JP7064191B2 - Cell dispersal method and cell disperser - Google Patents

Cell dispersal method and cell disperser Download PDF

Info

Publication number
JP7064191B2
JP7064191B2 JP2018028999A JP2018028999A JP7064191B2 JP 7064191 B2 JP7064191 B2 JP 7064191B2 JP 2018028999 A JP2018028999 A JP 2018028999A JP 2018028999 A JP2018028999 A JP 2018028999A JP 7064191 B2 JP7064191 B2 JP 7064191B2
Authority
JP
Japan
Prior art keywords
cell
cells
tank
liquid
cell aggregates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028999A
Other languages
Japanese (ja)
Other versions
JP2019140985A (en
Inventor
昌憲 和田
勝久 松浦
達也 清水
勝久 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Able Corp
Tokyo Womens Medical University
Original Assignee
Waseda University
Able Corp
Tokyo Womens Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Able Corp, Tokyo Womens Medical University filed Critical Waseda University
Priority to JP2018028999A priority Critical patent/JP7064191B2/en
Publication of JP2019140985A publication Critical patent/JP2019140985A/en
Application granted granted Critical
Publication of JP7064191B2 publication Critical patent/JP7064191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、細胞分散方法および細胞分散装置に関する。特に本発明は、細胞が凝集した細胞凝集塊を個々の細胞に効率よく分散することができる細胞分散方法および細胞分散装置に関しており、創薬、薬学、医学、生物等の分野において有用である。 The present invention relates to a cell dispersion method and a cell dispersion device. In particular, the present invention relates to a cell dispersion method and a cell disperser capable of efficiently dispersing a cell aggregate in which cells have aggregated, and is useful in the fields of drug discovery, pharmacy, medicine, biology and the like.

胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)などの多能性幹細胞は生体のあらゆる組織・臓器の細胞へと分化し得ることから、近年、研究開発が盛んに行われている。これらの多能性幹細胞は、細胞治療の新たな細胞供給源となり得ることから、臨床応用への期待が高まっている。しかし、多能性幹細胞はあらゆる組織の細胞への分化能を有しているがために、未分化な状態を維持しつつ、大量に増幅培養させることが難しく、従来の培養法とは異なる培養法が必要であったところ、特許文献1~2には、シェアストレスに非常に敏感なヒト由来のES/iPS細胞であっても、効率的に培養することができる細胞用装置が記載されている。 Since pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) can differentiate into cells of all tissues and organs in the living body, research and development have been actively carried out in recent years. There is. Since these pluripotent stem cells can be a new source of cells for cell therapy, expectations for clinical application are increasing. However, since pluripotent stem cells have the ability to differentiate into cells of all tissues, it is difficult to amplify and culture them in large quantities while maintaining an undifferentiated state, which is different from the conventional culture method. Where a method was required, Patent Documents 1 and 2 describe a cell device capable of efficiently culturing even human-derived ES / iPS cells that are extremely sensitive to shear stress. There is.

ところで、特許文献1~2の方法をはじめ、細胞を得る方法には種々のものが存在しているが、多くの場合、得られる細胞は、複数の細胞同士が凝集した細胞凝集塊(組織片)を形成する。これを再生医療や安全性薬理試験等に利用するにあたっては、細胞凝集塊を個々の細胞に分散する必要があり、例えば特許文献3~4には、細胞を分散する技術が提案されている。 By the way, there are various methods for obtaining cells, including the methods of Patent Documents 1 and 2, but in many cases, the obtained cells are cell aggregates (tissue pieces) in which a plurality of cells are aggregated. ) Is formed. In order to utilize this in regenerative medicine, safety pharmacology tests, etc., it is necessary to disperse cell aggregates in individual cells. For example, Patent Documents 3 to 4 propose techniques for dispersing cells.

特許第5958861号公報Japanese Patent No. 5958861 特許第5959024号公報Japanese Patent No. 5959024 特開平4-232834号公報Japanese Unexamined Patent Publication No. 4-232834 特開2012-24061号公報Japanese Unexamined Patent Publication No. 2012-24061

一般に、細胞凝集塊などを単細胞に分散させるには、トリプシンやコラゲナーゼなどの酵素液に細胞凝集塊などを浸漬し、一定温度で保温しながらピペッティングなどの物理的な操作を行って細胞を分散させる。酵素は細胞凝集塊の外側から浸透していくため、細胞は外側から徐々に剥がれ落ちていくが、細胞凝集塊や組織体の内部に届くまでには時間がかかるため、物理的操作によって細胞の分散を促進するのである。 Generally, in order to disperse cell aggregates in a single cell, the cells are dispersed by immersing the cell aggregates in an enzyme solution such as trypsin or collagenase and performing physical operations such as pipetting while keeping the cells warm at a constant temperature. Let me. Since the enzyme permeates from the outside of the cell aggregate, the cell gradually peels off from the outside, but it takes time to reach the inside of the cell aggregate or tissue, so physical manipulation of the cell It promotes dispersion.

ところが、ピペッティングなどの操作においては、酵素によって剥がれ落ちた細胞がピペッティングによって器壁に衝突するなどして破壊され、回収量や回収率が低下することがある。また、ピペッティングなどの実験操作は実験者による個人差が出やすく、操作の標準化が困難である。 However, in operations such as pipetting, cells that have been peeled off by enzymes may be destroyed by colliding with the vessel wall due to pipetting, and the recovery amount and recovery rate may decrease. In addition, experimental operations such as pipetting tend to vary from person to person, making it difficult to standardize the operations.

また、特許文献3~4には、細胞分散させるための機械装置が提案されているが、特許文献3の技術は、特許文献4で指摘されているように細胞分散効率が悪く、特許文献4の技術は、機構が複雑化するという問題点がある。 Further, Patent Documents 3 to 4 propose mechanical devices for cell dispersion, but the technique of Patent Document 3 has poor cell dispersion efficiency as pointed out in Patent Document 4, and Patent Document 4 The technique has a problem that the mechanism becomes complicated.

このような状況に鑑み、本発明は、細胞が凝集した細胞凝集塊を個々の細胞に効率よく分散することができる細胞分散方法および細胞分散装置に関する。 In view of such a situation, the present invention relates to a cell dispersion method and a cell dispersion device capable of efficiently dispersing a cell aggregate in which cells have aggregated to individual cells.

上記課題について本発明者が鋭意検討したところ、固定された槽内で回転体を回転させることによって槽内の液体に含まれる細胞の凝集体が効率よく分散することを見出し、本発明を完成させるに至った。 As a result of diligent studies by the present inventor on the above problems, it was found that by rotating the rotating body in a fixed tank, the aggregates of cells contained in the liquid in the tank are efficiently dispersed, and the present invention is completed. It came to.

これに限定されるものではないが、本発明は下記の態様を包含する。
(1) 細胞凝集塊を単一の細胞に分散する装置であって、細胞凝集塊を含む処理液を収納する円筒形状の槽と、前記槽の内側に、前記槽と同軸で回転可能に取り付けられる回転部材と、を備え、前記回転部材を回転させることによって、前記槽内を周回する処理液を、テイラー渦流の状態で周回させて細胞凝集塊を単一の細胞に分散する、上記装置。
(2) 前記処理液が、細胞凝集塊分解酵素を含む、(1)に記載の細胞分散装置。
(3) 円筒部材を回転させるためのスターラーをさらに備える、(1)または(2)に記載の細胞分散装置。
(4) 前記回転部材は円筒形となっている、(1)~(3)のいずれかに記載の細胞分散装置。
(5)細胞凝集塊を単一の細胞に分散する方法であって、細胞凝集塊を含む処理液を収納する円筒形状の槽において、前記槽の内側面に沿って前記処理液を周回させることによって前記細胞凝集塊を単一の細胞に分散することを含む、上記方法。
(6) 前記槽の内側に同軸で回転可能に取り付けられる円筒部材が回転することによって、周回する処理液をテイラー渦流の状態にすることを含む、(5)に記載の方法。
(7) 前記細胞凝集塊が、多能性幹細胞を含んでなる、(5)または(6)に記載の方法。
The present invention includes, but is not limited to, the following aspects.
(1) A device that disperses cell aggregates into a single cell, and is a cylindrical tank that houses a treatment solution containing the cell aggregates, and is rotatably attached to the inside of the tank in a coaxial manner with the tank. The above-mentioned apparatus, which comprises a rotating member and, by rotating the rotating member, circulates a treatment liquid orbiting in the tank in a Taylor vortex state to disperse cell aggregates into a single cell.
(2) The cell dispersant according to (1), wherein the treatment liquid contains a cell aggregate degrading enzyme.
(3) The cell dispersant according to (1) or (2), further comprising a stirrer for rotating a cylindrical member.
(4) The cell dispersant according to any one of (1) to (3), wherein the rotating member has a cylindrical shape.
(5) A method of dispersing cell aggregates in a single cell, in which the treatment liquid is circulated along the inner surface of the tank in a cylindrical tank containing the treatment liquid containing the cell aggregates. The above method comprising dispersing the cell agglomerates into a single cell by means of.
(6) The method according to (5), which comprises rotating a cylindrical member coaxially and rotatably attached to the inside of the tank to bring the orbiting treatment liquid into a Taylor vortex state.
(7) The method according to (5) or (6), wherein the cell aggregate comprises pluripotent stem cells.

本発明によれば、細胞が凝集した細胞凝集塊(組織片)を効率良く分散することができる。一般に、細胞凝集塊や組織体を分散して単細胞を得るには一定のせん断力を必要とするが、細胞にかかるストレスが過大になると細胞の生存率が低下することもある。本発明においては、液体に含まれる細胞凝集塊に適切なせん断力が定常的に与えられるため、細胞が効率良く分散するものと考えられる。 According to the present invention, a cell aggregate (tissue piece) in which cells have aggregated can be efficiently dispersed. Generally, a certain amount of shearing force is required to disperse cell aggregates and tissues to obtain single cells, but excessive stress on cells may reduce the survival rate of cells. In the present invention, since an appropriate shearing force is constantly applied to the cell aggregate contained in the liquid, it is considered that the cells are efficiently dispersed.

本発明に係る装置においては、固定槽内の回転体が回転した時に生じる液体のせん断力は、槽内のどの箇所でも一定になる。そのため、槽内に局所的なせん断力の強弱も存在しない理想的な液流を得ることができる。また、固定槽及び回転体には細胞が衝突するような構造が存在しないので、細胞凝集塊及び分散後の単一細胞が衝突によって損傷することを防止することができる。 In the apparatus according to the present invention, the shearing force of the liquid generated when the rotating body in the fixed tank rotates is constant at any place in the tank. Therefore, it is possible to obtain an ideal liquid flow in which the strength of the local shearing force does not exist in the tank. Further, since the fixed tank and the rotating body do not have a structure in which cells collide with each other, it is possible to prevent the cell aggregate and the single cell after dispersion from being damaged by the collision.

