B is within the above range means that the micropores are increased by the very weak acid treatment, and the layers of the basic three layers of the smectite-based clay are expanded. The increase in micropores improves the selective adsorptivity to relatively small amino acid compounds such as theanine, and the expansion between the layers of the basic three layers provides moderate surface hydrophilicity and the adsorptivity to theanine from aqueous solution. I'm raising it.
That is, the adsorbent of the present invention (weak acid-treated white clay) having the above A / B value causes an appropriate expansion between the layers of the basic three layers and the formation of fine pores in the layers in a well-balanced manner in the acid treatment step. It is believed to exhibit extremely high selective adsorption to theanine.
For example, in the conventionally known active clay or semi-active clay obtained by treating with a strong acid, the spread between the layers of the basic three layers becomes large, and the micropores formed between the layers are crushed. Therefore, the value of A / B becomes small, and therefore, as described in Patent Document 2, the adsorptivity to theanine is hardly shown.

また、本発明において吸着剤として用いる上記の弱酸処理白土は、弱いながらも酸処理されているため、窒素法によるBET比表面積が、酸処理を施していないスメクタイト系粘土に比して向上しており、好適には65~400m/g、特に好適には100~400m/gの範囲にある。 Further, since the above-mentioned weak acid-treated clay used as an adsorbent in the present invention is weakly acid-treated, the BET specific surface area by the nitrogen method is improved as compared with the smectite-based clay not subjected to the acid treatment. It is preferably in the range of 65 to 400 m 2 / g, and particularly preferably in the range of 100 to 400 m 2 / g.

さらに、本発明において吸着剤として用いる弱酸処理白土は、一般的に活性白土と称されるものに比して弱い酸処理によって得られるため、固体酸点として働くAlやMgを覆っているNa分やCa分が取り除かれ、さらには、酸処理の進行に伴ってAl分やMg分が溶出することに起因する固体酸量の減少が抑えられている。その結果、従来の酸処理で得られる一般的に活性白土と称されるもの、或いは、酸処理を行っていない酸性白土に比して同等以上の固体酸量を示す。例えば、Ho≦-3.0の固体酸量が0.10~0.70mmol/g-dry clayの範囲にあり、比較的強い固体酸を多く含んでいる。
上記の弱酸処理白土が、このような強い固体酸を多く含んでいることも、テアニンに対して優れた吸着性を示す要因であると考えられる。
Further, since the weak acid-treated white clay used as an adsorbent in the present invention is obtained by a weak acid treatment as compared with what is generally called active white clay, the Na content covering Al and Mg that act as solid acid points. And Ca are removed, and further, the decrease in the amount of solid acid due to the elution of Al and Mg with the progress of the acid treatment is suppressed. As a result, it exhibits an amount of solid acid equal to or higher than that of what is generally called active clay obtained by conventional acid treatment or acid clay not subjected to acid treatment. For example, the amount of solid acid in Ho ≦ −3.0 is in the range of 0.10 to 0.70 mmol / g-dry cry, and contains a large amount of relatively strong solid acid.
The fact that the above-mentioned weak acid-treated white clay contains a large amount of such a strong solid acid is also considered to be a factor showing excellent adsorptivity to theanine.

即ち、上記の弱酸処理白土を水溶液中に投入すると、水溶液のpHは低下する。
一方、テアニンはアミノ酸であり、水溶液中では、陽イオン、双性イオン及び陰イオンが平衡状態にあり、水溶液中のpH変化にしたがって平衡移動を生じる。
例えば、テアニンを、HN-C(R)H-COOHで表したとき、pHが高い側(塩基性側)からpHが低い側(酸性側)に移行するにしたがい、テアニンの平衡は、
N-C(R)H-COO (陰イオン)
→ H-C(R)H-COO- (双イオン)
→ H-C(R)H-COOH (陽イオン)
に移行する。即ち、強い固体酸を含んでいる本発明の吸着剤(弱酸処理白土)を水溶液中に添加することにより、テアニンの平衡は、陽イオン側に移行し、陽イオンが増加する。従って、このテアニンの陽イオンが弱酸処理白土の層間に有する負電荷により捕捉され、この結果、テアニンの吸着性が発現することとなる。このように、弱酸処理白土が強い固体酸を有していることも、テアニンに対しての吸着性が発現している要因であると推定される。
That is, when the above-mentioned weak acid-treated white clay is put into an aqueous solution, the pH of the aqueous solution is lowered.
On the other hand, theanin is an amino acid, and in an aqueous solution, cations, twin ions and anions are in an equilibrium state, and equilibrium movement occurs according to a pH change in the aqueous solution.
For example, when theanine is represented by H2NC (R) H-COOH, the equilibrium of theanine is determined as the pH shifts from the high pH side (basic side) to the low pH side (acidic side).
H 2 NC (R) H - COO- (anion)
→ H 3 N + -C (R) H-COO- (Zwitterion)
→ H 3 N + -C (R) H-COOH (cation)
Move to. That is, by adding the adsorbent of the present invention (weak acid-treated white clay) containing a strong solid acid to the aqueous solution, the equilibrium of theanin shifts to the cation side and the cations increase. Therefore, the cations of theanine are captured by the negative charge between the layers of the weak acid-treated white clay, and as a result, the adsorptivity of theanine is exhibited. As described above, it is presumed that the weak acid-treated white clay has a strong solid acid, which is also a factor in expressing the adsorptivity to theanine.

