JP7076060B2 - Quantitative identification method for environment-friendly lead-free silicon brass with high strength, high plasticity, and free-cutting property - Google Patents
Quantitative identification method for environment-friendly lead-free silicon brass with high strength, high plasticity, and free-cutting property Download PDFInfo
- Publication number
- JP7076060B2 JP7076060B2 JP2020159474A JP2020159474A JP7076060B2 JP 7076060 B2 JP7076060 B2 JP 7076060B2 JP 2020159474 A JP2020159474 A JP 2020159474A JP 2020159474 A JP2020159474 A JP 2020159474A JP 7076060 B2 JP7076060 B2 JP 7076060B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- free
- yield stress
- silicon brass
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/58—Investigating machinability by cutting tools; Investigating the cutting ability of tools
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Conductive Materials (AREA)
Description
本発明は、無鉛シリコン黄銅に係り、具体的には高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法に係り、環境にやさしい無鉛黄銅合金及びその部品製造分野に属する。 The present invention relates to lead-free silicon brass, specifically, to a method for quantitatively identifying environment-friendly lead-free silicon brass having high strength, high plasticity, and free-cutting property, and to manufacture an environment-friendly lead-free brass alloy and its parts. Belongs to the field.
黄銅は、重要な工学材料の1つとして、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路などの様々な分野で広く利用されている。一般に、黄銅には、切削性を向上させるために1~3wt.%の鉛が添加されている。鉛単体は、合金切削加工時に軟化質点として作用することができ、黄銅のチップ切断性、耐凝着性の向上に寄与する。このため、鉛黄銅は、快削黄銅と呼ばれている。しかし、鉛黄銅は、鉛が環境や人間の健康に悪影響を及ぼすため、環境規制により次第に規制が厳しくなってきている。そこで、シリコン黄銅、黄銅ビスマス、黄銅マグネシウム、黄銅グラファイトなどの無鉛黄銅の開発が注目されている。これらの開発されている無鉛黄銅の中で、シリコン元素が世界的に豊富に存在し、環境に優しいので、シリコン黄銅は、経済的かつ環境的に実現可能な鉛黄銅の代替物であると考えられている。しかしながら、シリコン黄銅の切削性とその力学的性質との相関性は、不明である。 Brass is widely used as one of the important engineering materials in various fields such as bathroom equipment, household hardware, heat sinks, electronic devices, and low temperature pipelines. Generally, brass has 1 to 3 wt. % Lead is added. Elemental lead can act as a softening mass point during alloy cutting, and contributes to the improvement of brass chip cutting resistance and adhesion resistance. For this reason, lead brass is called free-cutting brass. However, lead brass is becoming more and more strict due to environmental regulations because lead has an adverse effect on the environment and human health. Therefore, attention is being paid to the development of lead-free brass such as silicon brass, brass bismuth, brass magnesium, and brass graphite. Among these developed lead-free brass, silicon element is abundant worldwide and environmentally friendly, so silicon brass is considered to be an economically and environmentally feasible alternative to lead brass. Has been done. However, the correlation between the machinability of silicon brass and its mechanical properties is unknown.
シリコン黄銅のミクロ組織は、その主たる構成相がα相(面心立方)、β相(体心立方)、γ相(複雑立方)に大別される。それぞれの結晶学的特徴、サイズ及び含有量のため、シリコン黄銅の力学的特性に対する様々な相組成の効果が十分に認識されている。特に、室温では、α相は、β相よりも低いマイクロ硬度及び高い塑性を示す。このため、シリコン黄銅中のα相の含有量が増加するにつれて、硬さ及び引張強さが低下し、伸びが増加する。逆に、高温では、α相の方がβ相よりもマイクロ硬度が高い。また、γ相は、α相やβ相に比べて脆く、黄銅マトリックス中にγ相が存在すると伸びが低下する。上記の観点に基づいて、特定の高温変数を有し、他の変数を伴う複雑な極端な条件(例えば、金属切削プロセス)では、室温条件に対して異なる力学的特性をシリコン黄銅にもたらすと結論付けることができる。 The main constituent phases of silicon brass are roughly classified into α phase (face-centered cubic), β phase (body-centered cubic), and γ phase (complex cubic). Due to their crystallographic characteristics, size and content, the effects of various phase compositions on the mechanical properties of silicone brass are well recognized. In particular, at room temperature, the α phase exhibits lower microhardness and higher plasticity than the β phase. Therefore, as the content of the α phase in silicon brass increases, the hardness and tensile strength decrease, and the elongation increases. Conversely, at high temperatures, the α phase has a higher microhardness than the β phase. Further, the γ phase is more brittle than the α phase and the β phase, and the presence of the γ phase in the brass matrix reduces the elongation. Based on the above viewpoint, we conclude that in complex extreme conditions with certain high temperature variables and other variables (eg metal cutting process), silicon brass will have different mechanical properties with respect to room temperature conditions. Can be attached.
塑性黄銅の切削においては、連続する長い切屑が絡まったり巻き付いたりしやすいため、切削プロセスを円滑に行うには、チップ切断力が重要な役割を果たしている。特に、黄銅におけるα相とβ相は、黄銅のチップ形成特性に大きく影響する。例えば、β相は、黄銅加工におけるチップの破壊に有利であり、α相は、長尺な帯状チップの生成に有利である(非特許文献1)。α+β相を有する黄銅は、螺旋状のチップをもたらすが、完全なβ相を有する黄銅は、螺旋状のチップ及び管状のチップを生じやすい(非特許文献2)。α+β黄銅は、その不均一な微細構造及びα相とβ相との間の中程度のマイクロ硬度差に起因して、優れたチップ切断力を有する(非特許文献3)。これらの研究結果は、シリコン黄銅のチップ切断力を理解するための有用な指針を提供している。しかしながら、上記の研究では、微細構造解析及び静的力学的特性試験により、黄銅合金のチップ切断力をマクロなチップ形態に基づいて定性的に評価するしかない。 In the cutting of plastic brass, continuous long chips are easily entangled or wrapped, so the chip cutting force plays an important role in smooth cutting process. In particular, the α phase and β phase in brass have a great influence on the chip forming characteristics of brass. For example, the β phase is advantageous for chip destruction in brass processing, and the α phase is advantageous for producing long strip-shaped chips (Non-Patent Document 1). Brass having an α + β phase results in a spiral chip, whereas brass having a complete β phase tends to produce a spiral chip and a tubular chip (Non-Patent Document 2). α + β brass has excellent chip cutting power due to its non-uniform microstructure and a moderate microhardness difference between the α phase and the β phase (Non-Patent Document 3). These findings provide useful guidance for understanding the chip cutting power of silicon brass. However, in the above research, there is no choice but to qualitatively evaluate the chip cutting force of the brass alloy based on the macro chip morphology by microstructural analysis and static mechanical property test.
