JP7068808B2 - Manufacturing method of seedling raising soil, manufacturing kit of seedling raising soil, seedling raising soil and soil mixture - Google Patents

Manufacturing method of seedling raising soil, manufacturing kit of seedling raising soil, seedling raising soil and soil mixture Download PDF

Info

Publication number
JP7068808B2
JP7068808B2 JP2017223852A JP2017223852A JP7068808B2 JP 7068808 B2 JP7068808 B2 JP 7068808B2 JP 2017223852 A JP2017223852 A JP 2017223852A JP 2017223852 A JP2017223852 A JP 2017223852A JP 7068808 B2 JP7068808 B2 JP 7068808B2
Authority
JP
Japan
Prior art keywords
soil
alginic acid
salt
seedling raising
cation salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017223852A
Other languages
Japanese (ja)
Other versions
JP2019092420A (en
Inventor
純一 田村
雄亮 澤本
智明 菅井
善康 石川
修 金尾
恭二 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Techno Service Co Ltd
Original Assignee
Showa Denko Materials Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Materials Techno Service Co Ltd filed Critical Showa Denko Materials Techno Service Co Ltd
Priority to JP2017223852A priority Critical patent/JP7068808B2/en
Publication of JP2019092420A publication Critical patent/JP2019092420A/en
Priority to JP2022075002A priority patent/JP7316413B2/en
Application granted granted Critical
Publication of JP7068808B2 publication Critical patent/JP7068808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、育苗培土の製造方法、育苗培土の製造キット、育苗培土及び培土混合物に関する。 The present invention relates to a method for producing seedling hilling soil, a kit for producing seedling raising soil, a seedling raising soil and a mixture of soil raising soil.

近年、農業分野及び園芸分野においては、作業効率の向上を目的として、各種作業の機械化及び自動化が進展しつつある。その中の1つとして、播種、苗の植付け等を自動で行う機械移植がある。機械移植は、培土を充填した育苗ポット内で播種及び育苗して得られた土付苗を移植機によって取り出した後、植付けるという手順により行われる。 In recent years, in the fields of agriculture and horticulture, mechanization and automation of various works are progressing for the purpose of improving work efficiency. One of them is mechanical transplanting that automatically sows, plants seedlings, and so on. Mechanical transplantation is carried out by a procedure in which soiled seedlings obtained by sowing and raising seedlings in a seedling raising pot filled with soil are taken out by a transplanting machine and then planted.

機械移植を行う際には、上記の通り、移植作業中に土付苗を育苗ポットから取り出すが、その際、土付苗が崩壊することなく良好な固化状態が保たれていることが望ましい。そのため、培土を固化するための種々の方法が検討されている。培土を固化する際には、良好な固化性に加えて、その材料が農地に残留しない生分解性、乾燥又は保水状態でも土付苗が崩壊しない強度、育苗ポットからの離型性、水の浸透性、通気性、良好な作業性等の性能が求められる。 When performing mechanical transplantation, as described above, the soiled seedlings are taken out from the seedling raising pot during the transplanting work, but at that time, it is desirable that the soiled seedlings are not collapsed and a good solidified state is maintained. Therefore, various methods for solidifying the soil have been studied. When solidifying the soil, in addition to good solidification, the material is biodegradable so that it does not remain on the agricultural land, the strength that the soil seedlings do not collapse even in a dry or water-retaining state, the releasability from the seedling pot, and the water. Performance such as permeability, breathability, and good workability is required.

特許文献1には、培土基材に、特定の熱融着性繊維を配合したことを特徴とする育苗用培土を加熱処理して培土中の熱融着性繊維を溶融接着させることを特徴とする苗床の固化方法が開示されている。
特許文献2には、育苗培土基材とアルギン酸塩とを含む育苗培土の製造方法であって、上記育苗培土中の多価カチオン当量(me)が、上記アルギン酸塩のアニオン当量(me)の160%以上となるように、上記育苗培土基材とアルギン酸塩とを混合することを特徴とする育苗培土の製造方法が開示されている。
Patent Document 1 is characterized in that the heat-sealing soil for raising seedlings, which is characterized by blending a specific heat-sealing fiber with the soil base material, is heat-treated to melt-bond the heat-sealing fiber in the soil. The method of solidifying the nursery is disclosed.
Patent Document 2 describes a method for producing a seedling raising soil containing a seedling raising soil base material and an arginate, wherein the polyvalent cation equivalent (me) in the seedling raising soil is 160 of the anion equivalent (me) of the arginate. A method for producing a seedling raising soil, which comprises mixing the above-mentioned seedling raising soil base material and an arginate so as to be% or more, is disclosed.

特開2003-339226号公報Japanese Patent Application Laid-Open No. 2003-339226 特開2001-333635号公報Japanese Unexamined Patent Publication No. 2001-333635

しかしながら、特許文献1に開示されている方法は、培土が固化する際に熱融着性繊維を加熱する必要があるため、加熱設備が必要となると共に、使用し得る育苗ポットの材質にも制限が生じる。また、融着固化を可能にするほど繊維を培土に添加すると、育苗ポットへの充填作業中に繊維塊が生じる等、作業性が悪化する場合がある。また、これらの問題により、培土の購入者は事前に育苗ポット内で培土を固化させたものを購入する必要性が高くなり、購入者側で固化の時期等を調整できない等、使用方法が制限される問題がある。更には、これらの材料は生分解性が低いため環境適合性に劣るという問題がある。
特許文献2に開示されている方法は、多価カチオンの供給源として、消石灰又は土に含まれる無機物化合物由来の多価カチオンを利用し、これとアルギン酸塩を反応させて固化させるものである。しかしながら、消石灰は多価カチオンの濃度が高く、例えば、育成ポット内で消石灰を配合した育苗培土とアルギン酸塩とを混合すると、培土の表面でのゲル化が速く進行しすぎ、育苗ポットの内部にまでアルギン酸塩が浸透できない問題が生じる。また、消石灰や土に含まれる無機物化合物由来の多価カチオンは水に溶解するものであったり、或いはイオン状態で存在するものであるため、培土中における濃度及び分散性をコントロールすることが困難であり、良好な固化状態を容易に得ることができなかった。
However, the method disclosed in Patent Document 1 requires heating equipment because it is necessary to heat the heat-sealing fibers when the soil is solidified, and the material of the seedling raising pot that can be used is also limited. Occurs. In addition, if fibers are added to the soil to the extent that fusion and solidification are possible, workability may be deteriorated, such as fiber lumps being generated during the filling operation into the seedling raising pot. In addition, due to these problems, it becomes more necessary for the purchaser of the hilling to purchase the solidified soil in the nursery pot in advance, and the purchaser cannot adjust the time of solidification, etc., and the usage is restricted. There is a problem to be. Further, since these materials have low biodegradability, there is a problem that they are inferior in environmental compatibility.
The method disclosed in Patent Document 2 uses a polyvalent cation derived from an inorganic compound contained in slaked lime or soil as a source of the polyvalent cation, and reacts this with alginate to solidify it. However, slaked lime has a high concentration of polyvalent cations. For example, when seedling raising soil containing slaked lime and alginate are mixed in a growing pot, gelation on the surface of the growing soil progresses too quickly, and the inside of the seedling raising pot becomes There is a problem that alginate cannot penetrate. In addition, since polyvalent cations derived from inorganic compounds contained in slaked lime and soil are soluble in water or exist in an ionic state, it is difficult to control the concentration and dispersibility in soil. Therefore, it was not possible to easily obtain a good solidified state.

本発明は、このような課題を解決するためになされたものであり、生分解性に優れる材料からなり、優れた作業性と優れた固化性とを両立する育苗培土の製造方法、該製造方法に用いられる製造キット及び培土混合物、並びに該製造方法で得られる育苗培土を提供することである。 The present invention has been made to solve such a problem, and is a method for producing a seedling hilling soil, which is made of a material having excellent biodegradability and has both excellent workability and excellent solidification property. It is to provide the manufacturing kit and the hilling mixture used in the above, and the seedling raising soil obtained by the manufacturing method.