上述したように、細胞凝集塊や組織片を試験管内で単細胞へ分散させる際、従来は、ピペッティングによる液の出し入れによってせん断力を与えていたが、この作業には個人差があり、標準化して手順書に記載することが難しい。また、作業者は無意識にピペットの先端を器壁に当てたり必要以上に高速で出し入れしたりすることによって、細胞が破壊されてしまうことがある。それに対して、本発明に係る装置によれば、個人差や細胞の破壊作用も少なく、一定のせん断力を負荷して、均質な単細胞の細胞懸濁液を効率的に得ることができる。特に、再生医療等製品の製造工程においては、得られる細胞の収量を向上させることができるため、製造効率を改善して大幅にコストを削減することが期待できる。 As mentioned above, when disperse cell aggregates and tissue fragments into single cells in a test tube, shearing force was conventionally applied by taking in and out of liquid by pipetting, but this work varies from person to person and is standardized. It is difficult to describe in the procedure manual. In addition, the operator may unknowingly touch the tip of the pipette to the vessel wall or move it in and out at an unnecessarily high speed, so that the cells may be destroyed. On the other hand, according to the apparatus according to the present invention, there are few individual differences and cell-destroying actions, and a constant shearing force can be applied to efficiently obtain a homogeneous single-cell cell suspension. In particular, in the manufacturing process of products such as regenerative medicine, the yield of obtained cells can be improved, so that it is expected that the manufacturing efficiency will be improved and the cost will be significantly reduced.

円筒状の固定槽内に設置した回転体を回転させると、表面の摩擦抵抗によって内壁面と回転体表面の間隙にある液体には回転方向に平行な層流(クエット流)が生じる。さらに回転数を徐々に大きくすると層流から渦流へ液流が遷移し、平行だった液流が複雑な渦流(テイラー渦流)となる。本発明によって細胞が効率的に分散される理由の詳細は完全には明らかでなく、本発明はこの推論に拘束されるものではないが、本発明においては、適度な物理的ストレスが細胞凝集塊にかかることによって細胞凝集塊が効率的に分散するものと考えられる。 When a rotating body installed in a cylindrical fixed tank is rotated, a laminar flow (couette flow) parallel to the rotation direction is generated in the liquid in the gap between the inner wall surface and the surface of the rotating body due to the frictional resistance of the surface. When the rotation speed is gradually increased, the liquid flow changes from the laminar flow to the vortex flow, and the parallel liquid flow becomes a complicated vortex flow (Taylor vortex flow). The details of why cells are efficiently dispersed by the present invention are not completely clear, and the present invention is not bound by this reasoning, but in the present invention, moderate physical stress is applied to cell aggregates. It is considered that the cell aggregates are efficiently dispersed by the above.

図1は、実験において用いた細胞分散装置を示すものである。FIG. 1 shows the cell dispersant used in the experiment. 図2は、実験1で分散処理したiPS細胞の回収量を示すグラフである(縦軸:細胞数)。FIG. 2 is a graph showing the recovered amount of iPS cells dispersed and treated in Experiment 1 (vertical axis: number of cells). 図3は、実験1で処理した培養液を顕微鏡観察した写真である。FIG. 3 is a photograph of the culture solution treated in Experiment 1 observed under a microscope. 図4は、実験2(1)の実験結果を示すグラフである。FIG. 4 is a graph showing the experimental results of Experiment 2 (1). 図5は、実験2(1)の実験結果を示すグラフである。FIG. 5 is a graph showing the experimental results of Experiment 2 (1). 図6は、実験2(2)の実験結果を示すグラフである。FIG. 6 is a graph showing the experimental results of Experiment 2 (2). 図7は、実験2(3)の実験結果を示すグラフである(左:心筋トロポニンT心筋細胞と核の写真、右:心筋細胞数)。FIG. 7 is a graph showing the experimental results of Experiment 2 (3) (left: photo of myocardial troponin T cardiomyocytes and nuclei, right: number of cardiomyocytes). 図8は、実験2(4)の実験結果を示すグラフである。FIG. 8 is a graph showing the experimental results of Experiment 2 (4). 図9は、実験2(5)の実験結果を示すグラフである。FIG. 9 is a graph showing the experimental results of Experiment 2 (5).

本発明に係る細胞分散装置は、固定槽とその内部に回転自在に設置される回転部材を備える。本発明の一つの態様においては、回転部材は円筒形をなす円筒状部材であり、固定槽内壁面と円筒状部材外壁面の間隙、円筒状部材の回転数、液体の物性などが、液体の流れを決定する重要な要素となる。 The cell dispersant according to the present invention includes a fixed tank and a rotating member rotatably installed inside the fixed tank. In one aspect of the present invention, the rotating member is a cylindrical member having a cylindrical shape, and the gap between the inner wall surface of the fixed tank and the outer wall surface of the cylindrical member, the number of rotations of the cylindrical member, the physical characteristics of the liquid, and the like are liquid. It is an important factor that determines the flow.

本発明の一つの態様において、本発明に係る装置は、円筒形状の固定槽と、固定槽に着脱可能な蓋部と、蓋部に設けられた支柱と、支柱に回転可能に取り付けられた円筒状部材(固定槽と同軸で回転可能な回転部材)とを有して構成される。 In one embodiment of the present invention, the apparatus according to the present invention has a cylindrical fixed tank, a lid portion that can be attached to and detached from the fixed tank portion, a support column provided on the lid portion, and a cylinder rotatably attached to the support column. It is configured to have a shaped member (a rotating member that can rotate coaxially with the fixed tank).

また、本発明においては、円筒状部材を回転させるためのスターラーを備えていてもよい。スターラーの駆動手段の一例としては、磁性体(永久磁石等)を用いて円筒状部材を回転させることが好ましい。 Further, in the present invention, a stirrer for rotating the cylindrical member may be provided. As an example of the driving means of the stirrer, it is preferable to rotate the cylindrical member using a magnetic material (permanent magnet or the like).

固定槽には、細胞が凝集した細胞凝集塊を含む液体が入れられる。本発明に係る装置において、細胞凝集塊を含む液体が接触する部材(固定槽、円筒状部材、蓋部、支柱)は、液体成分に不活性で細胞毒性を有さず、且つ、滅菌(除染、除菌又は無菌ともいう。)処理に対して耐性を有する材料で形成されることが好ましい。このような材料としては、例えば、ガラス、合成樹脂、ステンレス鋼などが挙げられる。ここで、固定槽の容量、形状などは、液体の量や円筒状部材に応じて適宜決定される。また、固定槽の底面中央には凸部が設けられていてもよい。これにより、固定槽の底面中央で処理液が淀む現象を防止することができる。固定槽の内容量(容量)は特に限定されないが、好ましい態様において、例えば20~1000mlとすることができ、30~800ml、40~600ml、50~400mlとしてもよい。固定槽の容量は、一回の処理で要求される液量に基づいて決定することも可能である。 The fixed tank is filled with a liquid containing a cell aggregate in which cells have aggregated. In the apparatus according to the present invention, the members (fixed tank, cylindrical member, lid, strut) to which the liquid containing the cell aggregates come into contact are inactive to the liquid component, have no cytotoxicity, and are sterilized (excluded). Also referred to as dyeing, sterilization or sterility), it is preferably formed of a material that is resistant to treatment. Examples of such a material include glass, synthetic resin, stainless steel and the like. Here, the capacity, shape, and the like of the fixed tank are appropriately determined according to the amount of liquid and the cylindrical member. Further, a convex portion may be provided in the center of the bottom surface of the fixed tank. This makes it possible to prevent the treatment liquid from stagnation at the center of the bottom surface of the fixed tank. The content (capacity) of the fixed tank is not particularly limited, but in a preferred embodiment, it may be, for example, 20 to 1000 ml, 30 to 800 ml, 40 to 600 ml, or 50 to 400 ml. The capacity of the fixed tank can also be determined based on the amount of liquid required in one treatment.

円筒状部材を回転自在に設置するための支柱は、蓋部に固定されて、固定槽の中心軸線に沿って配置される。そして、円筒状部材は、支柱に、回転可能に取り付けられる。これにより、円筒状部材が、固定槽と同軸で回転可能となる。ただし変形例として、支柱は、固定槽底部の内面の中央に直立して設けることも可能である。このとき、支柱は、培養槽底部の内面への固定部が下方向に拡径の円錐状に形成された円錐状とすることが好ましい。このような形状とすると、円筒状部材の回転による底部中心近傍の液流の淀みが少なくなり、固定槽の底部において細胞凝集塊が沈殿しにくくすることができる。また、支柱の高さは特に制限されず、例えば、支柱を高くして円筒状部材を比較的上部で支持する構造にしてもよいし、支柱を低くして円筒状部材を比較的底部に近い位置で支持する構造にしてもよい。なお、支柱を固定槽に固定する方法としては、特に制限されないが、ビスなどの固定具で螺着などの方法で固定したり、接着剤(例えば、シリコンゴム系接着剤)などで接着などの方法で固定したりすることでき、一体成形によって固定槽と支柱を一体とすることもできる。 The column for rotatably installing the cylindrical member is fixed to the lid portion and is arranged along the central axis of the fixed tank. Then, the cylindrical member is rotatably attached to the support column. As a result, the cylindrical member can rotate coaxially with the fixed tank. However, as a modification, the support column can be provided upright in the center of the inner surface of the bottom of the fixed tank. At this time, it is preferable that the support column has a conical shape in which the portion fixed to the inner surface of the bottom of the culture tank is formed in a conical shape with an enlarged diameter in the downward direction. With such a shape, the stagnation of the liquid flow near the center of the bottom due to the rotation of the cylindrical member is reduced, and the cell aggregates can be prevented from settling at the bottom of the fixed tank. Further, the height of the strut is not particularly limited, and for example, the strut may be raised to support the cylindrical member relatively at the upper part, or the strut may be lowered to support the cylindrical member relatively close to the bottom. The structure may be supported at a position. The method of fixing the support column to the fixing tank is not particularly limited, but it can be fixed by a fixing tool such as a screw, or by using an adhesive (for example, a silicon rubber adhesive). It can be fixed by a method, and the fixed tank and the support can be integrated by integral molding.

一つの態様において本発明に係る装置は円筒状部材を備えているが、円筒状部材は、細胞凝集塊を含む液体に不活性で、且つ、耐性を有する材料で形成されることが好ましく、例えば合成樹脂、ステンレス鋼などが挙げられる。円筒状部材は、例えば円筒状の合成樹脂ブロックに、円筒の中心軸線に沿って伸びる、支柱が挿入される穴(貫通しない凹部)を備える構成とすることができる。そして、円筒状部材は、支柱に対して回転可能に取り付けられることにより、固定槽に対して回転することが可能になる。また、円筒状部材は、回転機構によって回転力を付与するための磁石を備えた構成とすることも可能である。なお、本発明に係る装置(固定槽、蓋部、支柱、回転部材)は、使い捨てとすることもできる。 In one embodiment, the apparatus according to the present invention comprises a cylindrical member, wherein the cylindrical member is preferably made of a material that is inert and resistant to a liquid containing cell aggregates, for example. Examples include synthetic resin and stainless steel. The cylindrical member may be configured to include, for example, a cylindrical synthetic resin block having a hole (a recess that does not penetrate) into which a support column is inserted, which extends along the central axis of the cylinder. Then, the cylindrical member can be rotated with respect to the fixed tank by being rotatably attached to the support column. Further, the cylindrical member may be configured to include a magnet for applying a rotational force by a rotational mechanism. The device (fixed tank, lid, column, rotating member) according to the present invention can also be disposable.