しかし、異なる配合及び製造プロセスで得られたシリコン黄銅合金は、形状的に区別が難しく、例えば、低強度高塑性難切削合金、高強度低塑性難切削合金及び高強度高塑性快削性合金は、形状的に実質的に区別がないが、実用的には大きく異なる。高強度高塑性快削性合金は、極めて重要な価値を有する一方、低強度高塑性難切削合金、高強度低塑性難切削合金は、現在、実用的には未だ優れた価値を有していない。従って、高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅を定量的同定することは、重要な意味を有する。 However, silicon brass alloys obtained by different formulations and manufacturing processes are difficult to distinguish in shape. , There is virtually no distinction in shape, but practically it is very different. While high-strength, high-plastic free-cutting alloys have extremely important value, low-strength, high-plastic, hard-to-cut alloys and high-strength, low-plastic, hard-to-cut alloys do not yet have excellent value in practical use. .. Therefore, it is important to quantitatively identify the environment-friendly lead-free silicon brass having high strength, high plasticity and free-cutting property.
本発明の目的は、シリコン黄銅合金のチップ切断力を単にマクロなチップ形態に基づいて定性的に評価するという従来の切削技術の不備から、高強度高塑性快削性の環境に優しい無鉛シリコン黄銅を効果的に同定することが困難であることに対し、シリコン黄銅合金のチップの幾何学的形態パラメータと切削動的力学的特性とを関連付けてチップ切断力を制御することにより、高強度高塑性快削性の無鉛シリコン黄銅の定量的同定方法を確立し、高強度高塑性快削性合金を効果的に同定することである。 An object of the present invention is to qualitatively evaluate the chip cutting force of a silicon brass alloy based on a macroscopic chip morphology. High strength and high plasticity by controlling the chip cutting force by associating the geometrical morphological parameters of the silicon brass alloy chip with the cutting dynamic mechanical properties, whereas it is difficult to identify effectively. The purpose is to establish a quantitative identification method for free-cutting lead-free silicon brass and to effectively identify high-strength, high-plastic free-cutting alloys.
金属切削は、高い非線形性の塑性変形プロセスであり、高温、高歪み速度及び瞬時性との特徴がある。この極端な動的条件下では、材料力学特性は、室温での静的力学特性とは明らかに異なる特性を有すると考えられる。従って、シリコン黄銅の切削性を調整するためには、切削条件における微細構造と動的特性との関係を確立することがより好適である。通常、動的力学的特性は、104/sまでの歪み率を有するSplit Hopkinson Pressure Bar技術を用いて測定される。更に、この技術によって測定された材料流動応力から、研究される材料の応力-歪みモデルを決定することができる。しかしながら、この操作プロセスは、比較的複雑であり、高い技術力を要し、費用対効果が低く、異なる材料に対して、対応する応力-歪みモデルを調整及び検証する必要がある。一方、Mechantの切削理論(Eng.Fract.Mech.76(2009) 2711-2730)に基づいて、加工又は切削それ自体は、材料の動的力学的特性試験の代替技術として使用することができ、ポリマー及びプラスチック金属材料の平均動的破壊塑性及び降伏強度の試験における有効性が実証されているが、シリコン黄銅合金の総合的な性能の同定には使用されていない。 Metal cutting is a highly non-linear plastic deformation process characterized by high temperature, high strain rate and instantaneousness. Under these extreme dynamic conditions, the strength of materials properties are considered to have properties that are clearly different from the static mechanical properties at room temperature. Therefore, in order to adjust the machinability of silicon brass, it is more preferable to establish the relationship between the fine structure and the dynamic characteristics under the cutting conditions. Dynamic mechanical properties are typically measured using the Split - Hopkinson Pressure Bar technique with strain rates up to 104 / s. In addition, the material flow stress measured by this technique can be used to determine the stress-strain model of the material being studied. However, this operating process is relatively complex, requires high technical skills, is not cost effective, and requires adjustment and validation of corresponding stress-strain models for different materials. On the other hand, based on Mechant's cutting theory (Eng.Fract.Mech.76 (2009) 2711-2730), machining or cutting itself can be used as an alternative technique for dynamic mechanical property testing of materials. Although its effectiveness in testing average dynamic fracture plasticity and yield strength of polymers and plastic metal materials has been demonstrated, it has not been used to identify the overall performance of silicon brass alloys.
本発明は、黄銅チップの幾何学的形態パラメータと切削動的力学特性とを関連付けることによってチップ切断力を制御するものであり、具体的には、チップの幾何学的特徴量化パラメータから、切削理論定量化と組み合わせて、異なる合金成分(異なる亜鉛当量/異なるミクロ組織)のシリコン黄銅の動的降伏応力σdを算出し、合金亜鉛当量に応じて動的降伏応力σdが急激に低下する状態から、チップ切断のしやすいシリコン黄銅成分範囲を決定し、この成分範囲のシリコン黄銅が快削性、高強度及び塑性などの総合的特性を有する。 The present invention controls the chip cutting force by associating the geometrical morphological parameters of the brass chip with the cutting dynamic mechanical properties. In combination with quantification, the dynamic yield stress σ d of silicon brass with different alloy components (different zinc equivalent / different microstructure) is calculated, and the dynamic yield stress σ d drops sharply according to the alloy zinc equivalent. Therefore, the range of silicon brass components that are easy to cut chips is determined, and the silicon brass in this component range has comprehensive properties such as free-cutting property, high strength, and plasticity.
以下のステップを含む高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
1)準静的引張降伏応力σs及び伸びδ試験
亜鉛当量38%~49%のシリコン黄銅合金棒について準静的引張力学特性試験を行い、応力-ひずみ曲線を得て、異なる亜鉛当量のシリコン黄銅合金について準静的引張降伏応力σs及び伸びδを決定する。
2)動的降伏応力σdの算出
亜鉛当量38%~49%のシリコン黄銅合金について切削試験を行い、チップを採取し、Mechantに基づく切削力モデルにより、異なる亜鉛当量のシリコン黄銅合金を切削した場合の切削動的降伏応力σdを算出する。
3)シリコン黄銅合金の定量的同定
シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σs、伸びd、切削動的降伏応力σdを縦軸にとり、亜鉛当量に対する準静的引張降伏応力σs、伸びd、切削動的降伏応力σdの変化傾向図を作成し、前記変化傾向図に基づいてシリコン黄銅合金を、準静的引張降伏応力σsが100MPa未満、伸びdが40%超、かつ動的降伏応力σdが準静的引張降伏応力σsよりも大きい低強度高塑性難切削合金、準静的引張降伏応力σsが250MPa超、伸びδが15%未満、かつ動的降伏応力σdが準静的引張降伏応力σsよりも大きい高強度低塑性難切削合金、準静的引張降伏応力σsが100MPa~250MPa、伸びδが40%~15%、かつ動的降伏応力σdが準静的引張降伏応力σsよりも小さい高強度高塑性快削性合金の3種類に分類する。
Quantitative identification method of environment-friendly lead-free silicon brass with high strength, high plasticity and free-cutting property including the following steps.