さらに、かかる弱酸処理白土は、酸処理を施されているために優れた濾過性を有する。
酸処理を施していないスメクタイト系粘土(酸性白土)は、基本層の間にNa等のカチオンを含む大きな層間を有しているために、水に対して高い膨潤性を示し、膨潤による微分散化によって濾過性が悪いと考えられている。しかるに、本発明で用いる弱酸処理白土の場合、スメクタイト系粘土中の塩基成分の一部が酸と反応し、ある種、水やアルコールなどに対して不溶性のバインダーとなって粒子間を結合するために、溶液中での微分散化が抑制され、優れた濾過性を示すものと考えられる。
よって、酸処理の程度が弱いほどA/Bが大きくなり、濾過性が損なわれる虞がある。
Further, the weak acid-treated white clay has excellent filterability because it has been subjected to the acid treatment.
Smectite clay (acidic clay) that has not been treated with acid has a large layer containing cations such as Na between the basic layers, so it exhibits high swelling properties with respect to water and is finely dispersed by swelling. It is considered that the filterability is poor due to the conversion. However, in the case of the weak acid-treated white clay used in the present invention, a part of the base component in the smectite-based clay reacts with the acid and becomes a kind of insoluble binder for water, alcohol, etc. to bond the particles. In addition, it is considered that microdispersion in the solution is suppressed and excellent filterability is exhibited.
Therefore, the weaker the degree of acid treatment, the larger the A / B, and there is a risk that the filterability will be impaired.

<弱酸処理白土の製造>
上記のような特性を有する弱酸処理白土は、ジオクタヘドラル型スメクタイト系粘土を粗砕、混練して所定濃度の酸水溶液を用いて、所定の条件で酸処理することにより製造される。即ち、この弱酸処理白土は、半活性白土と同様にして得られるが、半活性白土に比してマイルドな条件での酸処理によって得られるものである。
<Manufacturing of weak acid-treated white clay>
The weak acid-treated clay having the above-mentioned characteristics is produced by coarsely crushing and kneading dioctahedral type smectite clay and acid-treating it with an acid aqueous solution having a predetermined concentration under predetermined conditions. That is, this weak acid-treated clay is obtained in the same manner as the semi-active clay, but is obtained by acid treatment under mild conditions as compared with the semi-active clay.

原料粘土として用いるジオクタヘドラル型スメクタイト系粘土は、火山岩や溶岩等が海水の影響下で変成したものと考えられており、主要成分であるジオクタヘドラル型スメクタイトはSiO四面体層-AlO八面体層-SiO四面体層からなり、且つこれらの四面体層と八面体層が部分的に異種金属で同形置換された三層構造を基本構造(単位層)としており、このような三層構造の積層層間には、Ca,K,Na等の陽イオンや水素イオンとそれに配位している水分子が存在している。また、基本三層構造の八面体層中のAlの一部にMgやFe(II)が置換し、四面体層中のSiの一部にAlが置換しているため、結晶格子はマイナスの電荷を有しており、このマイナスの電荷が基本層間に存在する金属陽イオンや水素イオンにより中和されている。このようなスメクタイト系粘土には、酸性白土、ベントナイト、フラーズアース等があり、基本層間に存在する金属陽イオンの種類や量、及び水素イオン量等によってそれぞれ異なる特性を示す。例えば、ベントナイトでは、基本層間に存在するNaイオン量が多く、このため、水に懸濁分散させた分散液のpHが高く、一般に高アルカリサイドにあり、また、水に対して高い膨潤性を示し、さらにはゲル化して固結するという性質を示す。一方、酸性白土では、基本層間に存在する水素イオン量が多く、このため、水に懸濁分散させた分散液のpHが低く、一般に酸性サイドにあり、また、水に対して膨潤性を示すものの、ベントナイトと比較すると、その膨潤性は総じて低く、ゲル化には至らない。 The dioctahedral-type smectite clay used as the raw material clay is thought to be a transformation of volcanic rocks and lava under the influence of seawater, and the dioctahedral-type smectite, which is the main component, is the SiO4 tetrahedron layer-AlO 6 octahedron layer-. The basic structure (unit layer) is a three-layer structure consisting of SiO4 tetrahedron layers, and these tetrahedron layers and octahedron layers are partially homozygously replaced with dissimilar metals, and such a three-layer structure is laminated. Cations and hydrogen ions such as Ca, K, and Na and water molecules coordinated thereto exist between the layers. Further, since Mg and Fe (II) are substituted for a part of Al in the octahedral layer of the basic three-layer structure and Al is substituted for a part of Si in the tetrahedral layer, the crystal lattice is negative. It has a charge, and this negative charge is neutralized by the metal cations and hydrogen ions existing between the basic layers. Such smectite-based clays include acidic clay, bentonite, fraze earth, etc., and exhibit different characteristics depending on the type and amount of metal cations existing between the basic layers, the amount of hydrogen ions, and the like. For example, in bentonite, the amount of Na ions present between the basic layers is large, so that the pH of the dispersion liquid suspended and dispersed in water is high, generally on the highly alkaline side, and has high swelling property with respect to water. Furthermore, it shows the property of gelling and solidifying. On the other hand, in acidic white clay, the amount of hydrogen ions present between the basic layers is large, so that the pH of the dispersion liquid suspended and dispersed in water is low, and it is generally on the acidic side and exhibits swelling property to water. However, as compared with bentonite, its swelling property is generally low, and gelation does not occur.