本発明者は、上記の課題に関して鋭意検討を重ねた結果、培土基材と、アルギン酸の多価カチオン塩と、アルギン酸の1価カチオン塩と、を配合する育苗培土の製造方法によって、上記課題が解決されることを見出し、本発明を完成するに至った。
本発明は下記[1]~[12]に関する。
[1]培土基材(A)と、アルギン酸の多価カチオン塩(B)と、アルギン酸の1価カチオン塩(C)と、を配合する育苗培土の製造方法。
[2]アルギン酸の多価カチオン塩(B)が、繊維の形態で配合されてなる、上記[1]に記載の育苗培土の製造方法。
[3]前記繊維の平均繊維長が、1~50mmであり、平均繊維径が、0.01~3mmである、上記[2]に記載の育苗培土の製造方法。
[4]下記工程A1及び工程A2を有する、上記[1]~[3]のいずれかに記載の育苗培土の製造方法。
工程A1:培土基材(A)とアルギン酸の多価カチオン塩(B)とを混合して、培土混合物を得る工程
工程A2:前記培土混合物にアルギン酸の1価カチオン塩(C)水溶液を添加する工程
[5]前記アルギン酸の1価カチオン塩(C)水溶液中におけるアルギン酸の1価カチオン塩(C)の濃度が、0.01~10質量%である、上記[4]に記載の育苗培土の製造方法。
[6]アルギン酸の多価カチオン塩(B)が、アルギン酸カルシウム塩である、上記[1]~[5]のいずれかに記載の育苗培土の製造方法。
[7]アルギン酸の1価カチオン塩(C)が、アルギン酸ナトリウム塩である、上記[1]~[6]のいずれかに記載の育苗培土の製造方法。
[8]アルギン酸の多価カチオン塩(B)の配合量が、培土基材(A)100質量部に対して、0.1~50質量部である、上記[1]~[7]のいずれかに記載の育苗培土の製造方法。
[9]アルギン酸の1価カチオン塩(C)の配合量が、培土基材(A)100質量部に対して、0.05~20質量部である、上記[1]~[8]のいずれかに記載の育苗培土の製造方法。
[10]上記[1]~[9]のいずれかに記載の育苗培土の製造方法によって製造される育苗培土。
[11]上記[1]~[9]のいずれかに記載の育苗培土の製造方法に用いられる育苗培土の製造キットであって、培土基材(A)とアルギン酸の多価カチオン塩(B)とを混合してなる培土混合物と、アルギン酸の1価カチオン塩(C)水溶液と、を備える育苗培土の製造キット。
[12]上記[1]~[9]のいずれかに記載の育苗培土の製造方法に用いられる、培土基材(A)とアルギン酸の多価カチオン塩(B)とを配合してなる培土混合物。
As a result of diligent studies on the above-mentioned problems, the present inventor has solved the above-mentioned problems depending on the method for producing a seedling-growing soil in which a culture base material, a polyvalent cation salt of alginic acid, and a monovalent cation salt of alginic acid are blended. We have found that it can be solved and have completed the present invention.
The present invention relates to the following [1] to [12].
[1] A method for producing a seedling raising soil in which a culture base material (A), a polyvalent cation salt of alginic acid (B), and a monovalent cation salt of alginic acid (C) are blended.
[2] The method for producing seedling raising soil according to the above [1], wherein the polyvalent cation salt (B) of alginic acid is blended in the form of fibers.
[3] The method for producing seedling raising soil according to the above [2], wherein the average fiber length of the fiber is 1 to 50 mm and the average fiber diameter is 0.01 to 3 mm.
[4] The method for producing seedling raising soil according to any one of the above [1] to [3], which comprises the following steps A1 and A2.
Step A1: A culture soil base material (A) and a polyvalent cation salt (B) of alginic acid are mixed to obtain a culture soil mixture. Step A2: An aqueous solution of a monovalent cation salt (C) of alginic acid is added to the culture soil mixture. Step [5] The seedling growing soil according to the above [4], wherein the concentration of the monovalent cation salt (C) of alginic acid in the aqueous solution of the monovalent cation salt (C) of alginic acid is 0.01 to 10% by mass. Production method.
[6] The method for producing seedling raising soil according to any one of the above [1] to [5], wherein the polyvalent cation salt (B) of alginic acid is a calcium alginate salt.
[7] The method for producing seedling raising soil according to any one of the above [1] to [6], wherein the monovalent cation salt (C) of alginic acid is a sodium alginate salt.
[8] Any of the above [1] to [7], wherein the blending amount of the polyvalent cation salt (B) of alginic acid is 0.1 to 50 parts by mass with respect to 100 parts by mass of the culture base material (A). Manufacturing method of seedling cultivation soil described in Crab.
[9] Any of the above [1] to [8], wherein the blending amount of the monovalent cation salt (C) of alginic acid is 0.05 to 20 parts by mass with respect to 100 parts by mass of the soil base material (A). Manufacturing method of seedling cultivation soil described in Crab.
[10] A seedling raising soil produced by the method for producing a seedling raising soil according to any one of the above [1] to [9].
[11] A kit for producing seedling hilling soil used in the method for producing seedling hilling soil according to any one of [1] to [9] above, wherein the soil base material (A) and the polyvalent cation salt (B) of alginic acid are used. A kit for producing seedling hilling soil, which comprises a soil hilling mixture obtained by mixing the above and an aqueous solution of a monovalent cation salt (C) of alginic acid.
[12] A soil mixture obtained by blending a soil base material (A) and a polyvalent cation salt of alginic acid (B) used in the method for producing seedling cultivation soil according to any one of the above [1] to [9]. ..

本発明によると、生分解性に優れる材料からなり、優れた作業性と優れた固化性とを両立する育苗培土の製造方法、該製造方法に用いられる製造キット及び培土混合物、並びに該製造方法で得られる育苗培土を提供することができる。 According to the present invention, a method for producing a nursery soil, which is made of a material having excellent biodegradability and has both excellent workability and excellent solidification, a production kit and a soil mixture used in the production method, and the production method. The obtained seedling raising soil can be provided.

実施例1で得られた培土(乾燥状態)の外観写真である。It is an appearance photograph of the hilling (dry state) obtained in Example 1. 比較例2で得られた培土(乾燥状態)の外観写真である。It is an external photograph of the hilling (dry state) obtained in Comparative Example 2.

以下、本発明の一実施形態について詳述するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, one embodiment of the present invention will be described in detail, but the present invention is not limited to the following embodiments.

[育苗培土の製造方法]
本実施形態の育苗培土の製造方法は、培土基材(A)と、アルギン酸の多価カチオン塩(B)(以下、「アルギン酸多価塩(B)」ともいう)と、アルギン酸の1価カチオン塩(C)(以下、「アルギン酸1価塩(C)」ともいう)と、を配合する育苗培土の製造方法である。
本実施形態の育苗培土の製造方法が優れた作業性と優れた固化性とを両立する機構は定かではないが以下のように推察される。
本実施形態の製造方法は、アルギン酸多価塩(B)とアルギン酸1価塩(C)とを併用するものである。アルギン酸多価塩(B)は水溶性が低く、分散性にも優れることから、培土中に適度な分散性を保った状態で存在させることが可能である。一方、アルギン酸1価塩(C)は水溶性に優れることから、水溶液として培土全体に均質に行き渡らせることができる。そして、培土中で(B)成分と(C)成分とが接触すると、アルギン酸多価塩(B)の表面近傍に存在する多価カチオンの一部がアルギン酸1価塩(C)の1価カチオンとイオン交換され、培土に行き渡らせたアルギン酸1価塩(C)が緩やかにゲル化される。このようにして、本実施形態の製造方法によると、均一に分散したアルギン酸多価塩(B)を起点として、アルギン酸1価塩(C)がゲル化してなる網目構造が培土中に広がり、これによって良好な固化状態が保たれるものと考えられる。
また、本実施形態の製造方法によると、アルギン酸1価塩(C)とアルギン酸多価塩(B)とを接触させるタイミングは育苗培土の購入者が決定できるため、培土の購入者は用途に応じた柔軟な使用方法が可能である。
また、本実施形態の製造方法に用いられるアルギン酸多価塩(B)とアルギン酸1価塩(C)とは、いずれも生分解性に優れるものであるため、環境適合性にも優れるものである。
さらには、本実施形態の製造方法で得られる育苗培土は、乾燥状態又は湿潤状態のいずれの環境下においても優れた固化状態が保たれるため、作業性に優れたものとなる。
[Manufacturing method of nursery soil]
The method for producing seedling cultivation soil of the present embodiment includes a soil base material (A), a polyvalent cation salt of alginic acid (B) (hereinafter, also referred to as “alginic acid polyvalent salt (B)”), and a monovalent cation of alginic acid. This is a method for producing seedling cultivation soil in which a salt (C) (hereinafter, also referred to as “alginic acid monovalent salt (C)”) is blended.
Although the mechanism by which the method for producing the seedling raising soil of the present embodiment achieves both excellent workability and excellent solidification property is not clear, it is presumed as follows.
In the production method of this embodiment, the alginic acid polyvalent salt (B) and the alginic acid monovalent salt (C) are used in combination. Since the alginic acid polyvalent salt (B) has low water solubility and excellent dispersibility, it can be present in the soil in a state of maintaining appropriate dispersibility. On the other hand, since the alginic acid monovalent salt (C) is excellent in water solubility, it can be uniformly distributed throughout the soil as an aqueous solution. Then, when the component (B) and the component (C) come into contact with each other in the soil, a part of the polyvalent cation existing near the surface of the alginic acid polyvalent salt (B) is a monovalent cation of the alginic acid monovalent salt (C). The monovalent alginic acid salt (C) that has been ion-exchanged with and spread over the soil is slowly gelled. In this way, according to the production method of the present embodiment, a network structure in which the alginic acid monovalent salt (C) is gelled from the uniformly dispersed alginic acid polyvalent salt (B) spreads in the soil. It is considered that a good solidification state is maintained.
Further, according to the production method of the present embodiment, the timing of contacting the alginic acid monovalent salt (C) and the alginic acid polyvalent salt (B) can be determined by the purchaser of the nursery soil, so that the purchaser of the soil can be used according to the application. Flexible usage is possible.
Further, since the alginic acid polyvalent salt (B) and the alginic acid monovalent salt (C) used in the production method of the present embodiment are both excellent in biodegradability, they are also excellent in environmental compatibility. ..
Further, the seedling raising soil obtained by the production method of the present embodiment is maintained in an excellent solidified state in either a dry state or a wet state, and thus has excellent workability.