1) Semi-static tensile yield stress σ s and elongation δ test A quasi-static tensile mechanical property test was performed on a silicon brass alloy rod having a zinc equivalent of 38% to 49%, and a stress-strain curve was obtained to obtain silicon having a different zinc equivalent. Determine the quasi-static tensile yield stress σ s and elongation δ for the brass alloy.
2) Calculation of dynamic yield stress σ d A cutting test was performed on a silicon brass alloy with a zinc equivalent of 38% to 49%, chips were sampled, and silicon brass alloys with different zinc equivalents were cut by a cutting force model based on Mechant. Calculate the cutting dynamic yield stress σ d in the case.
3) Quantitative identification of silicon brass alloy The horizontal axis is the zinc equivalent of the silicon brass alloy, and the vertical axis is the quasi-static tensile yield stress σ s , elongation d, and cutting dynamic yield stress σ d , and the quasi-static with respect to the zinc equivalent. A change trend diagram of the tensile yield stress σ s , elongation d, and cutting dynamic yield stress σ d was created, and based on the change tendency diagram, a silicon brass alloy was used . Is more than 40% and the dynamic yield stress σ d is larger than the quasi-static tensile yield stress σ s . High-strength, low-plastic difficult-to-cut alloy with dynamic yield stress σ d larger than quasi-static tensile yield stress σ s , quasi-static tensile yield stress σ s of 100 MPa to 250 MPa, elongation δ of 40% to 15%, It is classified into three types of high-strength, high-plastic free-cutting alloys in which the dynamic yield stress σ d is smaller than the quasi-static tensile yield stress σ s .
本発明の目的を更に実現するために、ステップ1)の異なる亜鉛当量の黄銅合金の製造方法が、Cu、Zn、Si、Al元素を、Cu:56~66wt.%、Zn:33~42wt.%、Si:0.4~1.5wt.%、Al:0.2~1.5wt.t%、及びB:0.003~0.01wt.%、Ti:0.03~0.06wt.%の質量%で配合し、かつ黄銅合金の全成分中の亜鉛当量X%が39~49%であり、ミクロ組織がα+β相であることが好ましい。 In order to further realize the object of the present invention, the method for producing a brass alloy having a different zinc equivalent in step 1) is to use Cu, Zn, Si and Al elements as Cu: 56 to 66 wt. %, Zn: 33 to 42 wt. %, Si: 0.4 to 1.5 wt. %, Al: 0.2 to 1.5 wt. t% and B: 0.003 to 0.01 wt. %, Ti: 0.03 to 0.06 wt. It is preferable that the mixture is blended in an amount of% by mass, the zinc equivalent X% in all the components of the brass alloy is 39 to 49%, and the microstructure is the α + β phase.
亜鉛当量規制により相組成を設計し、式
(ここで、X%:亜鉛当量、CZn:合金添加純亜鉛含有率、CCu:合金添加純銅含有率、ΣCiKi:合金でCu、Znを除く全ての合金元素の含有率Ciと亜鉛当量係数Kiとの積の総和)により亜鉛当量を算出することが好ましい。
Design the phase composition by zinc equivalent regulation, formula
(Here, X%: zinc equivalent, C Zn : alloy-added pure zinc content, C Cu : alloy-added pure copper content, ΣC iK i : content of all alloying elements except Cu and Zn in the alloy C i It is preferable to calculate the zinc equivalent from the sum of the products of the zinc equivalent coefficient Ki and the zinc equivalent coefficient Ki).
ステップ2)において、J.G.Williamが開発した試験スキームを用いて、異なる亜鉛当量のシリコン黄銅合金を切削する際の切削動的降伏応力σdを算出することが好ましい。 In step 2), J. G. It is preferred to use the test scheme developed by William to calculate the cutting dynamic yield stress σ d when cutting silicon brass alloys with different zinc equivalents.
ステップ2)における切削試験を、切削力測定装置を備えたCNC旋盤で行い、切削サンプルを円柱棒とし、切削工具材料を市販のWC-8Co工具とし、加工パラメータとして送り速度fの値を変更し、黄銅合金の通常の切削パラメータに基づき、送り速度fの値を0.05~0.3mm/rとすることが好ましい。 The cutting test in step 2) is performed on a CNC lathe equipped with a cutting force measuring device, the cutting sample is a cylindrical rod, the cutting tool material is a commercially available WC-8Co tool, and the value of the feed speed f is changed as a machining parameter. , It is preferable that the value of the feed rate f is 0.05 to 0.3 mm / r based on the usual cutting parameters of the brass alloy.
力バランス方程式
前記の力バランス方程式を
に変換し、
Fc/wc-(Ft/wc)tanφ及び(hc/2)(tanφ+1/tanφ)の値を算出し、
Fc/wc-(Ft/wc)tanφ及び(hc/2)(tanφ+1/tanφ)の変化関係をプロットして線形フィッティングし、傾きを切削動的降伏応力σdとし、
シリコン黄銅サンプルのせん断角φを、式
The above force balance equation
Convert to
Calculate the values of F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ).
The change relationship of F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) is plotted and linearly fitted, and the slope is set as the cutting dynamic yield stress σ d .
The shear angle φ of the silicon brass sample is calculated by the formula.
鋸歯状チップのチップ厚みhch等価値は、
前記切削層の厚みhcは、円筒旋削試験における送りf値に等しいことが好ましい。 The thickness h c of the cutting layer is preferably equal to the feed f value in the cylindrical turning test.
前記切削幅wcは、円筒旋削試験における切刃の逃げ量apに等しいことが好ましい。 The cutting width w c is preferably equal to the relief amount ap of the cutting edge in the cylindrical turning test.
ステップ3)において、前記高強度高塑性快削性合金は、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路の製造に使用されることが好ましい。 In step 3), the high-strength, high-plastic free-cutting alloy is preferably used for manufacturing bathroom equipment, household hardware, heat sinks, electronic devices, and low-temperature pipelines.
本発明の動的降伏応力σdは、J.G.Williamが開発した試験スキームを用いて、Mechantの切削力モデル、すなわち図2のせん断面に作用する分力に基づいて算出する。チップは、旋盤に取り付けられたチップコレクタで収集した黄銅サンプルから発生するチップである。10~20個のチップをランダムに選択して、チップ厚みhchなどの関連するチップ幾何学的形態パラメータを測定して、最終的に平均値をとって個々のチップの特性パラメータを決定する。 The dynamic yield stress σ d of the present invention is determined by J. G. Using the test scheme developed by Villain, it is calculated based on Mechant's cutting force model, that is, the component force acting on the shear plane of FIG. Chips are chips generated from brass samples collected by a chip collector mounted on a lathe. Ten to twenty chips are randomly selected, the relevant chip geometry parameters such as chip thickness h ch are measured, and finally averaged to determine the characteristic parameters of the individual chips.