本発明において、弱酸処理白土の製造に用いるジオクタヘドラル型スメクタイト系粘土は、特に限定されるものではなく、上述した各種の何れをも使用することができる。また、かかる原料粘土は、粘土の成因、産地及び同じ産地でも埋蔵場所(切羽)等によっても相違するが、一般的には、酸化物換算で以下のような組成を有している。
SiO;50~75質量%
Al;11~25質量%
Fe;2~20質量%
MgO;2~7質量%
CaO;0.1~3質量%
NaO;0.1~3質量%
O;0.1~3質量%
その他の酸化物(TiO等);2質量%以下
Ig-loss(1050℃);5~11質量%
In the present invention, the dioctahedral type smectite clay used for producing the weak acid-treated white clay is not particularly limited, and any of the above-mentioned various types can be used. Further, the raw material clay differs depending on the origin of the clay, the place of origin and the place of burial (face) even in the same place of production, but generally has the following composition in terms of oxide.
SiO 2 ; 50-75% by mass
Al 2 O 3 ; 11 to 25% by mass
Fe 2 O 3 ; 2 to 20% by mass
MgO; 2-7% by mass
CaO; 0.1 to 3% by mass
Na 2 O; 0.1 to 3% by mass
K 2 O; 0.1 to 3% by mass
Other oxides (TiO 2 , etc.); 2% by mass or less Ig-loss (1050 ° C.); 5-11% by mass

また、原料粘土は、産地等によっては、石英等の不純物を多く含んでいることもある。従って、上記のジオクタヘドラル型スメクタイト系粘土を、必要により石砂分離、浮力選鉱、磁力選鉱、水簸、風簸等の精製操作に賦して不純物をできるだけ除去した後に酸処理を行うのがよい。このような処理を行った後に、以下に述べるマイルドな条件での酸処理を行うことにより、A/Bが上記範囲内にある弱酸処理白土を得ることができる。 In addition, the raw material clay may contain a large amount of impurities such as quartz depending on the production area and the like. Therefore, it is preferable to apply the above dioctahedral type smectite clay to purification operations such as stone sand separation, buoyancy beneficiation, magnetic beneficiation, elutriation, and elutriation to remove impurities as much as possible, and then perform acid treatment. After performing such a treatment, a weak acid-treated white clay having an A / B within the above range can be obtained by performing an acid treatment under the mild conditions described below.

酸処理は、酸水溶液中に原料粘土を投入し、混合攪拌することにより行われる。酸処理に用いる酸水溶液は、特に限定されるものではないが、コスト、環境への影響等の観点から硫酸水溶液が一般に使用される。 The acid treatment is carried out by putting the raw material clay into the acid aqueous solution, mixing and stirring. The acid aqueous solution used for the acid treatment is not particularly limited, but a sulfuric acid aqueous solution is generally used from the viewpoint of cost, environmental impact and the like.

また、かかる酸処理は、既に述べたように、従来公知の活性白土や半活性白土を製造する際の酸処理に比してマイルドな条件下で行われ、例えば硫酸水溶液を使用する場合には、原料粘土中に含まれる水分も硫酸水溶液を構成するものとして算出した硫酸水溶液量が、原料粘土100質量部(110℃乾燥物として)当り250~800質量部、その時の硫酸水溶液の濃度が1~15質量%程度になるような条件で酸処理を行えばよい。酸処理にあたっては、必要により25~95℃程度に加熱することもできる。このようにして、原料の組成、用いる酸水溶液の酸濃度、処理温度等によって、比表面積比(A/B)が所定の範囲となる程度の時間(0.5~12時間程度、好ましくは0.5~8時間程度、特に好ましくは0.5~4時間程度)、酸処理を行えばよい。 Further, as described above, such acid treatment is carried out under mild conditions as compared with the acid treatment for producing conventionally known active clay or semi-active clay, for example, when a sulfuric acid aqueous solution is used. The amount of sulfuric acid aqueous solution calculated assuming that the water content in the raw material clay also constitutes the sulfuric acid aqueous solution is 250 to 800 parts by mass per 100 parts by mass of the raw material clay (as a dried product at 110 ° C.), and the concentration of the sulfuric acid aqueous solution at that time is 1. The acid treatment may be performed under conditions of about 15% by mass. In the acid treatment, it can be heated to about 25 to 95 ° C. if necessary. In this way, the specific surface area ratio (A / B) is within a predetermined range (about 0.5 to 12 hours, preferably 0) depending on the composition of the raw material, the acid concentration of the acid aqueous solution used, the treatment temperature, and the like. The acid treatment may be carried out for about 5 to 8 hours, particularly preferably about 0.5 to 4 hours).

