JP2021076588A - Method for quantitatively identifying environmentally-friendly lead-free silicon brass with high strength, high plasticity and free-cutting property - Google Patents

Method for quantitatively identifying environmentally-friendly lead-free silicon brass with high strength, high plasticity and free-cutting property Download PDF

Info

Publication number
JP2021076588A
JP2021076588A JP2020159474A JP2020159474A JP2021076588A JP 2021076588 A JP2021076588 A JP 2021076588A JP 2020159474 A JP2020159474 A JP 2020159474A JP 2020159474 A JP2020159474 A JP 2020159474A JP 2021076588 A JP2021076588 A JP 2021076588A
Authority
JP
Japan
Prior art keywords
cutting
yield stress
free
silicon brass
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020159474A
Other languages
Japanese (ja)
Other versions
JP7076060B2 (en
Inventor
超 楊
Chao Yang
超 楊
元元 李
Yuanyuan Li
元元 李
言飛 丁
Yanfei Ding
言飛 丁
良 梁
Liang Liang
良 梁
衛文 張
Weiwen Zhang
衛文 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Huayi Sanitary Ware Ind Co Ltd
Guangdong Huayi Sanitary Ware Industrial Co Ltd
South China University of Technology SCUT
Original Assignee
Guangdong Huayi Sanitary Ware Ind Co Ltd
Guangdong Huayi Sanitary Ware Industrial Co Ltd
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Huayi Sanitary Ware Ind Co Ltd, Guangdong Huayi Sanitary Ware Industrial Co Ltd, South China University of Technology SCUT filed Critical Guangdong Huayi Sanitary Ware Ind Co Ltd
Publication of JP2021076588A publication Critical patent/JP2021076588A/en
Application granted granted Critical
Publication of JP7076060B2 publication Critical patent/JP7076060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/58Investigating machinability by cutting tools; Investigating the cutting ability of tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a method that can be executed simply, and quantitatively identifies a silicon brass alloy with high strength, high plasticity and free-cutting property at low cost.SOLUTION: A method comprises: conducting a quasi-static tensile mechanical property test; determining quasi-static tensile yield stress σs and elongation δ for silicon brass alloys with different zinc equivalents; calculating cutting dynamic yield stress σd; with the zinc equivalent of the silicon brass alloy taken on a horizontal axis, and the quasi-static tensile yield stress σs, the elongation δ, and the cutting dynamic yield stress σd taken on a vertical axis, plotting a change tendency diagram of the quasi-static tensile yield stress σs, the elongation δ and the cutting dynamic yield stress σd with respect to the zinc equivalent; and acquiring an alloy with high strength, high plasticity and free-cutting property in which the quasi-static tensile yield stress σs is 100 MPa to 250 MPa, the elongation δ is 40% to 15%, and the dynamic yield stress σd is smaller than the quasi-static tensile yield stress σs.SELECTED DRAWING: Figure 3

Description

本発明は、無鉛シリコン黄銅に係り、具体的には高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法に係り、環境にやさしい無鉛黄銅合金及びその部品製造分野に属する。 The present invention relates to lead-free silicon brass, specifically, a method for quantitatively identifying environment-friendly lead-free silicon brass having high strength, high plasticity, and free-cutting property, and manufactures an environment-friendly lead-free brass alloy and its parts. Belongs to the field.

黄銅は、重要な工学材料の1つとして、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路などの様々な分野で広く利用されている。一般に、黄銅には、切削性を向上させるために1〜3wt.%の鉛が添加されている。鉛単体は、合金切削加工時に軟化質点として作用することができ、黄銅のチップ切断性、耐凝着性の向上に寄与する。このため、鉛黄銅は、快削黄銅と呼ばれている。しかし、鉛黄銅は、鉛が環境や人間の健康に悪影響を及ぼすため、環境規制により次第に規制が厳しくなってきている。そこで、シリコン黄銅、黄銅ビスマス、黄銅マグネシウム、黄銅グラファイトなどの無鉛黄銅の開発が注目されている。これらの開発されている無鉛黄銅の中で、シリコン元素が世界的に豊富に存在し、環境に優しいので、シリコン黄銅は、経済的かつ環境的に実現可能な鉛黄銅の代替物であると考えられている。しかしながら、シリコン黄銅の切削性とその力学的性質との相関性は、不明である。 Brass is widely used as one of important engineering materials in various fields such as bathroom equipment, household hardware, heat sinks, electronic devices, and low temperature pipes. Generally, brass has 1 to 3 wt. % Lead is added. Lead alone can act as a softening mass point during alloy cutting, and contributes to the improvement of brass chip cutting resistance and adhesion resistance. For this reason, lead brass is called free-cutting brass. However, lead brass is becoming more and more strict due to environmental regulations because lead has an adverse effect on the environment and human health. Therefore, attention is being paid to the development of lead-free brass such as silicon brass, brass bismuth, brass magnesium, and brass graphite. Among these developed lead-free brass, silicon element is abundant worldwide and environmentally friendly, so silicon brass is considered to be an economically and environmentally feasible alternative to lead brass. Has been done. However, the correlation between the machinability of silicon brass and its mechanical properties is unknown.

シリコン黄銅のミクロ組織は、その主たる構成相がα相(面心立方)、β相(体心立方)、γ相(複雑立方)に大別される。それぞれの結晶学的特徴、サイズ及び含有量のため、シリコン黄銅の力学的特性に対する様々な相組成の効果が十分に認識されている。特に、室温では、α相は、β相よりも低いマイクロ硬度及び高い塑性を示す。このため、シリコン黄銅中のα相の含有量が増加するにつれて、硬さ及び引張強さが低下し、伸びが増加する。逆に、高温では、α相の方がβ相よりもマイクロ硬度が高い。また、γ相は、α相やβ相に比べて脆く、黄銅マトリックス中にγ相が存在すると伸びが低下する。上記の観点に基づいて、特定の高温変数を有し、他の変数を伴う複雑な極端な条件(例えば、金属切削プロセス)では、室温条件に対して異なる力学的特性をシリコン黄銅にもたらすと結論付けることができる。 The main constituent phases of silicon brass microstructures are roughly classified into α phase (face-centered cubic), β phase (body-centered cubic), and γ phase (complex cubic). Due to their crystallographic features, size and content, the effects of various phase compositions on the mechanical properties of silicone brass are well recognized. In particular, at room temperature, the α phase exhibits lower microhardness and higher plasticity than the β phase. Therefore, as the content of the α phase in silicon brass increases, the hardness and tensile strength decrease, and the elongation increases. Conversely, at high temperatures, the α phase has a higher microhardness than the β phase. Further, the γ phase is more brittle than the α phase and the β phase, and the elongation decreases when the γ phase is present in the brass matrix. Based on the above viewpoint, we conclude that in complex extreme conditions with certain high temperature variables and other variables (eg metal cutting process), silicon brass will have different mechanical properties with respect to room temperature conditions. Can be attached.

塑性黄銅の切削においては、連続する長い切屑が絡まったり巻き付いたりしやすいため、切削プロセスを円滑に行うには、チップ切断力が重要な役割を果たしている。特に、黄銅におけるα相とβ相は、黄銅のチップ形成特性に大きく影響する。例えば、β相は、黄銅加工におけるチップの破壊に有利であり、α相は、長尺な帯状チップの生成に有利である(非特許文献1)。α+β相を有する黄銅は、螺旋状のチップをもたらすが、完全なβ相を有する黄銅は、螺旋状のチップ及び管状のチップを生じやすい(非特許文献2)。α+β黄銅は、その不均一な微細構造及びα相とβ相との間の中程度のマイクロ硬度差に起因して、優れたチップ切断力を有する(非特許文献3)。これらの研究結果は、シリコン黄銅のチップ切断力を理解するための有用な指針を提供している。しかしながら、上記の研究では、微細構造解析及び静的力学的特性試験により、黄銅合金のチップ切断力をマクロなチップ形態に基づいて定性的に評価するしかない。 In the cutting of plastic brass, continuous long chips are easily entangled or wrapped, so that the chip cutting force plays an important role in smooth cutting process. In particular, the α phase and β phase of brass have a great influence on the chip forming characteristics of brass. For example, the β phase is advantageous for chip destruction in brass processing, and the α phase is advantageous for producing long strip-shaped chips (Non-Patent Document 1). Brass having an α + β phase results in a spiral tip, but brass having a complete β phase tends to produce a spiral tip and a tubular tip (Non-Patent Document 2). α + β brass has an excellent chip cutting force due to its non-uniform microstructure and a moderate microhardness difference between the α phase and the β phase (Non-Patent Document 3). These findings provide useful guidance for understanding the chip cutting power of silicon brass. However, in the above research, there is no choice but to qualitatively evaluate the chip cutting force of the brass alloy based on the macro chip morphology by microstructure analysis and static mechanical property test.

しかし、異なる配合及び製造プロセスで得られたシリコン黄銅合金は、形状的に区別が難しく、例えば、低強度高塑性難切削合金、高強度低塑性難切削合金及び高強度高塑性快削性合金は、形状的に実質的に区別がないが、実用的には大きく異なる。高強度高塑性快削性合金は、極めて重要な価値を有する一方、低強度高塑性難切削合金、高強度低塑性難切削合金は、現在、実用的には未だ優れた価値を有していない。従って、高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅を定量的同定することは、重要な意味を有する。 However, silicon brass alloys obtained by different formulations and manufacturing processes are difficult to distinguish in shape, for example, low-strength high-plastic hard-to-cut alloys, high-strength low-plastic hard-to-cut alloys and high-strength high-plastic free-cutting alloys. Although there is virtually no distinction in shape, it is practically very different. While high-strength, high-plastic free-cutting alloys have extremely important value, low-strength, high-plastic, hard-to-cut alloys and high-strength, low-plastic, hard-to-cut alloys do not yet have excellent value in practical use. .. Therefore, it is important to quantitatively identify lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly.