本発明のステップ3)のシリコン黄銅合金の定量的同定に係る動的降伏応力σdが低下する領域は、準静的降伏応力σsよりも小さい値である。動的降伏応力σdが低下する領域において、対応するシリコン黄銅合金は、高強度高塑性快削性などの総合的な特性を有する。切削動的降伏応力σdが材料の準静的降伏応力σs未満に低下すると、快削性合金を得るのに有利である。高強度高塑性快削性領域に対応するシリコン黄銅合金は、高強度、高塑性及び快削性などの総合的な特性を有し、該領域に対応する亜鉛当量は、優れた総合的な特性の合金成分領域である。優れた総合的な特性のシリコン黄銅合金は、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路の製造に使用されるが、他の領域の合金の用途は、大きく制限される。 The region where the dynamic yield stress σ d related to the quantitative identification of the silicon brass alloy in step 3) of the present invention decreases is a value smaller than the quasi-static yield stress σ s . In the region where the dynamic yield stress σ d decreases, the corresponding silicon brass alloy has comprehensive properties such as high strength and high plasticity free-cutting property. When the cutting dynamic yield stress σ d is reduced to less than the quasi-static yield stress σ s of the material, it is advantageous to obtain a free-cutting alloy. The silicon brass alloy corresponding to the high-strength, high-plastic free-cutting region has comprehensive properties such as high strength, high plasticity, and free-cutting property, and the zinc equivalent corresponding to the region has excellent comprehensive characteristics. This is the alloy component region of. Silicon brass alloys with excellent overall properties are used in the manufacture of bathroom equipment, household hardware, heat sinks, electronic devices, cold pipelines, but the use of alloys in other areas is severely limited.
本発明は、従来技術と比較して、以下の利点及び効果を有する。
1.本発明は、金属合金チップの幾何学的形態パラメータと切削動的力学特性とを関連付けることによって、シリコン黄銅合金材料のチップ切断力を定量的に評価し、実施しやすく低コストであるなどの特徴を有し、かつ材料切削工学の動的極端な条件を考慮する従来の同定方法が応力-歪みモデルを確立する必要があるという欠点を克服した。
2.本発明は、シリコン黄銅合金の総合的な特性(高強度高塑性快削性)の定量的同定方法を確立し、新規なシリコン黄銅合金の設計の強力な参照になるシリコン黄銅合金の総合的な特性の組成設計方法を提供することができる。
3.本発明に係る切削動的降伏応力σdが材料の準静的降伏応力σs未満に低下すると、快削性のシリコン黄銅合金を得るのに有利である。この試験方法は、他の金属合金材料の快削性能と総合性能の試験にも適用できる。
The present invention has the following advantages and effects as compared with the prior art.
1. 1. The present invention quantitatively evaluates the chip cutting force of a silicon brass alloy material by associating the geometrical morphological parameters of the metal alloy chip with the cutting dynamic mechanical properties, and is easy to implement and low cost. Overcome the shortcomings that conventional identification methods that take into account the dynamic extreme conditions of material cutting engineering require the establishment of stress-strain models.
2. 2. The present invention establishes a method for quantitatively identifying the comprehensive properties (high-strength, high-plastic free-cutting property) of a silicon brass alloy, and provides a strong reference for the design of a novel silicon brass alloy. A method for designing the composition of a characteristic can be provided.
3. 3. When the cutting dynamic yield stress σ d according to the present invention is reduced to less than the quasi-static yield stress σ s of the material, it is advantageous to obtain a free-cutting silicon brass alloy. This test method can also be applied to the free-cutting performance and overall performance tests of other metal alloy materials.
本発明をよりよく理解するために、以下、実施例及び図面とともに本発明を更に記載するが、本発明の実施形態は、これに限られない。 In order to better understand the present invention, the present invention will be further described below together with examples and drawings, but the embodiments of the present invention are not limited thereto.
[実施例]
高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法は、以下のステップを含む。
[Example]
A method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, includes the following steps.
(1)シリコン黄銅合金の作製
Cu、Zn、Si、Al元素を表1に示すA、B、C、D、Eの5つの合金番号の質量%で配合し、金属間化合物改質剤及び結晶粒微細化剤として0.005質量%のBと0.05wt.%のTiを添加し、鋳造して筒状のシリコン黄銅合金を得る。亜鉛当量規則によって相組成を設計し、亜鉛当量(X%)は、式
X線回折分析により、亜鉛当量が39.2%、42.7%、45.3%、46.9%から48.4%に増加するにつれて、シリコン黄銅合金の相組成がα+βの2相から純粋なβ相に変化する全成分の亜鉛当量は、39~49%にあり、そのミクロ組織がβ相をマトリックスとし、β相マトリックスの中に粒状又は小塊状のα相が埋め込まれることが示される。 As the zinc equivalent increased from 39.2%, 42.7%, 45.3%, 46.9% to 48.4% by X-ray diffraction analysis, the phase composition of the silicon brass alloy changed from the two phases of α + β. The zinc equivalent of all components that change to a pure β phase is 39-49%, indicating that the microstructure uses the β phase as a matrix and that granular or lumpy α phases are embedded in the β phase matrix. Is done.
(2)準静的引張力学特性試験
作製した亜鉛当量39.2%、42.7%、45.3%、46.9%及び48.4%のシリコン黄銅合金棒について、それぞれ、国の標準GB/T288-2002に準拠して準静的引張力学特性試験を行い、その応力-ひずみ曲線を得て、その応力-ひずみ曲線から、対応する準静的引張降伏応力σs及び伸びδが、それぞれ、66MPa及び42.1%、95MPa及び48.8%、147MPa及び29.5%、213MPa及び13.1%、257MPa及び9.5%である。表1に示すように、表1は、実施例における異なる亜鉛当量のシリコン黄銅合金の元素組成、相含有量、準静的引張降伏応力σs、伸びδの表である。ここで、成分データは、金属分光分析によるものであり、相組成は、XRD試験によるものである。
(2) Semi-static tensile mechanical property test National standards for the prepared zinc equivalents of 39.2%, 42.7%, 45.3%, 46.9% and 48.4% silicon brass alloy rods, respectively. A quasi-static tensile mechanical property test is performed in accordance with GB / T288-2002 to obtain the stress-strain curve, and the corresponding quasi-static tensile yield stress σ s and elongation δ are obtained from the stress-strain curve. 66 MPa and 42.1%, 95 MPa and 48.8%, 147 MPa and 29.5%, 213 MPa and 13.1%, 257 MPa and 9.5%, respectively. As shown in Table 1, Table 1 is a table of elemental composition, phase content, quasi-static tensile yield stress σ s , and elongation δ of silicon brass alloys having different zinc equivalents in Examples. Here, the component data is by metal spectroscopic analysis, and the phase composition is by XRD test.