上記のような酸処理により、窒素法によるBET比表面積と水蒸気法によるBET比表面積の比A/Bや固体酸量、窒素法によるBET比表面積の値が上述の範囲にあり、テアニンに対する吸着性能に優れた本発明の吸着剤(弱酸処理白土)が得られる。 By the acid treatment as described above, the ratio A / B of the BET specific surface area by the nitrogen method and the BET specific surface area by the steam method, the amount of solid acid, and the value of the BET specific surface area by the nitrogen method are in the above range, and the adsorption performance for theanine is in the above range. An excellent adsorbent of the present invention (weak acid-treated white clay) can be obtained.

また、上述した酸処理によって得られる弱酸処理白土は、一般に、酸化物換算で、下記の化学組成を有している。
SiO;50~85質量%
Al;8~23質量%
Fe;1~10質量%以下
MgO;1~5質量%以下
CaO;0.1~2質量%以下
NaO;0.1~1質量%
O;0.1~1質量%
その他の酸化物(TiO等);2質量%以下
Ig-loss(1050℃);4~9質量%
Further, the weak acid-treated white clay obtained by the above-mentioned acid treatment generally has the following chemical composition in terms of oxide.
SiO 2 ; 50-85% by mass
Al 2 O 3 ; 8-23% by mass
Fe 2 O 3 ; 1 to 10% by mass or less MgO; 1 to 5% by mass or less CaO; 0.1 to 2% by mass or less Na 2 O; 0.1 to 1% by mass
K 2 O; 0.1 to 1% by mass
Other oxides (TiO 2 etc.); 2% by mass or less Ig-loss (1050 ° C.); 4-9% by mass

<用途>
本発明において吸着剤として使用する弱酸処理白土は、テアニンを含む水溶液からテアニンを有効に吸着することができるため、例えば、茶成分抽出水性液に投入し、この抽出液からテアニンを吸着し、回収することができる。また、酵素や微生物等を用いての各種の合成反応により得られたテアニンを含んでいる水溶液等に投入してテアニンを吸着することもできる。
また、本発明の吸着剤は、一部或いは全部がテアニンから構成されるペプチドが含まれる溶液、またはリン酸塩などの各種塩類と結合しているテアニン化合物が含まれる溶液などに対して、何ら制限なく使用することができる。
<Use>
Since the weak acid-treated white clay used as an adsorbent in the present invention can effectively adsorb theanine from an aqueous solution containing theanine, for example, it is put into an aqueous solution for extracting the tea component, and theanine is adsorbed and recovered from this extract. can do. In addition, theanine can be adsorbed by putting it into an aqueous solution containing theanine obtained by various synthetic reactions using enzymes, microorganisms, or the like.
Further, the adsorbent of the present invention is not suitable for a solution containing a peptide partially or wholly composed of theanine, or a solution containing a theanin compound bonded to various salts such as phosphate. It can be used without restrictions.

テアニンが吸着されて液中に存在している本発明の吸着剤は、ろ過により分離回収され、回収された使用済吸着剤から吸着したテアニンを放出させ、これによりテアニンを回収することができる。
吸着したテアニンの放出方法には特に制限がなく、従来公知の溶媒抽出法等により実施することができるが、好ましくは、テアニンが吸着保持されている本発明の吸着剤を、大量の純水中に投入し、超音波振動等の撹拌操作に供することにより吸着したテアニンを放出させ、濃縮または溶媒除去することによりテアニンを回収することができる。
回収されたテアニンは、各種飲料あるいはサプリメント、或いは医薬品などの用途に供される。
The adsorbent of the present invention in which theanine is adsorbed and exists in the liquid is separated and recovered by filtration, and the adsorbed theanine is released from the recovered used adsorbent, whereby theanine can be recovered.
The method for releasing the adsorbed theanine is not particularly limited and can be carried out by a conventionally known solvent extraction method or the like, but preferably, the adsorbent of the present invention in which theanine is adsorbed and retained is contained in a large amount of pure water. Theanine can be recovered by releasing the adsorbed theanine by subjecting it to a stirring operation such as ultrasonic vibration, and concentrating or removing the solvent.
The recovered theanine is used for various beverages or supplements, pharmaceuticals, and the like.

本発明の優れた効果を、次の実験例により説明する。 The excellent effect of the present invention will be described with reference to the following experimental examples.