本発明の装置に用いられる素材としては、光透過性(透明性)を有する樹脂が好ましい。ポリマーの種類は特に制限されないが、例えば、ポリカーボネート、ポリスチレン、アクリル樹脂、ポリ塩化ビニル等が好適であり、中でもポリカーボネート、ポリスチレンが特に好適である。特に固定槽は、光透過性とすることで処理状態を視認することができるようになる。 As the material used in the apparatus of the present invention, a resin having light transmission (transparency) is preferable. The type of polymer is not particularly limited, but for example, polycarbonate, polystyrene, acrylic resin, polyvinyl chloride and the like are preferable, and polycarbonate and polystyrene are particularly preferable. Especially for the fixed tank, the processing state can be visually recognized by making the light transmissive.

本発明に係る装置で処理される細胞は限定されるものではなく、例えば、動物、昆虫、植物等の細胞を挙げることができる。動物細胞の由来として、ヒト、サル、イヌ、ネコ、ウサギ、ラット、ヌードマウス、マウス、モルモット、ブタ、ヒツジ、チャイニーズハムスター、ウシ、マーモセット、アフリカミドリザル等が挙げられるが、特に限定されるものではない。特に本発明に係る装置では、多能性幹細胞(ES細胞、iPS細胞など)、神経幹細胞等の幹細胞といった、これまでの方法では分散効率が悪いとされてきた細胞への適用が可能である。本発明に係る装置で処理される細胞の取得方法は特に限られるものではなく、あらゆる方法で取得された細胞に適用することが可能で、培養由来の細胞凝集塊のほか、生体由来の組織片(切片)を単一細胞に分散する処理に用いることも可能である。また、装置の設計や運転条件を適合させることにより、シェアストレスに弱い細胞による細胞凝集塊や、逆に、強固に凝集している細胞凝集塊など、細胞凝集塊(組織片)の性質に合わせた処理が可能になる。 The cells processed by the apparatus according to the present invention are not limited, and examples thereof include cells of animals, insects, plants and the like. Examples of the origin of animal cells include humans, monkeys, dogs, cats, rabbits, rats, nude mice, mice, guinea pigs, pigs, sheep, Chinese hamsters, cows, marmosets, African green monkeys, etc., but are not particularly limited. not. In particular, the apparatus according to the present invention can be applied to cells such as pluripotent stem cells (ES cells, iPS cells, etc.) and stem cells such as neural stem cells, which have been considered to have poor dispersion efficiency by conventional methods. The method for obtaining cells processed by the apparatus according to the present invention is not particularly limited, and can be applied to cells obtained by any method. In addition to cell aggregates derived from culture, tissue fragments derived from living organisms It is also possible to use the (section) for the treatment of dispersing in a single cell. In addition, by adapting the design and operating conditions of the device, it is possible to match the properties of cell aggregates (tissue pieces) such as cell aggregates caused by cells that are vulnerable to shear stress and, conversely, cell aggregates that are strongly aggregated. Processing becomes possible.

本発明においては、細胞凝集塊を含む処理液に酵素を添加してもよい。本発明においては、物理的な作用によって細胞凝集塊を分散させるが、酵素を併せて用いることによってより効率的に細胞凝集塊を分散することができる。使用する酵素は特に制限されないが、好ましい態様において、トリプシン、プロテアーゼ、コラゲナーゼなどを挙げることができる。また、本発明に係る処理液には、さらにEDTAなどのキレート剤を添加してもよい。酵素やキレート剤の添加量および濃度は、適宜調整すればよく、細胞凝集塊が大きく、ほぐれにくい場合は酵素の添加量を多くしたり濃度を濃くしたりすることができる。 In the present invention, the enzyme may be added to the treatment liquid containing the cell aggregate. In the present invention, the cell aggregate is dispersed by a physical action, but the cell aggregate can be dispersed more efficiently by using an enzyme together. The enzyme used is not particularly limited, but in a preferred embodiment, trypsin, protease, collagenase and the like can be mentioned. Further, a chelating agent such as EDTA may be further added to the treatment liquid according to the present invention. The amount and concentration of the enzyme or chelating agent added may be appropriately adjusted, and if the cell aggregate is large and difficult to loosen, the amount of the enzyme added may be increased or the concentration may be increased.

処理時間や処理温度などの条件は特に制限されず、適宜設定すればよい。処理時間については、例えば、5秒~60分間とすることができ、好ましい態様において、10秒~50分間や30秒~40分間、さらには1分間~30分間としてもよい。なお、処理時間は、細胞種類や回転速度に応じて適宜設定することができる。処理温度は、好ましい態様において0~70℃であり、5~50℃や10~40℃とすることも好ましい。装置の回転速度などは、ピペットなどを用いて分散させる際に用いる酵素液の濃度と液量をもとに、処理時間を同じにした場合に、ピペットを用いて分散させた際の細胞回収量と同等かそれ以上となるように定めることができる。 Conditions such as processing time and processing temperature are not particularly limited and may be set as appropriate. The treatment time may be, for example, 5 seconds to 60 minutes, and in a preferred embodiment, 10 seconds to 50 minutes, 30 seconds to 40 minutes, and further 1 minute to 30 minutes. The treatment time can be appropriately set according to the cell type and the rotation speed. The treatment temperature is 0 to 70 ° C. in a preferred embodiment, and 5 to 50 ° C. or 10 to 40 ° C. is also preferable. The rotation speed of the device is based on the concentration and amount of the enzyme solution used when dispersing using a pipette, etc., and the amount of cells recovered when dispersed using a pipette when the treatment time is the same. Can be set to be equal to or greater than.

また、一つの態様において本発明は、細胞を分散させる方法である。本発明に係る細胞分散方法は、細胞凝集塊を含む液体を固定槽内に入れ、固定槽内の円筒状部材を回転させて固定槽と円筒状部材の間に液流を生じさせて細胞凝集塊を分散させることを含む。本発明によれば、簡便かつ効率良く、細胞凝集塊を均一に分散させることができる。 Further, in one embodiment, the present invention is a method for dispersing cells. In the cell dispersion method according to the present invention, a liquid containing a cell aggregate is placed in a fixed tank, and a cylindrical member in the fixed tank is rotated to generate a liquid flow between the fixed tank and the cylindrical member to cause cell aggregation. Includes dispersal of lumps. According to the present invention, cell aggregates can be uniformly dispersed easily and efficiently.

固定槽内の液流
本発明に係る装置においては、固定槽内に設置した回転部材(円筒状部材)を回転させると、表面の摩擦抵抗によって固定槽壁面と回転体表面の間隙にある液体には回転方向に平行な層流(クエット流)が生じる。さらに回転数を徐々に大きくすると層流から渦流へ液流が遷移し、平行だった液流が複雑な渦流(テイラー渦流)となる。
Liquid flow in the fixed tank In the device according to the present invention, when the rotating member (cylindrical member) installed in the fixed tank is rotated, the liquid in the gap between the wall surface of the fixed tank and the surface of the rotating body is formed by the frictional resistance of the surface. Generates a laminar flow (Quet flow) parallel to the direction of rotation. When the rotation speed is gradually increased, the liquid flow changes from the laminar flow to the vortex flow, and the parallel liquid flow becomes a complicated vortex flow (Taylor vortex flow).

円筒状の内壁を有する固定槽(円筒半径:r0)と円筒状部材(円筒半径:ri)は、同軸かつ所定の間隙(r0-ri)を有して回転自在に組み立てられる。好ましい態様において、本発明に係る装置は、固定槽と円筒状部材との間隙は、例えば、0.1~100mmであり、より好ましくは1~50mm、さらに好ましくは2~40mm、よりさらに好ましくは3~30mmである。このような範囲内であると、効率よく液体を流動させることができる。 The fixed tank (cylindrical radius: r0) having a cylindrical inner wall and the cylindrical member (cylindrical radius: ri) are coaxially and rotatably assembled with a predetermined gap (r0-ri). In a preferred embodiment, in the apparatus according to the present invention, the gap between the fixed tank and the cylindrical member is, for example, 0.1 to 100 mm, more preferably 1 to 50 mm, still more preferably 2 to 40 mm, still more preferably. It is 3 to 30 mm. Within such a range, the liquid can be efficiently flowed.

(供給口、排出口)
本発明に係る装置には、流体を供給するための供給口や流体を排出するための排出口を設けてもよい。供給口や排出口はそれぞれ複数設けられていてもよい。また、供給口や排出口は蓋部に設けてもよいし、固定槽の壁面などに設けてもよい。
(Supply port, discharge port)
The apparatus according to the present invention may be provided with a supply port for supplying the fluid and a discharge port for discharging the fluid. A plurality of supply ports and discharge ports may be provided. Further, the supply port and the discharge port may be provided on the lid portion, or may be provided on the wall surface of the fixed tank or the like.

ただし、固定槽は、壁面に供給口や排出口を供えない態様とすることも可能である。固定槽の内壁面を円筒(凹凸を有しない円筒)とすることで、処理中に、細胞凝集塊及び分散された細胞が衝突によるダメージを受ける確率を減らすことができる。 However, the fixed tank may be configured so that the wall surface is not provided with a supply port or a discharge port. By making the inner wall surface of the fixed tank a cylinder (a cylinder having no unevenness), it is possible to reduce the probability that the cell aggregates and dispersed cells will be damaged by collision during the treatment.

(回転機構)
本発明に係る装置は、固定槽内部の円筒状部材を、軸を中心に相対的に回転させる回転機構を有していてもよい。好ましい態様において、磁力を利用して円柱を回転させる回転機構であることが好ましい。この場合、円筒状部材に金属や磁石を設けておくことが好ましい。
(Rotation mechanism)
The device according to the present invention may have a rotation mechanism for rotating a cylindrical member inside a fixed tank relative to a shaft. In a preferred embodiment, it is preferable that the rotation mechanism rotates the cylinder by using the magnetic force. In this case, it is preferable to provide a metal or a magnet on the cylindrical member.

(表面粗さ)
本発明に係る装置において、固定槽の内壁表面及び円筒状部材表面の表面粗さRaは前記間隙(r0-ri)の1/10以下であることが好ましく、5nm~1mmがより好ましく、10nm~100μmがさらに好ましい。このような範囲であると、円筒状部材の回転エネルギーを効率よく液体に加えることができるとともに、表面粗さによる細胞凝集塊や分散された細胞へのダメージを小さくすることができる。
(Surface roughness)
In the apparatus according to the present invention, the surface roughness Ra of the inner wall surface of the fixed tank and the surface of the cylindrical member is preferably 1/10 or less of the gap (r0-ri), more preferably 5 nm to 1 mm, and more preferably 10 nm to. 100 μm is more preferable. Within such a range, the rotational energy of the cylindrical member can be efficiently applied to the liquid, and damage to cell aggregates and dispersed cells due to surface roughness can be reduced.

(液流)
本発明においては、円筒状の固定槽と円筒状部材により形成される同心円筒状の空間に、細胞凝集塊を含む液体を入れ、円筒状部材を角速度ωで回転させる。一般に、回転速度が低速であると、層流であるクエット流が発生し、さらに回転速度を高速にすると、層流テイラー渦流が発生する。
(Liquid flow)
In the present invention, a liquid containing a cell aggregate is placed in a concentric cylindrical space formed by a cylindrical fixed tank and a cylindrical member, and the cylindrical member is rotated at an angular velocity ω. Generally, when the rotation speed is low, a laminar Couette flow is generated, and when the rotation speed is further increased, a laminar Taylor vortex flow is generated.

ここで、テイラー渦流が発生する際の具体的な関係式を示す。テイラー数は、一般に、下記式のTaのように定義される。
Ta={riω(r0-ri)/ν}{(r0-ri)/ri}0.5=Re{(r0-ri)/ri}0.5
[式中、ω:角速度、Re:レイノルズ数、ri:円筒状部材の半径、r0:固定槽の半径、ν:流体の動粘度]
本発明において固定槽内の液流は、乱流支配ではなく、層流支配であることが好ましい。ここで、レイノルズ数(Re)は、rωd/νで表されるものであり、数値が小さいと層流支配となりやすい。
Re=riωd/ν
[ri:円柱の半径、ω:回転角速度、d:間隙幅の平均値(ro-ri)、ν:動粘性係数]
また、テイラー渦流が発生する臨界テイラー数Tacは以下のように示される。この臨界テイラー数Tacは、η=ri/r0によって決定される。本発明では、円筒状部材による液体の流動効率を考慮すると、ηは0.5以上とすることが好ましく、この場合、Tacは50近傍(40から70程度)の値となることから、Tacを50と近似することができる。ここで、ωcはテイラー渦流が発生する角速度、Recは臨界レイノルズ数、riは円柱2の半径、r0は円筒1の半径、νは流体の動粘度である。
Tac={riωc(r0-ri)/ν}{(r0-ri)/ri}0.5=Rec{(r0-ri)/ri}0.5と示される。
Here, a specific relational expression when a Taylor vortex is generated is shown. The Taylor number is generally defined as Ta in the following equation.
Ta = {riω (r0-ri) / ν} {(r0-ri) / ri} 0.5 = Re {(r0-ri) / ri} 0.5
[In the formula, ω: angular velocity, Re: Reynolds number, ri: radius of cylindrical member, r0: radius of fixed tank, ν: kinematic viscosity of fluid]
In the present invention, the liquid flow in the fixed tank is preferably laminar-controlled rather than turbulent-controlled. Here, the Reynolds number (Re) is represented by r i ω d / ν, and if the numerical value is small, it tends to be laminar-dominated.
Re = riωd / ν
[Ri: radius of cylinder, ω: rotational angular velocity, d: mean value of gap width (ro-ri), ν: kinematic viscosity coefficient]
Further, the critical Taylor number Tac in which the Taylor vortex is generated is shown as follows. This critical Taylor number Tac is determined by η = ri / r0. In the present invention, considering the flow efficiency of the liquid by the cylindrical member, the η is preferably 0.5 or more, and in this case, the Tac is a value in the vicinity of 50 (about 40 to 70). It can be approximated to 50. Here, ωc is the angular velocity at which the Taylor vortex is generated, Rec is the critical Reynolds number, ri is the radius of the cylinder 2, r0 is the radius of the cylinder 1, and ν is the kinematic viscosity of the fluid.
Tac = {riωc (r0-ri) / ν} {(r0-ri) / ri} 0.5 = Rec {(r0-ri) / ri} 0.5.

上述の各式から、テイラー数Ta、臨界テイラー数Tac、レイノルズ数Re、臨界レイノルズ数Rec、角速度ω及びテイラー渦流が発生する角速度ωcの関係は、下記のようになる。
Ta/Tac=Re/Rec=ω/ωc
テイラー渦流は、1≦Ta/Tac=Re/Rec=ω/ωc<25の範囲で発生しやすい。Ta/Tacが1未満であればテイラー渦流が発生せず、25以上であれば乱流が発生しやすい。
From each of the above equations, the relationship between the Taylor number Ta, the critical Taylor number Tac, the Reynolds number Re, the critical Reynolds number Rec, the angular velocity ω, and the angular velocity ωc where the Taylor eddy is generated is as follows.
Ta / Tac = Re / Rec = ω / ωc
Taylor vortex flow is likely to occur in the range of 1 ≦ Ta / Tac = Re / Rec = ω / ωc <25. If Ta / Tac is less than 1, Taylor vortex flow does not occur, and if it is 25 or more, turbulence is likely to occur.

そして、本発明においては、細胞凝集塊を含む液体に、乱流が発生しない条件で細胞凝集塊の分散処理を行うことが好ましく、かつ、細胞凝集塊を含む液体にテイラー渦流が発生する条件で、細胞凝集塊の分散処理を行うことが好ましい。液体にテイラー渦流を発生させることにより、液体に含まれる細胞凝集塊に大きなせん断力を作用させることができるとともに、処理中に細胞凝集塊(分散した細胞)に損傷が発生する確率を小さくすることができるため、細胞凝集塊の処理効率(回収効率や回収量)を高めることができる。詳しくは、テイラー渦流を発生させることによって、液体は、周回方向への移動だけではなく、高さ方向や円筒の径方向へも移動する(螺旋軌道を描きながら周回する)。この複雑に移動する液体が、細胞凝集塊に、大きなせん断力を作用させて、細胞凝集塊を効率よく分散させる。一方、テイラー渦流では液体は複雑な動きをするものの、乱流と異なり、一定の規則性を持って移動する。そのため、液体に含まれる細胞凝集塊(分散された細胞)がお互いに衝突する確率を小さくすることができるとともに、局所的に大きな(細胞を損傷するような)せん断力が発生することも防止することができる。以上のことから、テイラー渦流を利用することにより、細胞凝集塊の分散効率を高めることができるとともに、細胞が損傷する可能性を小さくすることが可能になる。さらに、本発明を、内面が円筒形となっている固定槽や、外面が円筒形となっている円筒形状を利用することにより、特に液体の移動方向に、細胞凝集塊に衝突する機構的な要素が少なくなり、細胞凝集塊にダメージを与えないように細胞凝集塊の分散処理を行うことができる。 In the present invention, it is preferable to disperse the cell aggregates in the liquid containing the cell aggregates under the condition that turbulence does not occur, and under the condition that the Taylor vortex is generated in the liquid containing the cell aggregates. , It is preferable to carry out a dispersion treatment of cell aggregates. By generating a Taylor vortex in the liquid, a large shearing force can be applied to the cell aggregates contained in the liquid, and the probability of damage to the cell aggregates (dispersed cells) during the treatment is reduced. Therefore, it is possible to increase the processing efficiency (recovery efficiency and recovery amount) of cell aggregates. Specifically, by generating a Taylor vortex, the liquid moves not only in the orbital direction, but also in the height direction and the radial direction of the cylinder (orbiting while drawing a spiral orbit). This complex moving liquid exerts a large shearing force on the cell aggregates to efficiently disperse the cell aggregates. On the other hand, in the Taylor vortex flow, the liquid moves in a complicated manner, but unlike the turbulent flow, it moves with a certain regularity. Therefore, it is possible to reduce the probability that the cell aggregates (dispersed cells) contained in the liquid collide with each other, and also prevent the generation of a large (damaging cells) shearing force locally. be able to. From the above, by utilizing the Taylor vortex flow, it is possible to increase the dispersion efficiency of cell aggregates and reduce the possibility of cell damage. Furthermore, by utilizing a fixed tank having a cylindrical inner surface and a cylindrical shape having a cylindrical outer surface, the present invention is mechanically colliding with cell aggregates, especially in the direction of liquid movement. The number of elements is reduced, and the cell aggregate can be dispersed so as not to damage the cell aggregate.

なお、本発明においては、細胞凝集塊を含む液体にテイラー渦流が発生するように、装置の形状や運転条件を設定することができる。細胞の種類や凝集の状況が異なると、分散に必要なせん断力や、最適な液体成分(添加成分の種類や量)、処理時間が異なるため、最適なデバイスの形状や回転速度や処理時間が変わってくる。上記の式を利用すれば、例えば液体の動粘度の情報と、デバイスの形状に関する情報から、回転数の設定条件を絞り込むことができるため、分散処理の条件設定が容易になる。あるいは、一回の処理での要求処理量や、必要なせん断力の情報に基づいて、デバイスの設計を行うことも可能であり、同条件でのスケールアップ要請に対応する設計も可能になる。特に、内面が円筒形となっている固定槽や、外面が円筒形となっている円筒形状を利用することにより、上記の理論式への当てはめが容易になる。 In the present invention, the shape and operating conditions of the device can be set so that the Taylor vortex flow is generated in the liquid containing the cell aggregate. Since the shear force required for dispersion, the optimum liquid component (type and amount of additive component), and processing time differ depending on the cell type and aggregation status, the optimum device shape, rotation speed, and processing time are different. It will change. By using the above equation, for example, the setting condition of the rotation speed can be narrowed down from the information on the kinematic viscosity of the liquid and the information on the shape of the device, so that the condition setting of the dispersion processing becomes easy. Alternatively, it is possible to design the device based on the information on the required processing amount in one processing and the required shearing force, and it is also possible to design in response to the scale-up request under the same conditions. In particular, by using a fixed tank having a cylindrical inner surface or a cylindrical shape having a cylindrical outer surface, it becomes easy to apply the above theoretical formula.

ただし、本発明をせん断力に弱い細胞種に適用する場合には、テイラー渦流が発生しない条件で、細胞の分散処理を行うことも可能である。
なお、本発明においては、処理中に、液体が空気をかみこまないように(液体が気泡を巻き込まないように)、液体の量、または、装置の形状を調整することができる。具体的には、固定槽に液体と円筒状部材を設けたときに(運転前に)、液面が円筒状部材の上面を越えないように、液体の処理量を調整してもよい。あるいは、円筒状部材を回転させて細胞凝集塊の分散処理を行う際に、液面が円筒状部材の上面を越えないように、液体の処理量および回転数を調整してもよい。これにより、液体に空気がかみこむ確率を低減することができ、細胞凝集塊に損傷を与える確率を低減することができる。あるいはまた、固定槽(固定槽と円筒状部材の隙間)を、液体で満たすように、液体を注入することも可能である。例えば蓋部に、空気を通すが液体を通さない部材(バルブやフィルターなど)と、液体の注入口を設け、液体を注入しながら固定槽内の空気を抜くことで、固定槽を液体で満たすことができる。これによると、処理中に、液体が空気をかみこむことを防止することができる。この場合、固定槽を横に倒した状態で、細胞の分散処理を行うことも可能である。
However, when the present invention is applied to a cell type that is weak against shearing force, it is also possible to carry out a cell dispersion treatment under the condition that Taylor eddy current does not occur.
In the present invention, the amount of the liquid or the shape of the device can be adjusted so that the liquid does not entrap air (so that the liquid does not entrap air bubbles) during the treatment. Specifically, when the liquid and the cylindrical member are provided in the fixed tank (before operation), the liquid processing amount may be adjusted so that the liquid level does not exceed the upper surface of the cylindrical member. Alternatively, when the cylindrical member is rotated to disperse the cell aggregates, the liquid processing amount and the rotation speed may be adjusted so that the liquid level does not exceed the upper surface of the cylindrical member. As a result, the probability that air is caught in the liquid can be reduced, and the probability of damaging the cell agglomerates can be reduced. Alternatively, it is also possible to inject the liquid so that the fixed tank (the gap between the fixed tank and the cylindrical member) is filled with the liquid. For example, the lid is provided with a member (valve, filter, etc.) that allows air to pass through but does not allow liquid to pass through, and a liquid injection port. be able to. According to this, it is possible to prevent the liquid from entraining air during the treatment. In this case, it is also possible to disperse the cells while the fixed tank is laid down sideways.

なお、本発明においては、固定槽は、液体の状況を計測する各種センサーを有する構成とすることもできる。ただしこの場合、センサーは、大きな凹凸を構成しない部材を利用したもの(蛍光パッチを利用したpHセンサー/DOセンサーや、槽外から計測可能な温度センサーなど)を適用することができる。これにより、液流を管理しつつ、分散処理中の液体の状態を計測することができるので、処理条件の的確性判断や、細胞の品質管理を行うことができる。なお、蛍光パッチを利用する場合、蛍光パッチを設ける位置は液流に与える影響が小さくなるように設定することが好ましく、例えば固定槽の底部近傍(底面や、底面と側面との境界、側面の底面近傍)に設けることができる。 In the present invention, the fixed tank may be configured to have various sensors for measuring the state of the liquid. However, in this case, a sensor using a member that does not form a large unevenness (such as a pH sensor / DO sensor using a fluorescent patch or a temperature sensor that can measure from outside the tank) can be applied. As a result, it is possible to measure the state of the liquid during the dispersion treatment while controlling the liquid flow, so that it is possible to accurately determine the treatment conditions and control the quality of the cells. When using a fluorescent patch, it is preferable to set the position where the fluorescent patch is provided so that the influence on the liquid flow is small. It can be provided near the bottom surface).

本発明において、細胞凝集塊を含む液体の処理時間は特に制限されないが、細胞種類などによって調整することが可能で、例えば、100秒以上とすることが好ましい。
本発明によって細胞が効率的に分散される理由の詳細は完全には明らかでなく、本発明はこの推論に拘束されるものではないが、本発明においては、適度な物理的ストレスが細胞にかかることによって細胞が効率的に分散するものと考えられる。
In the present invention, the treatment time of the liquid containing the cell aggregate is not particularly limited, but it can be adjusted depending on the cell type and the like, and is preferably 100 seconds or more, for example.
The details of why cells are efficiently dispersed by the present invention are not completely clear and the present invention is not bound by this reasoning, but in the present invention, moderate physical stress is applied to the cells. It is considered that the cells are efficiently dispersed.

以下、具体的な実験例を示しつつ、本発明をより詳細に説明するが、本発明は下記の具体的な実験例に限定されるものではない。また、本明細書において特に記載しない限り、濃度などは重量基準であり、数値範囲はその端点を含むものとして記載される。 Hereinafter, the present invention will be described in more detail while showing specific experimental examples, but the present invention is not limited to the following specific experimental examples. Further, unless otherwise specified in the present specification, the concentration and the like are based on weight, and the numerical range is described as including the end points thereof.

実験1:誘導多能性幹細胞の細胞分散
(1)細胞凝集塊
足場材(iMatrix、ニッピ)を用いて6ウェルプレート上に生育した誘導多能性幹細胞(iPS細胞、Ff-i14:京都大学)を培地(StemFit AK03N、味の素)で維持培養した。
Experiment 1: Cell dispersal of induced pluripotent stem cells (1) Cell aggregates Induced pluripotent stem cells (iPS cells, Ff-i14: Kyoto University) grown on a 6-well plate using a scaffolding material (iMatrix, Nippi). Was maintained and cultured in a medium (StemFit AK03N, Ajinomoto).

iPS細胞培養用シングルユース100mLバイオリアクター(以下、100mLリアクター、エイブル)に、100mLのStemFit AK03Nと終濃度10μMに調整したY27632(和光純薬製ROCK阻害剤)を入れ、37 ℃、pH7.2、溶存酸素濃度(DO)40%(大気飽和)に予め調整した。新鮮なiPS細胞を6ウェルプレートから回収し、予め調整した100mLリアクターに2.0×10/mLの密度で播種した。播種後、100mLリアクターを、37 ℃、pH7.2、DO=40%(大気飽和)の条件に維持し、40rpmで攪拌しながら培養した。培養1日目で培養液の一部を採取し、細胞凝集塊が生育していることを確認した。培養2日目に細胞凝集塊を含む培養液全量を遠沈管に回収し、190Gで1分間遠心分離して上清を取り除いた。新鮮かつ37℃に保温した同量のStemFit AK03Nで細胞凝集塊を再懸濁して100mLバイオリアクターに再投入し、37 ℃、pH7.2、DO=40%(大気飽和)、40rpmの条件で培養を継続した。同じ操作を培養3日目に繰り返し、4日間培養を継続した後、iPS細胞の細胞凝集塊を得た。 In a single-use 100 mL bioreactor for iPS cell culture (hereinafter referred to as 100 mL reactor, Able), 100 mL of StemFit AK03N and Y27632 (ROCK inhibitor manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to a final concentration of 10 μM were placed at 37 ° C., pH 7.2, The dissolved oxygen concentration (DO) was adjusted to 40% (atmospheric saturation) in advance. Fresh iPS cells were harvested from 6-well plates and seeded in a pre-arranged 100 mL reactor at a density of 2.0 × 107 / mL. After sowing, the 100 mL reactor was maintained at 37 ° C., pH 7.2, DO = 40% (atmospheric saturation), and cultured at 40 rpm with stirring. A part of the culture solution was collected on the first day of culture, and it was confirmed that cell aggregates were growing. On the second day of culturing, the entire amount of the culture broth containing the cell aggregate was collected in a centrifuge tube and centrifuged at 190 G for 1 minute to remove the supernatant. Resuspend cell aggregates in the same amount of StemFit AK03N fresh and kept at 37 ° C, reinject into a 100 mL bioreactor, and incubate at 37 ° C, pH 7.2, DO = 40% (atmospheric saturation), 40 rpm. Continued. The same operation was repeated on the 3rd day of the culture, and after continuing the culture for 4 days, cell aggregates of iPS cells were obtained.

(2)細胞分散装置
実験に使用した装置の外観写真を図1に示す。図1に示したように、筒状のハウジング(透明樹脂製、材質:ポリカーボネート、内径:約38mm)の内側に円筒状部材が同心円上に設けられており、円筒状部材(半透明樹脂製、材質:ポリプロピレン)は筒状のハウジングの内側に回転自在に取り付けられ、上部の蓋部材によって密閉することが可能である(容量:約20ml)。細胞処理装置の内側に設けられる円筒状の回転部材(シリンダー)については、外径(外直径)が22mm、25mm、28mmの3種を用意し、以下の実験で使用した。
(2) Cell Dispersion Device Figure 1 shows a photograph of the appearance of the device used in the experiment. As shown in FIG. 1, a cylindrical member is provided concentrically inside a tubular housing (made of transparent resin, material: polycarbonate, inner diameter: about 38 mm), and the cylindrical member (made of translucent resin, made of translucent resin). (Material: Polypropylene) is rotatably attached to the inside of the cylindrical housing and can be sealed by the upper lid member (capacity: about 20 ml). As for the cylindrical rotating member (cylinder) provided inside the cell processing apparatus, three types having outer diameters (outer diameters) of 22 mm, 25 mm, and 28 mm were prepared and used in the following experiments.

ここで、装置の内側に回転自在に取り付けられる円筒状部材にはマグネットが埋め込まれており、装置をマグネティックスターラー上に載置することによって、装置内部の円筒状部材を回転させることができる。 Here, a magnet is embedded in a cylindrical member rotatably attached to the inside of the device, and the cylindrical member inside the device can be rotated by placing the device on a magnetic stirrer.

(3)細胞凝集塊の分散
培養4日目の細胞凝集塊を含む培養液を、均等に25mLずつ遠沈管に分注した。遠沈管を190Gで3分間遠心分離して上清を取り除き、等量のリン酸緩衝生理食塩水(PBS、ナカライテスク社)で懸濁し、再度190Gで3分間遠心分離した。遠心分離後再度上清を取り除き、酵素液(プロテアーゼ、TrypLE Select、Gibco社)を添加した。酵素液は、0.5mMのEDTAを含むPBSで2倍に希釈した酵素液(10μMのY27632を含有、以下、0.5×TrypLE Selectという)を12.5mL添加した。
(3) Dispersion of cell aggregates 25 mL of the culture solution containing the cell aggregates on the 4th day of culture was evenly dispensed into a centrifuge tube. The centrifuge tube was centrifuged at 190 G for 3 minutes to remove the supernatant, suspended in an equal volume of phosphate buffered saline (PBS, Nacalai Tesque), and centrifuged again at 190 G for 3 minutes. After centrifugation, the supernatant was removed again, and an enzyme solution (protease, TrypLE Select, Gibco) was added. As the enzyme solution, 12.5 mL of the enzyme solution (containing 10 μM Y27632, hereinafter referred to as 0.5 × TrypLE Select) diluted 2-fold with PBS containing 0.5 mM EDTA was added.

細胞分散装置を使用しない場合(用手法やマニュアル法ともいう)は、遠沈管を37℃で5分間保温したのち、ピペッターを用いて処理液を勢いよく出し入れすること(以下、ピペッティングという)により細胞凝集塊を分散した。ピペッターはDrummond Scientific Company社製ピペット・エイド(10mL)を使用した。再度37℃で5分間保温した後、ピペッティングによる細胞凝集塊の分散を、凝集塊が目視で見えなくなるまで繰り返した。条件を揃えるため、10mLピペットを用いて自動ピペッターの吸引・排出の速度設定を最大に合わせ、遠沈管の底部にピペットの先端を当て、液の出し入れを5回繰り返した後、酵素を用いて5分間処理し、均一な単細胞の懸濁液を得た(これを2回繰り返す場合は、液の出し入れが10回、酵素処理が10分間となる)。 When the cell disperser is not used (also referred to as the manual method or manual method), the centrifuge tube is kept warm at 37 ° C for 5 minutes, and then the treatment solution is vigorously taken in and out using a pipetter (hereinafter referred to as pipetting). Cell aggregates were dispersed. The pipette was a pipette aid (10 mL) manufactured by Drummond Scientific Company. After incubating at 37 ° C. for 5 minutes again, the dispersion of cell aggregates by pipetting was repeated until the aggregates became invisible visually. In order to meet the conditions, use a 10 mL pipette to maximize the suction / discharge speed setting of the automatic pipette, place the tip of the pipette on the bottom of the centrifuge tube, repeat the inflow and outflow of the liquid 5 times, and then use the enzyme 5 Treatment was performed for 1 minute to obtain a uniform suspension of single cells (when this is repeated twice, the liquid is taken in and out 10 times, and the enzyme treatment is performed for 10 minutes).

細胞分散装置を使用する場合(以下、デバイス法ともいう)は、0.5×TrypLE Selectに懸濁した細胞凝集塊を細胞分散装置に入れ、加湿炭酸ガスインキュベーター内に設置したマグネティックスターラー(MD-200、ヤマト科学)に載置し、室温において、1200rpmで円筒状部材を回転させて処理液をテイラー渦流の状態にし、約5分間酵素処理を行った。 When using a cell disperser (hereinafter also referred to as the device method), a magnetic stirrer (MD-200, MD-200,) in which cell aggregates suspended in 0.5 × TrypLE Select are placed in the cell disperser and placed in a humidified carbon dioxide incubator. The cells were placed on a magnetic stirrer (Yamato Kagaku), and the cylindrical member was rotated at 1200 rpm at room temperature to bring the treatment liquid into a Taylor vortex state, and the enzyme treatment was performed for about 5 minutes.

なお、1000rpm~1500rpmの条件におけるせん断方向の流速度とせん断応力は、事前に行った粒子イメージ流速計測(Particle Image Velocimetry:PIV)の結果から以下のように算出された。なお、粒子イメージ流速計測では、比重1.101g/mL、粘性3.72cPの液体を利用した。
(流速度)
・シリンダー外径22mm: 0.392~0.491 m/s
・シリンダー外径25mm: 0.331~0.623 m/s
・シリンダー外径28mm: 0.750~0.751 m/s
(せん断応力)
・シリンダー外径22mm: 87.6~121.5Pa
・シリンダー外径25mm: 88.4~162.6Pa
・シリンダー外径28mm: 301.5~302.2Pa
分散処理後の細胞懸濁液は、処理後すぐに、終濃度10μMのY27632を含む等量のStemFit AK03Nを添加してセルストレーナー(Corning社、メッシュサイズ:40μm)でろ過し、190Gで3分間遠心分離した。遠心分離後、上清を取り除き、終濃度10μMのY27632を含むStemFit AK03Nに懸濁させた。
The flow velocity and shear stress in the shear direction under the conditions of 1000 rpm to 1500 rpm were calculated as follows from the results of particle image velocimetry (PIV) performed in advance. In the particle image flow velocity measurement, a liquid with a specific density of 1.101 g / mL and a viscosity of 3.72 cP was used.
(Flow velocity)
・ Cylinder outer diameter 22 mm: 0.392 to 0.491 m / s
・ Cylinder outer diameter 25 mm: 0.331 to 0.623 m / s
・ Cylinder outer diameter 28 mm: 0.750 to 0.751 m / s
(Shear stress)
・ Cylinder outer diameter 22mm: 87.6-121.5Pa
・ Cylinder outer diameter 25mm: 88.4-162.6Pa
・ Cylinder outer diameter 28mm: 301.5-302.2Pa
Immediately after the treatment, the cell suspension after the dispersion treatment was added with an equal amount of StemFit AK03N containing Y27632 having a final concentration of 10 μM, filtered through a cell strainer (Corning, mesh size: 40 μm), and filtered at 190 G for 3 minutes. Centrifuged. After centrifugation, the supernatant was removed and suspended in StemFit AK03N containing Y27632 at a final concentration of 10 μM.

(4)分散処理後の分析
上記(3)で得られた処理液について、一部をPBSで適宜希釈してトリパンブルーで染色し、顕微鏡下で血球計算板にて生細胞数を目視にてカウントした。結果を図2に示すが、シリンダーの外径が小さくなると回収効率がやや低くなる傾向が見られたものの、マニュアル法と同程度の回収効率となった。
(4) Analysis after dispersion treatment A part of the treatment solution obtained in (3) above is appropriately diluted with PBS and stained with trypan blue, and the number of living cells is visually observed on a hemocytometer under a microscope. Counted. The results are shown in Fig. 2. Although the recovery efficiency tended to decrease slightly as the outer diameter of the cylinder became smaller, the recovery efficiency was about the same as that of the manual method.

図3に示すように、分散処理前の細胞凝集塊は、直径約100~300μmの球体であったが、分散処理によって、細胞凝集塊が少なくなったことが確認された。すなわち、本発明に係る細胞分散装置を用いた場合には、シリンダーの外径が小さくなると細胞凝集塊が残りやすい傾向が見られた。 As shown in FIG. 3, the cell aggregates before the dispersion treatment were spheres having a diameter of about 100 to 300 μm, but it was confirmed that the cell aggregates were reduced by the dispersion treatment. That is, when the cell dispersant according to the present invention was used, there was a tendency that cell aggregates tended to remain as the outer diameter of the cylinder became smaller.

(5)分散処理した単細胞の再生育
上記(3)で得られた単細胞(iPS細胞)について、その増殖能を確認した。具体的には、上記(3)で得られた細胞懸濁液を上記(1)と同条件で100mLバイオリアクターに再播種したところ、4日間の培養で同程度の生育を示した。すなわち、本発明の細胞分散装置によって単細胞まで分散されたiPS細胞は、本来の増殖能を維持していることが確認された。
(5) Regeneration and growth of dispersed treated single cells The proliferative ability of the single cells (iPS cells) obtained in (3) above was confirmed. Specifically, when the cell suspension obtained in (3) above was re-seeded in a 100 mL bioreactor under the same conditions as in (1) above, the same degree of growth was shown after culturing for 4 days. That is, it was confirmed that the iPS cells dispersed up to a single cell by the cell dispersant device of the present invention maintain their original proliferative ability.

実験2:心筋細胞の細胞分散
(1)心筋細胞の細胞凝集塊の分散
一般に、ヒトiPS細胞は、分化誘導により様々な細胞への分化が可能であり、これらの細胞は再生医療や安全性薬理試験等への使用が想定されている。3次元浮遊攪拌懸濁培養などによる分化誘導は、未分化増幅同様に細胞凝集塊形成を伴うため、分化誘導後の細胞凝集塊の効率的な分散は、目的細胞の効率的な回収や収量の確保に不可欠である。
Experiment 2: Cell dispersion of myocardial cells (1) Dispersion of cell aggregates of myocardial cells Generally, human iPS cells can be differentiated into various cells by inducing differentiation, and these cells are used for regenerative medicine and safety pharmacology. It is expected to be used for tests, etc. Since differentiation induction by three-dimensional floating stirring suspension culture is accompanied by cell agglomeration formation as in undifferentiated amplification, efficient dispersion of cell agglomerates after differentiation induction is effective recovery and yield of target cells. It is indispensable for securing.

そこで本実験では、3次元浮遊培養環境下に、時期特異的に増殖因子および低分子化合物を添加することでヒトiPS細胞から心筋細胞へと分化誘導し、得られた心筋細胞の細胞凝集塊について、実験1と同様に分散実験を行った。具体的には、iPS細胞(Ff-i14、京都大学)から分化誘導した心筋細胞の細胞凝集塊について、実験1に記載した分散装置を用いて単細胞への分散実験を行った。分化誘導後14日目の細胞凝集塊(心筋細胞の細胞塊)を使用して、実験を実施した。 Therefore, in this experiment, we induced differentiation of human iPS cells into cardiomyocytes by adding growth factors and low-molecular-weight compounds in a time-specific manner in a three-dimensional floating culture environment, and obtained cell aggregates of cardiomyocytes. , A dispersion experiment was performed in the same manner as in Experiment 1. Specifically, a cell aggregate of cardiomyocytes induced to differentiate from iPS cells (Ff-i14, Kyoto University) was subjected to a dispersal experiment into single cells using the disperser described in Experiment 1. Experiments were carried out using cell aggregates (cell masses of cardiomyocytes) 14 days after induction of differentiation.

100mL vesselで心筋細胞に分化誘導された細胞凝集塊(100mL分)を、各条件20mLずつ使用した。使用する細胞凝集塊をコニカルチューブ(50mL容、Corning社)に移し、室温にて、190Gで1分間遠心処理した。上清を吸引除去し、20mLのPBS(ナカライテスク)で再懸濁後、再度、室温にて、190Gで1分間遠心処理した。上清を吸引除去し、0.05%TE (0.25% trypsin/EDTAをPBS(-)で5倍に希釈)12.5mlを添加し再懸濁した。
(マニュアル法による細胞分散:Manual) 上記酵素と細胞凝集塊が入った50mLのコニカルチューブを、37℃の恒温槽に入れ10分間静置した(2分おきにピペットで攪拌)。10分後、恒温槽より取り出し、クリーンベンチ内で、10mLピペット(falcon)を使用して、細胞凝集塊が肉眼で見えなくなるまでピペッティングを繰り返した。
(デバイス法による細胞分散:Device) 上記酵素(0.05% TE 12.5mL)と細胞凝集塊を細胞分散装置(回転部材の外径:28mm)に入れ、37℃ CO2インキュベーター内で、1000rpm, 1500rpm, 2000rpmの回転数で10分間攪拌した。いずれの条件でも、装置内を周回する処理液はテイラー渦流の状態となる。
20 mL of cell aggregates (100 mL) induced to differentiate into cardiomyocytes in a 100 mL vessel were used under each condition. The cell aggregates to be used were transferred to a conical tube (50 mL volume, Corning) and centrifuged at 190 G for 1 minute at room temperature. The supernatant was removed by suction, resuspended in 20 mL of PBS (Nacalai Tesque), and then centrifuged again at room temperature at 190 G for 1 minute. The supernatant was removed by suction, and 12.5 ml of 0.05% TE (0.25% trypsin / EDTA diluted 5-fold with PBS (-)) was added and resuspended.
(Cell dispersion by manual method: Manual) A 50 mL conical tube containing the above enzyme and cell aggregates was placed in a constant temperature bath at 37 ° C. and allowed to stand for 10 minutes (stirred with a pipette every 2 minutes). After 10 minutes, the cells were removed from a constant temperature bath, and pipetting was repeated in a clean bench using a 10 mL pipette (falcon) until the cell aggregates became invisible to the naked eye.
(Cell dispersion by device method: Device) The above enzyme (0.05% TE 12.5 mL) and cell aggregates are placed in a cell disperser (outer diameter of rotating member: 28 mm) and placed in a 37 ° C CO2 incubator at 1000 rpm, 1500 rpm, 2000 rpm. The mixture was stirred for 10 minutes at the same rotation speed. Under either condition, the processing liquid circulating in the apparatus is in a Taylor vortex state.

上記の細胞分散後の処理液(マニュアル法およびデバイス法)に対して、12.5mLの10%FBS DMEM(sigma社)を添加し、室温にて、190Gで3分間遠心処理した。上清を吸引除去した後、15mLの10%FBS DMEMで再懸濁し、40μmのストレーナーに通した後の細胞浮遊液について、細胞数を計測した。 To the above-mentioned treatment liquid after cell dispersion (manual method and device method), 12.5 mL of 10% FBS DMEM (sigma) was added, and the mixture was centrifuged at 190 G at room temperature for 3 minutes. After removing the supernatant by suction, the cells were resuspended in 15 mL of 10% FBS DMEM, passed through a 40 μm strainer, and the cell number was counted for the cell suspension.

結果を図4~5に示すが、本発明によって、心筋細胞の細胞凝集塊を分散できることが確認できた。特に、シリンダー外径が28mmの細胞分散装置を用いて、1500rpmでヒトiPS細胞由来細胞凝集塊をタンパク分解酵素とともに処理することにより、マニュアル法と同等の細胞数の回収が可能となった。
図4(棒グラフ)のデータ
・1000rpm: 2.6×10cells
・1500rpm: 3.3×10cells
・2000rpm: 2.9×10cells
・手作業: 2.5×10cells
図5(棒グラフ)のデータ
・Manual: 3.4×10cells ± 1.3×10cells
・Device: 3.7×10cells ± 1.3×10cells
The results are shown in FIGS. 4 to 5, and it was confirmed that the present invention can disperse the cell aggregates of cardiomyocytes. In particular, by treating human iPS cell-derived cell aggregates with proteolytic enzyme at 1500 rpm using a cell disperser with a cylinder outer diameter of 28 mm, it became possible to recover the same number of cells as the manual method.
Data in Fig. 4 (bar graph) ・ 1000 rpm: 2.6 × 107 cells
・ 1500rpm: 3.3 × 107 cells
・ 2000rpm: 2.9 × 10 6 cells
-Manual work: 2.5 x 107 cells
Data in Fig. 5 (bar graph) ・ Manual: 3.4 × 10 7 cells ± 1.3 × 10 7 cells
・ Device: 3.7 × 10 7 cells ± 1.3 × 10 7 cells

(2)
上記(1)によって、細胞分散装置を用いて細胞凝集塊を分散することで、手作業と同等の収量が得られることが明らかとなった。一般に、分化誘導後の心筋細胞の細胞凝集塊は、心筋細胞のみで構成されるものではない(心筋細胞の純度が100%ではない)ため、回収された細胞中の目的細胞の割合の評価が不可欠である。そこで、デバイス法およびマニュアル法で分散された細胞について、そこに含まれる心筋細胞の割合をフローサイトメーターで評価した。
(2)
From the above (1), it was clarified that the yield equivalent to that of manual work can be obtained by dispersing the cell aggregates using the cell disperser. In general, the cell aggregate of cardiomyocytes after induction of differentiation is not composed only of cardiomyocytes (the purity of cardiomyocytes is not 100%), so that the ratio of target cells in the recovered cells is evaluated. It is essential. Therefore, the proportion of cardiomyocytes contained in the cells dispersed by the device method and the manual method was evaluated by a flow cytometer.

具体的には、回収した細胞(1.0×10cells)を4%パラホルムアルデヒドで固定し、抗心筋トロポニンマウスモノクローナル抗体(ThermoFisher Scientific社、MS295-P1 clone 13-11)を用いて染色した後、Cy3標識抗マウス抗体で染色し、FACSにて心筋純度を測定した。対照(isotype control)には、マウスIgG1抗体(DAKO社、X0931)を使用し、FACSには、MofloXDP(ベックマンコールター社)を使用した。 Specifically, the recovered cells (1.0 × 107 cells) were fixed with 4% paraformaldehyde and stained with an anti-myocardial troponin mouse monoclonal antibody (ThermoFisher Scientific, MS295-P1 clone 13-11). After that, the cells were stained with Cy3-labeled anti-mouse antibody, and myocardial purity was measured by FACS. A mouse IgG1 antibody (DAKO, X0931) was used as an isotype control, and MofloXDP (Beckman Coulter) was used as a FACS.

結果を図6に示すが、(1)で分散された細胞中には、いずれも、心筋トロポニンT陽性の心筋細胞が約90%含まれており、両手法間でその割合に差は認められなかった。すなわち、細胞分散装置を用いた分散によっても、手作業による分散と同等に目的細胞である心筋細胞の回収が可能であることが明らかとなった。
図6(棒グラフ)のデータ
・Manual: 88.7±3.0%
・Device: 93.0±1.6%
The results are shown in FIG. 6. The cells dispersed in (1) contained about 90% of myocardial troponin T-positive cardiomyocytes, and a difference was observed between the two methods. I didn't. That is, it was clarified that the cardiomyocytes, which are the target cells, can be recovered by the dispersion using the cell disperser as well as the manual dispersion.
Data in Fig. 6 (bar graph) ・ Manual: 88.7 ± 3.0%
・ Device: 93.0 ± 1.6%

(3)
細胞分散装置によって回収された心筋細胞が、手作業によって回収された心筋細胞と同様に培養可能であるかについて確認した。すなわち、細胞凝集塊の分散は、細胞に対する物理的ストレスを伴うため、過度のストレスが細胞へ障害をきたすことが懸念されることから、回収後の細胞の培養後の評価が不可欠である。そこで、細胞分散装置と手作業によって回収された心筋細胞を同期間培養し、培養後の心筋細胞数を評価した。
(3)
It was confirmed whether the cardiomyocytes recovered by the cell disperser could be cultured in the same manner as the cardiomyocytes recovered manually. That is, since the dispersion of cell aggregates involves physical stress on the cells, there is a concern that excessive stress may cause damage to the cells, and therefore evaluation after culturing the cells after recovery is indispensable. Therefore, cardiomyocytes collected manually with a cell disperser were cultured for the same period, and the number of cardiomyocytes after culturing was evaluated.

各条件で回収した細胞を24ウェルプレート(Falcon社)に播種した(1.0×10cells/well、培地:10%FBS DMEM)。播種後2~3日後に4%パラホルムアルデヒドを使用して固定し、抗心筋トロポニンTラビットポリクローナル抗体(Abcam社)を用いて染色した後に、FITC標識抗ラビット抗体で染色した。核は、Hoechst 33258(Invitrogen社)を使用して染色した。 The cells collected under each condition were seeded in a 24-well plate (Falcon) (1.0 × 105 cells / well, medium: 10 % FBS DMEM). 2-3 days after seeding, the cells were fixed with 4% paraformaldehyde, stained with anti-myocardial troponin T rabbit polyclonal antibody (Abcam), and then stained with FITC-labeled anti-rabbit antibody. Nuclei were stained using Hoechst 33258 (Invitrogen).

染色した細胞について、ImageXpress(Molecular Device社)を用いて各ウェル内の画像を取得し(49視野を20倍レンズで撮像)、MetaXpressおよびAcuity Softwear(いずれもMolecular Device社)を用いて各ウェル内の心筋トロポニンT陽性細胞数を計測した。 Images of stained cells were obtained in each well using ImageXpress (Molecular Device) (49 fields of view were imaged with a 20x lens), and in each well using MetaXpress and Acuity Softwear (both Molecular Device). The number of myocardial troponin T-positive cells was counted.

結果を図7に示すが、デバイス法とマニュアル法で、心筋細胞数には差を認めなかった。すなわち、細胞分散装置を用いた新たな細胞凝集塊分散手法は、目的細胞である心筋細胞へ影響少なく回収され、結果手作業による回収手法と同様に心筋細胞が状態良く維持培養されたことが示唆された。
図7(棒グラフ)のデータ
・Manual: 13690±2475 cells
・Device: 13356±2734 cells
The results are shown in FIG. 7, and no difference was observed in the number of cardiomyocytes between the device method and the manual method. In other words, it is suggested that the new cell aggregate dispersion method using the cell disperser was recovered with less influence on the target cells, cardiomyocytes, and as a result, the cardiomyocytes were maintained and cultured in good condition in the same manner as the manual recovery method. Was done.
Data in Fig. 7 (bar graph) -Manual: 13690 ± 2475 cells
・ Device: 13356 ± 2734 cells

(4)
一般に、心筋細胞への分化誘導後の細胞凝集塊には、未分化のiPS細胞がわずかに残存する。そこで細胞分散装置と手作業によって回収された単一細胞について、未分化iPS細胞の残存割合をフローサイトメーターにより評価した。
(4)
In general, a small amount of undifferentiated iPS cells remain in the cell aggregate after induction of differentiation into cardiomyocytes. Therefore, the residual ratio of undifferentiated iPS cells was evaluated by a flow cytometer for the single cells recovered manually with a cell disperser.

回収した細胞(1.0×10cells)を、4%パラホルムアルデヒドを使用して固定し、FITC標識抗Tra-1 60マウスモノクローナル抗体(BD社、560380)を用いて染色し、残存している未分化iPS細胞をFACSで測定した。対照(isotype control)には、FITC標識マウスIgMκ抗体(555583)を使用した。FACS解析機器としてはMofloXDP(ベックマンコールター社)を使用した。 The recovered cells (1.0 × 107 cells) were fixed with 4% paraformaldehyde, stained with FITC-labeled anti-Tra-1 60 mouse monoclonal antibody (BD, 560380), and remained. Undifferentiated iPS cells were measured by FACS. A FITC-labeled mouse IgMκ antibody (555583) was used as an isotype control. MofloXDP (Beckman Coulter) was used as the FACS analysis device.

結果を図8に示すが、Tra-1 60陽性の未分化iPS細胞は、いずれの方法で回収された細胞にも検出されなかった。対照(Isotype control)での陽性割合が1%以下となるように設定したところ、Tra-1 60陽性細胞は0.2%未満であり、検出限界以下となった。すなわち、細胞分散装置による心筋分化誘導後細胞凝集塊の分散は、未分化iPS細胞の残存比率には影響せずに細胞の回収を可能にすることが明らかとなった。
図8(棒グラフ)のデータ
・Manual: Tra-1 60, 0.13±0.03; isotype, 1.00±0.01
・Device: Tra-1 60, 0.18±0.10; isotype, 0.99±0.01
The results are shown in FIG. 8, and Tra-1 60-positive undifferentiated iPS cells were not detected in the cells recovered by any method. When the positive ratio in the control (Isotype control) was set to 1% or less, the number of Tra-1 60 positive cells was less than 0.2%, which was below the detection limit. That is, it was clarified that the dispersion of cell aggregates after induction of myocardial differentiation by the cell disperser enables cell recovery without affecting the residual ratio of undifferentiated iPS cells.
Data in Figure 8 (bar graph)-Manual: Tra-1 60, 0.13 ± 0.03; isotype, 1.00 ± 0.01
-Device: Tra-1 60, 0.18 ± 0.10; isotype, 0.99 ± 0.01

(5)
上述したようにフローサイトメーターによる評価では、細胞分散装置および手作業による心筋分化誘導後細胞凝集塊分散後の細胞中にTra-1 60陽性の未分化iPS細胞は検出されなかったが、より鋭敏な指標であるLin28のmRNA発現よってiPS細胞の残存を評価した。
(5)
As described above, the evaluation by the flow cytometer did not detect Tra-1 60-positive undifferentiated iPS cells in the cells after the cell disperser and manual induction of myocardial differentiation and the dispersal of cell aggregates, but they were more sensitive. The survival of iPS cells was evaluated by the expression of Lin28 mRNA, which is an index.

回収した細胞を6ウェルプレート(Corning社)に播種(1ウェルあたり4×10個、培地:10%FBS DMEM)。培養開始後1日後と4日後にRNA Protect Cell Regent(Qiagen社)を用いて細胞回収し、Rneasy mini kit(Qiagen社)を用いてtotal RNAを回収した。最初のサンプル(Day0のサンプル)は、回収直後の細胞から上記と同様にしてtotal RNAを回収した。 The collected cells were seeded in a 6-well plate (Corning) (4 × 10 6 cells per well, medium: 10% FBS DMEM). Cells were collected 1 day and 4 days after the start of culture using RNA Protect Cell Regent (Qiagen), and total RNA was collected using Rneasy mini kit (Qiagen). For the first sample (Day 0 sample), total RNA was recovered from the cells immediately after recovery in the same manner as above.

TaqMan(商標)Fast Advenced Master Mix(Applied Biosystems社)を用いて定量的RT-PCRを行った。
結果を図9に示すが、両手法ともに回収直後の細胞においてLin28の発現が認められ、その発現レベルは両手法間で差は認めなかった。
Quantitative RT-PCR was performed using TaqMan ™ Fast Advenced Master Mix (Applied Biosystems).
The results are shown in FIG. 9, and the expression of Lin28 was observed in the cells immediately after recovery in both methods, and the expression level was not different between the two methods.

一方で、回収された細胞を培養し、4日目のLin28の発現レベルを比較すると、手作業によって回収された細胞に比して、細胞分散装置で回収された細胞ではLin28の発現レベルが有意に低値であった。このことは、細胞分散装置を用いて回収された細胞中の残存iPS細胞の増殖が抑制されたことを示唆するものである。ヒト多能性幹細胞は、単一状態では細胞死に至りやすいことが広く知られている。手作業による分散では、分散レベルにバラツキが生じやすいため、残存する未分化iPSが細胞凝集塊中に残存して細胞死を免れ、培養後に再増殖するのに対し、細胞分散装置による回収では、より均一に分散が可能であるために、単一細胞状態となった残存iPS細胞の生存・再増殖が困難であることが、本結果に影響しているものと考えられる。 On the other hand, when the recovered cells were cultured and the expression level of Lin28 on the 4th day was compared, the expression level of Lin28 was significantly higher in the cells recovered by the cell disperser than in the cells recovered by hand. It was a low price. This suggests that the proliferation of residual iPS cells in the cells recovered using the cell dispersant was suppressed. It is widely known that human pluripotent stem cells are prone to cell death in a single state. With manual dispersal, the dispersal level tends to vary, so the remaining undifferentiated iPS remains in the cell aggregate to avoid cell death and re-proliferate after culturing, whereas recovery with a cell disperser device It is considered that this result is influenced by the difficulty in survival and reproliferation of residual iPS cells in a single cell state because they can be dispersed more uniformly.

図9(棒グラフ)のデータ
(Day 0) Manual: 0.032±0.023; Device: 0.013±0.010
(Day 1) Manual: 0.024±0.017; Device: 0.015±0.007
(Day 4) Manual: 0.076±0.036; Device: 0.028±0.007
Data in Fig. 9 (bar graph) (Day 0) Manual: 0.032 ± 0.023; Device: 0.013 ± 0.010
(Day 1) Manual: 0.024 ± 0.017; Device: 0.015 ± 0.007
(Day 4) Manual: 0.076 ± 0.036; Device: 0.028 ± 0.007

Claims (7)

細胞凝集塊を単一の細胞に分散する細胞分散装置であって、
細胞凝集塊を含む処理液を収納する円筒形状の槽と、
前記槽の内側に、前記槽と同軸で回転可能に取り付けられる回転部材と、
を備え、前記回転部材を回転させることによって、前記槽内を周回する処理液を、テイラー渦流の状態で周回させて細胞凝集塊を単一の細胞に分散する、上記細胞分散装置。
A cell disperser that disperses cell aggregates into a single cell.
A cylindrical tank that stores the treatment liquid containing cell aggregates,
A rotating member that is rotatably attached to the inside of the tank coaxially with the tank,
The cell dispersant device for dispersing cell aggregates in a single cell by rotating the rotating member to orbit the treatment liquid orbiting in the tank in a Taylor vortex state.
前記処理液が、細胞凝集塊を分散させるための酵素を含む、請求項1に記載の細胞分散装置。 The cell dispersant according to claim 1, wherein the treatment liquid contains an enzyme for dispersing cell aggregates. 前記処理液が、キレート剤を含む、請求項1または2に記載の細胞分散装置。The cell dispersant according to claim 1 or 2, wherein the treatment liquid contains a chelating agent. 回転部材を回転させるためのスターラーをさらに備える、請求項1~3のいずれかに記載の細胞分散装置。 The cell dispersant according to any one of claims 1 to 3 , further comprising a stirrer for rotating a rotating member. 前記回転部材は円筒形となっている、請求項1~のいずれかに記載の細胞分散装置。 The cell dispersant according to any one of claims 1 to 4 , wherein the rotating member has a cylindrical shape. 細胞凝集塊を単一の細胞に分散する方法であって、
細胞凝集塊を含む処理液を収納する円筒形状の槽において、前記槽の内側面に沿って前記処理液を周回させることによって前記細胞凝集塊を単一の細胞に分散すること
前記槽の内側に同軸で回転可能に取り付けられる回転部材が回転することによって、周回する処理液をテイラー渦流の状態にすること
を含む、上記方法。
A method of dispersing cell aggregates into a single cell,
Dispersing the cell aggregates into a single cell by circulating the treatment solution along the inner surface of the tank in a cylindrical tank containing the treatment liquid containing the cell aggregates .
The rotating member coaxially and rotatably attached to the inside of the tank rotates to bring the orbiting treatment liquid into a Taylor vortex flow state.
The above method, including.
前記細胞凝集塊が、多能性幹細胞を含んでなる、請求項に記載の方法。 The method of claim 6 , wherein the cell aggregate comprises pluripotent stem cells.
JP2018028999A 2018-02-21 2018-02-21 Cell dispersal method and cell disperser Active JP7064191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028999A JP7064191B2 (en) 2018-02-21 2018-02-21 Cell dispersal method and cell disperser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028999A JP7064191B2 (en) 2018-02-21 2018-02-21 Cell dispersal method and cell disperser

Publications (2)

Publication Number Publication Date
JP2019140985A JP2019140985A (en) 2019-08-29
JP7064191B2 true JP7064191B2 (en) 2022-05-10

Family

ID=67770633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028999A Active JP7064191B2 (en) 2018-02-21 2018-02-21 Cell dispersal method and cell disperser

Country Status (1)

Country Link
JP (1) JP7064191B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363390B2 (en) * 2019-11-08 2023-10-18 Jsr株式会社 Cell aggregate dispersion device and cell aggregate dispersion method
WO2021181784A1 (en) 2020-03-11 2021-09-16 昭和電工マテリアルズ株式会社 Cell recovery device, cell recovery method, cell separation system, and cell separation method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237122A (en) 2007-03-28 2008-10-09 Reika Kogyo Kk Stirring device
US20110117639A1 (en) 2008-06-05 2011-05-19 Claudio Alberto Torres Suazo Taylor Vortex Flow Bioreactor for Cell Culture
CN102220224A (en) 2011-05-19 2011-10-19 汪华 Automatic medical cell separation device
US20110282238A1 (en) 2010-05-13 2011-11-17 Houser Kevin L Method and Apparatus for Morcellating Tissue
JP2011235224A (en) 2010-05-10 2011-11-24 Tomotaka Marui Apparatus for performing process by using phase-mixed flow of material to be processed and minute bubble
JP2012024061A (en) 2010-07-28 2012-02-09 Sysmex Corp Cell dispersion apparatus
JP2012060957A (en) 2010-09-17 2012-03-29 Taiyo Nippon Sanso Corp Method and apparatus for supplying gas
JP2014150784A (en) 2013-02-13 2014-08-25 Gunma Univ Apparatus for microbial culture, method of culturing microorganism in dispersed state and method of controlling extracellular polysaccharide using the same
JP2014176308A (en) 2013-03-13 2014-09-25 Mitsubishi Rayon Co Ltd Microarray, production method thereof, and applications thereof
CN104498350A (en) 2014-12-16 2015-04-08 何向锋 Homogenizer for separating subcellular fractions
CN104568539A (en) 2014-12-16 2015-04-29 何向锋 Automatic histocyte separator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237122A (en) 2007-03-28 2008-10-09 Reika Kogyo Kk Stirring device
US20110117639A1 (en) 2008-06-05 2011-05-19 Claudio Alberto Torres Suazo Taylor Vortex Flow Bioreactor for Cell Culture
JP2011235224A (en) 2010-05-10 2011-11-24 Tomotaka Marui Apparatus for performing process by using phase-mixed flow of material to be processed and minute bubble
US20110282238A1 (en) 2010-05-13 2011-11-17 Houser Kevin L Method and Apparatus for Morcellating Tissue
JP2012024061A (en) 2010-07-28 2012-02-09 Sysmex Corp Cell dispersion apparatus
JP2012060957A (en) 2010-09-17 2012-03-29 Taiyo Nippon Sanso Corp Method and apparatus for supplying gas
CN102220224A (en) 2011-05-19 2011-10-19 汪华 Automatic medical cell separation device
JP2014150784A (en) 2013-02-13 2014-08-25 Gunma Univ Apparatus for microbial culture, method of culturing microorganism in dispersed state and method of controlling extracellular polysaccharide using the same
JP2014176308A (en) 2013-03-13 2014-09-25 Mitsubishi Rayon Co Ltd Microarray, production method thereof, and applications thereof
CN104498350A (en) 2014-12-16 2015-04-08 何向锋 Homogenizer for separating subcellular fractions
CN104568539A (en) 2014-12-16 2015-04-29 何向锋 Automatic histocyte separator

Also Published As

Publication number Publication date
JP2019140985A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
AU2013246084B2 (en) Alternating ionic magnetic resonance (AIMR) multiple-chambered culture apparatus and methods of use
Hultström et al. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip
WO2013187359A1 (en) Cell culture apparatus and cell culture method using same
US20140363805A1 (en) Apparatus and methods for manipulation and optimization of biological systems
Ni et al. Neonatal rat primary microglia: isolation, culturing, and selected applications
JP5460241B2 (en) Biological cell culture method and culture apparatus
JP2011172533A (en) Method for three-dimensional high-density cell culture using microspace structure
JP2018501804A (en) Proliferation and passage of pluripotent stem cells using a rocking platform bioreactor
Elbez et al. Nanoparticle induced cell magneto-rotation: monitoring morphology, stress and drug sensitivity of a suspended single cancer cell
JP2007535902A (en) Automated cell culture system and method
JP7064191B2 (en) Cell dispersal method and cell disperser
KR101391679B1 (en) Cell culture device device for long-term monitoring of cell culture method for long-term cell culture and method for long-term monitoring of cell culture
KR20080031035A (en) A rotatable perfused time varying electromagnetic force bioreactor and method of using the same
Duckert et al. Single-cell transfection technologies for cell therapies and gene editing
CA3068614A1 (en) Fluid system for producing extracellular vesicles and associated method
JPH09329602A (en) Minute material holding carrier, its suspension system, minute material handling equipment and minute material position control method
JP2019509047A (en) Proliferation and passage of pluripotent stem cells using a stirred tank bioreactor
JP7104140B2 (en) Instruments and methods using nanostraws to deliver biologically important cargo into non-adherent cells
KR20240029728A (en) Micro-organic spheres for use in personalized medicine and drug development
US10787657B2 (en) Methods for efficient intracellular delivery using anisotropic magnetic particles
Almari et al. Fabrication of amyloid-β-secreting alginate microbeads for use in modelling alzheimer's disease
FR3112147A1 (en) Method of calibrating a fluidic system for the production of extracellular vesicles and associated production fluidic system
JP2015216923A (en) Cell culture apparatus
US20140295483A1 (en) Apparatus and method for in-vitro drug screening for cancer metastasis
JP6981666B2 (en) Method of introducing foreign substances into cells using a laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220408

R150 Certificate of patent or registration of utility model

Ref document number: 7064191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150