(3)切削試験
作製した亜鉛当量39.2%、42.7%、45.3%、46.9%及び48.4%のシリコン黄銅合金について、切削力測定装置(9265-A1,Kistler Group,Swizerland)を備えたCNC旋盤(CA6150i,DMTG Co.,China)にて切削試験を行い、切削サンプルがφ35×120m円柱棒である。切削工具材料は、すくい角γ0=4°、逃げ角α0=3°、傾斜角λs=0°、側切削刃角Kr=90°、刃先半径Rn=1mmなどの幾何学的特性パラメータを有する市販のWC-8Co(株洲金剛石刀具有限会社、中国)である。切削試験における切削パラメータは、切削速度vc=90m/min、送り速度f=0.1mm/r、切削深さap=0.5mmとする。旋盤に取り付けたチップコレクタで20個のチップを捕集し、亜鉛当量の異なるシリコン黄銅合金の平均チップ厚みhch、鋸歯状チップの最大高さH、鋸歯の高さhsなどのチップの幾何学的特性パラメータを走査型電子顕微鏡により測定する。表2に示すように、上記CNC旋盤、切削力測定装置、WC-8Co工具、切削パラメータを用いて、送り速度fを0.15mm/rに変えて、異なる亜鉛当量のシリコン黄銅合金について切削試験を行い、チップを採取し、異なる亜鉛当量のシリコン黄銅合金の平均チップ厚みhch、鋸歯状チップ最大高さH、鋸歯の高さhsなどのチップの幾何学的特性パラメータを測定し、表2に示す。表2は、実施例1~5における亜鉛当量の異なるシリコン黄銅合金の切削動的降伏応力σdの算出に必要な特性パラメータ及びその算出結果を示す。
(3) Cutting test A cutting force measuring device (9265-A1, Kistler Group) was used for the produced zinc equivalents of 39.2%, 42.7%, 45.3%, 46.9% and 48.4% silicon brass alloys. , Swizerland), a cutting test was performed on a CNC lathe (CA6150i, DMTG Co., China), and the cutting sample was a φ35 × 120 m cylindrical rod. The cutting tool material is geometric such as rake angle γ 0 = 4 °, clearance angle α 0 = 3 °, tilt angle λ s = 0 °, side cutting edge angle Kr = 90 °, cutting edge radius R n = 1 mm, etc. Commercially available WC-8Co (Shu Kongo Stone Sword Tool Co., Ltd., China) with characteristic parameters. The cutting parameters in the cutting test are cutting speed v c = 90 m / min, feed speed f = 0.1 mm / r, and cutting depth ap = 0.5 mm. Twenty chips are collected by a chip collector attached to a lathe, and the geometry of chips such as the average chip thickness h ch of silicon brass alloys with different zinc equivalents, the maximum height H of serrated chips, and the height h s of serrated chips. Geometric characteristic parameters are measured with a scanning electron microscope. As shown in Table 2, using the above CNC lathe, cutting force measuring device, WC-8Co tool, and cutting parameters, the feed rate f was changed to 0.15 mm / r, and cutting tests were performed on silicon brass alloys with different zinc equivalents. And sample the chips and measure the geometric characteristic parameters of the chips such as the average chip thickness h ch of different zinc equivalents of silicon brass alloy, the maximum height H of the serrated tip, the height h s of the serrated tip, and table. Shown in 2. Table 2 shows the characteristic parameters required for calculating the cutting dynamic yield stress σ d of the silicon brass alloys having different zinc equivalents in Examples 1 to 5 and the calculation results thereof.
(4)切削動的降伏応力の算出
Mechantの切削力モデルに基づき、Williams切削プロセス材料動的降伏応力試験方法を用いて、異なる亜鉛当量のシリコン黄銅合金を切削する際のFc/wc-(Ft/wc)tanφ及び(hc/2)(tanφ+1/tanφ)の値を算出し、具体的には、以下のように算出し、必要な関連特性パラメータは、以下である。
チップの幾何学的特性に基づいて、シリコン黄銅サンプルのせん断角φは、式
Based on the geometrical properties of the chip, the shear angle φ of the silicon brass sample is
Mechantの切削力モデルに基づき、J.G.Williamが開発した試験スキームを用いて、シリコン黄銅を切削する際の動的降伏応力σdを算出する。具体的には、図2のせん断面に作用する分力であるMechantの切削力モデルを解析し、せん断面の力バランスから方程式
(5)高強度高塑性快削性合金の同定
図3に示すように、シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σs、伸びδ、算出した切削動的降伏応力σdを縦軸にとり、各性能指標の亜鉛当量に対する変化傾向図をプロットする。図から、亜鉛当量が大きくなるに従い、準静的引張降伏応力σsも大きくなり、伸びδが小さくなり、切削動的降伏応力σdが一旦小さくなった後に大きくなることがわかる。動的降伏応力σdの低下領域では、その値が準静的降伏応力σsよりも小さく、熱可塑性の不安定化や鋸歯状チップの発生に有利となり、快削性を有する。これにより、シリコン黄銅合金を、準静的引張降伏応力σsが100MPa未満、伸びδが40%超、かつ動的降伏応力σdが準静的引張降伏応力σsよりも大きい低強度高塑性難切削合金、準静的引張降伏応力σsが100MPa~250MPa、伸びδが40%~15%、かつ動的降伏応力σdが準静的引張降伏応力σsよりも小さい高強度高塑性快削性合金、準静的引張降伏応力σsが250MPa超、伸びδが15%未満、かつ動的降伏応力σdが準静的引張降伏応力σsよりも大きい高強度低塑性難切削合金の3種類に分類する。また、高強度高塑性快削性領域に対応するシリコン黄銅合金は、高強度、高塑性、快削性などの総合的な性能を有し、該領域に対応する亜鉛当量は、総合的に優れた合金成分領域である。他の領域の合金は、その用途が大きく制限されている。従って、高強度高塑性快削性の合金を効果的に同定することは、重要な意味を持つ。
(5) Identification of high-strength, high-plastic free-cutting alloy As shown in Fig. 3, the quasi-static tensile yield stress σ s , elongation δ, and calculated cutting dynamic yield stress are calculated with the zinc equivalent of the silicon brass alloy as the horizontal axis. With σ d on the vertical axis, a change trend diagram for each performance index with respect to zinc equivalent is plotted. From the figure, it can be seen that as the zinc equivalent increases, the quasi-static tensile yield stress σ s also increases, the elongation δ decreases, and the cutting dynamic yield stress σ d decreases once and then increases. In the region where the dynamic yield stress σ d decreases, the value is smaller than the quasi-static yield stress σ s , which is advantageous for the destabilization of thermoplasticity and the generation of serrated tips, and has free-cutting property. As a result, the silicon brass alloy has a quasi-static tensile yield stress σ s of less than 100 MPa, an elongation δ of more than 40%, and a dynamic yield stress σ d larger than the quasi-static tensile yield stress σ s . Difficult-to-cut alloy, quasi-static tensile yield stress σ s is 100 MPa to 250 MPa, elongation δ is 40% to 15%, and dynamic yield stress σ d is smaller than quasi-static tensile yield stress σ s . Scraping alloys, high-strength, low-plastic difficult-to-cut alloys with quasi-static tensile yield stress σ s greater than 250 MPa, elongation δ less than 15%, and dynamic yield stress σ d greater than quasi-static tensile yield stress σ s . Classify into 3 types. In addition, the silicon brass alloy corresponding to the high-strength, high-plastic free-cutting region has comprehensive performance such as high strength, high plasticity, and free-cutting property, and the zinc equivalent corresponding to the region is comprehensively excellent. This is the alloy component region. Alloys in other areas are severely limited in their use. Therefore, it is important to effectively identify a high-strength, high-plastic free-cutting alloy.