(1)窒素吸着法によるBET比表面積(B)
マイクロメリティクス社製TriStar 3000を用いて窒素吸着法により測定を行ない、BET法により算出した。なお、前処理は150℃で2時間行った。
(1) BET specific surface area (B) by nitrogen adsorption method
The measurement was carried out by the nitrogen adsorption method using TriStar 3000 manufactured by Micromeritics, and the measurement was performed by the BET method. The pretreatment was performed at 150 ° C. for 2 hours.

(2)水蒸気吸着法によるBET比表面積(A)
日本ベル株式会社製BELSORP MAXを用いて水蒸気吸着法により測定を行ない、BET法により算出した。なお、前処理は150℃で2時間行った。
(2) BET specific surface area (A) by steam adsorption method
The measurement was performed by the steam adsorption method using BELSORP MAX manufactured by Nippon Bell Co., Ltd., and calculated by the BET method. The pretreatment was performed at 150 ° C. for 2 hours.

(3)pH
イオン交換水に吸着剤濃度が5質量%になるように吸着剤粉末を添加し、30分間撹拌した後、東亜ディーケーケー製pHメーターHM-30Rにて測定を行った。
(3) pH
The adsorbent powder was added to the ion-exchanged water so that the adsorbent concentration was 5% by mass, and the mixture was stirred for 30 minutes, and then measured with a pH meter HM-30R manufactured by Toa DKK.

(4)固体酸量
n-ブチルアミン滴定法にてHo≦-3.0の固体酸量を測定した。試料は、予め、150℃で3時間乾燥したものについて測定を行った{参考文献:「触媒」Vol.11,No6,P210-216(1969)}。
(4) Amount of solid acid The amount of solid acid with Ho ≦ -3.0 was measured by the n-butylamine titration method. The sample was measured in advance by drying it at 150 ° C. for 3 hours. {Reference: "Catalyst" Vol. 11, No6, P210-216 (1969)}.

(5)X線回折
(株)リガク製RINT―UltimaIV(X線=CuKα線)にて測定した。
(5) X-ray diffraction Measurement was performed by RINT-Ultima IV (X-ray = CuKα-ray) manufactured by Rigaku Co., Ltd.

(6)テアニン吸着試験
テアニン吸着能は、0.2g/Lのテアニン水溶液から、1gの吸着剤(無水)が吸着できるテアニン量(mg)とし、下記の方法により測定し、算出した値を表2に示した。
先ず、L―テアニン(東京化成工業(株)製)を蒸留水に溶かし、0.2g/Lのテアニン水溶液を得た。この0.2g/L濃度のテアニン水溶液30gを50ml容量の遠沈管に秤取し、吸着剤1g(対液3.3質量%)を加えて水平振とう式振とう機(アズワン シェイキングバスSB―13)により150rpmで2.5時間振とうした。
次に遠心分離機(日立工機製CR22GIII)により遠心加速度18000rpmで20分処理した液の上澄みを蒸留水により10%に希釈して液(試料液)を得た。試料液の190nm波長光の吸光度を分光光度計(島津製作所製SPECTROPHOTOMETER UV―3600)により測定した。このとき、試験粉末の水溶性塩類等の影響を差し引くため、あらかじめテアニン未溶解の蒸留水に試験粉末を加えて同様の操作をしたときの吸光度を試料液の吸光度から差し引き、試料液の補正吸光度とした。そして、予め作成したテアニン濃度と190nm波長光の吸光度の関係を示す検量線を用いて試料液のテアニン残存量を算出し、吸着剤添加前のテアニン量から差し引いた値を吸着剤のテアニン吸着量とした。
(6) Theanine adsorption test The theanine adsorption capacity is the amount of theanine (mg) that can adsorb 1 g of the adsorbent (anhydrous) from a 0.2 g / L aqueous solution of theanine, and the value calculated by measuring by the following method is shown in the table. Shown in 2.
First, L-theanine (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in distilled water to obtain a 0.2 g / L aqueous solution of theanine. 30 g of this 0.2 g / L concentration theanine aqueous solution is weighed in a 50 ml volume centrifuge tube, 1 g of an adsorbent (3.3% by mass with respect to the liquid) is added, and a horizontal shaking type shaker (AS ONE Shaking Bath SB-). It was shaken at 150 rpm for 2.5 hours according to 13).
Next, the supernatant of the liquid treated with a centrifuge (CR22GIII manufactured by Hitachi Koki) at a centrifugal acceleration of 18000 rpm for 20 minutes was diluted to 10% with distilled water to obtain a liquid (sample liquid). The absorbance of the 190 nm wavelength light of the sample solution was measured by a spectrophotometer (SPECTROPHOTOMETER UV-3600 manufactured by Shimadzu Corporation). At this time, in order to subtract the influence of water-soluble salts of the test powder, the absorbance when the test powder is added to distilled water in which theanine is not dissolved in advance and the same operation is performed is subtracted from the absorbance of the sample solution, and the corrected absorbance of the sample solution is subtracted. And said. Then, the residual amount of theanine in the sample solution was calculated using a calibration curve showing the relationship between the theanine concentration prepared in advance and the absorbance of 190 nm wavelength light, and the value subtracted from the amount of theanine before the addition of the adsorbent was subtracted from the amount of theanine adsorbed by the adsorbent. And said.