J.Inst.Met.69(1940/41) 65−79J. Inst. Met. 69 (1940/41) 65-79 J.Mater.Process.Tech.170(2005) 441−447J. Mater. Process. Tech. 170 (2005) 441-447 Mater.Sci.Eng.A 723(2018) 296−305Mater. Sci. Eng. A 723 (2018) 296-305

本発明の目的は、シリコン黄銅合金のチップ切断力を単にマクロなチップ形態に基づいて定性的に評価するという従来の切削技術の不備から、高強度高塑性快削性の環境に優しい無鉛シリコン黄銅を効果的に同定することが困難であることに対し、シリコン黄銅合金のチップの幾何学的形態パラメータと切削動的力学的特性とを関連付けてチップ切断力を制御することにより、高強度高塑性快削性の無鉛シリコン黄銅の定量的同定方法を確立し、高強度高塑性快削性合金を効果的に同定することである。 An object of the present invention is to qualitatively evaluate the chip cutting force of a silicon brass alloy based on a macro chip morphology. Therefore, due to the deficiency of the conventional cutting technique, high-strength, high-plastic, free-cutting, environment-friendly lead-free silicon brass By controlling the chip cutting force by associating the geometrical morphological parameters of the silicon brass alloy chip with the cutting dynamic mechanical properties, it is difficult to identify the chip effectively. To establish a quantitative identification method for free-cutting lead-free silicon brass, and to effectively identify high-strength, high-plastic free-cutting alloys.

金属切削は、高い非線形性の塑性変形プロセスであり、高温、高歪み速度及び瞬時性との特徴がある。この極端な動的条件下では、材料力学特性は、室温での静的力学特性とは明らかに異なる特性を有すると考えられる。従って、シリコン黄銅の切削性を調整するためには、切削条件における微細構造と動的特性との関係を確立することがより好適である。通常、動的力学的特性は、10/sまでの歪み率を有するSplit Hopkinson Pressure Bar技術を用いて測定される。更に、この技術によって測定された材料流動応力から、研究される材料の応力−歪みモデルを決定することができる。しかしながら、この操作プロセスは、比較的複雑であり、高い技術力を要し、費用対効果が低く、異なる材料に対して、対応する応力−歪みモデルを調整及び検証する必要がある。一方、Mechantの切削理論(Eng.Fract.Mech.76(2009) 2711−2730)に基づいて、加工又は切削それ自体は、材料の動的力学的特性試験の代替技術として使用することができ、ポリマー及びプラスチック金属材料の平均動的破壊塑性及び降伏強度の試験における有効性が実証されているが、シリコン黄銅合金の総合的な性能の同定には使用されていない。 Metal cutting is a highly non-linear plastic deformation process characterized by high temperature, high strain rate and instantaneousness. Under these extreme dynamic conditions, the strength of materials properties are considered to have properties that are clearly different from the static mechanical properties at room temperature. Therefore, in order to adjust the machinability of silicon brass, it is more preferable to establish the relationship between the fine structure and the dynamic characteristics under the cutting conditions. Usually, the dynamic mechanical properties are measured using a Split Hopkinson Pressure Bar technique with a strain rate of up to 10 4 / s. In addition, the stress-strain model of the material being studied can be determined from the material flow stress measured by this technique. However, this operating process is relatively complex, requires high technical skills, is not cost effective, and requires adjustment and validation of corresponding stress-strain models for different materials. On the other hand, based on Mechant's cutting theory (Eng.Fract.Mech.76 (2009) 2711-2730), machining or cutting itself can be used as an alternative technique for dynamic mechanical property testing of materials. Although its effectiveness in testing average dynamic fracture plasticity and yield strength of polymers and plastic metal materials has been demonstrated, it has not been used to identify the overall performance of silicon brass alloys.

本発明は、黄銅チップの幾何学的形態パラメータと切削動的力学特性とを関連付けることによってチップ切断力を制御するものであり、具体的には、チップの幾何学的特徴量化パラメータから、切削理論定量化と組み合わせて、異なる合金成分(異なる亜鉛当量/異なるミクロ組織)のシリコン黄銅の動的降伏応力σを算出し、合金亜鉛当量に応じて動的降伏応力σが急激に低下する状態から、チップ切断のしやすいシリコン黄銅成分範囲を決定し、この成分範囲のシリコン黄銅が快削性、高強度及び塑性などの総合的特性を有する。 The present invention controls the chip cutting force by associating the geometrical morphological parameters of the brass chip with the cutting dynamic dynamics characteristics. Specifically, the cutting theory is based on the geometric feature quantification parameters of the chip. In combination with quantification, the dynamic yield stress σ d of silicon brass with different alloy components (different zinc equivalents / different microstructures) is calculated, and the dynamic yield stress σ d drops sharply according to the alloy zinc equivalent. Therefore, the range of silicon brass components that facilitate chip cutting is determined, and the silicon brass in this component range has comprehensive properties such as free-cutting property, high strength, and plasticity.

以下のステップを含む高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
1)準静的引張降伏応力σ及び伸びδ試験
亜鉛当量38%〜49%のシリコン黄銅合金棒について準静的引張力学特性試験を行い、応力−ひずみ曲線を得て、異なる亜鉛当量のシリコン黄銅合金について準静的引張降伏応力σ及び伸びδを決定する。
2)動的降伏応力σの算出
亜鉛当量38%〜49%のシリコン黄銅合金について切削試験を行い、チップを採取し、Mechantに基づく切削力モデルにより、異なる亜鉛当量のシリコン黄銅合金を切削した場合の切削動的降伏応力σを算出する。
3)シリコン黄銅合金の定量的同定
シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σ、伸びd、切削動的降伏応力σを縦軸にとり、亜鉛当量に対する準静的引張降伏応力σ、伸びd、切削動的降伏応力σの変化傾向図を作成し、前記変化傾向図に基づいてシリコン黄銅合金を、準静的引張降伏応力σが100MPa未満、伸びdが40%超、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい低強度高塑性難切削合金、準静的引張降伏応力σが250MPa超、伸びδが15%未満、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい高強度低塑性難切削合金、準静的引張降伏応力σが100MPa〜250MPa、伸びδが40%〜15%、かつ動的降伏応力σが準静的引張降伏応力σよりも小さい高強度高塑性快削性合金の3種類に分類する。
Quantitative identification method of lead-free silicon brass that has high strength, high plasticity, free-cutting property and is environmentally friendly, including the following steps.
1) Semi-static tensile yield stress σ s and elongation δ test A quasi-static tensile mechanical property test was performed on a silicon brass alloy rod having a zinc equivalent of 38% to 49%, and a stress-strain curve was obtained to obtain silicon having a different zinc equivalent. Determine the quasi-static tensile yield stress σ s and elongation δ for brass alloys.
2) Calculation of dynamic yield stress σ d A cutting test was conducted on a silicon brass alloy with a zinc equivalent of 38% to 49%, chips were sampled, and silicon brass alloys with different zinc equivalents were cut by a cutting force model based on Mechant. Calculate the cutting dynamic yield stress σ d in the case.
3) Quantitative identification of silicon brass alloy The horizontal axis is the zinc equivalent of the silicon brass alloy, and the vertical axis is the quasi-static tensile yield stress σ s , elongation d, and cutting dynamic yield stress σ d. A change tendency diagram of tensile yield stress σ s , elongation d, and cutting dynamic yield stress σ d was created, and based on the change tendency diagram, a silicon brass alloy was used, and quasi-static tensile yield stress σ s was less than 100 MPa, elongation d. Is more than 40% and the dynamic yield stress σ d is larger than the quasi-static tensile yield stress σ s. Low-strength, high-plastic difficult-to-cut alloy, quasi-static tensile yield stress σ s is more than 250 MPa, and elongation δ is less than 15%. and dynamic yield stress sigma d is quasi-static tensile strength greater than the yield stress sigma s low plasticity flame cutting alloys, quasi-static tensile yield stress sigma s is 100MPa~250MPa, elongation δ is 40% to 15%, It is classified into three types of high-strength, high-plastic free-cutting alloys in which the dynamic yield stress σ d is smaller than the quasi-static tensile yield stress σ s.

本発明の目的を更に実現するために、ステップ1)の異なる亜鉛当量の黄銅合金の製造方法が、Cu、Zn、Si、Al元素を、Cu:56〜66wt.%、Zn:33〜42wt.%、Si:0.4〜1.5wt.%、Al:0.2〜1.5wt.t%、及びB:0.003〜0.01wt.%、Ti:0.03〜0.06wt.%の質量%で配合し、かつ黄銅合金の全成分中の亜鉛当量X%が39〜49%であり、ミクロ組織がα+β相であることが好ましい。 In order to further realize the object of the present invention, a method for producing a brass alloy having a different zinc equivalent in step 1) uses Cu, Zn, Si, and Al elements as Cu: 56 to 66 wt. %, Zn: 33 to 42 wt. %, Si: 0.4 to 1.5 wt. %, Al: 0.2 to 1.5 wt. t% and B: 0.003 to 0.01 wt. %, Ti: 0.03 to 0.06 wt. It is preferable that the mixture is blended in a mass% of%, the zinc equivalent X% in all the components of the brass alloy is 39 to 49%, and the microstructure is the α + β phase.