<培土基材(A)>
培土基材(A)は、育成する植物の種類に応じて、育苗用培土として公知のものを使用することができる。具体的には、赤玉土、鹿沼土、荒木田土、腐葉土、桐生砂等の各種園芸用土;川砂、海砂、浜砂、山砂等の砂類;パーライト、バーミキュライト、ロックウール、ゼオライト、鉱滓等の鉱物;ピートモス、ココピート、水苔、腐葉土、パーク堆肥、モミガラ、亜炭、薫炭、フスマ、炭粉等の有機質資材などが挙げられる。
培土基材(A)は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、必要に応じて、無機質肥料、有機質肥料、化学堆肥等の肥料などを配合したものであってもよい。
<Hilling base material (A)>
As the hilling base material (A), a known hilling soil for raising seedlings can be used depending on the type of plant to be grown. Specifically, various gardening soils such as Akadama soil, Kanuma soil, Arakida soil, rotten leaf soil, Kiryu sand; sands such as river sand, sea sand, beach sand, mountain sand; perlite, vermiculite, rock wool, zeolite, mineral slag, etc. Minerals: Organic materials such as peat moss, coco peat, water moss, leaf soil, perlite, fir, sub-charcoal, scented charcoal, fusuma, and charcoal powder.
As the hilling substrate (A), one type may be used alone, or two or more types may be used in combination. Further, if necessary, fertilizers such as inorganic fertilizers, organic fertilizers, and chemical composts may be blended.

<アルギン酸の多価カチオン塩(B)>
アルギン酸多価塩(B)は、アルギン酸の多価カチオン塩であれば特に限定されず、アルギン酸マグネシウム塩、アルギン酸カルシウム塩、アルギン酸ストロンチウム塩、アルギン酸バリウム塩等のアルギン酸アルカリ土類金属塩;アルギン酸鉄塩、アルギン酸亜鉛塩、アルギン酸銅塩等のアルギン酸遷移金属塩;アルギン酸アルミニウム塩等の3価以上のカチオン塩などが挙げられる。これらの中でも、汎用性及び培土の固化性の観点から、アルギン酸の2価カチオン塩が好ましく、アルギン酸アルカリ土類金属塩がより好ましく、アルギン酸カルシウム塩がさらに好ましい。
<Multivalent cation salt of alginic acid (B)>
The alginic acid polyvalent salt (B) is not particularly limited as long as it is a polyvalent cationic salt of alginic acid, and is an alkaline earth metal salt of alginate such as magnesium alginate, calcium alginate, strontium alginate, barium alginate; iron salt alginate. , Arginic acid transition metal salts such as zinc alginate and copper alginate; cation salts having a valence of 3 or more such as aluminum alginate can be mentioned. Among these, from the viewpoint of versatility and solidification of soil, a divalent cation salt of alginic acid is preferable, an alkaline earth metal salt of alginic acid is more preferable, and a calcium alginate salt is further preferable.

アルギン酸多価塩(B)のマンヌロン酸(M)とグルロン酸(G)の比率であるM/G比は、良好な硬さを有する固化状態を得る観点から、0.1~5が好ましく、0.4~3がより好ましく、0.5~1.5がさらに好ましい。 The M / G ratio, which is the ratio of mannuronic acid (M) to gluronic acid (G) of the alginic acid polyvalent salt (B), is preferably 0.1 to 5 from the viewpoint of obtaining a solidified state having good hardness. 0.4 to 3 is more preferable, and 0.5 to 1.5 is even more preferable.

アルギン酸多価塩(B)における多価カチオンの含有量は、良好な硬さを有する固化状態を得る観点から、アルギン酸塩のモノマー単位(C)1モルに対して、0.01~3モルが好ましく、0.05~2モルよりが好ましく、0.1~1.5モルがさらに好ましい。 The content of the polyvalent cation in the alginic acid polyvalent salt ( B) is 0. It is preferably 01 to 3 mol, more preferably 0.05 to 2 mol, still more preferably 0.1 to 1.5 mol.