(比較例1)
水澤化学工業(株)製の酸性白土ミズカエースNo.20(pH4.9)。
(Comparative Example 1)
Acid clay Mizuka Ace No. manufactured by Mizusawa Chemical Industry Co., Ltd. 20 (pH 4.9).

(実施例1)
ビーカーに5質量%硫酸水溶液220mlを採り、90℃に加熱した。そこへ比較例1の酸性白土30gを添加し、液温を90℃に維持した状態で撹拌し、30分間酸処理を行った。酸処理終了後、酸処理物を水でろ過洗浄し、洗浄後のろ過ケーキを110℃にて乾燥し、粉砕、分級して弱酸処理白土粉末を得た(pH3.1)。得られた弱酸処理白土粉末をXRD測定装置により測定した。X線回折チャートを図1に示した。
(Example 1)
220 ml of a 5 mass% sulfuric acid aqueous solution was taken in a beaker and heated to 90 ° C. 30 g of the acidic white clay of Comparative Example 1 was added thereto, and the mixture was stirred while the liquid temperature was maintained at 90 ° C., and acid treatment was performed for 30 minutes. After completion of the acid treatment, the acid-treated product was filtered and washed with water, and the washed filtered cake was dried at 110 ° C., pulverized and classified to obtain a weak acid-treated white clay powder (pH 3.1). The obtained weak acid-treated white clay powder was measured by an XRD measuring device. The X-ray diffraction chart is shown in FIG.

(比較例2)
水澤化学工業(株)製の活性白土ガレオンアースV2(pH3.5)。
(Comparative Example 2)
Activated clay galleon earth V2 (pH 3.5) manufactured by Mizusawa Chemical Industry Co., Ltd.

(比較例3)
水澤化学工業(株)製の二酸化ケイ素ミズカソーブC-6(pH6.5)。
(Comparative Example 3)
Silicon dioxide Mizuka Sorb C-6 (pH 6.5) manufactured by Mizusawa Industrial Chemicals Co., Ltd.

(比較例4)
水澤化学工業(株)製の二酸化ケイ素と酸化マグネシウムを主成分とする複合吸着剤ミズカライフF-2G(pH8.9)。

Figure 0007076276000001
(Comparative Example 4)
Mizusawa Industrial Chemicals Co., Ltd. Mizuka Life F-2G (pH 8.9), a composite adsorbent containing silicon dioxide and magnesium oxide as main components.
Figure 0007076276000001

Figure 0007076276000002
Figure 0007076276000002

<テアニンの回収試験>
先ず、51mg/L濃度のテアニン水溶液30gを50ml容量の遠沈管に採取し、吸着剤0.5g(対液1.7質量%)を加えて振とう機(ヤマト科学(株)製SA300、振とうスピード5)により2.5時間振とうした。
次に遠心分離機((株)クボタ製7780II)により遠心加速度10000rpmで10分処理した液の上澄みをメンブレンフィルター(ADVANTEC製A045A025A)で濾過した液(試料液)を得た。試料液の193nm波長光の吸光度を分光光度計((株)島津製作所製UV―2600)により測定した。このとき、吸着剤の溶解性塩類等の影響を差し引くため、あらかじめテアニン未溶解の蒸留水30gに0.5gの吸着剤を加えて同様の操作をしたときの吸光度を試料液の吸光度から差し引き、試料液の補正吸光度とした。そして、予め作成したテアニン濃度と193nm波長光の吸光度の関係を示す検量線を用いて試料液のテアニン残存量を算出し、吸着剤添加前のテアニン量から差し引いた値を回収試験におけるテアニン吸着量とした。
試料液を回収した後に残った吸着剤(テアニン含有吸着剤)に蒸留水30gを添加し、振とう機(ヤマト科学(株)製SA300、振とうスピード5)により2.5時間振とうした。
次に遠心分離機((株)クボタ製7780II)により遠心加速度10000rpmで10分処理した液の上澄みをメンブレンフィルター(ADVANTEC製A045A025A)で濾過した液(回収液)を得た。上記吸着試験と同様の操作により補正吸光度を測定し、回収液中のテアニン量を測定した。このテアニン量から残存していた吸着試験液由来のテアニン量を差し引いた値をテアニン回収量とした。
テアニンの回収試験におけるテアニン吸着量と回収量を表3に示した。
<Theanine recovery test>
First, 30 g of a 51 mg / L concentration theanine aqueous solution was collected in a 50 ml volume centrifuge tube, 0.5 g of an adsorbent (1.7% by mass with respect to the liquid) was added, and a shaker (SA300 manufactured by Yamato Scientific Co., Ltd., shaking). It was shaken for 2.5 hours at a speed of 5).
Next, a liquid (sample liquid) obtained by filtering the supernatant of the liquid treated with a centrifuge (7780II manufactured by Kubota Co., Ltd.) at a centrifugal acceleration of 10000 rpm for 10 minutes with a membrane filter (A045A025A manufactured by ADVANTEC) was obtained. The absorbance of the 193 nm wavelength light of the sample solution was measured by a spectrophotometer (UV-2600 manufactured by Shimadzu Corporation). At this time, in order to subtract the influence of the soluble salts of the adsorbent, 0.5 g of the adsorbent was added to 30 g of distilled water in which theanine was not dissolved in advance, and the absorbance when the same operation was performed was subtracted from the absorbance of the sample solution. The corrected absorbance of the sample solution was used. Then, the residual amount of theanine in the sample solution was calculated using a calibration curve showing the relationship between the theanine concentration prepared in advance and the absorbance of 193 nm wavelength light, and the value subtracted from the amount of theanine before the addition of the adsorbent was subtracted from the amount of theanine adsorbed in the recovery test. And said.
30 g of distilled water was added to the adsorbent (theanine-containing adsorbent) remaining after the sample liquid was collected, and the mixture was shaken with a shaker (SA300 manufactured by Yamato Scientific Co., Ltd., shaking speed 5) for 2.5 hours.
Next, a liquid (recovery liquid) obtained by filtering the supernatant of the liquid treated with a centrifuge (7780II manufactured by Kubota Co., Ltd.) at a centrifugal acceleration of 10000 rpm for 10 minutes with a membrane filter (A045A025A manufactured by ADVANTEC) was obtained. The corrected absorbance was measured by the same operation as the above adsorption test, and the amount of theanine in the recovered solution was measured. The value obtained by subtracting the amount of theanine derived from the residual adsorption test solution from this amount of theanine was taken as the amount of theanine recovered.
Table 3 shows the amount of theanine adsorbed and the amount of theanine recovered in the theanine recovery test.