亜鉛当量規制により相組成を設計し、式

Figure 2021076588

(ここで、X%:亜鉛当量、CZn:合金添加純亜鉛含有率、CCu:合金添加純銅含有率、ΣC:合金でCu、Znを除く全ての合金元素の含有率Cと亜鉛当量係数Kとの積の総和)により亜鉛当量を算出することが好ましい。 Design the phase composition by zinc equivalent regulation, formula
Figure 2021076588

(Wherein, X%: zinc equivalents, C Zn: alloying pure zinc content, C Cu: alloying pure copper content, ΣC i K i: content of all alloy elements excluding Cu, and Zn in the alloy C i it is preferable to calculate the zinc equivalent by the sum of the product of the zinc equivalent coefficient K i).

ステップ2)において、J.G.Williamが開発した試験スキームを用いて、異なる亜鉛当量のシリコン黄銅合金を切削する際の切削動的降伏応力σを算出することが好ましい。 In step 2), J. G. It is preferred to use the test scheme developed by William to calculate the cutting dynamic yield stress σ d when cutting silicon brass alloys with different zinc equivalents.

ステップ2)における切削試験を、切削力測定装置を備えたCNC旋盤で行い、切削サンプルを円柱棒とし、切削工具材料を市販のWC−8Co工具とし、加工パラメータとして送り速度fの値を変更し、黄銅合金の通常の切削パラメータに基づき、送り速度fの値を0.05〜0.3mm/rとすることが好ましい。 The cutting test in step 2) is performed on a CNC lathe equipped with a cutting force measuring device, the cutting sample is a cylindrical rod, the cutting tool material is a commercially available WC-8Co tool, and the value of the feed rate f is changed as a machining parameter. , It is preferable that the value of the feed rate f is 0.05 to 0.3 mm / r based on the usual cutting parameters of the brass alloy.

力バランス方程式

Figure 2021076588
(ここで、h/sinφ:せん断面の長さ、h:切削層の厚み、φ:シリコン黄銅サンプルのせん断角、K:材料の破壊靭性、w:切削幅、F:主切削力、F:送り抵抗)から切削動的降伏応力σを決定し、
前記の力バランス方程式を
Figure 2021076588

に変換し、
/w−(F/w)tanφ及び(h/2)(tanφ+1/tanφ)の値を算出し、
/w−(F/w)tanφ及び(h/2)(tanφ+1/tanφ)の変化関係をプロットして線形フィッティングし、傾きを切削動的降伏応力σとし、
シリコン黄銅サンプルのせん断角φを、式
Figure 2021076588
(ここで、γ:切削工具のすくい角、Λ
Figure 2021076588
から決定される切削変形係数、hch:平均チップ厚み)に従って算出することが好ましい。 Force balance equation
Figure 2021076588
(Here, h c / sin φ: length of shear surface, h c : thickness of cutting layer, φ: shear angle of silicon brass sample, K b : fracture toughness of material, w c : cutting width, F c : main The cutting dynamic yield stress σ d is determined from the cutting force ( Ft: feed resistance).
The above force balance equation
Figure 2021076588

Convert to
Calculate the values of F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ).
The change relationship of F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) is plotted and linearly fitted, and the slope is defined as the cutting dynamic yield stress σ d .
The shear angle φ of the silicon brass sample is calculated by the formula.
Figure 2021076588
(Here, γ 0 : rake angle of cutting tool, Λ h is
Figure 2021076588
It is preferable to calculate according to the cutting deformation coefficient (h ch: average chip thickness) determined from.

鋸歯状チップのチップ厚みhch等価値は、

Figure 2021076588
(ここで、H:鋸歯状チップの最大高さ、h:鋸歯の高さ)を簡単化することによって取得されることが好ましい。 The value of the serrated tip, such as the tip thickness h ch, is
Figure 2021076588
(Here, H: maximum height of the sawtooth tip, h s : height of the sawtooth) is preferably obtained by simplifying.

前記切削層の厚みhは、円筒旋削試験における送りf値に等しいことが好ましい。 The thickness h c of the cutting layer is preferably equal to the feed f value in the cylindrical turning test.

前記切削幅wは、円筒旋削試験における切刃の逃げ量aに等しいことが好ましい。 The cutting width w c is preferably equal to the relief amount ap of the cutting edge in the cylindrical turning test.

ステップ3)において、前記高強度高塑性快削性合金は、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路の製造に使用されることが好ましい。 In step 3), the high-strength, high-plastic free-cutting alloy is preferably used for manufacturing bathroom equipment, household hardware, heat sinks, electronic devices, and low-temperature pipelines.

本発明の動的降伏応力σは、J.G.Williamが開発した試験スキームを用いて、Mechantの切削力モデル、すなわち図2のせん断面に作用する分力に基づいて算出する。チップは、旋盤に取り付けられたチップコレクタで収集した黄銅サンプルから発生するチップである。10〜20個のチップをランダムに選択して、チップ厚みhchなどの関連するチップ幾何学的形態パラメータを測定して、最終的に平均値をとって個々のチップの特性パラメータを決定する。 The dynamic yield stress σ d of the present invention is determined by J. G. Using the test scheme developed by Villain, it is calculated based on Mechant's cutting force model, that is, the component force acting on the shear plane of FIG. The insert is a chip generated from a brass sample collected by a chip collector mounted on a lathe. Ten to twenty chips are randomly selected, the relevant chip geometry parameters such as chip thickness h ch are measured, and finally averaged to determine the characteristic parameters of the individual chips.

本発明のステップ3)のシリコン黄銅合金の定量的同定に係る動的降伏応力σが低下する領域は、準静的降伏応力σよりも小さい値である。動的降伏応力σが低下する領域において、対応するシリコン黄銅合金は、高強度高塑性快削性などの総合的な特性を有する。切削動的降伏応力σが材料の準静的降伏応力σ未満に低下すると、快削性合金を得るのに有利である。高強度高塑性快削性領域に対応するシリコン黄銅合金は、高強度、高塑性及び快削性などの総合的な特性を有し、該領域に対応する亜鉛当量は、優れた総合的な特性の合金成分領域である。優れた総合的な特性のシリコン黄銅合金は、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路の製造に使用されるが、他の領域の合金の用途は、大きく制限される。 The region where the dynamic yield stress σ d related to the quantitative identification of the silicon brass alloy in step 3) of the present invention decreases is a value smaller than the quasi-static yield stress σ s. In the region where the dynamic yield stress σ d decreases, the corresponding silicon brass alloy has comprehensive properties such as high strength and high plastic free cutting property. When the cutting dynamic yield stress σ d is reduced to less than the quasi-static yield stress σ s of the material, it is advantageous to obtain a free-cutting alloy. The silicon brass alloy corresponding to the high-strength, high-plastic free-cutting region has comprehensive properties such as high strength, high plasticity, and free-cutting property, and the zinc equivalent corresponding to the region has excellent comprehensive characteristics. This is the alloy component region of. Silicone brass alloys with excellent overall properties are used in the manufacture of bathroom equipment, household hardware, heat sinks, electronics and low temperature pipelines, but the use of alloys in other areas is severely limited.

本発明は、従来技術と比較して、以下の利点及び効果を有する。
1.本発明は、金属合金チップの幾何学的形態パラメータと切削動的力学特性とを関連付けることによって、シリコン黄銅合金材料のチップ切断力を定量的に評価し、実施しやすく低コストであるなどの特徴を有し、かつ材料切削工学の動的極端な条件を考慮する従来の同定方法が応力−歪みモデルを確立する必要があるという欠点を克服した。
2.本発明は、シリコン黄銅合金の総合的な特性(高強度高塑性快削性)の定量的同定方法を確立し、新規なシリコン黄銅合金の設計の強力な参照になるシリコン黄銅合金の総合的な特性の組成設計方法を提供することができる。
3.本発明に係る切削動的降伏応力σが材料の準静的降伏応力σ未満に低下すると、快削性のシリコン黄銅合金を得るのに有利である。この試験方法は、他の金属合金材料の快削性能と総合性能の試験にも適用できる。
The present invention has the following advantages and effects as compared with the prior art.
1. 1. The present invention quantitatively evaluates the chip cutting force of a silicon brass alloy material by associating the geometrical morphological parameters of the metal alloy chip with the cutting dynamic mechanical properties, and is easy to implement and low cost. Overcome the drawback that conventional identification methods that take into account the dynamic extreme conditions of material cutting engineering require the establishment of stress-strain models.
2. The present invention establishes a method for quantitatively identifying the comprehensive properties (high-strength, high-plastic free-cutting property) of a silicon brass alloy, and provides a strong reference for the design of a novel silicon brass alloy. A method for designing the composition of characteristics can be provided.
3. 3. When the cutting dynamic yield stress σ d according to the present invention is reduced to less than the quasi-static yield stress σ s of the material, it is advantageous to obtain a free-cutting silicon brass alloy. This test method can also be applied to the free-cutting performance and overall performance tests of other metal alloy materials.