従来技術に比較し、本発明は、金属合金チップの幾何学的形態パラメータと切削動的力学特性とを関連付けることによってシリコン黄銅合金材料のチップ切断能力を定量的に評価し、実施しやすく低コストであるなどの特徴を有し、かつ材料切削工学の動的極端な条件を考慮する従来の同定方法が応力-歪みモデルを確立する必要があるという欠点を克服した。同時に、本発明は、高性能のシリコン黄銅合金成分設計に有利な高強度高塑性快削性の定量的同定方法を確立し、新規なシリコン黄銅合金の設計の強力な参照になる。また、本発明の切削動的降伏応力σdが材料の準静的降伏応力σs未満に低下すると、熱可塑性の不安定化や鋸歯状チップの発生に有利であり、快削性のシリコン黄銅合金が得られる。この試験方法は、他の金属合金材料の快削性能と総合性能の試験にも適用できる。 Compared to the prior art, the present invention quantitatively evaluates the chip cutting ability of a silicon brass alloy material by associating the geometrical morphological parameters of the metal alloy chip with the cutting dynamic dynamic properties, making it easier to implement and lower cost. It overcomes the drawbacks that conventional identification methods that take into account the dynamic extreme conditions of material cutting engineering need to establish a stress-strain model. At the same time, the present invention establishes a method for quantitatively identifying high-strength, high-plastic free-cutting properties, which is advantageous for high-performance silicon brass alloy component design, and serves as a strong reference for the design of novel silicon brass alloys. Further, when the cutting dynamic yield stress σ d of the present invention is reduced to less than the quasi-static yield stress σ s of the material, it is advantageous for the destabilization of thermoplasticity and the generation of serrated chips, and the free-cutting silicon brass. An alloy is obtained. This test method can also be applied to the free-cutting performance and overall performance tests of other metal alloy materials.
上記実施形態は、本発明の保護範囲を制限するものではなく、当業者であれば、本発明により開示されている範囲内で、本発明の技術手段及びその発明の特許の思想に基づいて行われた均等な置換又は変更は、全て本発明の特許の保護範囲に属するものである。 The above-described embodiment does not limit the scope of protection of the present invention, and a person skilled in the art can use the technical means of the present invention and the idea of the patent of the present invention within the scope disclosed by the present invention. All of the equal substitutions or modifications made are within the scope of the patent of the present invention.
(付記)
(付記1)
以下のステップを含むことを特徴とする高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
1)準静的引張降伏応力σs及び伸びδ試験
亜鉛当量38%~49%のシリコン黄銅合金棒について準静的引張力学特性試験を行い、応力-ひずみ曲線を得て、異なる亜鉛当量のシリコン黄銅合金について準静的引張降伏応力σs及び伸びδを決定する。
2)動的降伏応力σdの算出
亜鉛当量38%~49%のシリコン黄銅合金について切削試験を行い、チップを採取し、Mechantに基づく切削力モデルにより、異なる亜鉛当量のシリコン黄銅合金を切削した場合の切削動的降伏応力σdを算出する。
3)シリコン黄銅合金の定量的同定
シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σs、伸びδ、切削動的降伏応力σdを縦軸にとり、亜鉛当量に対する準静的引張降伏応力σs、伸びδ、切削動的降伏応力σdの変化傾向図を作成し、前記変化傾向図に基づいてシリコン黄銅合金を、準静的引張降伏応力σsが100MPa未満、伸びδが40%超、かつ動的降伏応力σdが準静的引張降伏応力σsよりも大きい低強度高塑性難切削合金、準静的引張降伏応力σsが250MPa超、伸びδが15%未満、かつ動的降伏応力σdが準静的引張降伏応力σsよりも大きい高強度低塑性難切削合金、準静的引張降伏応力σsが100MPa~250MPa、伸びδが40%~15%、かつ動的降伏応力σdが準静的引張降伏応力σsよりも小さい高強度高塑性快削性合金の3種類に分類する。
(Additional note)
(Appendix 1)
A method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, which comprises the following steps.
1) Semi-static tensile yield stress σ s and elongation δ test A quasi-static tensile mechanical property test was performed on a silicon brass alloy rod having a zinc equivalent of 38% to 49%, and a stress-strain curve was obtained to obtain silicon having a different zinc equivalent. Determine the quasi-static tensile yield stress σ s and elongation δ for the brass alloy.
2) Calculation of dynamic yield stress σ d A cutting test was performed on a silicon brass alloy with a zinc equivalent of 38% to 49%, chips were sampled, and silicon brass alloys with different zinc equivalents were cut by a cutting force model based on Mechant. Calculate the cutting dynamic yield stress σ d in the case.
3) Quantitative identification of silicon brass alloy The horizontal axis is the zinc equivalent of the silicon brass alloy, and the vertical axis is the quasi-static tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d , and the quasi-static with respect to the zinc equivalent. A change trend diagram of tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d was created, and silicon brass alloy was obtained based on the change tendency diagram. Semi-static tensile yield stress σ s was less than 100 MPa, elongation δ. Is more than 40% and the dynamic yield stress σ d is larger than the quasi-static tensile yield stress σ s . High-strength, low-plastic difficult-to-cut alloy with dynamic yield stress σ d larger than quasi-static tensile yield stress σ s , quasi-static tensile yield stress σ s of 100 MPa to 250 MPa, elongation δ of 40% to 15%, It is classified into three types of high-strength, high-plastic free-cutting alloys in which the dynamic yield stress σ d is smaller than the quasi-static tensile yield stress σ s .
(付記2)
ステップ1)の異なる亜鉛当量の黄銅合金の製造方法が、Cu、Zn、Si、Al元素を、Cu:56~66wt.%、Zn:33~42wt.%、Si:0.4~1.5wt.%、Al:0.2~1.5wt.t%、及びB:0.003~0.01wt.%、Ti:0.03~0.06wt.%の質量%で配合し、かつ黄銅合金の全成分中の亜鉛当量X%が39~49%であり、ミクロ組織がα+β相であることを特徴とする付記1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 2)
The method for producing a brass alloy having a different zinc equivalent in step 1) is to use Cu, Zn, Si and Al elements as Cu: 56 to 66 wt. %, Zn: 33 to 42 wt. %, Si: 0.4 to 1.5 wt. %, Al: 0.2 to 1.5 wt. t% and B: 0.003 to 0.01 wt. %, Ti: 0.03 to 0.06 wt. High-strength and high-plasticity according to Appendix 1, characterized in that the zinc equivalent X% in all the components of the brass alloy is 39 to 49%, and the microstructure is an α + β phase. -A method for quantitatively identifying lead-free silicon brass that has free-cutting properties and is environmentally friendly.