(実施例2)
比較例1の酸性白土の代わりに、山形県鶴岡市産のジオクタヘドラル型スメクタイト系粘土を用いた他は、実施例1と同様の操作で弱酸処理白土粉末を得た(pH3.3、水蒸気吸着法によるBET比表面積(A);181m/g、窒素吸着法によるBET比表面積(B);125m/g、(A)/(B);1.45)。
(Example 2)
A weak acid-treated clay powder was obtained by the same operation as in Example 1 except that a dioctahedral smectite-based clay produced in Tsuruoka City, Yamagata Prefecture was used instead of the acidic clay of Comparative Example 1 (pH 3.3, steam adsorption method). BET specific surface area (A); 181 m 2 / g, BET specific surface area (B) by nitrogen adsorption method; 125 m 2 / g, (A) / (B); 1.45).

(比較例5)
水澤化学工業(株)製の二酸化ケイ素ミズカソーブC-1。
(Comparative Example 5)
Silicon dioxide Mizuka Sorb C-1 manufactured by Mizusawa Industrial Chemicals Co., Ltd.

(比較例6)
水澤化学工業(株)製の二酸化ケイ素と酸化マグネシウムを主成分とする複合吸着剤ミズカライフF-1G。
(Comparative Example 6)
Mizusawa Industrial Chemicals Co., Ltd. Mizuka Life F-1G, a composite adsorbent containing silicon dioxide and magnesium oxide as the main components.

Figure 0007076276000003
Figure 0007076276000003

Claims (4)

ジオクタヘドラル型スメクタイト系粘土の酸処理物からなり、
水蒸気吸着法により測定されるBET比表面積(A)と窒素吸着法により測定されるBET比表面積(B)との比、(A)/(B)が1.10~5.00の範囲にあることを特徴とする、テアニン吸着剤。
It consists of an acid-treated dioctahedral type smectite clay.
The ratio of the BET specific surface area (A) measured by the water vapor adsorption method to the BET specific surface area (B) measured by the nitrogen adsorption method, (A) / (B), is in the range of 1.10 to 5.00. A teanin adsorbent characterized by this.
Ho≦-3.0の固体酸量が0.10~0.70mmol/g-dry clayの範囲にある、請求項1に記載のテアニン吸着剤。 The theanine adsorbent according to claim 1, wherein the solid acid amount of Ho ≦ −3.0 is in the range of 0.10 to 0.70 mmol / g-dry cry. 窒素吸着法により測定されるBET比表面積の値が65~400m/gの範囲にある、請求項1または2に記載のテアニン吸着剤。 The theanine adsorbent according to claim 1 or 2, wherein the value of the BET specific surface area measured by the nitrogen adsorption method is in the range of 65 to 400 m 2 / g. 前記(A)/(B)が1.10~2.80の範囲にある、請求項1~3の何れかに記載のテアニン吸着剤。 The theanine adsorbent according to any one of claims 1 to 3, wherein the (A) / (B) is in the range of 1.10 to 2.80.
JP2018083935A 2017-07-31 2018-04-25 Theanine adsorbent Active JP7076276B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148422 2017-07-31
JP2017148422 2017-07-31

Publications (2)

Publication Number Publication Date
JP2019025472A JP2019025472A (en) 2019-02-21
JP7076276B2 true JP7076276B2 (en) 2022-05-27

Family

ID=65475201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083935A Active JP7076276B2 (en) 2017-07-31 2018-04-25 Theanine adsorbent

Country Status (1)

Country Link
JP (1) JP7076276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193927A (en) * 2018-04-25 2019-11-07 水澤化学工業株式会社 Theanine collection agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251000A1 (en) * 2019-06-13 2020-12-17 昭和電工マテリアルズ株式会社 Adsorbent particles, base particle, packed column, and method for recovering rare-earth element
JP7430562B2 (en) * 2020-04-01 2024-02-13 水澤化学工業株式会社 Adsorbent for purines

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344513A (en) 1999-06-01 2000-12-12 Mizusawa Ind Chem Ltd Activated clay shaped particle, its production and its utilization
JP2004010545A (en) 2002-06-07 2004-01-15 Ito En Ltd Method for producing theanine
JP2004049297A (en) 2002-07-16 2004-02-19 Aisin Seiki Co Ltd Aldehyde removing member with life span display
JP2006212597A (en) 2005-02-07 2006-08-17 Taisei Corp Water treatment agent
JP2009072759A (en) 2007-08-30 2009-04-09 Keio Gijuku Catalyst for depolymerizing polylactic acid and depolymerization method
US20100040762A1 (en) 2006-09-26 2010-02-18 Plantextrakt Gmbh & Co. Kg Green tea extract, especially for use as a functional food item, food supplement, or corresponding ingredient, use thereof, and process for producing such a green tea extract
JP2010095436A (en) 2008-09-18 2010-04-30 Mizusawa Ind Chem Ltd New activated clay and bleaching agent for animal or vegetable fats or oils or mineral oil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344513A (en) 1999-06-01 2000-12-12 Mizusawa Ind Chem Ltd Activated clay shaped particle, its production and its utilization
JP2004010545A (en) 2002-06-07 2004-01-15 Ito En Ltd Method for producing theanine
JP2004049297A (en) 2002-07-16 2004-02-19 Aisin Seiki Co Ltd Aldehyde removing member with life span display
JP2006212597A (en) 2005-02-07 2006-08-17 Taisei Corp Water treatment agent
US20100040762A1 (en) 2006-09-26 2010-02-18 Plantextrakt Gmbh & Co. Kg Green tea extract, especially for use as a functional food item, food supplement, or corresponding ingredient, use thereof, and process for producing such a green tea extract
JP2009072759A (en) 2007-08-30 2009-04-09 Keio Gijuku Catalyst for depolymerizing polylactic acid and depolymerization method
JP2010095436A (en) 2008-09-18 2010-04-30 Mizusawa Ind Chem Ltd New activated clay and bleaching agent for animal or vegetable fats or oils or mineral oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193927A (en) * 2018-04-25 2019-11-07 水澤化学工業株式会社 Theanine collection agent
JP7273529B2 (en) 2018-04-25 2023-05-15 水澤化学工業株式会社 Theanine scavenger

Also Published As

Publication number Publication date
JP2019025472A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP7076276B2 (en) Theanine adsorbent
JP6910136B2 (en) Adsorbent for purines
JP2007296463A (en) Hydroxyapatite silica composite porous adsorbent and its manufacturing method
Vassileva et al. Bulgarian natural diatomites: modification and characterization
JP5723254B2 (en) Mold poison adsorbent
JP4936394B2 (en) Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same
JP7105969B2 (en) functional ingredient adsorbent
JPS5817653B2 (en) Adsorbent manufacturing method
US5264597A (en) Process for refining glyceride oil using precipitated silica
JP7273529B2 (en) Theanine scavenger
JP7267082B2 (en) Trigonelline adsorbent and trigonelline adsorption method
JP6921438B2 (en) Purine base adsorption material, purine base adsorption filter using it, purine base adsorption column packing material, and purine base removal system using them
JP6930892B2 (en) Naringin adsorbent
JP7113720B2 (en) γ-Aminobutyric acid scavenger
US20030133868A1 (en) Mesostructured metal or non-metal oxides and method for making same
JP7430562B2 (en) Adsorbent for purines
KR100352108B1 (en) Process for Preparing Porous Pillared Clays
EP0361622A2 (en) Process for refining glyceride oil
JP7306961B2 (en) Adsorbent for basic amino acids
JP2024041259A (en) Acid treated object of dioctahedral type smectite-based clay
RU2241666C1 (en) Method of producing organophilic silica from granulated serpentinite
JP3456387B2 (en) Functional adsorbent and method for producing the same
JP2023146960A (en) Purine body adsorbent for liquid other than beer
JP2020179334A (en) Trigonelline adsorbent
RU2548096C1 (en) Method of producing liquid glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7076276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150