アルギン酸多価塩(B)を配合する際の形態は特に限定されず、例えば、繊維、粉末、ペレット、顆粒、フレーク等の形態で配合されることが好ましく、繊維の形態で配合されることがより好ましい。
アルギン酸多価塩(B)を粉末の形態で配合する場合、その粉末の平均粒子径は、適用する培土基材(A)及び植物の種類等に応じて適宜決定すればよいが、例えば、0.01~5mmであり、0.1~4mmが好ましく、0.5~2mmがより好ましい。なお、粉末の平均粒子径は、当該粉末の投影像においてとりうる最大長さの値と、その最大長さに直交する方向の最大長さ値の平均値を、任意に選択した10個の粉末について求め、これを平均した値として求めることができる。
アルギン酸多価塩(B)を繊維の形態で配合する場合、その繊維の平均繊維長は、1~50mmが好ましく、2~40mmがより好ましく、3~30mmがさらに好ましい。また、その平均繊維径は、0.01~3mmが好ましく、0.05~2.5mmがより好ましく、0.1~2mmがさらに好ましい。なお、繊維の平均繊維径及び平均繊維長は、当該繊維の投影像における繊維径及び繊維長を、任意に選択した10個の繊維について求め、これを平均した値として求めることができる。また、本実施形態において「繊維」とは、上記平均繊維長と平均繊維径との比[平均繊維長/平均繊維径]が2以上のものを意味する。上記平均繊維長と平均繊維径との比[平均繊維長/平均繊維径]は、良好な固化状態を得る観点から、3以上が好ましく、5以上がより好ましく、7以上がさらに好ましい。また、上記比[平均繊維長/平均繊維径]は、繊維の分散性の観点から、20以下であってもよく、15以下であってもよい。
また、繊維の断面形状としては、丸型、三角形型、T型、偏平型、多葉型、V字型、中空型等のいずれの形状であってもよい。
なお、アルギン酸多価塩(B)を繊維の形態にする方法としては、例えば、アルギン酸ナトリウム塩等のアルギン酸の1価カチオン塩水溶液を、所望のノズル径を有する紡糸ノズル等を使用して、塩化カルシウム水溶液等の多価カチオン塩化物水溶液中に吐出紡糸した後、形成された繊維状のアルギン酸多価塩を回収及び乾燥して得ることができる。上記のアルギン酸の1価カチオン塩水溶液の濃度は、例えば、0.5~10質量%であり、多価カチオン塩化物水溶液の濃度は、例えば、1~30質量%である。
アルギン酸多価塩(B)の製造に用いるアルギン酸1価カチオン塩の1質量%水溶液粘度は、汎用性、水への溶解性の観点から、10~1,000mPa・sが好ましく、20~600mPa・sがより好ましく、30~400mPa・sがさらに好ましい。
なお、アルギン酸多価塩(B)を、繊維、粉末、ペレット、顆粒、フレーク等の形態で配合する場合、これらは本発明の効果を阻害しない範囲において、アルギン酸多価塩(B)以外の成分を含んでいてもよい。
The form of blending the alginic acid polyvalent salt (B) is not particularly limited, and for example, it is preferably blended in the form of fibers, powders, pellets, granules, flakes, etc., and may be blended in the form of fibers. More preferred.
When the polyvalent alginic acid salt (B) is blended in the form of a powder, the average particle size of the powder may be appropriately determined according to the soil base material (A) to be applied, the type of plant, and the like, and is, for example, 0. It is 0.01 to 5 mm, preferably 0.1 to 4 mm, and more preferably 0.5 to 2 mm. The average particle size of the powder is 10 powders in which the average value of the maximum length that can be taken in the projected image of the powder and the average value of the maximum length in the direction orthogonal to the maximum length are arbitrarily selected. Can be calculated and this can be calculated as an average value.
When the alginic acid polyvalent salt (B) is blended in the form of a fiber, the average fiber length of the fiber is preferably 1 to 50 mm, more preferably 2 to 40 mm, still more preferably 3 to 30 mm. The average fiber diameter thereof is preferably 0.01 to 3 mm, more preferably 0.05 to 2.5 mm, still more preferably 0.1 to 2 mm. The average fiber diameter and average fiber length of the fibers can be obtained by determining the fiber diameter and fiber length in the projected image of the fiber for 10 arbitrarily selected fibers and averaging them. Further, in the present embodiment, the “fiber” means a fiber having a ratio [average fiber length / average fiber diameter] of the average fiber length to the average fiber diameter of 2 or more. The ratio of the average fiber length to the average fiber diameter [average fiber length / average fiber diameter] is preferably 3 or more, more preferably 5 or more, still more preferably 7 or more, from the viewpoint of obtaining a good solidified state. Further, the above ratio [average fiber length / average fiber diameter] may be 20 or less or 15 or less from the viewpoint of fiber dispersibility.
The cross-sectional shape of the fiber may be any of a round shape, a triangular shape, a T shape, a flat shape, a multi-leaf shape, a V-shape, a hollow shape and the like.
As a method for forming the alginic acid polyvalent salt (B) into a fiber form, for example, an aqueous solution of a monovalent cation salt of alginic acid such as sodium alginate is chloride using a spinning nozzle having a desired nozzle diameter or the like. It can be obtained by discharging and spinning in a polyvalent cationic chloride aqueous solution such as a calcium aqueous solution, and then recovering and drying the formed fibrous alginic acid polyvalent salt. The concentration of the monovalent cation salt aqueous solution of alginic acid is, for example, 0.5 to 10% by mass, and the concentration of the polyvalent cation chloride aqueous solution is, for example, 1 to 30% by mass.
The viscosity of the 1% by mass aqueous solution of the alginic acid monovalent cation salt used for producing the alginic acid polyvalent salt (B) is preferably 10 to 1,000 mPa · s, preferably 20 to 600 mPa · s from the viewpoint of versatility and solubility in water. s is more preferable, and 30 to 400 mPa · s is even more preferable.
When the alginic acid polyvalent salt (B) is blended in the form of fibers, powders, pellets, granules, flakes, etc., these are components other than the alginic acid polyvalent salt (B) as long as the effects of the present invention are not impaired. May include.

アルギン酸多価塩(B)の配合量は、良好な固化状態を得る観点から、培土基材(A)100質量部に対して、0.1~50質量部が好ましく、0.5~30質量部がより好ましく、1~10質量部がさらに好ましい。 The blending amount of the alginic acid polyvalent salt (B) is preferably 0.1 to 50 parts by mass and 0.5 to 30 parts by mass with respect to 100 parts by mass of the soil base material (A) from the viewpoint of obtaining a good solidified state. Parts are more preferable, and 1 to 10 parts by mass are even more preferable.

<アルギン酸の1価カチオン塩(C)>
アルギン酸1価塩(C)は、アルギン酸の1価カチオン塩であれば特に限定されず、例えば、アルギン酸リチウム塩、アルギン酸ナトリウム塩、アルギン酸カリウム塩等のアルギン酸アルカリ金属塩;アルギン酸アンモニウム塩などが挙げられる。これらの中でも、汎用性及び培土の固化性の観点から、アルギン酸アルカリ金属塩が好ましく、アルギン酸ナトリウム塩がより好ましい。
<Monivalent cation salt of alginic acid (C)>
The alginic acid monovalent salt (C) is not particularly limited as long as it is a monovalent cation salt of alginic acid, and examples thereof include alginic acid alkali metal salts such as lithium alginate salt, sodium alginate salt, and potassium alginate salt; ammonium alginate salt and the like. .. Among these, an alkali metal alginate salt is preferable, and a sodium alginate salt is more preferable, from the viewpoint of versatility and solidification of soil.

アルギン酸1価塩(C)の1質量%水溶液粘度は、汎用性、水への溶解性の観点から、10~1,000mPa・sが好ましく、20~600mPa・sがより好ましく、30~400mPa・sがさらに好ましい。 The viscosity of the 1% by mass aqueous solution of alginic acid monovalent salt (C) is preferably 10 to 1,000 mPa · s, more preferably 20 to 600 mPa · s, and 30 to 400 mPa · s from the viewpoint of versatility and solubility in water. s is more preferable.

アルギン酸1価塩(C)のマンヌロン酸(M)とグルロン酸(G)の比率であるM/G比は、良好な硬さを有する固化状態を得る観点から、0.1~10が好ましく、0.4~5がより好ましく、0.5~3がさらに好ましい。 The M / G ratio, which is the ratio of mannuronic acid (M) to gluronic acid (G) of the alginic acid monovalent salt (C), is preferably 0.1 to 10 from the viewpoint of obtaining a solidified state having good hardness. 0.4 to 5 is more preferable, and 0.5 to 3 is even more preferable.

アルギン酸1価塩(C)における1価カチオンの含有量は、良好な硬さを有する固化状態を得る観点から、アルギン酸塩のモノマー単位(C)1モルに対して、0.5~3モルが好ましく、0.6~2モルよりが好ましく、0.8~1.5モルがさらに好ましい。 The content of the monovalent cation in the alginic acid monovalent salt ( C) is 0. It is preferably 5 to 3 mol, more preferably 0.6 to 2 mol, still more preferably 0.8 to 1.5 mol.

アルギン酸1価塩(C)を配合する際の形態は特に限定されず、例えば、繊維、粉末、ペレット、顆粒、フレーク、水溶液等の形態で配合されることが好ましく、水溶液の形態で配合されることがより好ましい。
アルギン酸1価塩(C)を粉末の形態で配合する場合、その粉末の平均粒子径は、適用する培土基材(A)及び植物の種類等に応じて適宜決定すればよいが、例えば、0.01~3mmであり、0.05~2.5mmが好ましく、0.1~2mmがより好ましい。平均粒子径の算出方法は、アルギン酸多価塩(B)の平均粒子径の算出方法と同じである。
アルギン酸1価塩(C)を水溶液の形態で配合する場合、その水溶液中の濃度は、アルギン酸1価塩(C)、適用する培土基材(A)及び植物の種類等に応じて適宜決定すればよいが、例えば、0.01~10質量%であり、0.05~5質量%が好ましく、0.1~4質量%がより好ましい。
アルギン酸1価塩(C)の水溶液は、例えば、所定量のアルギン酸1価塩(C)を、イオン交換水に投入し、必要に応じて、加熱及び撹拌することで調製することができる。
The form of blending the alginic acid monovalent salt (C) is not particularly limited, and for example, it is preferably blended in the form of fibers, powders, pellets, granules, flakes, an aqueous solution, etc., and is blended in the form of an aqueous solution. Is more preferable.
When the alginic acid monovalent salt (C) is blended in the form of a powder, the average particle size of the powder may be appropriately determined according to the soil base material (A) to be applied, the type of plant, etc., but is, for example, 0. It is 0.01 to 3 mm, preferably 0.05 to 2.5 mm, and more preferably 0.1 to 2 mm. The method for calculating the average particle size is the same as the method for calculating the average particle size of the alginic acid polyvalent salt (B).
When the alginic acid monovalent salt (C) is blended in the form of an aqueous solution, the concentration in the aqueous solution should be appropriately determined according to the alginic acid monovalent salt (C), the soil base material (A) to be applied, the type of plant, and the like. However, for example, it is 0.01 to 10% by mass, preferably 0.05 to 5% by mass, and more preferably 0.1 to 4% by mass.
An aqueous solution of the alginic acid monovalent salt (C) can be prepared, for example, by adding a predetermined amount of the alginic acid monovalent salt (C) to ion-exchanged water, heating and stirring the mixture, if necessary.

なお、アルギン酸1価塩(C)を、繊維、粉末、ペレット、顆粒、フレーク、水溶液等の形態で配合する場合、これらは本発明の効果を阻害しない範囲において、アルギン酸1価塩(C)以外の成分を含んでいてもよい。 When the alginic acid monovalent salt (C) is blended in the form of fibers, powders, pellets, granules, flakes, aqueous solutions, etc., these are other than the alginic acid monovalent salt (C) as long as the effects of the present invention are not impaired. May contain the components of.

アルギン酸1価塩(C)の配合量は、良好な固化状態を得る観点から、培土基材(A)100質量部に対して、0.05~20質量部が好ましく、0.1~10質量部がより好ましく、0.12~5質量部がさらに好ましい。
アルギン酸多価塩(B)由来の多価カチオンと、アルギン酸1価塩(C)由来の1価カチオンとの配合比((B)/(C))は、良好な固化状態を得る観点から、0.01~200が好ましく、0.05~20がより好ましく、0.1~10がさらに好ましい。
The blending amount of the alginic acid monovalent salt (C) is preferably 0.05 to 20 parts by mass and 0.1 to 10 parts by mass with respect to 100 parts by mass of the soil base material (A) from the viewpoint of obtaining a good solidified state. Parts are more preferable, and 0.12 to 5 parts by mass are even more preferable.
The compounding ratio ((B) / (C)) of the polyvalent cation derived from the alginic acid polyvalent salt (B) and the monovalent cation derived from the alginic acid monovalent salt (C) is from the viewpoint of obtaining a good solidified state. 0.01 to 200 is preferable, 0.05 to 20 is more preferable, and 0.1 to 10 is even more preferable.

<配合方法>
培土基材(A)とアルギン酸多価塩(B)とアルギン酸1価塩(C)との配合方法としては、特に限定されないが、優れた作業性と優れた固化性を両立させる観点から、下記工程A1及びA2を有する配合方法Aが好ましい。
工程A1:培土基材(A)とアルギン酸多価塩(B)とを混合する工程
工程A2:工程A1で得られた混合物にアルギン酸1価塩(C)水溶液を添加する工程
<Mixing method>
The method for blending the soil base material (A), the alginic acid polyvalent salt (B), and the alginic acid monovalent salt (C) is not particularly limited, but is described below from the viewpoint of achieving both excellent workability and excellent solidification. The compounding method A having steps A1 and A2 is preferable.
Step A1: A step of mixing the soil substrate (A) and the alginic acid polyvalent salt (B) Step A2: A step of adding an aqueous solution of the alginic acid monovalent salt (C) to the mixture obtained in the step A1.

(工程A1)
工程A1は、培土基材(A)とアルギン酸多価塩(B)とを混合して、培土混合物を得る工程である。
培土基材(A)とアルギン酸多価塩(B)とを混合する方法は特に限定されず、例えば、公知のミキサー、捏和機等の機械による撹拌;手作業による撹拌などの方法が挙げられる。
工程A1によって、培土基材(A)とアルギン酸多価塩(B)とを混合してなる培土混合物が得られる。
(Step A1)
Step A1 is a step of mixing the soil base material (A) and the alginic acid polyvalent salt (B) to obtain a soil mixture.
The method of mixing the soil base material (A) and the alginic acid polyvalent salt (B) is not particularly limited, and examples thereof include a method of stirring by a machine such as a known mixer or kneader; or by manual stirring. ..
By step A1, a hilling mixture obtained by mixing the hilling substrate (A) and the alginic acid polyvalent salt (B) is obtained.

(工程A2)
工程A2は、工程A1で得られた培土混合物にアルギン酸1価塩(C)水溶液を添加する工程である。
培土混合物にアルギン酸1価塩(C)水溶液を添加する方法は特に限定されず、例えば、アルギン酸1価塩(C)水溶液を培土混合物に潅水する方法、アルギン酸1価塩(C)水溶液を培土混合物に潅注する方法、アルギン酸1価塩(C)水溶液中に培土混合物を浸漬する方法等が挙げられる。
培土混合物にアルギン酸1価塩(C)水溶液を添加することにより、培土混合物中のアルギン酸多価塩(B)と水溶液中のアルギン酸1価塩(C)とが反応して、固化した培土が得られる。
(Step A2)
Step A2 is a step of adding an aqueous solution of alginic acid monovalent salt (C) to the soil mixture obtained in step A1.
The method of adding the alginic acid monovalent salt (C) aqueous solution to the soil mixture is not particularly limited, and for example, a method of irrigating the alginic acid monovalent salt (C) aqueous solution to the culture soil mixture, and an alginic acid monovalent salt (C) aqueous solution of the culture soil mixture. A method of irrigating the soil, a method of immersing the culture soil mixture in an aqueous solution of alginic acid monovalent salt (C), and the like can be mentioned.
By adding an aqueous solution of alginic acid monovalent salt (C) to the culture soil mixture, the alginic acid polyvalent salt (B) in the culture soil mixture reacts with the alginic acid monovalent salt (C) in the aqueous solution to obtain solidified culture soil. Be done.

配合方法Aによる場合、工程A1で得られる育苗培土は、工程A2を実施するまでは固化しない状態が保たれる。したがって、育苗培土の使用者は、所望の時期に工程A2を実施することで、育苗培土を固化することができる。
配合方法Aによる場合、工程A1は、培土基材(A)を植物育成用容器に充填する前に実施することが好ましく、工程A2は、上記培土混合物を植物育成用容器に充填した後に実施することが好ましい。
また、本実施形態の製造方法で得られる育苗培土に播種を行う場合、播種の時期は特に限定されず、工程A1の前、工程A1と工程A2との間、工程A2の後のいずれの時期であってもよいが、工程A2の後であることが好ましい。
In the case of the compounding method A, the seedling raising soil obtained in the step A1 is maintained in a state of not solidifying until the step A2 is carried out. Therefore, the user of the seedling raising soil can solidify the seedling raising soil by carrying out the step A2 at a desired time.
In the case of the compounding method A, the step A1 is preferably carried out before filling the plant growing container with the soil base material (A), and the step A2 is carried out after filling the above-mentioned soil mixture in the plant growing container. Is preferable.
Further, when sowing the seedling growing soil obtained by the production method of the present embodiment, the sowing time is not particularly limited, and any time before step A1, between steps A1 and A2, and after step A2. However, it is preferably after step A2.

培土基材(A)とアルギン酸多価塩(B)とアルギン酸1価塩(C)との配合方法は、下記工程B1を有する配合方法Bであってもよい。
工程B1:培土基材(A)とアルギン酸多価塩(B)と固形のアルギン酸1価塩(C)とを混合して、育苗培土を得る工程
The compounding method of the soil base material (A), the alginic acid polyvalent salt (B), and the alginic acid monovalent salt (C) may be the compounding method B having the following step B1.
Step B1: A step of mixing a soil base material (A), an alginic acid polyvalent salt (B), and a solid alginic acid monovalent salt (C) to obtain seedling raising soil.

工程B1における混合方法は、上記工程A1で挙げられた方法と同じ方法が挙げられる。また、固形のアルギン酸1価塩(C)の形状は、上記した通り、繊維、粉末、ペレット、顆粒、フレーク等が挙げられ、その好ましい態様も同様である。 As the mixing method in the step B1, the same method as the method mentioned in the above step A1 can be mentioned. Further, as described above, the shape of the solid alginic acid monovalent salt (C) includes fibers, powders, pellets, granules, flakes and the like, and the preferred embodiments thereof are also the same.

配合方法Bによる場合、工程B1で得られる育苗培土は、水を添加するまでは固化しない状態が保たれる。したがって、育苗培土の使用者は、所望の時期に育苗培土に水を添加することで、育苗培土を固化することができる。なお、工程B1で得られる育苗培土に対して水を添加して培土を固化する工程を「工程B2」と称する。
配合方法Bによる場合、工程B1は、培土基材(A)を植物育成用容器に充填する前に実施することが好ましく、工程B2は、上記培土混合物を植物育成用容器に充填した後に実施することが好ましい。
また、本実施形態の製造方法で得られる育苗培土に播種を行う場合、播種の時期は特に限定されず、工程B1の前、工程B1と工程B2の間、工程B2の後のいずれの時期であってもよいが、工程B2の後であることが好ましい。
In the case of the compounding method B, the seedling raising soil obtained in the step B1 is maintained in a state of not solidifying until water is added. Therefore, the user of the seedling raising soil can solidify the seedling raising soil by adding water to the seedling raising soil at a desired time. The step of adding water to the seedling raising soil obtained in step B1 to solidify the soil is referred to as "step B2".
In the case of the compounding method B, step B1 is preferably carried out before filling the plant growing container with the soil base material (A), and step B2 is carried out after filling the above-mentioned soil mixture in the plant growing container. Is preferable.
Further, when sowing the seedling raising soil obtained by the production method of the present embodiment, the sowing time is not particularly limited, and any time before step B1, between steps B1 and B2, and after step B2. It may be present, but it is preferably after step B2.

<育苗培土の用途>
本実施形態の育苗培土の製造方法により得られる育苗培土を充填する植物育成用容器の形状は特に限定されず、様々な形状を有するものに適用可能である。
植物育成用容器としては、底壁及び側壁を有し、底壁の形状が、略円形、略四角形、略六角形等の形状を有するものが挙げられ、育苗ポット、育苗セル等の公知の容器を使用することができる。上記育苗セルは複数個が連なった育苗トレイの形態を有していてもよい。
上記育苗ポット又は育苗セルのサイズは、例えば、開口部穴径が20~60mm、深さが40~65mm、容積は9~165cmである。
本実施形態の育苗培土の製造方法により製造された育苗培土は、野菜、花卉、苗木、稲等の農園芸作物に対して好適である。
<Use of seedling raising soil>
The shape of the plant growing container filled with the seedling raising soil obtained by the method for producing the seedling raising soil of the present embodiment is not particularly limited, and can be applied to those having various shapes.
Examples of the plant growing container include a container having a bottom wall and a side wall and having a bottom wall having a shape such as a substantially circular shape, a substantially quadrangular shape, or a substantially hexagonal shape, and is a known container such as a seedling raising pot or a seedling raising cell. Can be used. The seedling raising cell may have the form of a seedling raising tray in which a plurality of seedling raising cells are connected.
The size of the seedling raising pot or the seedling raising cell is, for example, an opening hole diameter of 20 to 60 mm, a depth of 40 to 65 mm, and a volume of 9 to 165 cm 3 .
The seedling raising soil produced by the method for producing seedling raising soil of the present embodiment is suitable for agricultural and horticultural crops such as vegetables, flowers, seedlings, and rice.

[育苗培土]
本実施形態の育苗培土は、上記本実施形態の育苗培土の製造方法によって製造される育苗培土である。したがって、本実施形態の育苗培土は、培土基材(A)と、アルギン酸の多価カチオン塩(B)及びアルギン酸の多価カチオン塩(B)に由来する成分からなる群から選ばれる1種以上と、アルギン酸の1価カチオン塩(C)及びアルギン酸の1価カチオン塩(C)に由来する成分からなる群から選ばれる1種以上と、を含有するものである。
各成分の種類、配合量、配合方法等は、すべて上記した通りである。
[Soil raising seedlings]
The seedling raising soil of the present embodiment is the seedling raising soil produced by the method for producing the seedling raising soil of the present embodiment. Therefore, the seedling raising soil of the present embodiment is one or more selected from the group consisting of the soil base material (A) and the components derived from the alginic acid polyvalent cation salt (B) and the alginic acid polyvalent cation salt (B). And one or more selected from the group consisting of a monovalent cation salt (C) of alginic acid and a component derived from the monovalent cation salt (C) of alginic acid.
The types, blending amounts, blending methods, etc. of each component are all as described above.

[育苗培土の製造キット]
本実施形態の育苗培土の製造キットは、上記本実施形態の育苗培土の製造方法に用いられる育苗培土の製造キットであって、培土基材(A)とアルギン酸の多価カチオン塩(B)とを混合してなる培土混合物と、アルギン酸の1価カチオン塩(C)水溶液と、を備える育苗培土の製造キットである。
培土基材(A)とアルギン酸多価塩(B)とを混合してなる培土混合物は、上記工程A1で得られるものと同じであり、その好適な態様も同様である。また、アルギン酸1価塩(C)水溶液の好適な態様も上記と同様である。
[Manufacturing kit for raising seedlings]
The seedling hilling production kit of the present embodiment is a seedling hilling production kit used in the method for producing seedling hilling of the present embodiment, and includes a soil base material (A) and a polyvalent cation salt (B) of alginic acid. This is a kit for producing seedling hilling soil, which comprises a soil hilling mixture obtained by mixing the above-mentioned hilling soil and an aqueous solution of a monovalent cation salt (C) of alginic acid.
The hilling mixture obtained by mixing the hilling substrate (A) and the alginic acid polyvalent salt (B) is the same as that obtained in the above step A1, and the preferred embodiment thereof is also the same. Further, the preferred embodiment of the aqueous solution of alginic acid monovalent salt (C) is the same as described above.

[培土混合物]
本実施形態の培土混合物は、上記本実施形態の育苗培土の製造方法に用いるために用いる、培土基材(A)とアルギン酸多価塩(B)とを混合してなる培土混合物である。
培土混合物は、上記工程A1で得られるものと同じであり、その好適な態様も同様である。
[Hilling mixture]
The hilling mixture of the present embodiment is a hilling mixture obtained by mixing a hilling base material (A) and an alginic acid polyvalent salt (B), which is used for use in the method for producing seedling raising soil of the present embodiment.
The soil mixture is the same as that obtained in the above step A1, and the preferred embodiment thereof is also the same.

以下、実施例を示し、本発明について具体的に説明するが、本発明はこれらに限定されるものではない。なお、各例で得られたアルギン酸塩及び育苗培土は、下記方法によって評価した。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. The alginate and seedling raising soil obtained in each example were evaluated by the following method.

[育苗培土の固化性]
各例で得られた育苗ポット内の培土を、ポットを反転させて振動を加えて取り出し、その際に培土の崩壊が生じるか否かを目視にて確認した。更に、崩壊しなかった培土について30cmの高さより自然落下させる落下試験を行い、崩壊の有無を目視で確認し、下記基準に基づいて評価した。
なお、培土は、抜き出す72時間前から水を添加せず、湿度50%、温度20℃の環境下に置いて乾燥させた状態(乾燥状態)と、抜き出す24時間前に水を添加し、湿度50%、温度20℃の環境下に置いた湿潤状態と、両方の状態で試験を行った。
A:落下試験したときに崩壊しなかった
C:取り出したときに崩壊しなかったが、落下試験で崩壊した。
E:取り出したときに崩壊が生じた。
[Solidification of seedling cultivation soil]
The soil in the seedling raising pots obtained in each example was taken out by inverting the pot and vibrating, and it was visually confirmed whether or not the soil collapsed at that time. Furthermore, a drop test was conducted in which the soil that did not collapse was naturally dropped from a height of 30 cm, and the presence or absence of collapse was visually confirmed and evaluated based on the following criteria.
The soil was dried 72 hours before extraction without adding water and placed in an environment with a humidity of 50% and a temperature of 20 ° C (dry state), and water was added 24 hours before extraction to achieve humidity. The test was carried out in both a wet state and a wet state in an environment of 50% and a temperature of 20 ° C.
A: It did not collapse when it was dropped. C: It did not collapse when it was taken out, but it did collapse during the drop test.
E: Collapse occurred when taken out.

[アルギン酸カルシウム塩繊維の調製]
製造例1
アルギン酸ナトリウム塩(キミカ株式会社製、商品名:アルギテックスLL)20gをイオン交換水1,000gに投入後、撹拌して溶解させ、アルギン酸ナトリウム塩水溶液(濃度:2質量%)を得た。該アルギン酸ナトリウム塩水溶液をシリンジ(吐出径:18ゲージ(1.04mm))を使用して、5質量%の塩化カルシウム水溶液中に連続的に吐出し、塩化カルシウム水溶液中に繊維状のアルギン酸カルシウム塩を析出させた。得られた繊維状のアルギン酸カルシウム塩を塩化カルシウム水溶液中から回収し、20℃で60分間、乾燥した後、所望の長さに切断することで、以下の物性を有するアルギン酸カルシウム塩繊維を得た。なお、平均繊維長及び平均繊維径の測定方法は前述の通りである。
平均繊維長:5mm
平均繊維径:0.5mm
M/G比:1.3
多価カチオン含有量:0.5モル/モノマー単位1モル
[Preparation of calcium alginate salt fiber]
Production Example 1
20 g of sodium alginate salt (manufactured by Kimika Co., Ltd., trade name: Argitex LL) was added to 1,000 g of ion-exchanged water and then stirred and dissolved to obtain an aqueous sodium alginate salt solution (concentration: 2% by mass). Using a syringe (discharge diameter: 18 gauge (1.04 mm)), the sodium alginate aqueous solution is continuously discharged into a 5% by mass calcium chloride aqueous solution, and the fibrous alginate calcium salt is poured into the calcium chloride aqueous solution. Was precipitated. The obtained fibrous calcium alginate was recovered from the aqueous calcium chloride solution, dried at 20 ° C. for 60 minutes, and then cut to a desired length to obtain calcium alginate fibers having the following physical properties. .. The method for measuring the average fiber length and the average fiber diameter is as described above.
Average fiber length: 5 mm
Average fiber diameter: 0.5 mm
M / G ratio: 1.3
Multivalent cation content: 0.5 mol / 1 mol of monomer unit

製造例2
[アルギン酸ナトリウム塩水溶液の製造]
アルギン酸ナトリウム塩(キミカ株式会社製、商品名:アルギテックスLL)10gをイオン交換水5,000gに投入後、撹拌して溶解させ、アルギン酸ナトリウム塩水溶液(濃度:0.2質量%)を得た。
Manufacturing example 2
[Manufacturing of aqueous solution of sodium alginate]
10 g of sodium alginate salt (manufactured by Kimika Co., Ltd., trade name: Argitex LL) was added to 5,000 g of ion-exchanged water and then stirred and dissolved to obtain an aqueous sodium alginate salt solution (concentration: 0.2% by mass). ..

[育苗培土の製造]
実施例1
培土基材を100質量部と、製造例1で調製したアルギン酸カルシウム塩繊維3質量部と、をミキサーの容器に投入後、撹拌混合して培土混合物を得た。
上記で得られた培土混合物20gを、育苗ポット(底部直径18mm、上部(開口)直径30mm、高さ45mm)に投入し、振動させつつ余分な培土混合物を除去した後、プレスを行って、育苗ポット内に培土混合物を充填した。次いで、培土混合物を充填した育苗ポットの開口部から製造例2で調製したアルギン酸ナトリウム塩水溶液15gを潅水して育苗培土を得た。なお、アルギン酸カルシウム塩由来のカルシウムイオンと、アルギン酸ナトリウム塩由来のナトリウムイオンとのモル比(Ca/Na)は5.5である。実施例1で固化した育苗培土の外観写真(乾燥状態)を図1に示す。また、固化性の評価結果を表1に示す。
[Manufacturing of nursery soil]
Example 1
100 parts by mass of the culture soil base material and 3 parts by mass of the calcium alginate salt fiber prepared in Production Example 1 were put into a mixer container and then stirred and mixed to obtain a culture soil mixture.
20 g of the soil mixture obtained above is put into a seedling raising pot (bottom diameter 18 mm, top (opening) diameter 30 mm, height 45 mm), and after removing excess soil mixture while vibrating, pressing is performed to raise seedlings. The pot was filled with a soil mixture. Next, 15 g of the sodium alginate salt aqueous solution prepared in Production Example 2 was irrigated from the opening of the seedling raising pot filled with the soil raising soil to obtain seedling raising soil. The molar ratio (Ca / Na) of the calcium ion derived from the calcium alginate salt and the sodium ion derived from the sodium alginate salt is 5.5. FIG. 1 shows an external photograph (dry state) of the seedling raising soil solidified in Example 1. Table 1 shows the evaluation results of solidification property.

比較例1
実施例1において、アルギン酸カルシウム塩繊維3質量部に代えて、消石灰3質量部を用いた以外は、実施例1と同様にして育苗培土を得た。固化性の評価結果を表1に示す。
Comparative Example 1
In Example 1, seedling raising soil was obtained in the same manner as in Example 1 except that 3 parts by mass of slaked lime was used instead of 3 parts by mass of calcium alginate fiber. The evaluation results of solidification are shown in Table 1.

比較例2
実施例1において、アルギン酸カルシウム塩繊維3質量部を配合しなかったこと以外は、実施例1と同様にして育苗培土を得た。比較例2で得られた育苗培土の外観写真(乾燥状態)を図2に示す。固化性の評価結果を表1に示す。
Comparative Example 2
Seedling cultivation soil was obtained in the same manner as in Example 1 except that 3 parts by mass of calcium alginate salt fiber was not blended in Example 1. FIG. 2 shows an external photograph (dry state) of the nursery soil obtained in Comparative Example 2. The evaluation results of solidification are shown in Table 1.

比較例3
実施例1において、アルギン酸ナトリウム塩水溶液15gに代えて水15gを散布したこと以外は実施例1と同様にして育苗培土を得た。固化性の評価結果を表1に示す。
Comparative Example 3
In Example 1, seedling raising soil was obtained in the same manner as in Example 1 except that 15 g of water was sprayed instead of 15 g of the sodium alginate salt aqueous solution. The evaluation results of solidification are shown in Table 1.

Figure 0007068808000001
Figure 0007068808000001

表1及び図1から、本実施形態に係る実施例1の育苗培土は、乾燥状態及び湿潤状態のいずれの状態においても優れた固化性を有していることが分かる。実施例1の育苗培土は、育苗ポットの充填してから加熱等をせずに固化させることができるため作業性に優れており、使用する成分は生分解性に優れるものであるため環境適合性にも優れている。
一方、比較例1の育苗培土は、育苗ポットの開口部近傍の培土のみが固化しており、取り出す際又は落下試験において内部の培土に崩壊が生じた。比較例2及び3の育苗培土は、固化強度が弱く、育苗ポット内から培土を取り出す際に崩壊が生じた。
From Table 1 and FIG. 1, it can be seen that the seedling raising soil of Example 1 according to the present embodiment has excellent solidification property in both a dry state and a wet state. The seedling raising soil of Example 1 is excellent in workability because it can be solidified without heating after filling the seedling raising pot, and the components used are excellent in biodegradability, so that it is environmentally compatible. Is also excellent.
On the other hand, in the seedling raising soil of Comparative Example 1, only the soil near the opening of the seedling raising pot was solidified, and the internal soil collapsed when it was taken out or in the drop test. The seedling raising soils of Comparative Examples 2 and 3 had a weak solidification strength, and collapse occurred when the seedling raising soil was taken out from the seedling raising pot.

Claims (10)

培土基材(A)と、アルギン酸の多価カチオン塩(B)と、アルギン酸の1価カチオン塩(C)と、を配合する育苗培土の製造方法であって、アルギン酸の多価カチオン塩(B)が、繊維の形態で配合されてなる、育苗培土の製造方法A method for producing seedling cultivation soil in which a culture base material (A), a polyvalent cation salt of alginic acid (B), and a monovalent cation salt of alginic acid (C) are blended, and is a method for producing a polyvalent cation salt of alginic acid (B ). ) Is a method for producing seedling cultivation soil, which is blended in the form of fibers . 前記繊維の平均繊維長が、1~50mmであり、平均繊維径が、0.01~3mmである、請求項に記載の育苗培土の製造方法。 The method for producing seedling raising soil according to claim 1 , wherein the average fiber length of the fibers is 1 to 50 mm, and the average fiber diameter is 0.01 to 3 mm. 培土基材(A)と、アルギン酸の多価カチオン塩(B)と、アルギン酸の1価カチオン塩(C)と、を配合する育苗培土の製造方法であって、下記工程A1及び工程A2を有する、育苗培土の製造方法。
工程A1:培土基材(A)とアルギン酸の多価カチオン塩(B)とを混合して、培土混合物を得る工程
工程A2:前記培土混合物にアルギン酸の1価カチオン塩(C)水溶液を添加する工程
A method for producing a seedling raising soil, which comprises a soil base material (A), a polyvalent cation salt of alginic acid (B), and a monovalent cation salt of alginic acid (C), and has the following steps A1 and A2. , Manufacturing method of seedling cultivation soil.
Step A1: A culture soil base material (A) and a polyvalent cation salt (B) of alginic acid are mixed to obtain a culture soil mixture. Step A2: An aqueous solution of a monovalent cation salt (C) of alginic acid is added to the culture soil mixture. Process
前記アルギン酸の1価カチオン塩(C)水溶液中におけるアルギン酸の1価カチオン塩(C)の濃度が、0.01~10質量%である、請求項に記載の育苗培土の製造方法。 The method for producing seedling cultivation soil according to claim 3 , wherein the concentration of the monovalent cation salt (C) of alginic acid in the aqueous solution of the monovalent cation salt (C) of alginic acid is 0.01 to 10% by mass. アルギン酸の多価カチオン塩(B)が、アルギン酸カルシウム塩である、請求項1~のいずれか1項に記載の育苗培土の製造方法。 The method for producing seedling raising soil according to any one of claims 1 to 4 , wherein the polyvalent cation salt (B) of alginic acid is a calcium alginate salt. アルギン酸の1価カチオン塩(C)が、アルギン酸ナトリウム塩である、請求項1~のいずれか1項に記載の育苗培土の製造方法。 The method for producing seedling raising soil according to any one of claims 1 to 5 , wherein the monovalent cation salt (C) of alginic acid is a sodium alginate salt. アルギン酸の多価カチオン塩(B)の配合量が、培土基材(A)100質量部に対して、0.1~50質量部である、請求項1~のいずれか1項に記載の育苗培土の製造方法。 The item according to any one of claims 1 to 6 , wherein the blending amount of the polyvalent cation salt (B) of alginic acid is 0.1 to 50 parts by mass with respect to 100 parts by mass of the soil base material (A). Manufacturing method of seedling cultivation soil. アルギン酸の1価カチオン塩(C)の配合量が、培土基材(A)100質量部に対して、0.05~20質量部である、請求項1~のいずれか1項に記載の育苗培土の製造方法。 The item according to any one of claims 1 to 7 , wherein the blending amount of the monovalent cation salt (C) of alginic acid is 0.05 to 20 parts by mass with respect to 100 parts by mass of the soil base material (A). Manufacturing method of seedling cultivation soil. 培土基材(A)と、アルギン酸の多価カチオン塩(B)と、アルギン酸の1価カチオン塩(C)と、を配合する育苗培土の製造方法に用いられる育苗培土の製造キットであって、培土基材(A)とアルギン酸の多価カチオン塩(B)とを混合してなる培土混合物と、アルギン酸の1価カチオン塩(C)水溶液と、を備える育苗培土の製造キット。 A kit for producing seedling cultivation soil used in a method for producing seedling cultivation soil , which comprises a culture soil base material (A), a polyvalent cation salt of alginic acid (B), and a monovalent cation salt of alginic acid (C) . A kit for producing seedling cultivation soil, comprising a culture soil mixture obtained by mixing a culture soil base material (A) and a polyvalent cation salt (B) of alginic acid, and an aqueous solution of a monovalent cation salt (C) of alginic acid. 培土基材(A)と、アルギン酸の多価カチオン塩(B)と、アルギン酸の1価カチオン塩(C)と、を配合する育苗培土の製造方法に用いられる、培土基材(A)とアルギン酸の多価カチオン塩(B)とを配合してなる培土混合物。 The soil base material (A) and alginic acid used in the method for producing seedling cultivation soil in which the soil base material (A), the polyvalent cation salt of alginic acid (B), and the monovalent cation salt of alginic acid (C) are blended. A soil mixture containing the polyvalent cation salt (B) of.
JP2017223852A 2017-11-21 2017-11-21 Manufacturing method of seedling raising soil, manufacturing kit of seedling raising soil, seedling raising soil and soil mixture Active JP7068808B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017223852A JP7068808B2 (en) 2017-11-21 2017-11-21 Manufacturing method of seedling raising soil, manufacturing kit of seedling raising soil, seedling raising soil and soil mixture
JP2022075002A JP7316413B2 (en) 2017-11-21 2022-04-28 Seedling culture soil manufacturing method, seedling culture soil manufacturing kit, seedling culture soil and culture soil mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017223852A JP7068808B2 (en) 2017-11-21 2017-11-21 Manufacturing method of seedling raising soil, manufacturing kit of seedling raising soil, seedling raising soil and soil mixture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022075002A Division JP7316413B2 (en) 2017-11-21 2022-04-28 Seedling culture soil manufacturing method, seedling culture soil manufacturing kit, seedling culture soil and culture soil mixture

Publications (2)

Publication Number Publication Date
JP2019092420A JP2019092420A (en) 2019-06-20
JP7068808B2 true JP7068808B2 (en) 2022-05-17

Family

ID=66970040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017223852A Active JP7068808B2 (en) 2017-11-21 2017-11-21 Manufacturing method of seedling raising soil, manufacturing kit of seedling raising soil, seedling raising soil and soil mixture

Country Status (1)

Country Link
JP (1) JP7068808B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471908B2 (en) 2020-05-14 2024-04-22 株式会社レゾナック・テクノサービス Method for manufacturing seedling soil, seedling soil, and method for cultivating plants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333635A (en) 2000-05-29 2001-12-04 Sumika Agrotech Co Ltd Method for producing raising seedling medium and method for hardening the same
JP2003339226A (en) 2002-05-28 2003-12-02 Kuraray Co Ltd Raising-seedling culture soil
JP2007244393A (en) 2007-05-14 2007-09-27 Sumika Agrotech Co Ltd Method for preparing seedling-raising culture soil, seedling-raising culture soil and set for preparing seedling-raising culture soil
JP2007282609A (en) 2006-04-20 2007-11-01 Neo Tropica:Kk Method for fixing medium of decorative plant
JP2016106629A (en) 2014-11-26 2016-06-20 東洋ゴム工業株式会社 Artificial soil particle
JP2017018075A (en) 2015-07-15 2017-01-26 東洋ゴム工業株式会社 Solidifying agent for artificial soil culture medium, and method for preparing artificial soil culture medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2923544B2 (en) * 1991-05-10 1999-07-26 住友化学工業株式会社 Method of solidifying seedling culture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333635A (en) 2000-05-29 2001-12-04 Sumika Agrotech Co Ltd Method for producing raising seedling medium and method for hardening the same
JP2003339226A (en) 2002-05-28 2003-12-02 Kuraray Co Ltd Raising-seedling culture soil
JP2007282609A (en) 2006-04-20 2007-11-01 Neo Tropica:Kk Method for fixing medium of decorative plant
JP2007244393A (en) 2007-05-14 2007-09-27 Sumika Agrotech Co Ltd Method for preparing seedling-raising culture soil, seedling-raising culture soil and set for preparing seedling-raising culture soil
JP2016106629A (en) 2014-11-26 2016-06-20 東洋ゴム工業株式会社 Artificial soil particle
JP2017018075A (en) 2015-07-15 2017-01-26 東洋ゴム工業株式会社 Solidifying agent for artificial soil culture medium, and method for preparing artificial soil culture medium

Also Published As

Publication number Publication date
JP2019092420A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP4573924B2 (en) Agglomerated zeolite, production method thereof and seedling culture soil
CN105338803A (en) Artificial environment for efficient uptake of fertilizers and other agrochemicals in soil
JP6209053B2 (en) Plant growth medium and plant growth kit
JPWO2014103919A1 (en) Artificial soil aggregate and artificial soil medium
JP7288800B2 (en) Seedling medium manufacturing method, seedling medium and plant cultivation method
JP7068808B2 (en) Manufacturing method of seedling raising soil, manufacturing kit of seedling raising soil, seedling raising soil and soil mixture
JP6117676B2 (en) Plant growth medium and plant growth kit
JP2007244393A (en) Method for preparing seedling-raising culture soil, seedling-raising culture soil and set for preparing seedling-raising culture soil
JP6281133B2 (en) Method and planter for growing plants
JP2021177735A (en) Method for producing seedling culture soil, seedling culture soil, and method for culturing plants
JP7316413B2 (en) Seedling culture soil manufacturing method, seedling culture soil manufacturing kit, seedling culture soil and culture soil mixture
JP7288801B2 (en) Seedling culture medium production method, seedling culture medium, plant cultivation method, and plant growth adjustment method
US4959926A (en) Growing medium for plants
JP7288808B2 (en) Seedling medium manufacturing method, seedling medium and plant cultivation method
US5099605A (en) Growing medium for plants
JP2021177733A (en) Method for producing seedling culture soil, seedling culture soil, and method for culturing plants
JP5774862B2 (en) Culture soil for soiled seedlings
JP7471908B2 (en) Method for manufacturing seedling soil, seedling soil, and method for cultivating plants
JP2024059208A (en) Method for manufacturing seedling soil, seedling soil and plant cultivation method
JP2021168624A (en) Seedling raising mat producing method, seedling raising mat, and plant cultivation method
JP2023156813A (en) Method for producing seedling growing soil, seedling growing soil, and plant cultivation method
JP2024061196A (en) Method for manufacturing seedling soil, seedling soil and plant cultivation method
KR101168643B1 (en) Manufacturing method of flowerport for afforestation of desert
JP2591908B2 (en) Method of growing molded seedlings for mechanically planting onion
JP2012055275A (en) Culture soil for seedling with soil

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7068808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150