(付記3)
亜鉛当量規制により相組成を設計し、式
Design the phase composition by zinc equivalent regulation, formula
(付記4)
ステップ2)において、J.G.Williamが開発した試験スキームを用いて、異なる亜鉛当量のシリコン黄銅合金を切削する際の切削動的降伏応力σdを算出し、具体的には、
せん断面の力バランスから方程式
Fc/wc-(Ft/wc)tanφと(hc/2)(tanφ+1/tanφ)の変化関係を直線でフィッティングして得られた直線の傾きを切削動的降伏応力σdとすることを含むことを特徴とする付記1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 4)
In step 2), J. G. Using the test scheme developed by William, the cutting dynamic yield stress σ d when cutting silicon brass alloys with different zinc equivalents was calculated, specifically,
Equation from the force balance of the shear plane
The slope of the straight line obtained by fitting the change relationship between F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) with a straight line is the cutting dynamic yield stress σ d . The method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, according to Appendix 1, which comprises the above.
(付記5)
ステップ2)における切削試験を、切削力測定装置を備えたCNC旋盤で行い、切削サンプルを円柱棒とし、切削工具材料を市販のWC-8Co工具とし、加工パラメータとして送り速度fの値を変更し、黄銅合金の通常の切削パラメータに基づき、送り速度fの値を0.05~0.3mm/rとすることを特徴とする付記4に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 5)
The cutting test in step 2) is performed on a CNC lathe equipped with a cutting force measuring device, the cutting sample is a cylindrical rod, the cutting tool material is a commercially available WC-8Co tool, and the value of the feed speed f is changed as a machining parameter. , Has high strength, high plasticity, and free-cutting property as described in Appendix 4, characterized in that the value of the feed rate f is 0.05 to 0.3 mm / r based on the normal cutting parameters of the brass alloy. Quantitative identification method for environment-friendly lead-free silicon brass.
(付記6)
力バランス方程式
前記の力バランス方程式を、
Fc/wc-(Ft/wc)tanφ及び(hc/2)(tanφ+1/tanφ)の値を算出し、
Fc/wc-(Ft/wc)tanφ及び(hc/2)(tanφ+1/tanφ)の変化関係をプロットして線形フィッティングし、傾きを切削動的降伏応力σdとし、
シリコン黄銅サンプルのせん断角φを、式
Force balance equation
The above force balance equation,
Calculate the values of F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ).
The change relationship of F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) is plotted and linearly fitted, and the slope is set as the cutting dynamic yield stress σ d .
The shear angle φ of the silicon brass sample is calculated by the formula.
(付記7)
鋸歯状チップのチップ厚みhch等価値は、hch=H-(hs/2)(ここで、H:鋸歯状チップの最大高さ、hs:鋸歯の高さ)を簡単化することによって取得されることを特徴とする付記6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 7)
The tip thickness of the sawtooth tip, h ch , etc., is to simplify h ch = H- (h s / 2) (where H: the maximum height of the sawtooth tip, h s : the height of the sawtooth). The method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, according to Appendix 6, which is characterized by being obtained by.
(付記8)
前記切削層の厚みhcは、円筒旋削試験における送りf値に等しいことを特徴とする付記6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 8)
Quantitative identification of environment-friendly lead-free silicon brass having high strength, high plasticity, and free turning property according to Appendix 6, wherein the thickness h c of the cutting layer is equal to the feed f value in the cylindrical turning test. Method.
(付記9)
前記切削幅wcは、円筒旋削試験における切刃の逃げ量apに等しいことを特徴とする付記6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 9)
The cutting width w c is equal to the relief amount ap of the cutting edge in the cylindrical turning test. Identification method.
(付記10)
ステップ3)において、前記高強度高塑性快削性合金は、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路の製造に使用されることを特徴とする付記1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 10)
In step 3), the high-strength high-strength free-cutting alloy according to Appendix 1, wherein the high-strength, high-plastic free-cutting alloy is used for manufacturing bathroom equipment, household hardware, heat sinks, electronic devices, and low-temperature pipelines. -A method for quantitatively identifying lead-free silicon brass, which has high plasticity and free-cutting properties and is environmentally friendly.
Claims (10)
1)準静的引張降伏応力σs及び伸びδ試験
亜鉛当量38%~49%のシリコン黄銅合金棒について準静的引張力学特性試験を行い、応力-ひずみ曲線を得て、異なる亜鉛当量のシリコン黄銅合金について準静的引張降伏応力σs及び伸びδを決定する。
2)動的降伏応力σdの算出
亜鉛当量38%~49%のシリコン黄銅合金について切削試験を行い、チップを採取し、Mechantに基づく切削力モデルにより、異なる亜鉛当量のシリコン黄銅合金を切削した場合の切削動的降伏応力σdを算出する。
3)シリコン黄銅合金の定量的同定
シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σs、伸びδ、切削動的降伏応力σdを縦軸にとり、亜鉛当量に対する準静的引張降伏応力σs、伸びδ、切削動的降伏応力σdの変化傾向図を作成し、前記変化傾向図に基づいて、
準静的引張降伏応力σsが100MPa~250MPa、伸びδが40%~15%、かつ動的降伏応力σdが準静的引張降伏応力σsよりも小さいシリコン黄銅合金を高強度高塑性快削性合金として同定する。 A method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, which comprises the following steps.
1) Semi-static tensile yield stress σ s and elongation δ test A quasi-static tensile mechanical property test was performed on a silicon brass alloy rod having a zinc equivalent of 38% to 49%, and a stress-strain curve was obtained to obtain silicon having a different zinc equivalent. Determine the quasi-static tensile yield stress σ s and elongation δ for the brass alloy.
2) Calculation of dynamic yield stress σ d A cutting test was performed on a silicon brass alloy with a zinc equivalent of 38% to 49%, chips were sampled, and silicon brass alloys with different zinc equivalents were cut by a cutting force model based on Mechant. Calculate the cutting dynamic yield stress σ d in the case.
3) Quantitative identification of silicon brass alloy The horizontal axis is the zinc equivalent of the silicon brass alloy, and the vertical axis is the quasi-static tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d , and the quasi-static with respect to the zinc equivalent. A change tendency diagram of the tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d was created, and based on the change tendency diagram ,
A silicon brass alloy having a quasi-static tensile yield stress σ s of 100 MPa to 250 MPa, an elongation δ of 40% to 15%, and a dynamic yield stress σ d smaller than the quasi-static tensile yield stress σ s has high strength and high plasticity. Identify as a machinable alloy.