鋸歯状チップの幾何学的特性パラメータの特徴を示す図である。It is a figure which shows the characteristic of the geometric characteristic parameter of a serrated tip. 金属合金を切削する場合のMechant切削力モデル図である。It is a Mechant cutting force model figure at the time of cutting a metal alloy. 実施例における切削速度v=90m/minの際に、異なる亜鉛当量のシリコン黄銅合金の準静的引張降伏応力σ、伸びδ、切削動的降伏応力σの亜鉛当量に対する変化傾向図である。When the cutting speed v c = 90 m / min in the examples, the quasi-static tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d of silicon brass alloys having different zinc equivalents are shown in the change tendency diagram with respect to the zinc equivalent. is there.

発明を実施するための最適な形態Optimal form for carrying out the invention

本発明をよりよく理解するために、以下、実施例及び図面とともに本発明を更に記載するが、本発明の実施形態は、これに限られない。 In order to better understand the present invention, the present invention will be further described below together with examples and drawings, but the embodiments of the present invention are not limited thereto.

[実施例]
高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法は、以下のステップを含む。
[Example]
A method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, includes the following steps.

(1)シリコン黄銅合金の作製
Cu、Zn、Si、Al元素を表1に示すA、B、C、D、Eの5つの合金番号の質量%で配合し、金属間化合物改質剤及び結晶粒微細化剤として0.005質量%のBと0.05wt.%のTiを添加し、鋳造して筒状のシリコン黄銅合金を得る。亜鉛当量規則によって相組成を設計し、亜鉛当量(X%)は、式

Figure 2021076588
により算出される。ここで、CZnは、合金添加純亜鉛含有率であり、CCuは、合金添加純銅含有率であり、ΣCは、合金中のCu、Zn以外の全ての合金元素の含有率Cと亜鉛当量係数Kとの積の総和(iは、合金元素の番号を表す)である。各元素のKは、銅合金関連マニュアルにより調べることができ、Si元素及びAl元素のKは、それぞれ10及び6である。 (1) Preparation of Silicon Brass Alloy Cu, Zn, Si, and Al elements are blended in mass% of the five alloy numbers A, B, C, D, and E shown in Table 1, and an intermetallic compound modifier and crystal. 0.005% by mass B and 0.05 wt. As a grain micronizing agent. % Ti is added and cast to obtain a tubular silicon brass alloy. Design the phase composition according to the zinc equivalent rule, the zinc equivalent (X%) is the formula
Figure 2021076588
Is calculated by. Here, C Zn is an alloy added pure zinc content, C Cu is an alloy added pure copper content, .SIGMA.C i K i is, Cu in the alloy, the content of all alloy elements other than Zn C the sum of the product of the i and zinc equivalent coefficient K i (i represents the number of alloying elements) is. K i of each element may be determined by the copper alloy related documentation, K i of Si element and Al element is 10, and 6, respectively.

X線回折分析により、亜鉛当量が39.2%、42.7%、45.3%、46.9%から48.4%に増加するにつれて、シリコン黄銅合金の相組成がα+βの2相から純粋なβ相に変化する全成分の亜鉛当量は、39〜49%にあり、そのミクロ組織がβ相をマトリックスとし、β相マトリックスの中に粒状又は小塊状のα相が埋め込まれることが示される。 As the zinc equivalent increased from 39.2%, 42.7%, 45.3%, 46.9% to 48.4% by X-ray diffraction analysis, the phase composition of the silicon brass alloy changed from the α + β two phases. The zinc equivalent of all components that change to a pure β phase is 39-49%, indicating that the microstructure uses the β phase as a matrix and that granular or lumpy α phases are embedded in the β phase matrix. Is done.

(2)準静的引張力学特性試験
作製した亜鉛当量39.2%、42.7%、45.3%、46.9%及び48.4%のシリコン黄銅合金棒について、それぞれ、国の標準GB/T288−2002に準拠して準静的引張力学特性試験を行い、その応力−ひずみ曲線を得て、その応力−ひずみ曲線から、対応する準静的引張降伏応力σ及び伸びδが、それぞれ、66MPa及び42.1%、95MPa及び48.8%、147MPa及び29.5%、213MPa及び13.1%、257MPa及び9.5%である。表1に示すように、表1は、実施例における異なる亜鉛当量のシリコン黄銅合金の元素組成、相含有量、準静的引張降伏応力σ、伸びδの表である。ここで、成分データは、金属分光分析によるものであり、相組成は、XRD試験によるものである。
(2) Semi-static tensile mechanical property test National standards for the produced zinc equivalents of 39.2%, 42.7%, 45.3%, 46.9% and 48.4% silicon brass alloy rods, respectively. A quasi-static tensile mechanical property test is performed in accordance with GB / T288-2002 to obtain the stress-strain curve, and the corresponding quasi-static tensile yield stress σ s and elongation δ are obtained from the stress-strain curve. 66 MPa and 42.1%, 95 MPa and 48.8%, 147 MPa and 29.5%, 213 MPa and 13.1%, 257 MPa and 9.5%, respectively. As shown in Table 1, Table 1 is a table of elemental composition, phase content, quasi-static tensile yield stress σ s , and elongation δ of silicon brass alloys having different zinc equivalents in the examples. Here, the component data is by metal spectroscopic analysis, and the phase composition is by XRD test.

Figure 2021076588
Figure 2021076588

(3)切削試験
作製した亜鉛当量39.2%、42.7%、45.3%、46.9%及び48.4%のシリコン黄銅合金について、切削力測定装置(9265−A1,Kistler Group,Swizerland)を備えたCNC旋盤(CA6150i,DMTG Co.,China)にて切削試験を行い、切削サンプルがφ35×120m円柱棒である。切削工具材料は、すくい角γ=4°、逃げ角α=3°、傾斜角λ=0°、側切削刃角K=90°、刃先半径R=1mmなどの幾何学的特性パラメータを有する市販のWC−8Co(株洲金剛石刀具有限会社、中国)である。切削試験における切削パラメータは、切削速度v=90m/min、送り速度f=0.1mm/r、切削深さa=0.5mmとする。旋盤に取り付けたチップコレクタで20個のチップを捕集し、亜鉛当量の異なるシリコン黄銅合金の平均チップ厚みhch、鋸歯状チップの最大高さH、鋸歯の高さhなどのチップの幾何学的特性パラメータを走査型電子顕微鏡により測定する。表2に示すように、上記CNC旋盤、切削力測定装置、WC−8Co工具、切削パラメータを用いて、送り速度fを0.15mm/rに変えて、異なる亜鉛当量のシリコン黄銅合金について切削試験を行い、チップを採取し、異なる亜鉛当量のシリコン黄銅合金の平均チップ厚みhch、鋸歯状チップ最大高さH、鋸歯の高さhなどのチップの幾何学的特性パラメータを測定し、表2に示す。表2は、実施例1〜5における亜鉛当量の異なるシリコン黄銅合金の切削動的降伏応力σの算出に必要な特性パラメータ及びその算出結果を示す。
(3) Cutting test Cutting force measuring device (9265-A1, Kistler Group) for the produced zinc equivalents of 39.2%, 42.7%, 45.3%, 46.9% and 48.4% silicon brass alloys. , Swizerland), a CNC lathe (CA6150i, DMTG Co., China) was used to perform a cutting test, and the cutting sample was a φ35 × 120 m cylindrical rod. Cutting tool materials, rake angle γ 0 = 4 °, the clearance angle α 0 = 3 °, the inclination angle lambda s = 0 °, side cutting edge angle K r = 90 °, geometric, such as edge radius R n = 1 mm It is a commercially available WC-8Co (Shu Kongo Stone Sword Tool Co., Ltd., China) having characteristic parameters. The cutting parameters in the cutting test are cutting speed v c = 90 m / min, feed speed f = 0.1 mm / r, and cutting depth a p = 0.5 mm. Twenty chips are collected by a chip collector attached to a lathe, and the geometry of the chips such as the average chip thickness h ch of silicon brass alloys with different zinc equivalents, the maximum height H of the serrated tip, and the height h s of the serrated tip. The scientific characteristic parameters are measured by a scanning electron microscope. As shown in Table 2, using the above CNC lathe, cutting force measuring device, WC-8Co tool, and cutting parameters, the feed rate f was changed to 0.15 mm / r, and cutting tests were performed on silicon brass alloys with different zinc equivalents. And sample the chips and measure the geometric characteristic parameters of the chips such as the average chip thickness h ch of different zinc equivalents of silicon brass alloy, the maximum height H of the sawtooth tip, the height h s of the sawtooth, and table. Shown in 2. Table 2 shows the characteristic parameters required for calculating the cutting dynamic yield stress σ d of the silicon brass alloys having different zinc equivalents in Examples 1 to 5 and the calculation results thereof.

Figure 2021076588
Figure 2021076588

(4)切削動的降伏応力の算出
Mechantの切削力モデルに基づき、Williams切削プロセス材料動的降伏応力試験方法を用いて、異なる亜鉛当量のシリコン黄銅合金を切削する際のF/w−(F/w)tanφ及び(h/2)(tanφ+1/tanφ)の値を算出し、具体的には、以下のように算出し、必要な関連特性パラメータは、以下である。
チップの幾何学的特性に基づいて、シリコン黄銅サンプルのせん断角φは、式

Figure 2021076588
に従って算出される。ここでγは、切削工具のすくい角であり、Λは、
Figure 2021076588
で決定される切削変形係数であり、hchは、チップ厚みであり、チップのトポグラフィ特性を観察することによって直接測定される。hは、切削層の厚みであり、円筒旋削試験における送りfの値に等しい。鋸歯状チップが発生する場合、鋸歯状チップの厚みhchの等価値は、
Figure 2021076588
を簡単化することによって取得される。ここで、図1に示すように、Hは、鋸歯状チップの最大高さであり、hは、鋸歯の高さである。以上の計算から、ある切削速度におけるある亜鉛当量のシリコン黄銅合金のせん断角φを求める。 (4) Calculation of cutting dynamic yield stress F c / w c- when cutting silicon brass alloys with different zinc equivalents using the Williams cutting process material dynamic yield stress test method based on Mechant's cutting force model. The values of (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) are calculated, specifically, calculated as follows, and the necessary related characteristic parameters are as follows.
Based on the geometrical properties of the chip, the shear angle φ of the silicon brass sample is
Figure 2021076588
It is calculated according to. Here, γ 0 is the rake angle of the cutting tool, and Λ h is
Figure 2021076588
It is a cutting deformation coefficient determined by, h ch is a chip thickness, and is directly measured by observing the topographic characteristics of the chip. h c is the thickness of the cutting layer and is equal to the value of the feed f in the cylindrical turning test. When a serrated tip is generated, the equal value of the thickness h ch of the serrated tip is
Figure 2021076588
Obtained by simplifying. Here, as shown in FIG. 1, H is the maximum height of the sawtooth tip, and h s is the height of the sawtooth. From the above calculation, the shear angle φ of a silicon brass alloy having a certain zinc equivalent at a certain cutting speed is obtained.

Mechantの切削力モデルに基づき、J.G.Williamが開発した試験スキームを用いて、シリコン黄銅を切削する際の動的降伏応力σを算出する。具体的には、図2のせん断面に作用する分力であるMechantの切削力モデルを解析し、せん断面の力バランスから方程式

Figure 2021076588
が得られる。ここで、σは、動的降伏応力であり、h/sinφは、せん断面の長さであり、Kは、材料の破壊靭性であり、wは、円筒旋削試験における切刃の逃げ量aに相当する切削幅であり、Fは、主切削力であり、Fは、送り抵抗である(B.Wang et al.Int.J.Mach.Tool.Manu.73(2013) 1-8)。更に、上記式を以下の式、即ち切削力とせん断とワークの動的力学性能との相関関係に変換する。
Figure 2021076588
各々の切削層の厚みhについて、切削試験により、対応するチップ厚みhch、主切削力F及び送り抵抗Fを求め、対応する主切削力F及び送り抵抗Fを表2に示す。これにより、更にF/w−(F/w)tanφと(h/2)(tanφ+1/tanφ)の値を算出する。最終的に、F/w−(F/w)tanφと(h/2)(tanφ+1/tanφ)の変化関係をプロットして線形フィッティングして得られた直線の傾きを切削動的降伏応力σとする。 Based on Mechant's cutting force model, J.M. G. Using the test scheme developed by William, the dynamic yield stress σ d when cutting silicon brass is calculated. Specifically, the cutting force model of Mechant, which is the component force acting on the shear surface in FIG. 2, is analyzed, and the equation is calculated from the force balance of the shear surface.
Figure 2021076588
Is obtained. Here, σ d is the dynamic yield stress, h c / sin φ is the length of the sheared surface, K b is the fracture toughness of the material, and w c is the cutting edge of the cutting edge in the cylindrical turning test. The cutting width corresponds to the relief amount ap , F c is the main cutting force, and F t is the feed resistance (B. Wang et al. Int. J. Mac. Tool. Manu. 73 (2013). ) 1-8). Further, the above equation is converted into the following equation, that is, the correlation between the cutting force, the shear, and the dynamic dynamic performance of the work.
Figure 2021076588
For the thickness h c of each cutting layer, the corresponding chip thickness hch, main cutting force F c and feed resistance F t are obtained by a cutting test, and the corresponding main cutting force F c and feed resistance F t are shown in Table 2. .. As a result, the values of F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) are further calculated. Finally, the slope of the straight line obtained by plotting the change relationship between F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) and linearly fitting is cut. Let the yield stress σ d.

(5)高強度高塑性快削性合金の同定
図3に示すように、シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σ、伸びδ、算出した切削動的降伏応力σを縦軸にとり、各性能指標の亜鉛当量に対する変化傾向図をプロットする。図から、亜鉛当量が大きくなるに従い、準静的引張降伏応力σも大きくなり、伸びδが小さくなり、切削動的降伏応力σが一旦小さくなった後に大きくなることがわかる。動的降伏応力σの低下領域では、その値が準静的降伏応力σよりも小さく、熱可塑性の不安定化や鋸歯状チップの発生に有利となり、快削性を有する。これにより、シリコン黄銅合金を、準静的引張降伏応力σが100MPa未満、伸びδが40%超、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい低強度高塑性難切削合金、準静的引張降伏応力σが100MPa〜250MPa、伸びδが40%〜15%、かつ動的降伏応力σが準静的引張降伏応力σよりも小さい高強度高塑性快削性合金、準静的引張降伏応力σが250MPa超、伸びδが15%未満、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい高強度低塑性難切削合金の3種類に分類する。また、高強度高塑性快削性領域に対応するシリコン黄銅合金は、高強度、高塑性、快削性などの総合的な性能を有し、該領域に対応する亜鉛当量は、総合的に優れた合金成分領域である。他の領域の合金は、その用途が大きく制限されている。従って、高強度高塑性快削性の合金を効果的に同定することは、重要な意味を持つ。
(5) Identification of high-strength, high-plastic free-cutting alloy As shown in Fig. 3, the quasi-static tensile yield stress σ s , elongation δ, and calculated cutting dynamic yield stress are calculated with the zinc equivalent of the silicon brass alloy as the horizontal axis. With σ d on the vertical axis, a change trend diagram for each performance index with respect to zinc equivalent is plotted. From the figure, it can be seen that as the zinc equivalent increases, the quasi-static tensile yield stress σ s also increases, the elongation δ decreases, and the cutting dynamic yield stress σ d decreases once and then increases. In the region where the dynamic yield stress σ d decreases, the value is smaller than the quasi-static yield stress σ s, which is advantageous for the instability of thermoplasticity and the generation of serrated tips, and has free-cutting property. As a result, the silicon brass alloy has a quasi-static tensile yield stress σ s of less than 100 MPa, an elongation δ of more than 40%, and a dynamic yield stress σ d larger than the quasi-static tensile yield stress σ s. Difficult-to-cut alloy, quasi-static tensile yield stress σ s is 100 MPa to 250 MPa, elongation δ is 40% to 15%, and dynamic yield stress σ d is smaller than quasi-static tensile yield stress σ s. Scraping alloy, quasi-static tensile yield stress σ s is more than 250 MPa, elongation δ is less than 15%, and dynamic yield stress σ d is larger than quasi-static tensile yield stress σ s. Classify into 3 types. In addition, the silicon brass alloy corresponding to the high-strength, high-plastic free-cutting region has comprehensive performance such as high strength, high plasticity, and free-cutting property, and the zinc equivalent corresponding to the region is comprehensively excellent. This is the alloy component region. Alloys in other regions are severely limited in their use. Therefore, it is important to effectively identify a high-strength, high-plastic free-cutting alloy.

従来技術に比較し、本発明は、金属合金チップの幾何学的形態パラメータと切削動的力学特性とを関連付けることによってシリコン黄銅合金材料のチップ切断能力を定量的に評価し、実施しやすく低コストであるなどの特徴を有し、かつ材料切削工学の動的極端な条件を考慮する従来の同定方法が応力−歪みモデルを確立する必要があるという欠点を克服した。同時に、本発明は、高性能のシリコン黄銅合金成分設計に有利な高強度高塑性快削性の定量的同定方法を確立し、新規なシリコン黄銅合金の設計の強力な参照になる。また、本発明の切削動的降伏応力σが材料の準静的降伏応力σ未満に低下すると、熱可塑性の不安定化や鋸歯状チップの発生に有利であり、快削性のシリコン黄銅合金が得られる。この試験方法は、他の金属合金材料の快削性能と総合性能の試験にも適用できる。 Compared with the prior art, the present invention quantitatively evaluates the chip cutting ability of a silicon brass alloy material by associating the geometrical morphological parameters of the metal alloy chip with the cutting dynamic mechanical properties, and is easy to implement and low cost. It overcomes the drawback that the conventional identification method considering the dynamic extreme conditions of material cutting engineering needs to establish a stress-strain model. At the same time, the present invention establishes a quantitative identification method of high strength and high plasticity free-cutting property which is advantageous for high-performance silicon brass alloy component design, and becomes a strong reference for the design of a novel silicon brass alloy. Further, when the cutting dynamic yield stress σ d of the present invention is reduced to less than the quasi-static yield stress σ s of the material, it is advantageous for the instability of thermoplastics and the generation of serrated chips, and the free-cutting silicon brass. An alloy is obtained. This test method can also be applied to the free-cutting performance and overall performance tests of other metal alloy materials.

上記実施形態は、本発明の保護範囲を制限するものではなく、当業者であれば、本発明により開示されている範囲内で、本発明の技術手段及びその発明の特許の思想に基づいて行われた均等な置換又は変更は、全て本発明の特許の保護範囲に属するものである。 The above-described embodiment does not limit the scope of protection of the present invention, and a person skilled in the art can use the technical means of the present invention and the idea of the patent of the present invention within the scope disclosed by the present invention. All equal substitutions or modifications made are within the scope of the patent of the present invention.

(付記)
(付記1)
以下のステップを含むことを特徴とする高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
1)準静的引張降伏応力σ及び伸びδ試験
亜鉛当量38%〜49%のシリコン黄銅合金棒について準静的引張力学特性試験を行い、応力−ひずみ曲線を得て、異なる亜鉛当量のシリコン黄銅合金について準静的引張降伏応力σ及び伸びδを決定する。
2)動的降伏応力σの算出
亜鉛当量38%〜49%のシリコン黄銅合金について切削試験を行い、チップを採取し、Mechantに基づく切削力モデルにより、異なる亜鉛当量のシリコン黄銅合金を切削した場合の切削動的降伏応力σを算出する。
3)シリコン黄銅合金の定量的同定
シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σ、伸びδ、切削動的降伏応力σを縦軸にとり、亜鉛当量に対する準静的引張降伏応力σ、伸びδ、切削動的降伏応力σの変化傾向図を作成し、前記変化傾向図に基づいてシリコン黄銅合金を、準静的引張降伏応力σが100MPa未満、伸びδが40%超、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい低強度高塑性難切削合金、準静的引張降伏応力σが250MPa超、伸びδが15%未満、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい高強度低塑性難切削合金、準静的引張降伏応力σが100MPa〜250MPa、伸びδが40%〜15%、かつ動的降伏応力σが準静的引張降伏応力σよりも小さい高強度高塑性快削性合金の3種類に分類する。
(Additional note)
(Appendix 1)
A method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, which comprises the following steps.
1) Semi-static tensile yield stress σ s and elongation δ test A quasi-static tensile mechanical property test was performed on a silicon brass alloy rod having a zinc equivalent of 38% to 49%, and a stress-strain curve was obtained to obtain silicon having a different zinc equivalent. Determine the quasi-static tensile yield stress σ s and elongation δ for brass alloys.
2) Calculation of dynamic yield stress σ d A cutting test was conducted on a silicon brass alloy with a zinc equivalent of 38% to 49%, chips were sampled, and silicon brass alloys with different zinc equivalents were cut by a cutting force model based on Mechant. Calculate the cutting dynamic yield stress σ d in the case.
3) Quantitative identification of silicon brass alloy The horizontal axis is the zinc equivalent of the silicon brass alloy, and the vertical axis is the quasi-static tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d. A change tendency diagram of tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d was created, and based on the change tendency diagram, a silicon brass alloy was used, and quasi-static tensile yield stress σ s was less than 100 MPa, elongation δ. Is more than 40% and the dynamic yield stress σ d is larger than the quasi-static tensile yield stress σ s. Low-strength, high-plastic difficult-to-cut alloy, quasi-static tensile yield stress σ s is more than 250 MPa, and elongation δ is less than 15%. and dynamic yield stress sigma d is quasi-static tensile strength greater than the yield stress sigma s low plasticity flame cutting alloys, quasi-static tensile yield stress sigma s is 100MPa~250MPa, elongation δ is 40% to 15%, It is classified into three types of high-strength, high-plastic free-cutting alloys in which the dynamic yield stress σ d is smaller than the quasi-static tensile yield stress σ s.

(付記2)
ステップ1)の異なる亜鉛当量の黄銅合金の製造方法が、Cu、Zn、Si、Al元素を、Cu:56〜66wt.%、Zn:33〜42wt.%、Si:0.4〜1.5wt.%、Al:0.2〜1.5wt.t%、及びB:0.003〜0.01wt.%、Ti:0.03〜0.06wt.%の質量%で配合し、かつ黄銅合金の全成分中の亜鉛当量X%が39〜49%であり、ミクロ組織がα+β相であることを特徴とする付記1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 2)
The method for producing a brass alloy having different zinc equivalents in step 1) is to use Cu, Zn, Si and Al elements as Cu: 56 to 66 wt. %, Zn: 33 to 42 wt. %, Si: 0.4 to 1.5 wt. %, Al: 0.2 to 1.5 wt. t% and B: 0.003 to 0.01 wt. %, Ti: 0.03 to 0.06 wt. High strength and high plasticity according to Appendix 1, wherein the zinc equivalent X% in all the components of the brass alloy is 39 to 49%, and the microstructure is α + β phase. -A method for quantitatively identifying lead-free silicon brass that has free-cutting properties and is environmentally friendly.

(付記3)
亜鉛当量規制により相組成を設計し、式

Figure 2021076588
(ここで、X%:亜鉛当量、CZn:合金添加純亜鉛含有率、CCu:合金添加純銅含有率、ΣC:合金でCu、Znを除く全ての合金元素の含有率Cと亜鉛当量係数Kとの積の総和)により亜鉛当量を算出することを特徴とする付記2に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 (Appendix 3)
Design the phase composition by zinc equivalent regulation, formula
Figure 2021076588
(Wherein, X%: zinc equivalents, C Zn: alloying pure zinc content, C Cu: alloying pure copper content, ΣC i K i: content of all alloy elements excluding Cu, and Zn in the alloy C i quantitative identification friendly lead-free silicon brass environment has a high strength and high plasticity, free-cutting according to note 2, characterized in that to calculate the zinc equivalent by the sum) of the product of the zinc equivalent coefficient K i and Method.

(付記4)
ステップ2)において、J.G.Williamが開発した試験スキームを用いて、異なる亜鉛当量のシリコン黄銅合金を切削する際の切削動的降伏応力σを算出し、具体的には、
せん断面の力バランスから方程式

Figure 2021076588
(ここで、σ:動的降伏応力、h/sinφ:せん断面の長さ、K:材料の破壊靭性、w:円筒旋削試験における切刃の逃げ量aに相当する切削幅、F:主切削力、F:送り抵抗)が得られ、
/w−(F/w)tanφと(h/2)(tanφ+1/tanφ)の変化関係を直線でフィッティングして得られた直線の傾きを切削動的降伏応力σとすることを含むことを特徴とする付記1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 (Appendix 4)
In step 2), J. G. Using the test scheme developed by William, the cutting dynamic yield stress σ d when cutting silicon brass alloys with different zinc equivalents was calculated, specifically,
Equation from the force balance of the sheared surface
Figure 2021076588
(Here, σ d : dynamic yield stress, h c / sin φ: length of sheared surface, K b : fracture toughness of material, w c : cutting width corresponding to the relief amount ap of the cutting edge in the cylindrical turning test. , F c : main cutting force, F t : feed resistance)
The slope of the straight line obtained by fitting the change relationship between F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) with a straight line is defined as the cutting dynamic yield stress σ d . The method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, according to Appendix 1, which comprises the above.

(付記5)
ステップ2)における切削試験を、切削力測定装置を備えたCNC旋盤で行い、切削サンプルを円柱棒とし、切削工具材料を市販のWC−8Co工具とし、加工パラメータとして送り速度fの値を変更し、黄銅合金の通常の切削パラメータに基づき、送り速度fの値を0.05〜0.3mm/rとすることを特徴とする付記4に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 5)
The cutting test in step 2) is performed on a CNC lathe equipped with a cutting force measuring device, the cutting sample is a cylindrical rod, the cutting tool material is a commercially available WC-8Co tool, and the value of the feed rate f is changed as a machining parameter. , Has high strength, high plasticity, and free-cutting property as described in Appendix 4, characterized in that the value of the feed rate f is set to 0.05 to 0.3 mm / r based on the normal cutting parameters of the brass alloy. Quantitative identification method for environmentally friendly lead-free silicon brass.

(付記6)
力バランス方程式

Figure 2021076588
(ここで、h/sinφ:せん断面の長さ、h:切削層の厚み、φ:シリコン黄銅サンプルのせん断角、K:材料の破壊靭性、w:切削幅、F:主切削力、F:送り抵抗)から切削動的降伏応力σを決定し、
前記の力バランス方程式を、
Figure 2021076588
に変換し、
/w−(F/w)tanφ及び(h/2)(tanφ+1/tanφ)の値を算出し、
/w−(F/w)tanφ及び(h/2)(tanφ+1/tanφ)の変化関係をプロットして線形フィッティングし、傾きを切削動的降伏応力σとし、
シリコン黄銅サンプルのせん断角φを、式
Figure 2021076588
(ここで、γ:切削工具のすくい角、Λは、
Figure 2021076588
から決定される切削変形係数、hch:平均チップ厚み)に従って算出することを特徴とする付記5に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 (Appendix 6)
Force balance equation
Figure 2021076588
(Here, h c / sin φ: length of shear surface, h c : thickness of cutting layer, φ: shear angle of silicon brass sample, K b : fracture toughness of material, w c : cutting width, F c : main The cutting dynamic yield stress σ d is determined from the cutting force ( Ft: feed resistance).
The above force balance equation,
Figure 2021076588
Convert to
Calculate the values of F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ).
The change relationship of F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) is plotted and linearly fitted, and the slope is defined as the cutting dynamic yield stress σ d .
The shear angle φ of the silicon brass sample is calculated by the formula.
Figure 2021076588
(Here, γ 0 : rake angle of cutting tool, Λ h is
Figure 2021076588
Quantitative identification of environment-friendly lead-free silicon brass having high strength, high plasticity, and free-cutting property according to Appendix 5, which is calculated according to the cutting deformation coefficient (h ch: average chip thickness) determined from Method.

(付記7)
鋸歯状チップのチップ厚みhch等価値は、hch=H−(h/2)(ここで、H:鋸歯状チップの最大高さ、h:鋸歯の高さ)を簡単化することによって取得されることを特徴とする付記6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 7)
The tip thickness of the sawtooth tip, h ch, etc., is to simplify h ch = H− (h s / 2) (where H: the maximum height of the sawtooth tip, h s : the height of the sawtooth). The method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, according to Appendix 6, which is obtained by.

(付記8)
前記切削層の厚みhは、円筒旋削試験における送りf値に等しいことを特徴とする付記6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 8)
Quantitative identification of environmentally friendly lead-free silicon brass having high strength, high plasticity, and free turning property according to Appendix 6, wherein the thickness h c of the cutting layer is equal to the feed f value in the cylindrical turning test. Method.

(付記9)
前記切削幅wは、円筒旋削試験における切刃の逃げ量aに等しいことを特徴とする付記6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 9)
The quantification of lead-free silicon brass having high strength, high plasticity, free turning property and environmental friendliness according to Appendix 6, wherein the cutting width w c is equal to the relief amount ap of the cutting edge in the cylindrical turning test. Identification method.

(付記10)
ステップ3)において、前記高強度高塑性快削性合金は、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路の製造に使用されることを特徴とする付記1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
(Appendix 10)
In step 3), the high-strength, high-plastic free-cutting alloy according to Appendix 1, wherein the high-strength, high-plastic free-cutting alloy is used for manufacturing bathroom equipment, household hardware, heat sinks, electronic devices, and low-temperature pipelines. -A method for quantitatively identifying lead-free silicon brass, which has high plasticity and free-cutting properties and is environmentally friendly.

Claims (10)

以下のステップを含むことを特徴とする高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
1)準静的引張降伏応力σ及び伸びδ試験
亜鉛当量38%〜49%のシリコン黄銅合金棒について準静的引張力学特性試験を行い、応力−ひずみ曲線を得て、異なる亜鉛当量のシリコン黄銅合金について準静的引張降伏応力σ及び伸びδを決定する。
2)動的降伏応力σの算出
亜鉛当量38%〜49%のシリコン黄銅合金について切削試験を行い、チップを採取し、Mechantに基づく切削力モデルにより、異なる亜鉛当量のシリコン黄銅合金を切削した場合の切削動的降伏応力σを算出する。
3)シリコン黄銅合金の定量的同定
シリコン黄銅合金の亜鉛当量を横軸にとり、準静的引張降伏応力σ、伸びδ、切削動的降伏応力σを縦軸にとり、亜鉛当量に対する準静的引張降伏応力σ、伸びδ、切削動的降伏応力σの変化傾向図を作成し、前記変化傾向図に基づいてシリコン黄銅合金を、準静的引張降伏応力σが100MPa未満、伸びδが40%超、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい低強度高塑性難切削合金、準静的引張降伏応力σが250MPa超、伸びδが15%未満、かつ動的降伏応力σが準静的引張降伏応力σよりも大きい高強度低塑性難切削合金、準静的引張降伏応力σが100MPa〜250MPa、伸びδが40%〜15%、かつ動的降伏応力σが準静的引張降伏応力σよりも小さい高強度高塑性快削性合金の3種類に分類する。
A method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, which comprises the following steps.
1) Semi-static tensile yield stress σ s and elongation δ test A quasi-static tensile mechanical property test was performed on a silicon brass alloy rod having a zinc equivalent of 38% to 49%, and a stress-strain curve was obtained to obtain silicon having a different zinc equivalent. Determine the quasi-static tensile yield stress σ s and elongation δ for brass alloys.
2) Calculation of dynamic yield stress σ d A cutting test was conducted on a silicon brass alloy with a zinc equivalent of 38% to 49%, chips were sampled, and silicon brass alloys with different zinc equivalents were cut by a cutting force model based on Mechant. Calculate the cutting dynamic yield stress σ d in the case.
3) Quantitative identification of silicon brass alloy The horizontal axis is the zinc equivalent of the silicon brass alloy, and the vertical axis is the quasi-static tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d. A change tendency diagram of tensile yield stress σ s , elongation δ, and cutting dynamic yield stress σ d was created, and based on the change tendency diagram, a silicon brass alloy was used, and quasi-static tensile yield stress σ s was less than 100 MPa, elongation δ. Is more than 40% and the dynamic yield stress σ d is larger than the quasi-static tensile yield stress σ s. Low-strength, high-plastic difficult-to-cut alloy, quasi-static tensile yield stress σ s is more than 250 MPa, and elongation δ is less than 15%. and dynamic yield stress sigma d is quasi-static tensile strength greater than the yield stress sigma s low plasticity flame cutting alloys, quasi-static tensile yield stress sigma s is 100MPa~250MPa, elongation δ is 40% to 15%, It is classified into three types of high-strength, high-plastic free-cutting alloys in which the dynamic yield stress σ d is smaller than the quasi-static tensile yield stress σ s.
ステップ1)の異なる亜鉛当量の黄銅合金の製造方法が、Cu、Zn、Si、Al元素を、Cu:56〜66wt.%、Zn:33〜42wt.%、Si:0.4〜1.5wt.%、Al:0.2〜1.5wt.t%、及びB:0.003〜0.01wt.%、Ti:0.03〜0.06wt.%の質量%で配合し、かつ黄銅合金の全成分中の亜鉛当量X%が39〜49%であり、ミクロ組織がα+β相であることを特徴とする請求項1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 The method for producing a brass alloy having different zinc equivalents in step 1) is to use Cu, Zn, Si and Al elements as Cu: 56 to 66 wt. %, Zn: 33 to 42 wt. %, Si: 0.4 to 1.5 wt. %, Al: 0.2 to 1.5 wt. t% and B: 0.003 to 0.01 wt. %, Ti: 0.03 to 0.06 wt. The high strength and high strength according to claim 1, wherein the zinc equivalent X% in all the components of the brass alloy is 39 to 49%, and the microstructure is α + β phase. Quantitative identification method for lead-free silicon brass that has plasticity and free-cutting properties and is environmentally friendly. 亜鉛当量規制により相組成を設計し、式
Figure 2021076588
(ここで、X%:亜鉛当量、CZn:合金添加純亜鉛含有率、CCu:合金添加純銅含有率、ΣC:合金でCu、Znを除く全ての合金元素の含有率Cと亜鉛当量係数Kとの積の総和)により亜鉛当量を算出することを特徴とする請求項2に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
Design the phase composition by zinc equivalent regulation, formula
Figure 2021076588
(Wherein, X%: zinc equivalents, C Zn: alloying pure zinc content, C Cu: alloying pure copper content, ΣC i K i: content of all alloy elements excluding Cu, and Zn in the alloy C i quantitative friendly lead-free silicon brass environment has a high strength and high plasticity, free-cutting according to claim 2, characterized in that to calculate the zinc equivalent by the sum of the product of the zinc equivalent coefficient K i) Identification method.
ステップ2)において、J.G.Williamが開発した試験スキームを用いて、異なる亜鉛当量のシリコン黄銅合金を切削する際の切削動的降伏応力σを算出し、具体的には、
せん断面の力バランスから方程式
Figure 2021076588
(ここで、σ:動的降伏応力、h/sinφ:せん断面の長さ、K:材料の破壊靭性、w:円筒旋削試験における切刃の逃げ量aに相当する切削幅、F:主切削力、F:送り抵抗)が得られ、
/w−(F/w)tanφと(h/2)(tanφ+1/tanφ)の変化関係を直線でフィッティングして得られた直線の傾きを切削動的降伏応力σとすることを含むことを特徴とする請求項1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
In step 2), J. G. Using the test scheme developed by William, the cutting dynamic yield stress σ d when cutting silicon brass alloys with different zinc equivalents was calculated, specifically,
Equation from the force balance of the sheared surface
Figure 2021076588
(Here, σ d : dynamic yield stress, h c / sin φ: length of sheared surface, K b : fracture toughness of material, w c : cutting width corresponding to the relief amount ap of the cutting edge in the cylindrical turning test. , F c : main cutting force, F t : feed resistance)
The slope of the straight line obtained by fitting the change relationship between F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) with a straight line is defined as the cutting dynamic yield stress σ d . The method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, according to claim 1, which comprises the above.
ステップ2)における切削試験を、切削力測定装置を備えたCNC旋盤で行い、切削サンプルを円柱棒とし、切削工具材料を市販のWC−8Co工具とし、加工パラメータとして送り速度fの値を変更し、黄銅合金の通常の切削パラメータに基づき、送り速度fの値を0.05〜0.3mm/rとすることを特徴とする請求項4に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 The cutting test in step 2) is performed on a CNC lathe equipped with a cutting force measuring device, the cutting sample is a cylindrical rod, the cutting tool material is a commercially available WC-8Co tool, and the value of the feed rate f is changed as a machining parameter. The high strength, high plasticity, and free-cutting property according to claim 4, wherein the value of the feed rate f is set to 0.05 to 0.3 mm / r based on the usual cutting parameters of the brass alloy. Quantitative identification method for environment-friendly lead-free silicon brass. 力バランス方程式
Figure 2021076588
(ここで、h/sinφ:せん断面の長さ、h:切削層の厚み、φ:シリコン黄銅サンプルのせん断角、K:材料の破壊靭性、w:切削幅、F:主切削力、F:送り抵抗)から切削動的降伏応力σを決定し、
前記の力バランス方程式を、
Figure 2021076588
に変換し、
/w−(F/w)tanφ及び(h/2)(tanφ+1/tanφ)の値を算出し、
/w−(F/w)tanφ及び(h/2)(tanφ+1/tanφ)の変化関係をプロットして線形フィッティングし、傾きを切削動的降伏応力σとし、
シリコン黄銅サンプルのせん断角φを、式
Figure 2021076588
(ここで、γ:切削工具のすくい角、Λは、
Figure 2021076588
から決定される切削変形係数、hch:平均チップ厚み)に従って算出することを特徴とする請求項5に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。
Force balance equation
Figure 2021076588
(Here, h c / sin φ: length of shear surface, h c : thickness of cutting layer, φ: shear angle of silicon brass sample, K b : fracture toughness of material, w c : cutting width, F c : main The cutting dynamic yield stress σ d is determined from the cutting force ( Ft: feed resistance).
The above force balance equation,
Figure 2021076588
Convert to
Calculate the values of F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ).
The change relationship of F c / w c − (F t / w c ) tan φ and (h c / 2) (tan φ + 1 / tan φ) is plotted and linearly fitted, and the slope is defined as the cutting dynamic yield stress σ d .
The shear angle φ of the silicon brass sample is calculated by the formula.
Figure 2021076588
(Here, γ 0 : rake angle of cutting tool, Λ h is
Figure 2021076588
Quantitative value of environmentally friendly lead-free silicon brass having high strength, high plasticity, and free-cutting property according to claim 5, which is calculated according to a cutting deformation coefficient (h ch: average chip thickness) determined from Identification method.
鋸歯状チップのチップ厚みhch等価値は、hch=H−(h/2)(ここで、H:鋸歯状チップの最大高さ、h:鋸歯の高さ)を簡単化することによって取得されることを特徴とする請求項6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 The tip thickness of the sawtooth tip, h ch, etc., is to simplify h ch = H− (h s / 2) (where H: the maximum height of the sawtooth tip, h s : the height of the sawtooth). The method for quantitatively identifying lead-free silicon brass, which has high strength, high plasticity, and free-cutting property and is environmentally friendly, according to claim 6, which is obtained by. 前記切削層の厚みhは、円筒旋削試験における送りf値に等しいことを特徴とする請求項6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 Quantitative amount of lead-free silicon brass which has high strength, high plasticity, free turning property and is environmentally friendly according to claim 6, wherein the thickness h c of the cutting layer is equal to the feed f value in the cylindrical turning test. Identification method. 前記切削幅wは、円筒旋削試験における切刃の逃げ量aに等しいことを特徴とする請求項6に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 The eco-friendly lead-free silicon brass having high strength, high plasticity, and free turning property according to claim 6, wherein the cutting width w c is equal to the relief amount ap of the cutting edge in the cylindrical turning test. Quantitative identification method. ステップ3)において、前記高強度高塑性快削性合金は、浴室設備、家庭用金物類、ヒートシンク、電子機器、低温管路の製造に使用されることを特徴とする請求項1に記載の高強度・高塑性・快削性を有し環境に優しい無鉛シリコン黄銅の定量的同定方法。 The high strength according to claim 1, wherein in step 3), the high-strength, high-plastic free-cutting alloy is used for manufacturing bathroom equipment, household hardware, heat sinks, electronic devices, and low-temperature pipelines. A quantitative identification method for lead-free silicon brass that has strength, high plasticity, and free-cutting properties and is environmentally friendly.
JP2020159474A 2019-11-12 2020-09-24 Quantitative identification method for environment-friendly lead-free silicon brass with high strength, high plasticity, and free-cutting property Active JP7076060B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911097950.XA CN110987703B (en) 2019-11-12 2019-11-12 Quantitative identification method for free-cutting environment-friendly lead-free silicon brass with high strength and high plasticity
CN201911097950.X 2019-11-12

Publications (2)

Publication Number Publication Date
JP2021076588A true JP2021076588A (en) 2021-05-20
JP7076060B2 JP7076060B2 (en) 2022-05-27

Family

ID=70083774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020159474A Active JP7076060B2 (en) 2019-11-12 2020-09-24 Quantitative identification method for environment-friendly lead-free silicon brass with high strength, high plasticity, and free-cutting property

Country Status (2)

Country Link
JP (1) JP7076060B2 (en)
CN (1) CN110987703B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268794B (en) * 2020-09-29 2021-08-31 中国科学院金属研究所 Method for determining optimal anti-armor-piercing microstructure state of metal material
CN112683715B (en) * 2020-11-27 2022-03-29 华南理工大学 Method for predicting critical cutting conditions of ductile metal material
TWI777508B (en) * 2021-04-21 2022-09-11 中國鋼鐵股份有限公司 Non-contact hardness measurement method and non-contact hardness measurement apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504209A (en) * 2015-12-22 2019-02-14 シアメン ロタ インターナショナル カンパニー リミテッドXiamen Lota International Co., Ltd. Low-cost lead-free dezincing resistant brass alloy for casting
JP2019519678A (en) * 2016-05-20 2019-07-11 オットー フックス カーゲー Lead-free high tension brass alloy and high tension brass alloy products

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567533C (en) * 2006-01-18 2009-12-09 江西理工大学 Pb-free copper-alloy
JP6129980B2 (en) * 2013-09-30 2017-05-17 日立オートモティブシステムズ株式会社 Mechanical quantity measuring apparatus and manufacturing method thereof
CN104032164A (en) * 2014-05-12 2014-09-10 蚌埠市宏威滤清器有限公司 Leadless free-cutting silicon brass alloy material and preparation method thereof
CN105274387B (en) * 2015-10-27 2017-05-24 华南理工大学 Leadfree high-strength and corrosion-resistance silicon brass alloy easy to be cut and preparation method and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504209A (en) * 2015-12-22 2019-02-14 シアメン ロタ インターナショナル カンパニー リミテッドXiamen Lota International Co., Ltd. Low-cost lead-free dezincing resistant brass alloy for casting
JP2019519678A (en) * 2016-05-20 2019-07-11 オットー フックス カーゲー Lead-free high tension brass alloy and high tension brass alloy products

Also Published As

Publication number Publication date
CN110987703A (en) 2020-04-10
JP7076060B2 (en) 2022-05-27
CN110987703B (en) 2020-12-04

Similar Documents

Publication Publication Date Title
JP7076060B2 (en) Quantitative identification method for environment-friendly lead-free silicon brass with high strength, high plasticity, and free-cutting property
Reddy et al. Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites
Chegini et al. Effect of equal channel angular pressing on the mechanical and tribological behavior of Al-Zn-Mg-Cu alloy
Wang et al. Superior tensile strength and microstructure evolution of TiB whisker reinforced Ti60 composites with network architecture after β extrusion
Stolin et al. SHS extrusion: an overview
WO2017168696A1 (en) Degradable mg alloy
Shamsolhodaei et al. Structural and functional properties of a semi equiatomic NiTi shape memory alloy processed by multi-axial forging
Kumar et al. Mechanical and dry sliding wear behaviour of B4C and rice husk ash reinfroced Al 7075 alloy hybrid composite for armors application by using taguchi techniques
Johansson et al. Machinability evaluation of low-lead brass alloys
CN105283569A (en) Cermet, and method for manufacturing same, as well as cutting tool
JP2016183407A (en) α-β TYPE TITANIUM ALLOY
Zheng et al. Fabrication and wear mechanism of Ti (C, N)-based cermets tools with designed microstructures used for machining aluminum alloy
JP2017145429A (en) α+β TYPE TITANIUM ALLOY MEMBER AND MANUFACTURING METHOD THEREFOR
Dawood et al. Influence of Titanium Additions on the Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys
Wang et al. Wear behavior of different materials applied on horizontal mixer blades used in the processing of total mixed rations
Yoganjaneyulu et al. Investigations on the void coalescence and corrosion behaviour of titanium grade 4 sheets during single point incremental forming process
Mishra et al. Preparation and study of Al-Cu-Ni ternary alloys by powder metallurgy techniques
JP6378717B2 (en) Iron-based sintered alloy and method for producing the same
JP2010222632A (en) HIGH STRENGTH Fe-Ni-Co-Ti BASED ALLOY AND METHOD FOR PRODUCING THE SAME
Emdadi et al. Hot workability of a spark plasma sintered intermetallic iron aluminide alloy above and below the order-disorder transition temperature
Prakash et al. Parametric optimization in turning of AA2014/Al2O3 nano composite for machinability assessment using sensors
Taşgın Investigation of microstructural and mechanical properties of different titanium alloys for gamma radiation properties and implant applications
Wieczorek et al. Tribological properties of aluminium matrix composites reinforcement with intermetallic
Jiang et al. Elevated temperature compressive behavior of in-situ multiphase composites NiAl/Cr (Mo)–TiC
Kumar et al. Fabrication and optimization of machining parameters on Al 2024-Gr-B4C hybrid MMCS during machining process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220325

R150 Certificate of patent or registration of utility model

Ref document number: 7076060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150