せん断面の力バランスから方程式
Fc/wc-(Ft/wc)tanφと(hc/2)(tanφ+1/tanφ)の変化関係を直線でフィッティングして得られた直線の傾きを切削動的降伏応力σdとすることを含むことを特徴とする請求項1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 In step 2), J. G. Using the test scheme developed by William, the cutting dynamic yield stress σ d when cutting silicon brass alloys with different zinc equivalents was calculated, specifically,
Equation from the force balance of the shear plane
The slope of the straight line obtained by fitting the change relationship between F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) with a straight line is the cutting dynamic yield stress σ d . The method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, according to claim 1, which comprises the above.
前記の力バランス方程式を、
Fc/wc-(Ft/wc)tanφ及び(hc/2)(tanφ+1/tanφ)の値を算出し、
Fc/wc-(Ft/wc)tanφ及び(hc/2)(tanφ+1/tanφ)の変化関係をプロットして線形フィッティングし、傾きを切削動的降伏応力σdとし、
シリコン黄銅サンプルのせん断角φを、式
The above force balance equation,
Calculate the values of F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ).
The change relationship of F c / w c- (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) is plotted and linearly fitted, and the slope is set as the cutting dynamic yield stress σ d .
The shear angle φ of the silicon brass sample is calculated by the formula.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911097950.X | 2019-11-12 | ||
CN201911097950.XA CN110987703B (en) | 2019-11-12 | 2019-11-12 | Quantitative identification method for free-cutting environment-friendly lead-free silicon brass with high strength and high plasticity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021076588A JP2021076588A (en) | 2021-05-20 |
JP7076060B2 true JP7076060B2 (en) | 2022-05-27 |
Family
ID=70083774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020159474A Active JP7076060B2 (en) | 2019-11-12 | 2020-09-24 | Quantitative identification method for environment-friendly lead-free silicon brass with high strength, high plasticity, and free-cutting property |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7076060B2 (en) |
CN (1) | CN110987703B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112268794B (en) * | 2020-09-29 | 2021-08-31 | 中国科学院金属研究所 | Method for determining optimal anti-armor-piercing microstructure state of metal material |
CN112683715B (en) * | 2020-11-27 | 2022-03-29 | 华南理工大学 | Method for predicting critical cutting conditions of ductile metal material |
TWI777508B (en) * | 2021-04-21 | 2022-09-11 | 中國鋼鐵股份有限公司 | Non-contact hardness measurement method and non-contact hardness measurement apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019504209A (en) | 2015-12-22 | 2019-02-14 | シアメン ロタ インターナショナル カンパニー リミテッドXiamen Lota International Co., Ltd. | Low-cost lead-free dezincing resistant brass alloy for casting |
JP2019519678A (en) | 2016-05-20 | 2019-07-11 | オットー フックス カーゲー | Lead-free high tension brass alloy and high tension brass alloy products |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100567533C (en) * | 2006-01-18 | 2009-12-09 | 江西理工大学 | Pb-free copper-alloy |
JP6129980B2 (en) * | 2013-09-30 | 2017-05-17 | 日立オートモティブシステムズ株式会社 | Mechanical quantity measuring apparatus and manufacturing method thereof |
CN104032164A (en) * | 2014-05-12 | 2014-09-10 | 蚌埠市宏威滤清器有限公司 | Leadless free-cutting silicon brass alloy material and preparation method thereof |
CN105274387B (en) * | 2015-10-27 | 2017-05-24 | 华南理工大学 | Leadfree high-strength and corrosion-resistance silicon brass alloy easy to be cut and preparation method and application |
-
2019
- 2019-11-12 CN CN201911097950.XA patent/CN110987703B/en active Active
-
2020
- 2020-09-24 JP JP2020159474A patent/JP7076060B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019504209A (en) | 2015-12-22 | 2019-02-14 | シアメン ロタ インターナショナル カンパニー リミテッドXiamen Lota International Co., Ltd. | Low-cost lead-free dezincing resistant brass alloy for casting |
JP2019519678A (en) | 2016-05-20 | 2019-07-11 | オットー フックス カーゲー | Lead-free high tension brass alloy and high tension brass alloy products |
Also Published As
Publication number | Publication date |
---|---|
CN110987703A (en) | 2020-04-10 |
CN110987703B (en) | 2020-12-04 |
JP2021076588A (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7076060B2 (en) | Quantitative identification method for environment-friendly lead-free silicon brass with high strength, high plasticity, and free-cutting property | |
Zou et al. | Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies | |
Falat et al. | Mechanical properties of Fe–Al–M–C (M= Ti, V, Nb, Ta) alloys with strengthening carbides and Laves phase | |
Wang et al. | Superior tensile strength and microstructure evolution of TiB whisker reinforced Ti60 composites with network architecture after β extrusion | |
Chegini et al. | Effect of equal channel angular pressing on the mechanical and tribological behavior of Al-Zn-Mg-Cu alloy | |
Shamsolhodaei et al. | Structural and functional properties of a semi equiatomic NiTi shape memory alloy processed by multi-axial forging | |
Stolin et al. | SHS extrusion: an overview | |
WO2017168696A1 (en) | Degradable mg alloy | |
JP6696202B2 (en) | α + β type titanium alloy member and manufacturing method thereof | |
DE112015005350T5 (en) | Cermet and cutting tool | |
JP2016183407A (en) | α-β TYPE TITANIUM ALLOY | |
Alizadeh et al. | Creep mechanisms in an Mg–4Zn alloy in the as-cast and aged conditions | |
Zhang et al. | Hot deformation behavior of Ti–22Al–25Nb alloy by processing maps and kinetic analysis | |
Gupta et al. | Deformation behaviour of γ+ α2 Ti aluminide processed through reaction synthesis | |
Taşgın | Investigation of microstructural and mechanical properties of different titanium alloys for gamma radiation properties and implant applications | |
Mishra et al. | Preparation and study of Al-Cu-Ni ternary alloys by powder metallurgy techniques | |
Babu et al. | Influences of WEDM constraints on tribological and micro structural depictions of SiC-Gr strengthened Al2219 composites | |
Han et al. | Microstructure and elevated temperature tensile behavior of directionally solidified Ni-rich NiAl-Mo (Hf) alloy | |
Jiang et al. | Elevated temperature compressive behavior of in-situ multiphase composites NiAl/Cr (Mo)–TiC | |
Na et al. | Processing map and hot deformation mechanism of novel nickel-free white copper alloy | |
Djurdjevic et al. | Effect of Sn on the characteristic solidification temperatures of AlSi6Cu4 alloy | |
Kumar et al. | Fabrication and optimization of machining parameters on Al 2024-Gr-B4C hybrid MMCS during machining process | |
Yang et al. | Tailoring chip morphology by correlating the microstructure and dynamic yield strength in turning of lead-free silicon brasses | |
Kollerov et al. | Phase and structural transformations in hydrogenated titanium | |
Jakubowska et al. | Microstructure evolution and texture development in a Cu-8.5% at. Al material subjected to hydrostatic extrusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7076060 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |