JP2011172533A - Method for three-dimensional high-density cell culture using microspace structure - Google Patents

Method for three-dimensional high-density cell culture using microspace structure Download PDF

Info

Publication number
JP2011172533A
JP2011172533A JP2010040610A JP2010040610A JP2011172533A JP 2011172533 A JP2011172533 A JP 2011172533A JP 2010040610 A JP2010040610 A JP 2010040610A JP 2010040610 A JP2010040610 A JP 2010040610A JP 2011172533 A JP2011172533 A JP 2011172533A
Authority
JP
Japan
Prior art keywords
cell culture
cell
cells
culture
pmma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040610A
Other languages
Japanese (ja)
Inventor
Fusao Komada
富佐夫 駒田
Yuichi Uchiumi
裕一 内海
Atsushi Kinoshita
淳 木下
Tomoya Omukai
智也 大向
Takeshi Yonezawa
健 米澤
Yuji Honda
祐二 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010040610A priority Critical patent/JP2011172533A/en
Publication of JP2011172533A publication Critical patent/JP2011172533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-density cell culture reactor enabling stable high-density culture of a large amount of cells over a long period and applicable e.g. to culture of artificial organ cells, and to provide a cell culture carrier substrate for the reactor. <P>SOLUTION: A cell culture carrier substrate having a porous structure part is used as the cell culture carrier substrate 6, wherein a through-hole 4 formed in the porous structure part has a polygonal form of from trigonal to hexagonal form having a side length or a diameter less than 50 to 500 μm. The cell culture reactor 0 contains two or more cell culture carrier substrates laminated together interposing a space between the substrates and placed in a cell culture tank having at least an inlet port and an outlet port for a fluid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、細胞の高密度培養、及びそれによる3次元細胞集塊(スフェロイド)を効率的に形成するために有用な細胞培養担体基板に関する。また本発明は、当該細胞培養担体基板を用いた細胞培養リアクター及びそれを含む細胞培養システムに関する。さらに本発明は、上記当該細胞培養担体基板、細胞培養リアクターまたは細胞培養システムを用いた細胞の培養方法に関する。     The present invention relates to a cell culture carrier substrate useful for efficiently forming a high-density culture of cells and thereby forming a three-dimensional cell cluster (spheroid). The present invention also relates to a cell culture reactor using the cell culture support substrate and a cell culture system including the same. Furthermore, the present invention relates to a cell culture method using the cell culture support substrate, cell culture reactor or cell culture system.

生細胞は、様々な物理的・化学的・機械的な相互作用を用いて生体組織と結合している。その機構は複雑であり、系統的な解釈がなされていない。生細胞を樹脂等の担体に高密度に固定化して培養するためには細胞と担体との間の相互作用を制御することが必要である。即ち、担体表面の物性とモフォロジの両者を制御することが必要となる。担体には、一般に細胞との親和性が高く、微細加工が可能な樹脂が用いられるが、細胞培養期間の長期に亘って細胞を安定に保持できる担体は未だ存在しない。     Living cells are associated with living tissue using various physical, chemical, and mechanical interactions. The mechanism is complex and has not been systematically interpreted. In order to culture viable cells by immobilizing them on a carrier such as a resin at a high density, it is necessary to control the interaction between the cells and the carrier. That is, it is necessary to control both the physical properties and morphology of the support surface. As the carrier, a resin having high affinity with cells and capable of fine processing is generally used, but there is no carrier that can stably hold cells over a long period of cell culture.

現在、研究開発、医療、一般家庭などの様々な分野で、酵素、モノクローナル抗体(抗体医薬品を含む)、ワクチン、ホルモンなどの生理活性を有するタンパク質が多用されている。これらの有用タンパク質の多くは動物細胞などを利用して生産されている。しかし、従来のバッチ式培養法では、大量培養や長期連続培養が不可能なため生産効率が悪い。また、従来のバッチ式培養法では、分離精製過程が複雑であり、その結果、製品が高価になる。さらに、バッチ式培養法は、ニーズの多様化に伴う多品種少量生産にも不向きである。加えて、かかる二次元的且つ人工的な方法で培養された細胞は、本来的に細胞が有する酵素活性や生合成活性等を発揮し得ないことが報告されている(非特許文献1及び2参照)。     Currently, proteins having physiological activity such as enzymes, monoclonal antibodies (including antibody drugs), vaccines, hormones, and the like are frequently used in various fields such as research and development, medicine, and general households. Many of these useful proteins are produced using animal cells and the like. However, in the conventional batch culture method, mass production and long-term continuous culture are impossible, and thus production efficiency is poor. Further, in the conventional batch culture method, the separation and purification process is complicated, and as a result, the product becomes expensive. Furthermore, the batch culture method is not suitable for multi-product small-volume production accompanying diversification of needs. In addition, it has been reported that cells cultured by such a two-dimensional and artificial method cannot exhibit the enzyme activity, biosynthetic activity and the like inherent in the cells (Non-patent Documents 1 and 2). reference).

そこで、細胞の生着や増殖を促進させ、細胞機能を維持、向上させて、細胞形態を生体内により近い形態で保持した状態で培養するために、培養フラスコによるバッチ式平面培養ではなく、細胞の足場となる担体を用いた三次元高密度培養が種々提案されている。     Therefore, in order to promote cell engraftment and proliferation, maintain and improve cell function, and maintain the cell morphology in a state that is closer to that in the living body, the cell is not a batch planar culture using a culture flask. Various three-dimensional high-density cultures using a carrier that serves as a scaffold for these have been proposed.

かかる三次元高密度培養に用いられる培養担体としては、例えば、ポリウレタンなどを用いた発泡素材により形成された多孔質の細胞培養担体(特許文献1)、セルロース繊維や炭素繊維等の細胞が入り込む隙間を多数有する小片からなる細胞培養担体(特許文献2)、球体、楕円体、多面体、柱状体または錐体の外部形状を有する微小中空体の外部を切断した立体を有する細胞培養担体(特許文献3)など、多孔構造を有する細胞培養担体を挙げることができる。     Examples of the culture carrier used for such three-dimensional high-density culture include a porous cell culture carrier (Patent Document 1) formed of a foam material using polyurethane or the like, and a gap into which cells such as cellulose fibers and carbon fibers enter. Cell culture carrier (Patent Document 2) consisting of small pieces having a large number of spheroids, cell culture carrier having a solid body obtained by cutting the outside of a micro hollow body having an external shape of a sphere, ellipsoid, polyhedron, columnar body or cone (Patent Document 3) And the like can be mentioned.

また、特許文献4には、基板表面上にアレイ状やハニカム状等に規則配列されてなる、細胞を凝集させて保持するための細胞培養セルを備えた細胞培養チップが記載されている。しかし、当該ハニカム状等に規則配列されてなる細胞培養セルは、細胞が保持できるように、基板表面上に凹みを形成してなる有底孔であったり、また無底孔の開口部を透水膜などで覆設してなるものであって、貫通孔を有するものではない。     Patent Document 4 describes a cell culture chip provided with cell culture cells for aggregating and holding cells, which are regularly arranged in an array, honeycomb, or the like on a substrate surface. However, the cell culture cells regularly arranged in the honeycomb shape or the like are bottomed holes formed with dents on the substrate surface so that the cells can be held, or the openings of the bottomless holes are made water-permeable. It is formed by covering with a film or the like and does not have a through hole.

このように従来より提案されている培養担体でも、細胞がほとんど付着しなかったり、細胞が付着してもほとんど増殖しなかったりする等といった問題がある。     As described above, even the conventionally proposed culture carriers have problems such that the cells hardly adhere to each other and that the cells hardly grow even if the cells adhere.

また、近年、ニーズの多様化に合わせた高品質、多品種、少量生産方式、低コスト化をかなえるために、小型、高品質かつ連続操作式で長期間使用可能な高密度細胞培養リアクターを開発することが求められている。     In recent years, we have developed a high-density cell culture reactor that can be used for a long time with a small size, high quality, and continuous operation in order to realize high quality, wide variety, low volume production system and low cost to meet diversifying needs. It is requested to do.

特開平4-281784号公報JP-A-4-281784 特開2004-135668号公報JP 2004-135668 A 特開2009-247334号公報JP 2009-247334 A 特開2005-27598号公報JP 2005-27598 A

Nature, 424, 870 (2003)Nature, 424, 870 (2003) Science, 302, 46 (2003)Science, 302, 46 (2003)

本発明は、良好な細胞接着性を有し、細胞を高密度培養することが可能な細胞培養担体基板、並びに3次元細胞集塊(スフェロイド)を効率的に形成するために有用な細胞培養担体基板を提供することを目的とする。また本発明は、連続式の超高密度細胞培養リアクターの細胞培養槽内部に設置して用いられる細胞培養担体基板を提供することを目的とする。     The present invention relates to a cell culture carrier substrate having good cell adhesion and capable of culturing cells at high density, and a cell culture carrier useful for efficiently forming a three-dimensional cell conglomerate (spheroid). An object is to provide a substrate. Another object of the present invention is to provide a cell culture carrier substrate that is used by being installed inside a cell culture tank of a continuous ultra-high density cell culture reactor.

また本発明は、当該細胞培養担体基板を細胞培養槽内部に設置してなる細胞培養リアクター、細胞培養リアクターを備えた細胞培養システム、並びに上記細胞培養担体基板、上記細胞培養リアクターおよび細胞培養システムを用いた細胞の培養方法を提供することを目的とする。     The present invention also provides a cell culture reactor in which the cell culture support substrate is installed in a cell culture tank, a cell culture system including the cell culture reactor, and the cell culture support substrate, the cell culture reactor, and the cell culture system. It aims at providing the culture method of the used cell.

本発明者らが独自で開発した中性原子線プロセスや高分子重合を利用した表面改質技術(Y. Utsumi et al., “Enhancement of the adhesive force of metal films on PTFE surface achieved bu fast-atom-beam surface modification”, Microsystem Technology, 14, pp.1467-1473, 2008)を応用することにより、ナノレベルの厚さの基板表面層の物性を高精度かつ安定に制御することが可能である。本発明者らは、この技術を用いて検討した結果、すでに細胞培養担体基板の表面に数百ナノレベルの微細構造を設けることによって、基板表面を疎水性にすることができること、また基板表面に細胞を固定化するアンカー効果が得られることを見出している(未発表)。     Y. Utsumi et al., “Enhancement of the adhesive force of metal films on PTFE surface achieved bu fast-atom” By applying “-beam surface modification”, Microsystem Technology, 14, pp.1467-1473, 2008), it is possible to control the physical properties of the substrate surface layer having a nano-level thickness with high accuracy and stability. As a result of studies using this technique, the present inventors have already made it possible to make the substrate surface hydrophobic by providing a fine structure of several hundreds of nanometers on the surface of the cell culture carrier substrate. It has been found that an anchor effect for immobilizing cells can be obtained (unpublished).

今回、これらの知見に基づいて、細胞の高密度培養を可能にし、また連続式の高密度細胞培養リアクターに応用できる細胞培養担体基板の開発を目指して、鋭意検討を重ねていたところ、貫通孔構造(以下、「キャピラリ構造」ともいう)を有する三次元微細構造体を用いることにより、貫通孔内部で、その内壁に細胞を接着させた状態で高密度培養することが可能で、細胞増殖効率も上昇すること、また貫通孔の内壁が曲面を有するよりも、例えば直線的な平面を有するほうがより多くの細胞が接着すること、また細胞培養面を粗面化する等、加工処理することによってさらに細胞接着数を増加させることができること等を見出し、本発明を完成するに至った。     Based on these findings, we have intensively studied to develop a cell culture support substrate that enables high-density culture of cells and can be applied to continuous high-density cell culture reactors. By using a three-dimensional microstructure having a structure (hereinafter also referred to as “capillary structure”), it is possible to perform high-density culture inside the through-hole with cells attached to the inner wall, and cell proliferation efficiency And the inner wall of the through-hole has a curved surface rather than a curved surface, for example, a larger number of cells adhere, and the cell culture surface is roughened. Further, the inventors have found that the number of cell adhesion can be increased, and have completed the present invention.

すなわち、本発明は下記の構成を有するものである:
(I)細胞培養担体基板
(I-1)多孔構造部を有する細胞培養担体基板であって、当該多孔構造部に形成された貫通孔が一辺の長さ若しくは直径が50μm〜500μm未満の三角〜六角のいずれかの多角形状の貫通孔であることを特徴とする細胞培養担体基板。
That is, the present invention has the following configuration:
(I) Cell culture carrier substrate (I-1) A cell culture carrier substrate having a porous structure part, wherein the through-hole formed in the porous structure part has a length or diameter of one side of a triangle of less than 50 μm to less than 500 μm A cell culture carrier substrate which is a hexagonal polygonal through-hole.

(I-2)上記多角形状が菱形形状、平行四辺形またはハニカム形状であることを特徴とする、(I-1)に記載する細胞培養担体。   (I-2) The cell culture carrier according to (I-1), wherein the polygonal shape is a rhombus shape, a parallelogram shape or a honeycomb shape.

(I-3)上記多角形状が30°〜60°の鋭角を有する菱形形状または平行四辺形であることを特徴とする、(I-1)に記載する細胞培養担体。   (I-3) The cell culture carrier according to (I-1), wherein the polygonal shape is a rhombus shape or a parallelogram having an acute angle of 30 ° to 60 °.

(I-4)基板の少なくとも多孔構造部の厚みが200μm〜2mmである、(I-1)乃至(I-3)のいずれかに記載する細胞培養担体基板。   (I-4) The cell culture carrier substrate according to any one of (I-1) to (I-3), wherein at least the porous structure portion of the substrate has a thickness of 200 μm to 2 mm.

(I-5)ポリメチルメタクリレート、ポリジメチルシロキサン、パリレン、ポリイミド、ポリテトラフルオロエチレン、エポキシ系感光性樹脂、ポリスチレン、ポリカーボネート、およびシクロオレフィンポリマーからなる群から選択される1種または2種以上の樹脂から形成されてなる、(I-1)乃至(I-4)のいずれかに記載する細胞培養担体基板。   (I-5) One or more selected from the group consisting of polymethyl methacrylate, polydimethylsiloxane, parylene, polyimide, polytetrafluoroethylene, epoxy photosensitive resin, polystyrene, polycarbonate, and cycloolefin polymer The cell culture carrier substrate according to any one of (I-1) to (I-4), which is formed from a resin.

(I-6)細胞培養担体基板の少なくとも細胞培養表面が加工処理されてなるものである、(I-1)乃至(I-5)のいずれかに記載する細胞培養担体基板。   (I-6) The cell culture carrier substrate according to any one of (I-1) to (I-5), wherein at least a cell culture surface of the cell culture carrier substrate is processed.

(I-7)細胞培養担体基板の表面が化学処理、または放射光照射処理によって加工処理されてなるものである、(I-6)に記載する細胞培養担体基板。   (I-7) The cell culture carrier substrate according to (I-6), wherein the surface of the cell culture carrier substrate is processed by chemical treatment or radiation irradiation treatment.

(II)細胞培養リアクター及び細胞培養システム
(II-1)少なくとも流体の流入口と流出口を有する細胞培養槽内に、(I-1)乃至(I-7)のいずれかに記載する細胞培養担体基板が2枚以上間隔をおいて積層された状態で配置されてなる細胞培養リアクター。
(II) Cell culture reactor and cell culture system (II-1) Cell culture according to any one of (I-1) to (I-7) in a cell culture tank having at least a fluid inlet and outlet A cell culture reactor in which two or more carrier substrates are arranged in a stacked state at intervals.

(II-2)上記細胞培養担体基板が、その基板の多孔構造部に、培養する生細胞が付着してなるか、またはスフェロイドが形成してなるものである、(II-1)記載の細胞培養リアクター。   (II-2) The cell according to (II-1), wherein the cell culture support substrate is formed by attaching live cells to be cultured or spheroids to the porous structure of the substrate. Culture reactor.

(II-3)上記細胞培養担体基板が、その基板の多孔構造部の貫通孔に培養する生細胞が付着しているものであって、液体培地が流入口から細胞培養槽内に流入し、当該槽内の細胞培養担体基板の多孔構造部の貫通孔を通って流出口から細胞培養槽外に排出されるように、液体培地の流路が形成されていることを特徴とする、(II-1)記載の細胞培養リアクター。   (II-3) The cell culture carrier substrate is attached with live cells to be cultured in the through-holes of the porous structure portion of the substrate, and the liquid medium flows into the cell culture tank from the inflow port, A flow path of the liquid medium is formed so as to be discharged from the outlet through the through hole of the porous structure portion of the cell culture carrier substrate in the tank to the outside of the cell culture tank (II -1) The cell culture reactor described.

(II-4)少なくとも流体の流入口と流出口を有する細胞培養槽内に、
(A)貫通孔内にスフェロイドを形成しえる生細胞が付着してなる細胞培養担体基板が2枚以上間隔をおいて積層されており、
(B)(a)流入口から液体培地を細胞培養槽内に流入するための少なくとも1つの流入路、
(b)上記流入路から分岐し、2枚以上間隔をおいて積層された細胞培養担体基板の層間に連通した3以上の分岐路、及び
(c)3以上の分岐路が合流する少なくとも1つの流出路を有し、
流入口から流入した液体培地が、これらの流路を通じて流出口から細胞培養槽外に排出されるように、液体培地の流路が形成されてなることを特徴とする、(II-1)に記載する細胞培養リアクター。
(II-4) In a cell culture tank having at least a fluid inlet and an outlet,
(A) Two or more cell culture carrier substrates formed by adhering live cells capable of forming spheroids in the through-holes are laminated at intervals,
(B) (a) at least one inflow path for allowing the liquid medium to flow into the cell culture tank from the inflow port;
(B) Three or more branch paths that branch from the inflow path and communicate with each other between two or more cell culture carrier substrates stacked at intervals, and (c) at least one of the three or more branch paths merges. Has an outflow channel,
(II-1) is characterized in that a liquid medium flow path is formed so that the liquid medium flowing in from the inlet is discharged from the outlet through the flow path to the outside of the cell culture tank. A cell culture reactor as described.

(II-5)上記流入路が流体の流れる方向に向かって先細になるように形成され、上記流出路が流体の流れる方向に向かって幅広になるように形成されてなるものである、(II-4)請に記載する細胞培養リアクター。   (II-5) The inflow passage is formed so as to taper in the direction in which the fluid flows, and the outflow passage is formed so as to become wider in the direction in which the fluid flows. -4) The cell culture reactor described in the contract.

(II-6)(II-1)乃至(II-5)のいずれかに記載する細胞培養リアクターに加えて、液体培地の溶存酸素量、pHまたは電解質濃度に反応して、細胞培養リアクターに送液する液体培地の流速、pHまたは電解質濃度を調節する装置を含む、細胞培養システム。   (II-6) In addition to the cell culture reactor described in any one of (II-1) to (II-5), it is sent to the cell culture reactor in response to the dissolved oxygen amount, pH or electrolyte concentration of the liquid medium. A cell culture system comprising a device for adjusting a flow rate, pH or electrolyte concentration of a liquid medium to be liquefied.

(III)細胞の培養方法
(III-1)(I-1)乃至(I-7)のいずれかに記載する細胞培養担体基板、(II-1)乃至(II-5)のいずれかに記載する細胞培養リアクター、または(II-6)に記載する細胞培養システムを用いることを特徴とする細胞の培養方法。
(III) Cell culture method (III-1) Cell culture carrier substrate according to any one of (I-1) to (I-7), (II-1) to (II-5) A cell culture reactor, or a cell culture system described in (II-6).

(III-2)多孔構造部の貫通孔内に細胞が付着した(I-1)乃至(I-7)のいずれかに記載する細胞培養担体基板を、液体培地を入れた細胞培養槽内に配置し、当該細胞培養担体基板の多孔構造部で細胞を培養する工程を有する、(III-1)記載の細胞の培養方法。   (III-2) The cell culture carrier substrate according to any one of (I-1) to (I-7), in which cells are attached in the through-holes of the porous structure, is placed in a cell culture tank containing a liquid medium. The method for culturing cells according to (III-1), comprising a step of arranging and culturing cells in the porous structure part of the cell culture support substrate.

(III-3)細胞培養担体基板を液体培地中で浮遊させた状態で培養するか、細胞培養担体基板を液体培地中で浮遊させた状態で撹拌しながら培養するか、または細胞培養担体基板を液体培地中で浮遊させた状態で液体培地を循環させながら培養することを特徴とする(III-1)または(III-2)に記載する細胞の培養方法。   (III-3) Culturing the cell culture support substrate in a suspended state in a liquid medium, culturing the cell culture support substrate in a suspended state in a liquid medium, or stirring the cell culture support substrate The method for culturing cells according to (III-1) or (III-2), wherein the culture is performed while circulating the liquid medium in a suspended state in the liquid medium.

(III-4)(I-1)乃至(I-7)のいずれかに記載する細胞培養担体基板を、ポリジメチルシロキサンの塗布面上に配置して細胞を培養する工程を有する、(III-1)または(III-2)に記載する細胞の培養方法。   (III-4) having a step of culturing cells by placing the cell culture carrier substrate described in any of (I-1) to (I-7) on a polydimethylsiloxane-coated surface (III- The method for culturing cells described in 1) or (III-2).

(III-5)(II-1)乃至(II-5)のいずれかに記載する細胞培養リアクターとして、(III-4)に記載する細胞培養方法により得られた細胞培養担体基板を積層したものを用いることを特徴とした、(III-1)に記載する細胞の培養方法。   (III-5) The cell culture reactor described in any one of (II-1) to (II-5), in which the cell culture support substrate obtained by the cell culture method described in (III-4) is stacked The method for culturing cells described in (III-1), wherein

本発明の細胞培養担体基板によれば、その多孔構造部(複数の貫通孔内)に形成されたマイクロ空間を用いて三次元高密度細胞培養を行うことができる。また、本発明の細胞培養担体基板によれば、細胞接着に必要な表面積を増大させることができる。さらに当該基板の細胞培養表面、特に貫通孔内面を粗面化処理する等、基板の細胞培養表面の物性を制御することで細胞接着をより高めることが可能であり、その結果、当該貫通孔内で安定して細胞を増殖させることができ、三次元細胞集塊(スフェロイド)を形成することもできる。すなわち、本発明の細胞培養担体基板によれば、三次元高密度細胞培養が可能であるため、細胞培養装置(細胞培養リアクター)の小型化と高収率化を図ることが可能となる。     According to the cell culture carrier substrate of the present invention, three-dimensional high-density cell culture can be performed using the microspace formed in the porous structure (in the plurality of through holes). Moreover, according to the cell culture support substrate of the present invention, the surface area required for cell adhesion can be increased. Furthermore, it is possible to further enhance cell adhesion by controlling the physical properties of the cell culture surface of the substrate, such as roughening the cell culture surface of the substrate, particularly the inner surface of the through hole. Can stably grow cells, and can also form three-dimensional cell clusters (spheroids). That is, according to the cell culture support substrate of the present invention, three-dimensional high-density cell culture is possible, so that it is possible to reduce the size and yield of the cell culture device (cell culture reactor).

また、本発明の細胞培養担体基板若しくはその積層物、またはこれらを有する細胞培養リアクターや細胞培養システムを用いて、当該基板またはその積層物に培養液を連続的に通過させることで、長期間にわたり高活性でかつ安定した機能を有する細胞を培養することが可能となると考えられる。     Further, by using the cell culture support substrate of the present invention or a laminate thereof, or a cell culture reactor or a cell culture system having these, the culture solution is continuously passed through the substrate or the laminate thereof for a long period of time. It is considered that cells having high activity and stable function can be cultured.

本発明の細胞培養リアクターの一態様を示す概要図である。It is a schematic diagram which shows one aspect | mode of the cell culture reactor of this invention. 本発明の細胞培養リアクターの別の一態様を示す概要図である。It is a schematic diagram which shows another one aspect | mode of the cell culture reactor of this invention. 図2に示す細胞培養リアクターの好適な態様を示す概要図である(CFD解析によるリアクター内における流速分布の解析)。カラー図で示すように、細胞培養担体基板(マイクロ担体)内を流れる液体培地の流速・流量は一定に維持されている。FIG. 3 is a schematic diagram showing a preferred embodiment of the cell culture reactor shown in FIG. 2 (analysis of flow velocity distribution in the reactor by CFD analysis). As shown in the color diagram, the flow rate and flow rate of the liquid medium flowing in the cell culture carrier substrate (microcarrier) is maintained constant. 細胞凝集体の形成状況を蛍光顕微鏡で観察した結果を示す。(A)は直径200μm程度の細胞凝集体、(B)は直径300μm程度の細胞凝集体、(C)は直径500μm程度の細胞凝集体の画像を示す。直径が500μm程度になると、中心部が壊死し始めることがわかる。The result of having observed the formation state of the cell aggregate with the fluorescence microscope is shown. (A) shows a cell aggregate with a diameter of about 200 μm, (B) shows a cell aggregate with a diameter of about 300 μm, and (C) shows an image of a cell aggregate with a diameter of about 500 μm. When the diameter is about 500 μm, it can be seen that the central part begins to be necrotic. 実験例1でポリメチルメタクリレート(PMMA)製の基板に作成したキャピラリ構造の形状の一例(円形、四角形、五角形、星型、菱形)を示す。An example (circular, quadrangular, pentagonal, star, rhombus) of the shape of the capillary structure prepared on the substrate made of polymethyl methacrylate (PMMA) in Experimental Example 1 is shown. 各種形状の三次元微細構造(キャピラリ構造)を有する細胞培養担体基板(マイクロ担体)上での培養3日後の細胞接着の様子を蛍光顕微鏡で観察した結果を示す。(a)(左上段)はハニカム形状、(b)(右上段)は菱形、(c)(左中段)は長方形、(d)(右中段)は五角形、(e)(左下段)は三角形、(f)(右下段)は円形の場合の結果をそれぞれ示す。The result of observing the state of cell adhesion after 3 days of culture on a cell culture carrier substrate (microcarrier) having a three-dimensional microstructure (capillary structure) of various shapes with a fluorescence microscope is shown. (a) (upper left) is a honeycomb shape, (b) (upper right) is a diamond, (c) (middle left) is a rectangle, (d) (middle right) is a pentagon, (e) (lower left) is a triangle , (F) (lower right) show the results in the case of a circle. ハニカム形状及び菱形形状に関して、それぞれ異なるサイズ(1辺の長さ)の三次元微細構造を有する細胞培養担体基板(マイクロ担体)上で3日間培養した後の細胞接着の様子を蛍光顕微鏡で観察した結果を示す。(a)(左最上段)ハニカム形状200μm、(b)(右最上段)ハニカム形状150μm、(c)(左2段目)ハニカム形状100μm、(d)(右2段目)ハニカム形状50μm、(e)(左3段目)ハニカム形状30μm、(f)(右3段目)菱形200μm、(g)(左最下段)菱形100μm、(h)(右最下段)菱形50μmの場合の結果それぞれ示す。Regarding the honeycomb shape and the rhombus shape, the state of cell adhesion after culturing for 3 days on a cell culture carrier substrate (microcarrier) having a three-dimensional microstructure of different sizes (length of one side) was observed with a fluorescence microscope. Results are shown. (a) (Left uppermost stage) honeycomb shape 200 μm, (b) (Right uppermost stage) honeycomb shape 150 μm, (c) (Left second stage) honeycomb shape 100 μm, (d) (Right second stage) honeycomb shape 50 μm, (E) (Left third stage) Honeycomb shape 30 μm, (f) (Right third stage) Diamond 200 μm, (g) (Left bottom) Diamond 100 μm, (h) (Right bottom) Diamond 50 μm Each is shown. 実験例2で細胞接着の定性的評価に使用したPMMA製の三次元微細構造担体(細胞培養担体基板:マイクロ担体)の構造を示す(厚み:1mm、フィルター部径:12mm、パターン部径:8mm)。パターン部に、一辺がl00μmのハニカム形状または一辺が150μmで内角60゜の菱形形状の貫通孔を有する多孔構造部を有している。The structure of a PMMA three-dimensional microstructure carrier (cell culture carrier substrate: microcarrier) used for qualitative evaluation of cell adhesion in Experimental Example 2 is shown (thickness: 1 mm, filter part diameter: 12 mm, pattern part diameter: 8 mm). ). The pattern portion has a porous structure portion having a honeycomb-shaped through hole having a side of 100 μm or a rhomboid shape having a side of 150 μm and an inner angle of 60 °. (a)一辺100μmのハニカム形状の細胞培養担体基板(マイクロ担体)、(b)一辺150μm、内角60°の菱形形状のマイクロ担体、及び(c)円形状のマイクロ担体の貫通孔(キャピラリ)内での細胞接着の様子を共焦点レーザー顕微鏡で観察した結果を示す(細胞培養4日目)。底面図(各図の左欄)は培養ディッシュ底面の顕微鏡画像、側面図(各図の右欄)は培養ディッシュ側面の顕微鏡画像を示す。ディッシュ底面側からの細胞が進展している様子が観察される。(A) Honeycomb-shaped cell culture substrate (microcarrier) having a side of 100 μm, (b) Diamond-shaped microcarrier having a side of 150 μm and an inner angle of 60 °, and (c) In a through hole (capillary) of a circular microcarrier The result of having observed the state of cell adhesion in a confocal laser microscope is shown (cell culture 4th day). A bottom view (left column of each figure) shows a microscope image of the bottom surface of the culture dish, and a side view (right column of each figure) shows a microscope image of the side surface of the culture dish. A state in which cells from the bottom side of the dish are developed is observed. 細胞培養担体基板(マイクロ担体)のハニカム形状の貫通孔(キャピラリ)内における細胞の経時変化の様子を観察した結果を示す。(a)は培養3日目の結果を、(b)は培養11日目の結果を示す。各図において、左欄は底面図、右欄は側面図である。The result of having observed the time-dependent state of the cell in the honeycomb-shaped through-hole (capillary) of a cell culture support substrate (micro support | carrier) is shown. (A) shows the result on the third day of culture, and (b) shows the result on the 11th day of culture. In each figure, the left column is a bottom view and the right column is a side view. 実験例3で細胞接着の定量評価に使用したPMMA製の三次元微細構造担体(細胞培養担体基板:マイクロ担体)の構造を示す(厚み:1mm、フィルター部径:12mm、パターン部径:8mm)。(A)は、パターン部にハニカム形状の貫通孔からなる多孔構造を有する三次元微細構造担体(マイクロ担体)、及び菱形形状の貫通孔からなる多孔構造を有する三次元微細構造担体(マイクロ担体)を、また(B)は、対照PMMAとして使用した (a)平板PMMA及び (b)リング状PMMAの形状を示す。Fig. 3 shows the structure of a PMMA three-dimensional microstructure carrier (cell culture carrier substrate: microcarrier) used for quantitative evaluation of cell adhesion in Experimental Example 3 (thickness: 1 mm, filter part diameter: 12 mm, pattern part diameter: 8 mm) . (A) is a three-dimensional microstructure carrier (microcarrier) having a porous structure consisting of honeycomb-shaped through-holes in the pattern portion, and a three-dimensional microstructure carrier (microcarrier) having a porous structure consisting of rhomboid-shaped through-holes. And (B) shows the shapes of (a) flat plate PMMA and (b) ring-shaped PMMA used as control PMMA. HepG2-pEGFP細胞数(×10cells)とその細胞質分画の蛍光強度(GFP量)の間に相関関係があることを示す図である。It is a figure which shows that there is a correlation between the number of HepG2-pEGFP cells (× 10 5 cells) and the fluorescence intensity (GFP amount) of the cytoplasm fraction. (A)ハニカム形状(一辺:50、100、150、200及び300μm)のキャピラリ構造を有するPMMA製担体と対照PMMA(平板PMMA、リング状PMMA)に対する経時的な細胞接着数を対比した結果を示す。(B)菱形形状(1辺が150μmで鋭角:30°、45°、60°)のキャピラリ構造を有するPMMA製担体と対照PMMA(平板PMMA、リング状PMMA)に対する経時的な細胞接着数を対比した結果を示す。(C)円形状(直径:100、200、300及び600μm)のキャピラリ構造を有するPMMA製担体と対照PMMA(平板PMMA、リング状PMMA)に対する経時的な細胞接着数を対比した結果を示す。なお、細胞接着数として、細胞質分画のGFP蛍光強度から算出したGFP量(μg)を指標とした(平均値±標準偏差、n=3-8)。(A) The results of comparing the number of cell adhesion over time against a PMMA carrier having a honeycomb structure (side: 50, 100, 150, 200, and 300 μm) and a control PMMA (flat PMMA, ring-shaped PMMA) are shown. . (B) Contrast of cell adhesion over time for PMMA carrier having a rhomboid shape (150μm on one side and acute angles: 30 °, 45 °, 60 °) and control PMMA (flat PMMA, ring-shaped PMMA) The results are shown. (C) The results of comparison of the number of cell adhesion over time to a PMMA carrier having a circular (diameter: 100, 200, 300 and 600 μm) capillary structure and a control PMMA (flat PMMA, ring-shaped PMMA) are shown. In addition, as the cell adhesion number, the amount of GFP (μg) calculated from the GFP fluorescence intensity of the cytoplasm fraction was used as an index (average value ± standard deviation, n = 3-8). (A)ハニカム形状(一辺:50、100、150、200及び300μm)のキャピラリ構造を有するPMMA製担体におけるキャピラリ内壁面積あたりの経時的細胞接着数を示す。(B)菱形形状(1辺が150μmで鋭角:30°、45°、60°)のキャピラリ構造を有するPMMA製担体におけるキャピラリ内壁面積あたりの経時的細胞接着数を示す。なお、細胞接着数として、細胞質分画のGFP蛍光強度から算出したGFP量(μg)を指標として評価した(平均値±標準偏差、n=3-8)。(A) shows the number of cell adhesion over time per area of the inner wall of the capillary in a PMMA carrier having a honeycomb structure (one side: 50, 100, 150, 200 and 300 μm). (B) The number of cell adhesion over time per area of the inner wall of the capillary in a PMMA carrier having a rhombus-shaped (one side is 150 μm, acute angle: 30 °, 45 °, 60 °). The number of cell adhesions was evaluated using the amount of GFP (μg) calculated from the GFP fluorescence intensity of the cytoplasm fraction as an index (average value ± standard deviation, n = 3-8). 培養14日目までに得られた細胞内GFP量の積分値を、貫通孔の形状パターン(平板PMMA、円形(直径100μm、200μm、300μm)、ハニカム形状(一辺長さ50μm、100μm、150μm、200μm、300μm)、菱形(鋭角30°、45°、60°))ごとに解析した結果を示す。The integrated value of the amount of intracellular GFP obtained up to the 14th day of culture was calculated using the shape pattern of through-holes (flat plate PMMA, circular (diameter 100 μm, 200 μm, 300 μm), honeycomb shape (side length 50 μm, 100 μm, 150 μm, 200 μm) , 300 μm) and rhombus (acute angle 30 °, 45 °, 60 °)). 一辺300μmのハニカム形状のキャピラリ構造を有するPMMA製担体(マイクロ担体)を培養液中で17日間、(a)静置培養、(b)浮遊培養、及び(c)攪拌培養した際の細胞接着の状態を蛍光顕微鏡にて観察した結果を示す。Cell adhesion when a PMMA carrier (microcarrier) having a honeycomb-shaped capillary structure with a side of 300 μm is cultured in a culture solution for 17 days, (a) stationary culture, (b) suspension culture, and (c) stirring culture The result of having observed a state with the fluorescence microscope is shown. 一辺300μmのハニカム形状のキャピラリ構造を有するPMMA製担体(マイクロ担体)を培養液中に浮遊させ、かつ培養液を攪拌しながら17日間培養した際の細胞接着の状態を共焦点レーザー顕微鏡にて観察した結果を示す。(a)斜め底面図:細胞凝集体を形成していることが認められる。(b)細胞ディッシュ側面からみた画像、(c)細胞ディッシュの底面からみた画像をそれぞれ示す。A PMMA carrier (microcarrier) having a honeycomb-shaped capillary structure with a side of 300 μm is suspended in the culture solution, and the state of cell adhesion is observed with a confocal laser microscope when the culture solution is stirred for 17 days. The results are shown. (a) Oblique bottom view: It is recognized that cell aggregates are formed. (B) An image viewed from the side of the cell dish and (c) an image viewed from the bottom of the cell dish. 実験例4での、ハニカム形状(一辺長さ100μm、300μm)のPMMA製担体(マイクロ担体)を用いた静置培養および浮遊培養における接着細胞数の定量評価結果を示す。横軸は培養期間(日)、縦軸は、細胞接着数として細胞質分画のGFP蛍光強度から算出したGFP量(μg)を示す。10 shows the results of quantitative evaluation of the number of adherent cells in stationary culture and suspension culture using a PMMA carrier (microcarrier) having a honeycomb shape (side length of 100 μm, 300 μm) in Experimental Example 4. The horizontal axis indicates the culture period (days), and the vertical axis indicates the GFP amount (μg) calculated from the GFP fluorescence intensity of the cytoplasm fraction as the number of cell adhesion. 実験例4の結果を示す。左端から順に、PMMA製担体(マイクロ担体)を細胞培養ディッシュ底面に静置した状態で17日間培養した場合の接着細胞数(GFP量:μg)(白棒);細胞播種から6日目にPMMA製担体(マイクロ担体)を培養液中に浮遊させて11日間培養した場合の接着細胞数(GFP量:μg)(灰色棒);細胞播種から6日目にPMMA製担体を培養液中に浮遊させ且つ撹拌しながら11日間培養した場合の接着細胞数(GFP量:μg)(黒棒)を示す。平均値±標準偏差(n=1-3)。The result of Experimental example 4 is shown. From the left end, the number of adherent cells (GFP amount: μg) (white bar) when PMMA carrier (microcarrier) is left on the bottom of the cell culture dish for 17 days; PMMA on the 6th day after cell seeding Number of adherent cells (GFP amount: μg) (gray bar) when the carrier (microcarrier) is suspended in the culture for 11 days; PMMA carrier is suspended in the culture on the 6th day after cell seeding The number of adherent cells (GFP amount: μg) (black bar) when cultured for 11 days with stirring. Mean value ± standard deviation (n = 1-3). 浮遊培養により形成した細胞スフェロイドをマイクロ担体からピペットにより剥がし、細胞培養ディッシュ上で培養をした結果を示す。(a)は剥離後3日間培養した結果、(b)は剥離後10日間培養した結果、及び(c)は剥離後14日間培養した結果をに示す。The result of having peeled the cell spheroid formed by the suspension culture from the microcarrier with a pipette and culturing on the cell culture dish is shown. (A) shows the result of culturing for 3 days after peeling, (b) shows the result of culturing for 10 days after peeling, and (c) shows the result of culturing for 14 days after peeling. (a)実験例5において、表面を粗面化したPMMA製担体(粗面化PMMA)(―◆―)と無処理のPMMA製担体(平板PMMA)(―×―)とで、細胞接着数の経時的変化を追跡した結果を示す。なお、細胞接着数として、細胞質分画のGFP蛍光強度から算出したGFP量(μg)を指標とした(平均値±標準偏差、n=4-5)。(b)培養14日目までのGFP量の積分値を台形法によって見積もった結果を示す。白棒は無処理のPMMA製担体(通常PMMA)の結果、黒棒は表面を粗面化したPMMA製担体(粗面化PMMA)の結果を示す。(A) In Example 5, the number of cell adhesions between a roughened PMMA carrier (roughened PMMA) (-◆-) and an untreated PMMA carrier (flat PMMA) (-x-) The results of tracking changes over time of are shown. In addition, as the cell adhesion number, the amount of GFP (μg) calculated from the GFP fluorescence intensity of the cytoplasm fraction was used as an index (average value ± standard deviation, n = 4-5). (B) shows the result of estimating the integrated value of the amount of GFP up to the 14th day of culture by the trapezoidal method. The white bar shows the result of the untreated PMMA carrier (usually PMMA), and the black bar shows the result of the PMMA carrier (roughened PMMA) whose surface is roughened. 粗面化PMMAと平板PMMA(無処理PMMA)上で細胞を培養し、細胞接着及び増殖の様子を比較した結果を示す((1)培養4日目、(2)培養7日目、(3)培養11日目)。The results of culturing cells on roughened PMMA and flat PMMA (untreated PMMA) and comparing cell adhesion and proliferation are shown ((1) 4th culture day, (2) 7th culture day, (3) ) Culture day 11). 放射光で照射処理((a)dose 0、(b)dose 2000、(c)dose 5000、(d)dose 10000)したPMMAへの細胞接着の様子を示す(実験例5(2))。The state of cell adhesion to PMMA irradiated with synchrotron radiation ((a) dose 0, (b) dose 2000, (c) dose 5000, (d) dose 10000) is shown (Experimental Example 5 (2)). 放射光で照射処理(dose 0、2000、5000、10000)したPMMA製担体への細胞接着の定量評価結果を示す(実験例5(2))。The quantitative evaluation result of the cell adhesion to the carrier made from PMMA irradiated with synchrotron radiation (dose 0, 2000, 5000, 10000) is shown (Experimental Example 5 (2)). 底面にポリジメチルシロキサン(PDMS)を薄く塗布した細胞培養ディッシュ(PDMS処理ディッシュ:図中「on PDMS」)および未処理の細胞培養ディッシュ(図中「on cell culture dish」))上に、ハニカム1辺100μmのキャピラリ構造を有する細胞培養担体基板(マイクロ担体)を静置し、これにHepG2-pEGFP細胞を播種して培養し、細胞数をGFP量(μg)から定量した結果を示す(実験例6)。Honeycomb 1 on the cell culture dish (PDMS-treated dish: “on PDMS” in the figure) and untreated cell culture dish (“on cell culture dish” in the figure)) with a thin coating of polydimethylsiloxane (PDMS) on the bottom A cell culture support substrate (microcarrier) having a capillary structure with a side of 100 μm is allowed to stand, seeded with HepG2-pEGFP cells, cultured, and the number of cells quantified from the amount of GFP (μg) is shown (experimental example) 6). 本発明の細胞培養リアクターの一態様を示す。(A)内側セル、(B)外側セル、(C)外側セル内に内側セルを組み込んだ状態をそれぞれ示す。内側セルの内部には複数の溝があり、その溝(符合13)に細胞培養担体基板(マイクロ担体)を複数枚、一定の間隔をおいて配置できるようになっている。また内側セルと外側セルの側面部には、それぞれ複数の孔が形成されており、組み立て時にはその孔が連通して外部の測定器具との連結部(符合14)となる。1 shows one embodiment of a cell culture reactor of the present invention. (A) Inner cell, (B) Outer cell, (C) State in which inner cell is incorporated in outer cell. There are a plurality of grooves inside the inner cell, and a plurality of cell culture carrier substrates (microcarriers) can be arranged in the groove (symbol 13) at regular intervals. In addition, a plurality of holes are formed in the side surfaces of the inner cell and the outer cell, respectively, and the holes communicate with each other at the time of assembly to form a connecting portion (symbol 14) with an external measuring instrument. 図26で示す細胞培養リアクターの断面を示す概要図である。外側セル(12)内に、20枚のマイクロ担体(6)が間隔をあけて積層されてなる内側セル(11)が収納されている(図面作成の都合、10枚のマイクロ担体を積層した状態を記載)。内側セルには、培養液が流れるための階段状のテーパーの溝が掘ってあり、この内側セルの溝と外側セルで形成される空間を培養液が流れるようになっている。この作られた空間の厚みは階段状に変化するものの、幅は上下とも一定に設定している。内側セルにはセル内部に培養液が流れ込むための穴が形成されている。なお、流体(培養液)の流れを示す矢印は簡略化するため半分のみの記載に留めている。It is a schematic diagram which shows the cross section of the cell culture reactor shown in FIG. Inside the outer cell (12) is stored the inner cell (11) in which 20 micro-carriers (6) are stacked at intervals (for convenience of drawing, 10 micro-carriers are stacked) Described). The inner cell has a step-like tapered groove for flowing the culture solution, and the culture solution flows through a space formed by the groove of the inner cell and the outer cell. Although the thickness of the created space changes in a staircase pattern, the width is set constant at both the top and bottom. The inner cell is formed with a hole through which the culture solution flows into the cell. In addition, the arrow which shows the flow of a fluid (culture solution) is only kept to description of half for simplification. 本発明の細胞培養システムの一態様を示す。1 shows an embodiment of the cell culture system of the present invention. 実験例7において、ハニカム形状の1辺の長さの違いが細胞接着数に及ぼす影響を調べた結果を示す(細胞培養リアクターにて培養後12日目の結果)。送液速度10ml/hr。なお、細胞接着数として、細胞質分画のGFP蛍光強度から算出したGFP量(μg)を指標とした。In Experimental example 7, the result of having investigated the influence which the difference in the length of one side of a honeycomb shape has on the number of cell adhesion is shown (result on the 12th day after culturing in a cell culture reactor). Delivery speed 10ml / hr. In addition, as the cell adhesion number, the GFP amount (μg) calculated from the GFP fluorescence intensity of the cytoplasm fraction was used as an index. 実験例7において、細胞培養リアクターへの送液量(0.83、3、10ml/h)の違いが細胞接着数に及ぼす影響を示す。なお、細胞接着数として、細胞質分画のGFP蛍光強度から算出したGFP量(μg)を指標とした。In Experimental example 7, the influence which the difference in the liquid feeding amount (0.83, 3, 10 ml / h) to a cell culture reactor has on the number of cell adhesion is shown. In addition, as the cell adhesion number, the GFP amount (μg) calculated from the GFP fluorescence intensity of the cytoplasm fraction was used as an index. 実験例7で使用した細胞培養リアクターの概要図を示す(CFD解析によるリアクター内における流速分布の解析)。カラー図で示すように、細胞培養担体基板(マイクロ担体)内を流れる液体培地の流速・流量は一定に維持されている。A schematic diagram of the cell culture reactor used in Experimental Example 7 is shown (analysis of flow velocity distribution in the reactor by CFD analysis). As shown in the color diagram, the flow rate and flow rate of the liquid medium flowing in the cell culture carrier substrate (microcarrier) is maintained constant. 実験例7で使用した細胞培養リアクターの概要図を示す(CFD解析によるリアクター内における流速分布の解析)。カラー図で示すように、細胞培養担体基板(マイクロ担体)内を流れる液体培地の流速・流量は一定に維持されている。A schematic diagram of the cell culture reactor used in Experimental Example 7 is shown (analysis of flow velocity distribution in the reactor by CFD analysis). As shown in the color diagram, the flow rate and flow rate of the liquid medium flowing in the cell culture carrier substrate (microcarrier) is maintained constant.

(I)細胞培養担体基板
本発明の細胞培養担体基板は、細胞の足場となり細胞が接着し増殖するための部位として、横断面の形状が多角形状である複数の貫通孔からなる多孔構造部を有するものである。
(I) Cell Culture Carrier Substrate The cell culture carrier substrate of the present invention has a porous structure composed of a plurality of through-holes having a polygonal cross-sectional shape as a site for cells to adhere and proliferate. I have it.

多角形状としては、三角〜六角のいずれかの多角形状を挙げることができる。ここで三角〜六角とは外角の数が3〜6つであることを意味し、例えば三角形(正三角形や二等辺三角形等が含まれる)、四角形(正方形、長方形、平行四辺形、台形及び菱形等が含まれる)、五角形(正五角形、及び外角と内角がそれぞれ5つの星形が含まれる)、六角形(ハニカム形状、平行六辺形、及び外角と内角がそれぞれ6つの星形が含まれる)などを挙げることができる。好ましくは、菱形、平行四辺形およびハニカム形状である。なお、ハニカム形状とは蜂の巣のように正六角形を隙間なく並べた形状を意味する。     Examples of the polygonal shape include any one of a triangular shape to a hexagonal shape. Here, the triangle to hexagon means that the number of outside angles is 3 to 6, for example, a triangle (including a regular triangle and an isosceles triangle), a quadrangle (a square, a rectangle, a parallelogram, a trapezoid, and a rhombus) Etc.), pentagons (regular pentagons, and five star shapes each including outer and inner angles), hexagons (honeycomb shapes, parallelograms, and six stars each having outer and inner angles) ) And the like. A rhombus, a parallelogram, and a honeycomb shape are preferable. The honeycomb shape means a shape in which regular hexagons are arranged without gaps like a honeycomb.

当該多角形状は、一辺の長さ若しくは直径が50μm〜500μm未満の範囲にあることが好ましい。ここで「一辺の長さ」とは多角形の一つの辺の長さを意味し、「直径」とは多角形の一つの外角頂点から中心を通って反対側の一辺まで引いた線分の長さを意味する。より好ましくは一辺の長さ若しくは直径が50μm〜300μmであり、特に好ましくは100μm〜300μmである。また、3次元細胞集塊(スフェロイド)の形成を目的とする場合、細胞培養担体基板の多角形状の一辺の長さ若しくは直径は、50μm〜150μmであることが好ましい。     The polygonal shape preferably has a side length or diameter in the range of 50 μm to less than 500 μm. Here, “length of one side” means the length of one side of the polygon, and “diameter” means a line segment drawn from one vertex of the outer corner of the polygon to the opposite side through the center. It means length. More preferably, the length or diameter of one side is 50 μm to 300 μm, and particularly preferably 100 μm to 300 μm. Moreover, when aiming at formation of a three-dimensional cell conglomerate (spheroid), it is preferable that the length or diameter of one side of the polygonal shape of the cell culture carrier substrate is 50 μm to 150 μm.

多角形状のうち菱形や平行四辺形としては、15°〜60°の鋭角を有するものが好ましい。より好ましくは30°〜60°、特に好ましくは30°〜45°の鋭角を有する菱形または平行四辺形である。     Of the polygonal shapes, the rhombus and the parallelogram are preferably those having an acute angle of 15 ° to 60 °. More preferably, it is a rhombus or a parallelogram having an acute angle of 30 ° to 60 °, particularly preferably 30 ° to 45 °.

横断面の形状が上記多角形状である貫通孔とは、すなわち多角柱状の孔(多角柱状のキャピラリー)を意味する。ここで貫通孔の長さ(孔の深さ)、つまり細胞培養担体基板の少なくとも多孔構造部の厚みとしては、制限されないが、通常100μm〜10mm、好ましくは200μm〜5mm、より好ましくは200μm〜2mmを挙げることができる。孔径に対する孔の深さ(基板の多孔構造部の厚み)の割合(アスペクト比)としては、通常0.1以上、好ましくは1〜500、より好ましくは1〜200を挙げることができる。すなわち、本発明の細胞培養担体基板はアスペクト比の高い微細孔を多数有する多孔構造(高アスペクト比構造)を有することを特徴とする。     The through hole whose cross-sectional shape is the polygonal shape means a polygonal columnar hole (polygonal columnar capillary). Here, the length of the through hole (depth of the hole), that is, the thickness of at least the porous structure part of the cell culture support substrate is not limited, but is usually 100 μm to 10 mm, preferably 200 μm to 5 mm, more preferably 200 μm to 2 mm. Can be mentioned. The ratio (aspect ratio) of the hole depth (the thickness of the porous structure portion of the substrate) to the hole diameter is usually 0.1 or more, preferably 1 to 500, more preferably 1 to 200. That is, the cell culture support substrate of the present invention has a porous structure (high aspect ratio structure) having a large number of micropores with a high aspect ratio.

かかる高アスペクト比の微細孔の数としては、制限されないが、細胞培養担体基板一枚あたり少なくとも150個を挙げることができる。好ましくは1000以上、より好ましくは3000〜20000個程度を挙げることができる。     The number of such high aspect ratio micropores is not limited, but may include at least 150 per cell culture support substrate. Preferably it is 1000 or more, More preferably, about 3000-20000 can be mentioned.

なお、一枚の細胞培養担体基板に形成される複数の貫通孔は、全てが同一の大きさの形状を有するものであってもよいし、また種々異なる2種以上の形状や大きさを有するものであってもよい。     The plurality of through-holes formed in one cell culture carrier substrate may all have the same shape, or may have two or more different shapes and sizes. It may be a thing.

かかる多孔構造を有する本発明の細胞培養担体基板において、細胞はその貫通孔の内壁表面に付着し増殖し、自発的に凝集することで3次元細胞集塊(スフェロイド)を形成する。実験例1に示すように、当該スフェロイドは、直径が500μm程度まで大きく成長すると、中心部への栄養供給が困難になるため、中心部の細胞から壊死が生じる。本発明の細胞培養担体基板によれば、貫通孔内で形成されたスフェロイドは、貫通孔の大きさ(孔径やその形、孔の深さ)に達すると増殖が鈍化するため、貫通孔の大きさに応じて直径500μm未満の所望のサイズにスフェロイドの大きさをコントロールすることができる。このため、中心壊死を生じさせることなく、スフェロイドを効率よく形成することができる。     In the cell culture carrier substrate of the present invention having such a porous structure, cells adhere to the inner wall surface of the through-hole and grow and spontaneously aggregate to form a three-dimensional cell cluster (spheroid). As shown in Experimental Example 1, when the spheroid grows to a diameter of about 500 μm, it becomes difficult to supply nutrients to the center, and necrosis occurs from the cells in the center. According to the cell culture support substrate of the present invention, since the spheroids formed in the through hole reach the size of the through hole (the hole diameter, its shape, and the depth of the hole), the growth slows down. Accordingly, the size of the spheroid can be controlled to a desired size less than 500 μm in diameter. For this reason, spheroids can be formed efficiently without causing central necrosis.

細胞培養担体基板は、細胞接着性を有する樹脂から形成されていてもよいし、または細胞接着性や細胞親和性を有する物質で表面が被覆(コーティング)されてなる樹脂から形成されていてもよい。     The cell culture carrier substrate may be formed from a resin having cell adhesion, or may be formed from a resin whose surface is coated (coated) with a substance having cell adhesion or cell affinity. .

細胞接着性を有する樹脂として、好ましくは細胞接着性を有し、上記貫通孔の微細加工が可能な樹脂である。かかる樹脂としては、ポリメチルメタクリレート(PMMA)、ポリジメチルシロキサン(PDMS)、パリレン、ポリイミド、ポリテトラフルオロエチレン(PTFE)、エポキシ系感光性樹脂、ポリスチレン、ポリカーボネート、およびシクロオレフィンポリマーを挙げることができる。ここでエポキシ系感光性樹脂としては下式で示されるSU-8(商標名)を挙げることができる。     The resin having cell adhesiveness is preferably a resin having cell adhesiveness and capable of fine processing of the through hole. Examples of such resins include polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), parylene, polyimide, polytetrafluoroethylene (PTFE), epoxy photosensitive resin, polystyrene, polycarbonate, and cycloolefin polymer. . Here, examples of the epoxy photosensitive resin include SU-8 (trade name) represented by the following formula.

Figure 2011172533
Figure 2011172533

好ましくは、PMMA、PDMS、パリレン、ポリイミド、及びPTFEであり、より好ましくはPMMA、及びPDMSである。     PMMA, PDMS, parylene, polyimide, and PTFE are preferable, and PMMA and PDMS are more preferable.

また基板は、板状、好ましくは平板状を有することが好ましい。その限りにおいて形状は問わず、三角形、四角形、多角形、円形等、基板を配置する細胞培養槽の大きさや形状に応じて適宜設定することができる。     The substrate preferably has a plate shape, preferably a flat plate shape. As long as the shape is not limited, the shape can be appropriately set according to the size and shape of the cell culture tank in which the substrate is disposed, such as a triangle, a quadrangle, a polygon, and a circle.

なお、上記細胞培養担体基板を構成する樹脂に対して上記微細孔加工をする方法としては、例えばX線リソグラフィーを用いる方法を挙げることができる(例えば、Y. Ukita et al.,“Fluid filter fabricated by deep X-ray lithography for micro fluidics”, Microsystem Technology, 13, pp.435-439, 2007参照)。     An example of a method for performing the micropore processing on the resin constituting the cell culture carrier substrate is a method using X-ray lithography (for example, Y. Ukita et al., “Fluid filter fabricated”). by deep X-ray lithography for micro fluidics ”, Microsystem Technology, 13, pp.435-439, 2007).

かかる細胞培養担体基板は、細胞接着性を上げるために、基板の細胞培養表面、特に貫通孔内壁表面がさらに粗面化処理等の加工処理が施されていても良い。かかる粗面化処理は、細胞培養担体基板の表面を粗くする(微細凹凸部の形成)ことができる方法であれば特に制限されない。例えば、アセトンなどの有機溶媒で基板を処理する化学的処理、基板表面へのプラズマ、ナノインプリントによるナノ、サブミクロンパターンの成型を挙げることができる。使用する基板の材質によっても異なるが、例えば基板材質として上記のPMMAやPDMS等の樹脂を用いる場合、好ましくはアセトン等の有機溶媒を用いた化学的処理である。     In such a cell culture carrier substrate, the cell culture surface of the substrate, particularly the inner wall surface of the through hole, may be further subjected to processing such as roughening treatment in order to improve cell adhesion. Such roughening treatment is not particularly limited as long as it is a method capable of roughening the surface of the cell culture support substrate (formation of fine irregularities). For example, chemical treatment of treating a substrate with an organic solvent such as acetone, plasma on the surface of the substrate, nano-imprinted nano and sub-micron pattern molding can be exemplified. For example, when the above-mentioned resin such as PMMA or PDMS is used as the substrate material, chemical treatment using an organic solvent such as acetone is preferable, although it varies depending on the material of the substrate used.

また必要に応じて、細胞培養担体基板を構成する樹脂の表面をコラーゲン、ホスファチジルコリン、ホスファチジルセリン、レシチン、これらの不飽和脂肪酸を水添したもの、ゼラチン、またはフィブロネクチン等で被覆したり、また樹脂に正電荷や負電荷を有する官能基を導入したり、また樹脂表面を各種の細胞接着因子(例えば、RGDペプチド(Arg-Gly-Asp))で修飾するなどして、細胞培養担体基板について、その細胞親和性や接着性を高めることもできる。     If necessary, the surface of the resin constituting the cell culture carrier substrate may be coated with collagen, phosphatidylcholine, phosphatidylserine, lecithin, hydrogenated of these unsaturated fatty acids, gelatin, fibronectin, or the like. About the cell culture carrier substrate by introducing a functional group having a positive charge or a negative charge, or modifying the resin surface with various cell adhesion factors (for example, RGD peptide (Arg-Gly-Asp)) Cell affinity and adhesion can also be increased.

モノクローナル抗体を産生するハイブリドーマは、付着系細胞と血球系細胞の中間的性質を有する。このため、細胞培養ディッシュに対して非常に弱い力で結合するものの、わずかな応力でその結合が解離してしまう。細胞培養担体基板の粗面化処理を始めとする上記の各種加工処理は、かかるハイブリドーマ等の付着系細胞と血球系細胞の中間的性質を有する細胞の基板への接着を高めることができる点で有用である。     A hybridoma producing a monoclonal antibody has an intermediate property between adherent cells and blood cells. For this reason, although it couple | bonds with a cell culture dish with very weak force, the coupling | bonding will dissociate with slight stress. The above-mentioned various processing treatments including the roughening treatment of the cell culture carrier substrate can enhance the adhesion of cells having intermediate properties between such adherent cells such as hybridomas and blood cells to the substrate. Useful.

(II)細胞培養担体基板を用いた細胞の培養方法
上記本発明の細胞培養担体基板を用いた細胞の培養は、当該基板を、貫通孔の開口部が好ましくは重力に対して平行になるように、液体培地をいれた細胞培養槽(例えば、細胞培養ディッシュなどの細胞培養容器)内に配置し、当該基板の多孔構造部の上面(貫通孔の開口部上面)に対象とする細胞を播種し、培養することによって実施することができる。
(II) Cell Culture Method Using Cell Culture Carrier Substrate Cell culture using the cell culture carrier substrate of the present invention described above is carried out so that the opening of the through-hole is preferably parallel to gravity. Placed in a cell culture vessel (for example, a cell culture vessel such as a cell culture dish) containing a liquid medium, and seeds the target cells on the upper surface (upper surface of the opening of the through hole) of the porous structure of the substrate. And can be carried out by culturing.

こうすることで、細胞は基板の貫通孔に入り、その内壁表面を足場として付着し増殖する。また当該貫通孔内で細胞が自発的に凝集することで3次元細胞集塊(スフェロイド)を形成する。     By doing so, the cells enter the through-holes of the substrate and adhere and proliferate using the inner wall surface as a scaffold. In addition, cells spontaneously aggregate in the through-hole to form a three-dimensional cell cluster (spheroid).

なお、本発明において細胞培養とは、栄養素や酸素等の細胞の生存に必要な成分を含有する培養液(液体培地)を用いて、細胞、好ましくは接着性細胞の生存を少なくとも維持することを意味する。好ましくは細胞(好ましくは接着性細胞)を培養して増殖させることであり、また細胞がタンパク産生細胞である場合、細胞を培養して当該タンパク質を産生することを意味する。     In the present invention, cell culture means maintaining at least the survival of cells, preferably adhesive cells, using a culture solution (liquid medium) containing components necessary for the survival of cells such as nutrients and oxygen. means. Preferably, cells (preferably adherent cells) are cultured and proliferated. When the cells are protein-producing cells, it means that the cells are cultured to produce the protein.

細胞培養槽としては、上記目的で使用される汎用の容器や槽を用いることができる。例えばペトリ皿、プラスチックプレート、プラスチックチューブ、ガラスチューブ、カラム、マルチウエルプレート、撹拌培養用の培養チャンバー、各種細胞アッセイ機器の細胞保持部分などを挙げることができる。     As the cell culture tank, a general-purpose container or tank used for the above purpose can be used. For example, a petri dish, a plastic plate, a plastic tube, a glass tube, a column, a multiwell plate, a culture chamber for stirring culture, a cell holding portion of various cell assay devices, and the like can be mentioned.

液体培地の種類や組成並びに培養条件(培養温度や時間)は、培養する対象の細胞の種類に応じて、定法に従って適宜選択することができる。     The type and composition of the liquid medium and the culture conditions (culture temperature and time) can be appropriately selected according to standard methods depending on the type of cells to be cultured.

本発明において対象とする細胞は、接着性を有する細胞(動物細胞、昆虫細胞、植物細胞等)であり、当該細胞には付着系細胞と血球系細胞の中間的性質を有する前述するハイブリドーマも含まれる。かかる細胞として、例えばヒト、ブタ、サル、イヌ、ラット、マウス、ハムスターなどの動物由来の組織や細胞(例えば、肝細胞、腎臓細胞、神経細胞、皮膚角質細胞、毛母細胞、口腔上皮細胞、食道上皮細胞、胃粘膜上皮細胞、小腸吸収上皮細胞、大腸吸収上皮細胞、胆管上皮細胞、膵臓インスリン分泌細胞、膵臓グルカゴン分泌細胞、骨細胞、軟骨細胞、平滑筋細胞、心筋細胞、筋肉衛星細胞、ホルモン分泌細胞、白色脂肪細胞、褐色脂肪細胞、骨髄)等から得られる初代細胞、または樹立された株化細胞;幹細胞(胚性幹細胞、間葉系幹細胞、造血幹細胞、神経幹細胞、肝臓幹細胞、膵臓幹細胞、皮膚幹細胞)等の未分化細胞;iPS細胞を挙げることができる。     The target cells in the present invention are adhesive cells (animal cells, insect cells, plant cells, etc.), and the cells include the hybridomas described above having intermediate properties between adherent cells and blood cells. It is. Examples of such cells include tissues and cells derived from animals such as humans, pigs, monkeys, dogs, rats, mice, hamsters (eg, hepatocytes, kidney cells, nerve cells, skin keratinocytes, hair matrix cells, oral epithelial cells, Esophageal epithelial cells, gastric mucosal epithelial cells, small intestine absorbing epithelial cells, large intestine absorbing epithelial cells, bile duct epithelial cells, pancreatic insulin secreting cells, pancreatic glucagon secreting cells, bone cells, chondrocytes, smooth muscle cells, cardiomyocytes, muscle satellite cells, Primary cells obtained from hormone-secreting cells, white adipocytes, brown adipocytes, bone marrow, etc., or established cell lines; stem cells (embryonic stem cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells, liver stem cells, pancreas) Stem cells, skin stem cells) and the like; iPS cells.

株化接着系細胞の例としては、チャイニーズハムスター卵巣細胞由来のCHO細胞、イヌ腎臓上皮細胞由来のMDCK細胞、マウス胎児皮膚由来のNIH3T3細胞、ラット由来の副腎髄質由来のPC12細胞、ショウジョウバエ由来のS2細胞、蛾由来のSf9細胞、アフリカミドリザル腎臓由来のVero細胞、ヒト子宮ガン由来のHeLa細胞、ヒト結腸ガン由来のCaco-2細胞、ヒト肝ガン由来のHuh7細胞やHepG2細胞を挙げることができる。     Examples of adherent cell lines include CHO cells derived from Chinese hamster ovary cells, MDCK cells derived from canine kidney epithelial cells, NIH3T3 cells derived from mouse fetal skin, PC12 cells derived from rat adrenal medulla, and S2 derived from Drosophila. Examples include cells, sputum-derived Sf9 cells, African green monkey kidney-derived Vero cells, human uterine cancer-derived HeLa cells, human colon cancer-derived Caco-2 cells, human liver cancer-derived Huh7 cells, and HepG2 cells.

また当該細胞には、外来性のタンパク質を産生するように構成された細胞や特定の遺伝子を欠損させた細胞などの、遺伝子組み換え細胞が含まれる。なお、かかるタンパク産生細胞は、産生したタンパク質を細胞外に分泌するように構成されていることが好ましい。     The cells also include genetically modified cells such as cells configured to produce foreign proteins and cells deficient in specific genes. In addition, it is preferable that this protein producing cell is comprised so that the produced protein may be secreted out of a cell.

培養は、細胞を播種した本発明の細胞培養担体基板を、細胞培養槽内に静置した状態で行うこともできるが、貫通孔内壁表面に生着し増殖する細胞に対して栄養素や酸素を滞りなく供給するためには、細胞培養担体基板を細胞培養槽の底面に据え置きせず、槽内で浮遊させた状態で培養したり、槽内で浮遊させた状態で撹拌しながら培養したり、また槽内で浮遊させた状態で液体培地を循環させながら培養することが好ましい。     Culturing can be carried out in a state where the cell culture carrier substrate of the present invention in which cells are seeded is left in a cell culture tank, but nutrients and oxygen are applied to cells that are engrafted on the inner wall surface of the through-hole. In order to supply without delay, the cell culture support substrate is not placed on the bottom surface of the cell culture tank, and is cultured in a suspended state in the tank, or while being stirred in the suspended state in the tank, Moreover, it is preferable to culture | cultivate, circulating a liquid culture medium in the state suspended in the tank.

なお、細胞培養担体基板を細胞培養槽(細胞培養ディッシュなどの細胞培養容器)の底面に据え置いた状態で細胞を培養する場合は、当該細胞培養槽の底面にポリジメチルシロキサン(PDMS)を塗布しておくことが好ましい。PDMSは高濃度の溶液中から酸素を取り込み、低濃度の溶液中では逆に酸素を放出する性質を有する。このため、PDMS塗布面上での細胞培養は、細胞数が増加して酸素濃度が低くなるとPDMS中から酸素が放出されるため、長期にわたって細胞を生存または増殖させることができる。     When culturing cells with the cell culture carrier substrate placed on the bottom of a cell culture vessel (cell culture dish or other cell culture vessel), apply polydimethylsiloxane (PDMS) to the bottom of the cell culture vessel. It is preferable to keep it. PDMS has the property of taking oxygen from a high concentration solution and releasing oxygen in a low concentration solution. For this reason, in cell culture on the PDMS-coated surface, oxygen is released from the PDMS when the number of cells increases and the oxygen concentration decreases, so that the cells can survive or grow for a long period of time.

なお、培養に際して、本発明の細胞培養担体基板は一枚のみならず、2枚以上を、例えば積層させた状態で使用することもできる。ここで積層とは、2枚以上が接着した状態で重なり合っている場合のほか、1枚1枚の基板がそれぞれ間隔をおいて層をなしている場合も含まれる。前者の態様で積層する場合、貫通孔の開口部が塞がれないように、各基板の開口部を揃えた状態で並べることが望ましい。     In the culturing, not only one cell culture carrier substrate of the present invention but also two or more substrates can be used in a laminated state, for example. Here, the term “lamination” includes not only the case where two or more substrates are bonded together, but also the case where each substrate is layered with an interval. When laminating in the former mode, it is desirable that the openings of the substrates are aligned in order to prevent the openings of the through holes from being blocked.

斯くして対象の細胞を、基板の貫通孔内で3次元的に高密度に増殖させることができる。また、中心壊死を生じさせることなく、スフェロイドを効率よく形成することができる。さらに対象の細胞がタンパク産生細胞である場合、当該細胞を培養することで、細胞内でタンパクを蓄積させるか、細胞外(液体培地中)に分泌させることで、所望のタンパク質を生産取得することができる。また、細胞培養担体基板の貫通孔で増殖したスフェロイドは簡便に貫通孔から取り出すことができるため、取り出されたスフェロイドは移植用組織小片などとして使用することが可能である。     Thus, the target cells can be proliferated three-dimensionally in the through hole of the substrate. In addition, spheroids can be efficiently formed without causing central necrosis. Furthermore, when the target cell is a protein-producing cell, the desired protein is produced and acquired by culturing the cell to accumulate the protein inside the cell or to secrete it outside the cell (in a liquid medium). Can do. In addition, since the spheroid grown in the through-hole of the cell culture carrier substrate can be easily removed from the through-hole, the extracted spheroid can be used as a tissue piece for transplantation or the like.

(III)細胞培養リアクターまたは細胞培養システム、およびこれらを用いた細胞の培養方法
本発明の細胞培養リアクターは、少なくとも流体の流入口と流出口を有する細胞培養槽内に、前述する本発明の細胞培養担体基板が2枚以上間隔をおいて積層された状態(以下、本明細書ではこの状態を「積層」といい、積層された集合物を「積層物」ともいう)、つまり積層物として配置されてなることを特徴とする。なお、上記細胞培養担体基板の多孔構造部には、その貫通孔内壁表面に培養する生細胞が付着している。または貫通孔内にスフェロイドが形成されていてもよい。
(III) Cell culture reactor or cell culture system, and cell culturing method using these cells The cell culture reactor of the present invention comprises the above-described cells of the present invention in a cell culture tank having at least a fluid inlet and an outlet. A state in which two or more culture carrier substrates are laminated at intervals (hereinafter, this state is referred to as “lamination”, and a laminated assembly is also referred to as “lamination”), that is, arranged as a laminate. It is characterized by being made. In addition, the living cell to culture | cultivate has adhered to the porous structure part of the said cell culture support substrate on the inner wall surface of the through-hole. Or the spheroid may be formed in the through-hole.

本発明の細胞培養リアクター(0)の第1の態様として、例えば図1に示すように、少なくとも流体の流入口(2)と流出口(3)を有する細胞培養槽(1)内に、貫通孔(4)の内壁表面に生細胞(5)が付着してなる細胞培養担体基板(6)が2枚以上間隔をおいて積層されており、流体に相当する液体培地(7)が、流入口(2)から細胞培養槽(1)内に流入し、当該槽内に配置された細胞培養担体基板(6)の多孔構造部の貫通孔(4)を通って流出口(3)から槽外に排出されるように、流体(液体培地)の流路が形成されてなるものを挙げることができる。当該細胞培養リアクターによれば、細胞培養担体基板の貫通孔内に接着した細胞に栄養素や酸素などの生存や増殖に必要な成分を滞りなく供給することができる。     As a first embodiment of the cell culture reactor (0) of the present invention, for example, as shown in FIG. 1, a cell culture reactor (1) having at least a fluid inlet (2) and an outlet (3) penetrates. Two or more cell culture carrier substrates (6) each having a living cell (5) attached to the inner wall surface of the hole (4) are laminated at intervals, and a liquid medium (7) corresponding to the fluid flows. It flows into the cell culture tank (1) from the inlet (2), passes through the through hole (4) of the porous structure part of the cell culture carrier substrate (6) arranged in the tank, and flows from the outlet (3) to the tank. Examples include a fluid (liquid medium) channel formed so as to be discharged to the outside. According to the cell culture reactor, it is possible to supply components necessary for survival and growth such as nutrients and oxygen to cells adhered in the through-holes of the cell culture support substrate without delay.

本発明の細胞培養リアクター(0)の第2の態様として、例えば図2に示すように、少なくとも流体の流入口(2)と流出口(3)を有する細胞培養槽(1)内に、
(A)貫通孔(4)内にスフェロイド(5’)を形成しえる生細胞(5)が付着してなる細胞培養担体基板(6)が2枚以上間隔をおいて積層されており、
(B)(a)流入口(2)から液体培地(7)を細胞培養槽(1)内に流入するための少なくとも1つの流入路(8)、
(b)上記流入路(8)から分岐し、2枚以上間隔をおいて積層された細胞培養担体基板(6)の層間に連通した3以上の分岐路(9)、及び
(c)3以上の分岐路(9)が合流する少なくとも1つの流出路(10)を有し、
流入口(2)から流入した液体培地(7)が、これらの流路を通じて流出口(3)から槽外に排出されるように、流路が形成されてなるものを挙げることができる。 なお、上記の流入路(8)と流出路(10)は、図2に示すように、細胞培養担体基板(積層物)の側面部とそれに面する細胞培養槽の内周面との間に形成され、また上記分岐路(9)は細胞培養担体基板の平面部とそれに積層される細胞培養担体基板の平面部との間、または細胞培養担体基板の平面部と細胞培養槽の底面部若しくは上面部との間に形成される。
As a second embodiment of the cell culture reactor (0) of the present invention, for example, as shown in FIG. 2, in a cell culture tank (1) having at least a fluid inlet (2) and an outlet (3),
(A) Two or more cell culture carrier substrates (6) formed by adhering live cells (5) capable of forming spheroids (5 ') in the through-hole (4) are laminated at intervals,
(B) (a) at least one inflow channel (8) for allowing the liquid medium (7) to flow into the cell culture tank (1) from the inlet (2);
(B) Three or more branch paths (9) that branch from the inflow path (8) and communicate with each other between the layers of the cell culture support substrate (6) that are stacked at intervals of two or more, and (c) three or more Having at least one outflow channel (10) where
An example is one in which a flow path is formed so that the liquid medium (7) flowing in from the inflow port (2) is discharged out of the tank from the outflow port (3) through these flow paths. As shown in FIG. 2, the inflow path (8) and the outflow path (10) are provided between the side surface portion of the cell culture carrier substrate (laminate) and the inner peripheral surface of the cell culture tank facing it. And the branch path (9) is formed between the flat part of the cell culture carrier substrate and the flat part of the cell culture carrier substrate laminated thereon, or the flat part of the cell culture carrier substrate and the bottom part of the cell culture tank or It is formed between the upper surface part.

当該細胞培養リアクターによれば、細胞培養担体基板の多孔構造部の貫通孔がスフェロイドの形成によりふさがれた場合でも、貫通孔内のスフェロイドに栄養素や酸素などの生存や増殖に必要な成分を滞りなく供給することができる。     According to the cell culture reactor, even when the through-hole of the porous structure part of the cell culture support substrate is blocked by the formation of spheroids, the spheroid in the through-hole stagnates components necessary for survival and proliferation such as nutrients and oxygen. Can be supplied without.

本発明の細胞培養リアクター(0)の第2の態様として、より好ましくは、図3にその模式図を示すように、流入路(8)が流体の流れる方向に向かって先細になるように形成され、また流出路(10)が流体の流れる方向に向かって幅広になるように形成されてなるものである。流路が先細になる態様または幅広になる態様は、特に制限されず、例えば階段状に徐々に先細または幅広になってもよいし、滑らかな直線をもって徐々に先細または幅広になってもよい。かかる細胞培養リアクターによれば、細胞培養担体基板の多孔構造部の貫通孔がスフェロイドの形成によりふさがれた場合でも、液体培地の流量を安定または均一に維持調整することができる。     As the second embodiment of the cell culture reactor (0) of the present invention, more preferably, as shown in the schematic view of FIG. 3, the inflow channel (8) is formed to taper in the fluid flow direction. In addition, the outflow path (10) is formed so as to become wider in the fluid flow direction. A mode in which the flow path is tapered or widened is not particularly limited, and may be gradually tapered or widened in a stepped manner, for example, or may be gradually tapered or widened with a smooth straight line. According to such a cell culture reactor, the flow rate of the liquid medium can be stably or uniformly maintained even when the through hole of the porous structure portion of the cell culture support substrate is blocked by the formation of spheroids.

本発明の細胞培養リアクターは、上記で説明する細胞培養槽内の流路に沿って液体培地が流れるように、液体培地供給装置または液体培地循環装置を備えていることが好ましい。かかる装置としては、細胞培養槽内に液体培地を送液するためのポンプを挙げることができる(図27の符合21)。また本発明の細胞培養リアクターは、細胞培養槽内の液体培地の温度を管理するために、例えば内部が空洞の温度調節ジャケットの形態を有する培養槽用温度調節装置やサーモスタットなどを備えていても良い。     The cell culture reactor of the present invention preferably includes a liquid medium supply device or a liquid medium circulation device so that the liquid medium flows along the flow path in the cell culture tank described above. An example of such an apparatus is a pump for feeding a liquid medium into a cell culture tank (reference numeral 21 in FIG. 27). In addition, the cell culture reactor of the present invention may be equipped with, for example, a temperature control device for a culture tank or a thermostat having a hollow temperature control jacket in order to manage the temperature of the liquid medium in the cell culture tank. good.

また、本発明の細胞培養リアクターは、細胞への酸素供給の状況を管理するために、液体培地の溶存酸素量を測定する装置(DOTプローブなど)、並びに当該溶存酸素量を関知して、それに応じて液体培地の流速や培地への酸素供給量を調節する装置を含んでいてもよい。     In addition, the cell culture reactor of the present invention relates to a device (such as a DOT probe) for measuring the dissolved oxygen content of a liquid medium, and the dissolved oxygen content in order to manage the state of oxygen supply to the cells. Accordingly, a device for adjusting the flow rate of the liquid medium and the amount of oxygen supplied to the medium may be included.

さらに、本発明の細胞培養リアクターは、液体培地のpHを管理するために、液体培地のpHを測定する装置(pHプローブ等)、並びに当該pHを検出して、それに応じて液体培地のpHを調節する装置(図27の符合22)を含んでいてもよい。     Furthermore, in order to manage the pH of the liquid medium, the cell culture reactor of the present invention detects the pH of the liquid medium (such as a pH probe), and detects the pH, and adjusts the pH of the liquid medium accordingly. A device for adjustment (symbol 22 in FIG. 27) may be included.

さらにまた本発明の細胞培養リアクターは、液体培地の電解質濃度を管理するために、液体培地の電解質濃度を測定する装置、並びに当該電解質濃度を検出してそれに応じて液体培地の電解質を調節する装置(図27の符合23)を含んでいてもよい。     Furthermore, the cell culture reactor according to the present invention includes an apparatus for measuring the electrolyte concentration of the liquid medium in order to manage the electrolyte concentration of the liquid medium, and an apparatus for detecting the electrolyte concentration and adjusting the electrolyte of the liquid medium accordingly. (Symbol 23 in FIG. 27) may be included.

かかる細胞培養リアクターおよび各種装置を備えた細胞培養システムを用いることにより、本発明の細胞培養担体基板の多孔構造部(貫通孔内)において細胞を効率よく、三次元高密度培養することができる。対象とする細胞は前述の通りである。例えば、細胞がタンパク産生細胞である場合、かかる培養により所望のタンパク質を連続的に大量に生産することができる。     By using a cell culture system equipped with such a cell culture reactor and various devices, cells can be efficiently and three-dimensionally cultured at the porous structure (in the through hole) of the cell culture carrier substrate of the present invention. The target cells are as described above. For example, when the cell is a protein-producing cell, the desired protein can be continuously produced in large quantities by such culture.

以下、実験例を用いて本発明の構成と効果を具体的に説明する。但し、これらの実験例は、本件発明の一態様であり、発明を制限するものではない。     Hereinafter, the configuration and effects of the present invention will be specifically described using experimental examples. However, these experimental examples are one aspect of the present invention and do not limit the invention.

実験例1 三次元微細構造担体材料への細胞接着の定性的評価(その1)
通常、in vitroにおける細胞培養は細胞培養ディッシュにて行われ、付着系細胞の場合には細胞培養ディッシュ底面への2次元空間を利用した培養しか出来ない。しかしながら、ポリジメチルシロキサン(PDMS)製のスフェロイドアレイチップなどを用いた方法では細胞凝集体が形成され、3次元での培養が可能となる。この方法で得られた肝細胞の細胞凝集体は、2次元培養肝細胞と比較してアルブミンの分泌活性や薬物代謝活性が高いなどの利点を持つことから注目されている。しかしながら、細胞凝集体が形成されると凝集体中心部に存在する細胞への栄養供給が困難となり、その結果、凝集体中心部の細胞が壊死に至る。図4に示すように、これらの細胞凝集体は、直径およそ500μm程度に成長した段階でその中心部の細胞が壊死し始めるため、解決策が必要であると考えられる。
Experimental Example 1 Qualitative evaluation of cell adhesion to three-dimensional microstructured carrier material (Part 1)
Usually, cell culture in vitro is performed in a cell culture dish, and in the case of adherent cells, only culture using a two-dimensional space on the bottom surface of the cell culture dish can be performed. However, in the method using a spheroid array chip made of polydimethylsiloxane (PDMS), cell aggregates are formed, and three-dimensional culture is possible. The cell aggregates of hepatocytes obtained by this method are attracting attention because they have advantages such as high albumin secretion activity and drug metabolism activity compared to two-dimensional cultured hepatocytes. However, when cell aggregates are formed, it becomes difficult to supply nutrients to the cells present in the central part of the aggregates, resulting in necrosis of the cells in the central part of the aggregates. As shown in FIG. 4, these cell aggregates are considered to require a solution because the cells in the central part thereof begin to be necrotic when they grow to a diameter of about 500 μm.

(1)三次元微細構造担体の作製
そこで実験例1では、一辺の長さ若しくは直径が50μm〜300μmの大きさを持つ円形及び多角形(三角形、四角形、五角形、星形、菱形およびハニカム)の貫通孔構造(以下、これを「キャピラリ構造」または「三次元微細構造」ともいう)を有する厚さ1mmのポリメチルメタクリレート(PMMA)製の基板をX線リソグラフィーにより作製し、細胞接着の可否について検討した(図5参照)。
(1) Production of three-dimensional microstructured carrier In Experimental Example 1, circular and polygonal shapes (triangle, quadrangle, pentagon, star, rhombus, and honeycomb) having a side length or diameter of 50 μm to 300 μm. A substrate made of polymethylmethacrylate (PMMA) having a through-hole structure (hereinafter also referred to as “capillary structure” or “three-dimensional microstructure”) made of polymethyl methacrylate (PMMA) is prepared by X-ray lithography to determine whether cell adhesion is possible. It examined (refer FIG. 5).

(2)三次元微細構造担体の貫通孔内での細胞培養
上記で作製した三次元微細構造を有する基板(以下、「三次元微細構造担体」または「マイクロ担体」という)を、70%エタノールで滅菌した後、Dulbecco’s Modified Eagle’s Mediumに10%牛胎児血清ならびに抗生物質(50 U/mLペニシリン、50 mg/mLストレプトマイシン)を添加した培養液10mlを加えた100mm細胞培養ディッシュ底面に静置し、その上に、ヒト肝がん由来細胞であるHepG2細胞にenhanced green fluorescent protein(EGFP)遺伝子を導入したHepG2-pEGFP細胞(2×106cells)を播種し、5%炭酸ガスの条件下、37℃で培養した。
(2) Cell culture in the through-hole of the three-dimensional microstructure carrier The substrate having the three-dimensional microstructure prepared above (hereinafter referred to as “three-dimensional microstructure carrier” or “microcarrier”) is made of 70% ethanol. After sterilization, place it on the bottom of a 100 mm cell culture dish with 10 ml of 10% fetal bovine serum and antibiotics (50 U / mL penicillin, 50 mg / mL streptomycin) added to Dulbecco's Modified Eagle's Medium. On top of this, HepG2-pEGFP cells (2 × 10 6 cells) introduced with enhanced green fluorescent protein (EGFP) gene were seeded into HepG2 cells, which are human liver cancer-derived cells. Incubated with

EGFPは励起光のみにて蛍光を発するタンパク質であるため、蛍光顕微鏡および共焦点レーザー顕微鏡下での生細胞の経時的観察が可能である。また、この培養系でEGFPの発現・産生が確認できれば、EGFP遺伝子に代えて外来タンパク質遺伝子を導入することにより、この細胞培養系で有用タンパク質産生細胞が培養できること、すなわち有用タンパク質の産生も可能と考えられる。     Since EGFP is a protein that emits fluorescence only with excitation light, it is possible to observe living cells over time under a fluorescence microscope and a confocal laser microscope. In addition, if the expression and production of EGFP can be confirmed in this culture system, it is possible to culture useful protein-producing cells in this cell culture system by introducing a foreign protein gene instead of the EGFP gene, that is, it is possible to produce useful protein. Conceivable.

マイクロ担体の貫通孔(以下「キャピラリ」ともいう)内における細胞接着及び増殖の様子を、蛍光顕微鏡(オリンパス製 CKX41)により観察した。蛍光顕微鏡は励起光源として水銀ランプを使用し、励起波長460-490 nm、吸収波長520 nmの条件で測定した。     Cell adhesion and proliferation in the through-hole (hereinafter also referred to as “capillary”) of the microcarrier were observed with a fluorescence microscope (Olympus CKX41). The fluorescence microscope used a mercury lamp as an excitation light source, and measured under conditions of an excitation wavelength of 460-490 nm and an absorption wavelength of 520 nm.

(3)結果
培養3日目におけるマイクロ担体のキャピラリ内での細胞接着の様子を蛍光顕微鏡下で観察した様子を図6及び7に示す。図に示すように、マイクロ担体のキャピラリ内壁においてHepG2-pEGFP細胞の発光が認められたことから、マイクロ担体のキャピラリ内で細胞培養ができることが確認された。図に示すように、キャピラリ構造(三次元微細構造)の形状およびその大きさによって、細胞接着効率が異なることが観察された。具体的には、キャピラリの内壁面が直線的な平面形状、特にハニカム、菱形、長方形、五角形、三角形の形状の孔を有する基板への細胞接着は高い傾向があるのに対して、キャピラリの内壁面が曲面状、つまり円柱状の孔を有する基板には細胞接着はほとんど確認されなかった(図6(f))。このことから、多角形、特に菱形(平行四辺形)及びハニカム形状の貫通孔を有するキャピラリ構造(三次元微細構造)をもつPMMA製の基板が、細胞培養担体として、また細胞培養リアクターの細胞培養担体として有用であることが示唆された。また、キャピラリの形状(ハニカム形状、菱形)の一辺の長さを変えて同様の実験を行ったところ、内面が直線的な平面形状をもつ貫通孔であっても、貫通孔の一辺の長さが30μmと短い場合には、細胞接着がほとんど確認されなかった(図7(e)参照)。これはHepG2-pEGFP細胞の直径が約30〜50μmと、マイクロ担体の貫通孔の一辺の長さより大きいためと考えられる。
(3) Results FIGS. 6 and 7 show the state of cell adhesion in the capillary of the microcarrier on the third day of culture observed under a fluorescence microscope. As shown in the figure, since HepG2-pEGFP cell luminescence was observed on the inner wall of the microcarrier capillary, it was confirmed that cell culture was possible in the microcarrier capillary. As shown in the figure, it was observed that the cell adhesion efficiency differs depending on the shape and size of the capillary structure (three-dimensional microstructure). Specifically, the cell inner surface of a capillary tends to be high, while the inner wall surface of the capillary tends to be high in a flat planar shape, in particular, a substrate having a honeycomb, rhombus, rectangle, pentagon, or triangle shape hole. Cell adhesion was hardly confirmed on the substrate having a curved wall surface, that is, a cylindrical hole (FIG. 6 (f)). Therefore, PMMA substrates having a capillary structure (three-dimensional microstructure) with polygonal, particularly rhomboid (parallelogram) and honeycomb-shaped through-holes are used as cell culture carriers and cell culture reactors. It was suggested to be useful as a carrier. In addition, when the same experiment was performed by changing the length of one side of the capillary shape (honeycomb shape, rhombus), the length of one side of the through hole was obtained even if the inner surface was a through hole having a linear planar shape. Was as short as 30 μm, cell adhesion was hardly confirmed (see FIG. 7 (e)). This is considered to be because the diameter of the HepG2-pEGFP cell is about 30-50 μm, which is larger than the length of one side of the through hole of the microcarrier.

実験例2 三次元微細構造担体への細胞接着の定性的評価(その2)
実験例1の結果を受けて、図8に示すように、厚さ1mm、フィルター径12mm、パターン部径8mmを有し、パターン部に、一辺がl00μmのハニカム形状の貫通孔を有する多孔構造部をもつPMMA製の三次元微細構造担体(マイクロ担体)を作成した。またハニカム形状に代えて、一辺が150μmで内角60゜の菱形形状の貫通孔を有する多孔構造部をもつPMMA製の三次元微細構造担体(マイクロ担体)を作成した(図8参照)。これらのマイクロ担体について、実験例1と同様の方法で、細胞接着の可否について検討した。
Experimental Example 2 Qualitative evaluation of cell adhesion to three-dimensional microstructured carrier (Part 2)
Based on the result of Experimental Example 1, as shown in FIG. 8, a porous structure portion having a honeycomb-shaped through hole having a thickness of 1 mm, a filter diameter of 12 mm, and a pattern portion diameter of 8 mm and having a side of 100 μm on one side. A three-dimensional microstructure carrier (microcarrier) made of PMMA with a thickness of 10 mm was prepared. Further, instead of the honeycomb shape, a PMMA three-dimensional microstructure support (microcarrier) having a porous structure portion having a rhomboid through-hole with a side of 150 μm and an inner angle of 60 ° was prepared (see FIG. 8). With respect to these microcarriers, the possibility of cell adhesion was examined by the same method as in Experimental Example 1.

具体的には、培養液を加えた100mm細胞培養ディッシュ底面に、上記微細加工を施したPMMA製のマイクロ担体をそれぞれ静置し、その上にHepG2-pEGFP細胞を播種培養し、培養4日目における細胞接着の様子を、共焦点レーザー顕微鏡(カールツァイス社製LSM510)にて観察した。共焦点レーザー顕微鏡は励起光源としてArレーザーを使用し、励起波長488nm、吸収波長505nmの条件で測定した。     Specifically, the microfabricated PMMA microcarriers subjected to the above microfabrication were placed on the bottom of a 100 mm cell culture dish to which the culture solution was added, and then HepG2-pEGFP cells were seeded and cultured on the 4th day of culture. The state of cell adhesion was observed with a confocal laser microscope (Carl Zeiss LSM510). The confocal laser microscope used an Ar laser as an excitation light source and measured under conditions of an excitation wavelength of 488 nm and an absorption wavelength of 505 nm.

一辺100μmのハニカム形状のマイクロ担体に対する細胞接着の様子を図9(a)に、一辺150μm、内角60゜の菱形形状のマイクロ担体に対する細胞接着の様子を図9(b)に示す。これからわかるように、蛍光顕微鏡下での観察結果(実験例1)と同様に、貫通孔の内面が直線的な平面形状((a)ハニカム、(b)菱形)である場合は貫通孔の内壁面に細胞接着が良好に行われている様子が確認された。培養ディッシュ底面からの細胞進展距離はハニカム形状の担体では100μm程度、菱形形状の担体では200μm程度であった(各側面図参照)。一方、貫通孔の内面が曲線的な円形形状である場合は細胞接着がほとんど確認されなかった(図6(c)参照)。以上の結果より、貫通孔の形状およびその大きさによって細胞接着効率が異なることが明らかとなった。     FIG. 9A shows the state of cell adhesion to a honeycomb-shaped microcarrier having a side of 100 μm, and FIG. 9B shows the state of cell adhesion to a rhombus-shaped microcarrier having a side of 150 μm and an inner angle of 60 °. As can be seen from this, as in the observation result under the fluorescence microscope (Experimental Example 1), if the inner surface of the through hole has a straight planar shape ((a) honeycomb, (b) rhombus) It was confirmed that cell adhesion was well performed on the wall surface. The cell growth distance from the bottom of the culture dish was about 100 μm for the honeycomb-shaped carrier and about 200 μm for the diamond-shaped carrier (see each side view). On the other hand, when the inner surface of the through hole has a curved circular shape, cell adhesion was hardly confirmed (see FIG. 6 (c)). From the above results, it became clear that the cell adhesion efficiency differs depending on the shape and size of the through hole.

さらに、ハニカム形状のマイクロ担体内における細胞の経時変化の様子を観察した(図10)。培養ディッシュ底面からの細胞進展距離は培養3日目で100 mm程度であったが(図10(a))、さらに培養11日目においては200〜300μm程度まで細胞の進展が認められ、貫通孔内で細胞が増殖している様子が観察された(図10(b))。     Furthermore, the state of cell change with time in the honeycomb-shaped microcarrier was observed (FIG. 10). The cell growth distance from the bottom of the culture dish was about 100 mm on the 3rd day of culture (FIG. 10 (a)), but on the 11th day of culture, cell growth was observed up to about 200-300 μm. A state in which cells were proliferating was observed (FIG. 10 (b)).

以上の結果に示すように、ハニカム形状および菱形形状の貫通孔を有するキャピラリ構造を施したPMMA製基板のキャピラリ内壁に細胞が接着し、時間経過とともにディッシュ底面から垂直方向に進展しながら増殖していくことが確認された。このことから、ハニカム形状および菱形形状の貫通孔を有するキャピラリ構造を施したPMMA製基板は、連続式細胞培養リアクターに用いる細胞培養担体として適切な材料であることが示唆された。     As shown in the above results, cells adhere to the inner wall of the capillary of the PMMA substrate that has a capillary structure with honeycomb and rhombus-shaped through holes, and proliferate while progressing vertically from the bottom of the dish over time. It was confirmed that This suggests that a PMMA substrate having a capillary structure having honeycomb-shaped and diamond-shaped through-holes is a suitable material for a cell culture carrier used in a continuous cell culture reactor.

実験例3 三次元微細構造担体材料への細胞接着の定量評価(その3)
(1)図11(A)に示すように、厚さ1mm、フィルター径12mm、パターン部径8mmを有し、パターン部に一辺が50〜300μmのハニカム形状の貫通孔を有する多孔構造部をもつPMMA製の三次元微細構造担体(マイクロ担体)、及びハニカム形状に代えて、一辺が150μmで鋭角30,45,60°の菱形形状の貫通孔を有する多孔構造部をもつPMMA製の三次元微細構造担体(マイクロ担体)をそれぞれ作成し、細胞接着におよぼす影響について検討した。また、対照実験として、図11(B)に示すように、微細加工を施していない直径12mm、厚さ1mmの円盤状のPMMA製基板((a)平板PMMA)、および直径l2mm、厚さ1mmの円盤状の中心に直径8mmの貫通孔を有するリング状のPMMA製基板 ((b)リング状PMMA)(以下、これらを総称して「対照PMMA」という)についても同様に細胞接着におよぼす影響を検討した。これらの2種類の対照PMMAを用いることで、平板PMMAの結果からリング状PMMAの結果を引くことで担体のパターン部(多孔構造部)のみの対照とみなすことができる。
Experimental Example 3 Quantitative evaluation of cell adhesion to 3D microstructure carrier material (Part 3)
(1) As shown in FIG. 11 (A), it has a porous structure part having a honeycomb-shaped through-hole having a thickness of 1 mm, a filter diameter of 12 mm, and a pattern part diameter of 8 mm, and a side of the pattern part of 50 to 300 μm. PMMA three-dimensional microstructure support (microcarrier) and PMMA three-dimensional microstructure with a porous structure with rhomboid through-holes of 150 μm on each side and acute angles of 30, 45, 60 ° instead of honeycomb shape Each structure carrier (microcarrier) was prepared and the influence on cell adhesion was examined. As a control experiment, as shown in FIG. 11B, a disk-shaped PMMA substrate ((a) flat plate PMMA) having a diameter of 12 mm and a thickness of 1 mm that has not been finely processed, and a diameter of 1 mm and a thickness of 1 mm. The effect on cell adhesion of a ring-shaped PMMA substrate ((b) ring-shaped PMMA) (hereinafter collectively referred to as “control PMMA”) having a through-hole with a diameter of 8 mm in the center of the disk It was investigated. By using these two types of control PMMA, the result of the ring-shaped PMMA can be subtracted from the result of the flat plate PMMA, and can be regarded as a control of only the pattern portion (porous structure portion) of the carrier.

具体的には、培養液を加えた100mm細胞培養ディッシュの底面に、上記微細加工を施したPMMA製の三次元微細構造担体(これを「PMMA製担体」という)及び対照PMMA(以下、この実験例ではこれらを一括して「マイクロ担体」と称する)を静置し、HepG2-pEGFP細胞を播種した。播種から4,7,10,12,14,18日目にこれらのマイクロ担体を取り出し、これらをphosphate buffered salineにて2回洗浄後、0.1%Tween-20水溶液中にて凍結融解を繰り返すことで各マイクロ担体に付着した細胞を破壊し、次いで遠心分離を行うことで細胞質分画を得た。この細胞質分画中の蛍光強度を、蛍光光度計(島津製作所製RF-5300PC、励起波長490nm、吸収波長510nm)にて測定し、標準GFPにて作成した検量線にあてはめて得られたGFP量を用いて各マイクロ担体への細胞接着数を評価した。なお、本検討に先立ち、HepG2-pEGFP細胞数とその細胞質分画中の蛍光強度の間には線形性のあることを確認している(図12参照)。     Specifically, on the bottom of a 100 mm cell culture dish to which a culture solution has been added, a PMMA three-dimensional microstructure carrier (this is called “PMMA carrier”) and control PMMA (hereinafter referred to as this experiment) In the example, these were collectively referred to as “microcarriers”), and HepG2-pEGFP cells were seeded. Take out these microcarriers on the 4th, 7th, 10th, 12th, 14th and 18th days after sowing, wash them twice with phosphate buffered saline, and repeat freeze-thaw in 0.1% Tween-20 aqueous solution. Cells attached to each microcarrier were disrupted and then centrifuged to obtain a cytoplasmic fraction. The amount of GFP obtained by measuring the fluorescence intensity in this cytoplasmic fraction with a fluorometer (RF-5300PC manufactured by Shimadzu Corporation, excitation wavelength 490 nm, absorption wavelength 510 nm) and applying it to a calibration curve prepared with standard GFP Was used to evaluate the number of cell adhesion to each microcarrier. Prior to this study, it was confirmed that there was linearity between the number of HepG2-pEGFP cells and the fluorescence intensity in the cytoplasmic fraction (see FIG. 12).

一辺が50〜300μmのハニカム形状のキャピラリ構造を有するPMMA製担体と対照PMMAに対する細胞接着数を対比した結果を図13(A)に示す。図13(A)に示すように、対照PMMA(リング状PMMA:―○―、平板PMMA:―●―)と比較して、ハニカム形状の微細加工を施したPMMA製担体のほうがGFP量(接着細胞数)が多く、またハニカム形状のなかでも一辺の長さが短いほどGFP量(接着細胞数)が多くなる傾向が認められた。ハニカム形状の一辺が小さいものほど貫通孔内壁における表面積が大きいため細胞接着数が増加するものと考えられる。     FIG. 13A shows the result of comparing the number of cell adhesions between the PMMA carrier having a honeycomb-shaped capillary structure with a side of 50 to 300 μm and the control PMMA. As shown in FIG. 13 (A), the amount of GFP (adhesion) is higher in the PMMA carrier with the honeycomb-shaped microfabrication compared to the control PMMA (ring-shaped PMMA:-○-, flat plate PMMA:-●-). It was observed that the amount of GFP (the number of adherent cells) tended to increase as the length of one side was shorter in the honeycomb shape. It is considered that the smaller the one side of the honeycomb shape is, the larger the surface area of the inner wall of the through hole is, so that the number of cell adhesion increases.

また鋭角30,45,60°の菱形形状のキャピラリ構造をもつPMMA製担体と対照PMMAに対する細胞接着数を対比した結果を図13(B)に示す。図13(B)に示すように、対照PMMA(リング状PMMA:―○―、平板PMMA:―●―)と比較して、菱形形状の微細加工を施したPMMA製担体のほうがGFP量(接着細胞数)が多く、また菱形形状のなかでも、内角が鋭角となるほどGFP量(接着細胞数)が多くなる傾向が認められた。菱形形状の内角が鋭角のものほど貫通孔内壁における表面積が大きいため細胞接着数が増加するものと考えられる。     FIG. 13B shows the result of comparing the number of cell adhesions between the PMMA carrier having a rhomboid capillary structure with acute angles of 30, 45, and 60 ° and the control PMMA. As shown in FIG. 13 (B), the amount of GFP (adhesion) is higher in the PMMA carrier with diamond-shaped microfabrication compared to the control PMMA (ring-shaped PMMA:-○-, flat plate PMMA:-●-). The number of GFP (adherent cells) tended to increase as the interior angle became sharper, even among the diamond-shaped shapes. It is considered that the number of cell adhesion increases because the surface area of the inner wall of the through-hole is larger as the rhombus-shaped inner angle is sharper.

一方、比較実験として行った円形パターンにおいては、平板PMMA(―●―)と比較してほとんど同等、もしくはそれ以下のGFP量であった(図13(C)参照)。また、平板PMMAおよび微細加工を施したPMMA製担体ともに、培養開始から10〜12日目に細胞数のピークを認め、それ以降は維持される傾向がみられた。     On the other hand, in the circular pattern performed as a comparative experiment, the amount of GFP was almost equal to or less than that of flat plate PMMA (-●-) (see FIG. 13C). In addition, both the flat plate PMMA and the finely processed PMMA carrier showed a peak in the number of cells on the 10th to 12th days from the start of the culture, and a tendency to be maintained thereafter.

(2)さらに、ハニカム形状及び菱形形状のキャピラリ構造をもつPMMA製担体について、キャピラリ内壁表面積あたりのGFP量を算出した。結果を図14に示す。   (2) Furthermore, the amount of GFP per capillary inner wall surface area was calculated for a PMMA carrier having a honeycomb-shaped and rhombus-shaped capillary structure. The results are shown in FIG.

その結果、ハニカム形状では、一辺の長さが長いほどキャピラリ内壁の表面積あたりのGFP量が多くなる傾向があり(図14(A))、菱形形状では、内角が鈍角であるほどキャピラリ内壁の表面積あたりのGFP量が多くなる傾向が認められた(図14(B))。     As a result, in the honeycomb shape, as the length of one side is longer, the amount of GFP per surface area of the capillary inner wall tends to increase (FIG. 14A), and in the rhombus shape, the surface area of the capillary inner wall increases as the inner angle becomes obtuse. There was a tendency for the amount of per GFP to increase (FIG. 14B).

(3)また、培養14日目までに得られた細胞内GFP量の積分値を、貫通孔の形状パターンごとに解析した。この解析結果から、培養期間中、マイクロ担体のキャピラリ内に存在していた細胞数を評価した。また、マイクロ担体の直径8 mmのパターン部(多孔構造部)における接着細胞数を評価するため、得られたGFP量の積分値から、リング状PMMAにおけるGFP量の積分値をそれぞれ差し引いた値を縦軸とした。結果を図15に示す。円形状、及び1辺の長さが200及び300μmのハニカム形状では、平板PMMAとほぼ同等、もしくはそれ以下の値となっていたが、1辺が50〜150μmのハニカム形状、鋭角が30°〜60°の菱形では、平板PMMAのGFP量の積分値よりも高く、特に1辺が50μmのハニカム形状、及び鋭角が45°及び30°の菱形では、平板PMMAと比較して3倍程度のGFP量の積分値を得た。   (3) Moreover, the integral value of the amount of intracellular GFP obtained by the 14th day of culture | cultivation was analyzed for every shape pattern of the through-hole. From this analysis result, the number of cells present in the capillary of the microcarrier during the culture period was evaluated. Also, in order to evaluate the number of adherent cells in the 8 mm diameter pattern part (porous structure part) of the microcarrier, the value obtained by subtracting the integrated value of the GFP amount in the ring-shaped PMMA from the integrated value of the obtained GFP amount was obtained. The vertical axis is taken. The results are shown in FIG. The round shape and the honeycomb shape with one side length of 200 and 300 μm were almost equal to or less than the flat plate PMMA, but the honeycomb shape with one side of 50 to 150 μm and the acute angle was 30 ° ~ The 60 ° diamond shape is higher than the integrated value of the GFP amount of flat plate PMMA, especially the honeycomb shape with one side of 50μm, and the diamond shape with acute angles of 45 ° and 30 ° is about 3 times GFP compared to flat plate PMMA. The integral value of the quantity was obtained.

また、図12の図に基づいてGFP量から細胞数を算出すると、マイクロ担体のキャピラリ内での最大接着細胞数は、ハニカム1辺50μmのパターン部(容量:50.27 mm2)に関して7.4×105 cells/scaffold(1.47×107 cells/ml)であった。細胞培養シャーレ上において、5×106 cells/ml程度の密度にて細胞培養ができれば高密度培養だといわれていることを考えると、本発明のマイクロ担体によれば、それより2倍以上の高密度培養が可能であることが示された。 Further, when the number of cells is calculated from the amount of GFP based on the diagram of FIG. 12, the maximum number of adherent cells in the capillary of the microcarrier is 7.4 × 10 5 with respect to a pattern portion (capacity: 50.27 mm 2 ) having a side of honeycomb of 50 μm. cells / scaffold (1.47 × 10 7 cells / ml). Considering that cell culture can be performed at a density of about 5 × 10 6 cells / ml on a cell culture petri dish, it is said that the culture is a high-density culture. It was shown that high-density culture is possible.

以上実験例1〜3の結果から、細胞培養リアクターに用いる細胞培養担体材料としてPMMAは適当な材料であり、さらにこれらにハニカム形状または菱形形状の貫通孔を有する三次元微細構造加工を施すことにより、同面積の二次元構造体と比べて、高密度の状態で細胞を培養することが可能になることが確認された。     From the results of Experimental Examples 1 to 3, PMMA is an appropriate material as a cell culture carrier material used in the cell culture reactor, and further, by applying a three-dimensional microstructure processing having a honeycomb-shaped or diamond-shaped through-hole to these materials. It was confirmed that cells can be cultured in a higher density state than a two-dimensional structure having the same area.

また、大きさおよび角度の異なるハニカム形状または菱形形状のキャピラリ構造の三次元微細加工を施したPMMA製担体への細胞接着を比較した結果、キャピラリ内壁表面積あたりの細胞接着数は、一辺300μmのハニカム形状のキャピラリ構造物が最も高かった(図14(A))。     In addition, as a result of comparing cell adhesion to a PMMA carrier with three-dimensional microfabrication of honeycomb structures or rhombus-shaped capillary structures of different sizes and angles, the number of cell adhesion per capillary inner wall surface area was 300 μm on a side. The shape of the capillary structure was the highest (FIG. 14A).

実験例2に示したように、共焦点レーザー顕微鏡での観察では、キャピラリ内壁への細胞進展は底面から200μm程度に留まっている。このことから、本検討で用いた三次元構造物のうち、細胞培養担体または細胞培養リアクターの材料として、キャピラリ内壁表面積あたりの細胞接着数が最も高かった一辺300μmのハニカム形状のキャピラリ構造(三次元微細構造)を有するPMMA製の基板が最も好ましいと考えられた。     As shown in Experimental Example 2, in the observation with a confocal laser microscope, the cell progress to the inner wall of the capillary remains at about 200 μm from the bottom surface. From this, among the three-dimensional structures used in this study, as a material for cell culture carriers or cell culture reactors, a honeycomb-shaped capillary structure with a side of 300 μm with the highest cell adhesion number per capillary inner wall surface area (three-dimensional A substrate made of PMMA having a fine structure) was considered most preferable.

実験例4 培養液中における培養担体の浮遊および培養液の撹伴による細胞増殖効果
上記実験例に示すように、三次元微細構造を施したPMMA製担体(マイクロ担体)においてキャピラリ内壁への細胞接着と進展が確認されたが、いずれの担体についても接着細胞数は、培養開始から10〜12日目にピークを認め、それ以降は維持される傾向が認められた。この理由としては、培養細胞への栄養素や酸素の供給は、マイクロ担体を配置した細胞培養ディッシュの上からの分子拡散に依存しているところ、これまでの培養方法は担体を細胞培養ディッシュの底面に静置したままの状態であり、さらに担体の厚みが1mmあるため、時間経過とともにある一定量まで増殖した細胞をさらに増殖させるために必要な栄養素や酸素の供給量が不足していたことなどが考えられる。これらの問題を解決する目的で、キャピラリ内壁に細胞を接着させたマイクロ担体を培養液中に浮遊させ、さらに培養液を撹拌しながら培養することを試みた。
Experimental Example 4 Cell Proliferation Effect by Suspension of Culture Carrier in Culture Medium and Stirring of Culture Solution As shown in the above experiment example, cell adhesion to the inner wall of the capillary in a PMMA carrier (microcarrier) with a three-dimensional microstructure However, for all the carriers, the number of adherent cells peaked on the 10th to 12th day from the start of the culture, and was maintained thereafter. The reason for this is that the supply of nutrients and oxygen to the cultured cells depends on molecular diffusion from the top of the cell culture dish on which the microcarriers are arranged, and the conventional culture methods use the carrier as the bottom surface of the cell culture dish. Because the carrier is 1 mm thick and the carrier is 1 mm thick, the supply of nutrients and oxygen necessary for further growth of cells that have grown to a certain amount over time is insufficient. Can be considered. In order to solve these problems, an attempt was made to float a microcarrier having cells attached to the inner wall of the capillary in the culture medium and to further culture the culture medium while stirring.

具体的には、培養液を含む細胞培養ディッシュの底面に一辺100μm及び300μmのハニカム形状のキャピラリ構造を有するPMMA製の担体(マイクロ担体)を静置した状態で細胞を播種し、細胞がマイクロ担体のキャピラリ内に十分量接着したと考えられる播種6日後に、ディッシュ上のマイクロ担体に足場を与えて浮遊培養を開始した(浮遊培養)。また、攪拌培養は、オートクレーブにより滅菌した回転子をディッシュ中へ沈め、マグネティックスターラーにより培養液を攪拌させて培養した。これらをインキュベータ内にて培養し、それぞれにおける細胞の様子を蛍光顕微鏡、及び共焦点レーザー顕微鏡により観察した。培養条件および顕微鏡観察条件は、実験例1及び2と同じ条件で行った。     Specifically, cells are seeded in a state where a PMMA carrier (microcarrier) having a honeycomb-shaped capillary structure with sides of 100 μm and 300 μm is placed on the bottom of a cell culture dish containing a culture solution, and the cells are microcarriers. Suspension culture was started by giving a scaffold to the microcarriers on the dish 6 days after sowing, which was considered to have adhered sufficiently in the capillaries. In the stirring culture, a sterilized rotator was sunk in a dish, and the culture was stirred with a magnetic stirrer. These were cultured in an incubator, and the state of the cells in each was observed with a fluorescence microscope and a confocal laser microscope. The culture conditions and microscope observation conditions were the same as in Experimental Examples 1 and 2.

各培養方法((a)静置培養、(b)浮遊培養、(c)攪拌培養)における培養17日目のマイクロ担体のキャピラリ内での細胞の存在状況を、蛍光顕微鏡画像を図16に、攪拌培養における培養17日目のマイクロ担体のキャピラリ内での細胞の存在状況を、共焦点レーザー顕微鏡画像を図17に示す。その結果、静置培養と比較して、浮遊培養及び攪拌培養のほうが、細胞数が多くなる傾向があった。     In each culture method ((a) static culture, (b) suspension culture, (c) stirring culture), the presence of cells in the capillary of the microcarrier on the 17th day of culture is shown in FIG. FIG. 17 shows a confocal laser microscope image of the presence state of the cells in the capillary of the microcarrier on the 17th day of culture in the stirring culture. As a result, there was a tendency for the number of cells to increase in suspension culture and stirring culture compared to static culture.

図13(a)に示すように、静置培養では、キャピラリ内壁面にはほとんど細胞が接着していない様子がわかる。一方、図16(b)及び(c)に示すように、浮遊培養及び攪拌培養においては、キャピラリ内に細胞がスフェロイド状(細胞凝集体)になっている様子が確認できた。この理由としては、培養液中でのマイクロ担体の浮遊および培養液の撹拌によって栄養素や酸素の供給が良好となった結果、キャピラリ内壁面に接着した細胞の増殖が活発になったものの、重力等の影響を受けてキャピラリ壁面の上部に向けての細胞進展が起こりにくく、結果的にキャピラリ壁面の下部に留まり凝集体を形成したものと推察された。     As shown in FIG. 13 (a), it can be seen that in static culture, almost no cells are adhered to the inner wall surface of the capillary. On the other hand, as shown in FIGS. 16 (b) and 16 (c), it was confirmed that cells were in the form of spheroids (cell aggregates) in the capillary in suspension culture and stirring culture. The reason for this is that although the microcarriers floated in the culture medium and the supply of nutrients and oxygen were improved by the agitation of the culture liquid, the growth of cells attached to the inner wall of the capillary became active. It was inferred that cell growth did not easily occur toward the upper part of the capillary wall surface under the influence of the above, and as a result, it stayed at the lower part of the capillary wall surface and formed an aggregate.

また、浮遊培養及び攪拌培養で得られた細胞は、静置培養と比較して蛍光強度が強く、細胞活性が非常に高い様子が伺えた。また図17に示すように、攪拌培養の共焦点レーザー顕微鏡画像において、直径100μm程度の細胞スフェロイドが形成されているのが確認できた。     In addition, the cells obtained by suspension culture and stirring culture had strong fluorescence intensity compared to stationary culture, and the cell activity was very high. Further, as shown in FIG. 17, it was confirmed that a cell spheroid having a diameter of about 100 μm was formed in the confocal laser microscope image of the stirring culture.

静置培養および浮遊培養における接着細胞数の定量評価結果を図18に示す。図18に示すように、静置培養は1辺が100μm及び300μmのどちらのハニカム形状の場合も、培養14及び10日目付近でGFP量のピークを迎えた。一方、浮遊培養では、1辺が100μm及び300μmのどちらのハニカム形状の場合も、培養18日目までGFP量が増加し続け、静置培養よりも高いGFP量が得られた。また18日目以降もGFP量が増える傾向が認められた。     FIG. 18 shows the results of quantitative evaluation of the number of adherent cells in stationary culture and suspension culture. As shown in FIG. 18, the static culture reached a peak of the amount of GFP near the 14th and 10th days of culture, regardless of whether the side of the honeycomb shape was 100 μm or 300 μm. On the other hand, in suspension culture, the amount of GFP continued to increase until the 18th day of culture in both cases of honeycomb shapes of 100 μm and 300 μm on one side, and a higher GFP amount was obtained than in stationary culture. Moreover, the tendency for the amount of GFP to increase after the 18th day was also observed.

また、図19に、左端から順にマイクロ担体を細胞培養ディッシュ底面に静置した状態で17日間培養した場合の接着細胞数(GFP量:μg)(白棒)、細胞播種から6日目にマイクロ担体を培養液中に浮遊させて11日間培養した場合の接着細胞数(GFP量:μg)(灰色棒)、細胞播種から6日目にマイクロ担体を培養液中に浮遊させ且つ撹拌しながら11日間培養した場合の接着細胞数(GFP量:μg)(黒棒)を示す。図19に示すように、静置培養(白棒)と比較して、浮遊培養(灰色棒)および攪拌培養(黒棒)のほうが、接着細胞数が多かった。     FIG. 19 also shows the number of adherent cells (GFP amount: μg) (white bar) when cultured for 17 days in the state where the microcarriers are placed on the bottom of the cell culture dish in order from the left end. The number of adherent cells (GFP amount: μg) (gray bar) when the carrier is suspended in the culture medium and cultured for 11 days. The microcarrier is suspended in the culture medium on the sixth day after cell seeding and stirred. The number of adherent cells (GFP amount: μg) (black bar) when cultured for 1 day is shown. As shown in FIG. 19, the number of adherent cells was higher in suspension culture (gray bar) and stirring culture (black bar) than in stationary culture (white bar).

静置培養では、マイクロ担体を細胞ディッシュ上に静置しているため、マイクロ担体底部からの培養液中の栄養分や酸素の供給がほとんどなく、マイクロ担体上部からの拡散のみにより行われている。これに対して、浮遊培養や攪拌培養では、マイクロ担体底部にも新鮮な培養液が接触する。従って、重力による影響もあるものの、培養環境が良好なマイクロ担体の底部に細胞が集まるのではないかと思われる。これらの結果より、マイクロ担体の多孔構造部の各キャピラリー内に酸素や栄養分が適度に供給される浮遊培養や攪拌培養は高密度細胞培養に対して有用であるといえる。また、細胞スフェロイドを担体に接着した状態にて培養可能なことから、連続式細胞培養リアクターへの応用もできる。また、連続式培養に適用することで、さらに高密度培養が可能になると考えられる。     In the static culture, since the microcarrier is left on the cell dish, there is almost no supply of nutrients and oxygen in the culture solution from the bottom of the microcarrier, and only the diffusion from the top of the microcarrier is performed. On the other hand, in suspension culture or stirring culture, the fresh culture solution also contacts the bottom of the microcarrier. Therefore, although there is an influence due to gravity, it seems that cells may gather at the bottom of the microcarrier having a good culture environment. From these results, it can be said that floating culture and stirring culture in which oxygen and nutrients are appropriately supplied into the capillaries of the porous structure of the microcarrier are useful for high-density cell culture. Moreover, since it can culture | cultivate in the state which adhere | attached the cell spheroid on the support | carrier, the application to a continuous cell culture reactor can also be performed. In addition, it is considered that higher density culture is possible by applying to continuous culture.

さらに、浮遊培養により形成した細胞スフェロイドをマイクロ担体からピペットにより剥がし、細胞培養ディッシュ上で培養をした(培養21日目)。結果を図20に示す。剥離3日目では細胞スフェロイドの状態で変わらなかったが(図20(a))、10日目になると細胞スフェロイドの周りから細胞が単層に増殖している様子が確認された(図20(b))。また、14日目になると、さらに細胞スフェロイドの周りから細胞が単層に増殖しており、細胞スフェロイドの中心部分が壊死している様子が観察された(図20(c))。これは、細胞スフェロイドが大きく成長しすぎると、スフェロイドの中心部分に栄養分が到達せず、中心部分の細胞が壊死するものと思われる。中心部分が壊死を起こすと、周りの細胞へも影響を与える可能性があるため、細胞スフェロイドを利用した細胞培養リアクターには、細胞スフェロイドが大きくなりすぎないような工夫が必要になる。     Furthermore, the cell spheroid formed by suspension culture was peeled off from the microcarrier by a pipette and cultured on a cell culture dish (culture day 21). The results are shown in FIG. On the third day of detachment, the state of the cell spheroid did not change (FIG. 20 (a)), but on the tenth day, it was confirmed that cells were proliferating in a monolayer from around the cell spheroid (FIG. 20 ( b)). Further, on the 14th day, it was observed that the cells were further proliferating into a monolayer from the periphery of the cell spheroid, and the central part of the cell spheroid was necrotized (FIG. 20 (c)). This is probably because if the cell spheroid grows too large, nutrients do not reach the central part of the spheroid and the central cell is necrotic. If necrosis occurs in the central part, it may affect surrounding cells. Therefore, it is necessary to devise a cell culture reactor using cell spheroids so that the cell spheroids do not become too large.

実験例5 PMMA製担体の表面粗面化の細胞接着に対する影響
実験例4の結果から、三次元微細加工を施したPMMA製担体(マイクロ担体)への細胞接着は可能であるものの、通常の培養方法では、キャピラリ内壁面の下部における接着にとどまり、キャピラリ内壁面の上部への細胞進展はあまり進まないことが明らかとなった。これを解決する方法として、マイクロ担体の表面(特にキャピラリ内表面)を粗面化することを考えた。
Experimental Example 5 Effect of surface roughening of PMMA carrier on cell adhesion Based on the results of Experimental Example 4, although cell adhesion to a PMMA carrier (microcarrier) subjected to three-dimensional microfabrication is possible, normal culture In the method, it was clarified that the cell growth to the upper part of the inner wall surface of the capillary did not progress so much, but only the adhesion at the lower part of the inner wall surface of the capillary. As a method for solving this problem, it was considered to roughen the surface of the microcarrier (particularly the inner surface of the capillary).

(1)アセトンによる表面粗面化
まず直径12mm、厚さ1mmのPMMA製の円形状平板(平板PMMA)をアセトンに10分間浸漬(アセトン処理)して表面を粗面化した。得られた粗面化PMMAを、培養液を含む細胞培養ディッシュの底面に静置した状態で細胞を播種し、培養4,7, 11,14日目にこれを取り出し、phosphate buffered salineにて洗浄して担体に付着した細胞を回収した。次いで回収した細胞を0.1%Tween-20水溶液中にて凍結融解を繰り返すことにより細胞質分画を得た。この細胞質分画中の蛍光強度を測定し、標準GFPにて作成した検量線(図12)にあてはめて得られたGFP量を用いて、粗面化PMMAに接着した細胞数の経時的変化を評価した。
(1) Surface roughening with acetone First, a circular flat plate made of PMMA having a diameter of 12 mm and a thickness of 1 mm (flat plate PMMA) was immersed in acetone for 10 minutes (acetone treatment) to roughen the surface. The obtained roughened PMMA is seeded on the bottom surface of the cell culture dish containing the culture solution, seeded with cells, taken out on days 4, 7, 11, and 14 and washed with phosphate buffered saline. Thus, the cells attached to the carrier were collected. Next, the collected cells were repeatedly freeze-thawed in a 0.1% Tween-20 aqueous solution to obtain a cytoplasmic fraction. The fluorescence intensity in this cytoplasmic fraction was measured, and using the amount of GFP obtained by fitting to a calibration curve (FIG. 12) prepared with standard GFP, the change over time in the number of cells adhered to roughened PMMA was measured. evaluated.

結果を図21(a)に示す。その結果、平板PMMA(無処理PMMA)(―×―)に比べて粗面化PMMA(―◆―)のほうが細胞接着速度(細胞増殖速度)が速く、多くの細胞が接着する傾向が認められた。また、培養14日目までのGFP量の積分値を台形法によって見積もった結果を図21(b)に示す。その結果、粗面化PMMAの積分値(図21(b):黒棒)のほうが、平板PMMA(無処理PMMA)の積分値(図21(b):白棒)よりも2倍近く高かったことから、PMMA製担体表面の粗面化が、細胞接着および細胞増殖に有効であることが判明した。     The results are shown in FIG. As a result, compared with flat plate PMMA (untreated PMMA) (-×-), roughened PMMA (-◆-) has a higher cell adhesion rate (cell proliferation rate) and a tendency to adhere to many cells. It was. Moreover, the result of estimating the integral value of the amount of GFP up to the 14th day of culture by the trapezoidal method is shown in FIG. As a result, the integrated value of roughened PMMA (FIG. 21 (b): black bar) was nearly twice as high as that of flat plate PMMA (untreated PMMA) (FIG. 21 (b): white bar). From this, it was found that roughening the surface of the PMMA carrier was effective for cell adhesion and cell proliferation.

図22に粗面化PMMAと平板PMMA(無処理PMMA)上での細胞接着及び増殖の様子を比較した結果を示す((1)培養4日目、(2)培養7日目、(3)培養11日目)。培養4及び7日目における平板PMMA上では、細胞は単層にて接着、増殖している様子が分かる。しかし、粗面化PMMA上では、細胞同士が乗り上げたような形になっており、スフェロイドを形成しながら増殖している様子が伺えた。このように、細胞接着担体の表面を粗面化させることにより、細胞接着や増殖の仕方に影響を与えることが示された。     FIG. 22 shows the results of comparison of cell adhesion and growth on roughened PMMA and flat PMMA (untreated PMMA) ((1) 4th day of culture, (2) 7th day of culture, (3) Culture day 11). It can be seen that the cells adhere and proliferate in a single layer on the flat PMMA on the 4th and 7th day of culture. However, on the roughened PMMA, the cells seemed to be on top of each other, indicating that they were proliferating while forming spheroids. As described above, it was shown that the surface of the cell adhesion carrier is roughened to affect the cell adhesion and proliferation.

さらに、PMMA表面に正電荷負荷あるいは生体親和性ペプチドによる化学修飾などすることで、さらに細胞接着および細胞増殖を高めることができると考えられる。     Furthermore, it is considered that cell adhesion and cell proliferation can be further enhanced by chemical modification with a positive charge load or a biocompatible peptide on the surface of PMMA.

(2)放射光照射による表面改質
(2-1)実験方法
PMMAへの放射光照射は、NewSUBARU放射光施設BL-2にて、1.0 GeV運転時にて行い、X線露光量(dose)0、2000、5000、10000 [mA*s]の4サンプルを用意した。
(2) Surface modification by radiation irradiation (2-1) Experimental method
PMMA was irradiated with synchrotron radiation at NewSUBARU synchrotron radiation facility BL-2 during 1.0 GeV operation, and four samples with X-ray exposure (dose) 0, 2000, 5000, and 10000 [mA * s] were prepared. .

放射光照射処理したPMMA(放射線処理PMMA)を、培養液を含む細胞培養ディッシュの底面に静置した状態で細胞を播種し、培養開始から2、5、7、9日目に、これを細胞培養ディッシュ中から取り出した。これをPBSにて2回洗浄後、trypsin-EDTAを添加して細胞を剥離した。剥離後、DMEMにて置換して酵素反応を停止させ、遠心分離した後、血球計算板により放射線処理PMMAに付着した細胞数を測定した。     Cells were seeded with radiation-treated PMMA (radiation-treated PMMA) on the bottom of the cell culture dish containing the culture solution, and this was treated on days 2, 5, 7, and 9 after the start of culture. It was taken out from the culture dish. This was washed twice with PBS, and trypsin-EDTA was added to detach the cells. After detachment, the enzyme reaction was stopped by substitution with DMEM, and after centrifugation, the number of cells attached to the radiation-treated PMMA was measured with a hemocytometer.

(2-2)実験結果
放射光を照射したPMMAへの細胞接着の様子を図23に、定量評価結果を図24に示す。図23から露光量(dose)の増加と共に細胞接着数が増加している様子が分かる。また、図24の定量評価結果によると、培養7日目までは放射光を照射しなかったPMMAより照射したPMMAに対して細胞数が多いのが分かる。しかし、9日目になると照射したPMMA上の細胞数は総じて減少している。これは、露光したPMMA表面の細胞が飽和状態になり、細胞同士が悪影響を及ぼしているためだと考えられる。露光していないPMMA表面上ではまだまだ細胞が増殖する余地があるため、増殖しているものだと考えられる。これらの結果より、X線エネルギー吸収により生じるPMMAの構造変化が細胞培養に良好に働いたことがわかる。
(2-2) Experimental Results FIG. 23 shows the state of cell adhesion to PMMA irradiated with synchrotron radiation, and FIG. 24 shows the quantitative evaluation results. From FIG. 23, it can be seen that the number of cell adhesion increases as the exposure dose increases. Moreover, according to the quantitative evaluation result of FIG. 24, it can be seen that the number of cells is larger than the irradiated PMMA than the PMMA that was not irradiated with the emitted light until the seventh day of the culture. However, on day 9, the number of cells on irradiated PMMA generally decreased. This is thought to be because the cells on the exposed PMMA surface are saturated and the cells have an adverse effect. Since there is still room for cells to grow on the unexposed PMMA surface, it is thought to be growing. These results show that the structural change of PMMA caused by X-ray energy absorption worked well for cell culture.

PMMAにX線が照射されるとX線エネルギーの吸収に伴って光電子やオージェ電子を発生して、PMMA中にラジカルが発生しプラス電荷を帯びる。細胞膜はマイナス電荷を持っているので、細胞接着担体であるPMMAに放射光を照射することによりプラス電荷を帯び、静電気的にPMMAと細胞間の接着性が良好になると考えられる。     When PMMA is irradiated with X-rays, photoelectrons and Auger electrons are generated with the absorption of X-ray energy, and radicals are generated in PMMA and carry a positive charge. Since the cell membrane has a negative charge, it is considered that PMMA, which is a cell adhesion carrier, is charged positively by irradiating it with radiation, and electrostatic adhesion between PMMA and cells is improved electrostatically.

実験例6 ポリジメチルシロキサン(PDMS)を塗布した培養容器での細胞接着に対する影響
実験例4の結果から、三次元微細加工を施したPMMA製担体(マイクロ担体)への細胞接着は可能であるものの、通常の培養方法では、キャピラリ内壁の下部における接着にとどまり、キャピラリ内壁の上部への細胞進展はあまり進まないことが明らかとなった。これを解決する方法として、底面に細胞非接着性材料であるPDMSを塗布した細胞培養ディッシュ上で、細胞を培養することを考えた。
Experimental Example 6 Effect on cell adhesion in a culture vessel coated with polydimethylsiloxane (PDMS) From the result of Experimental Example 4, cell adhesion to a PMMA carrier (microcarrier) subjected to three-dimensional microfabrication is possible. In the normal culture method, it was found that the adhesion to the lower part of the inner wall of the capillary was limited, and the cell progress to the upper part of the inner wall of the capillary did not progress much. As a method for solving this problem, the inventors considered culturing cells on a cell culture dish in which PDMS, which is a cell non-adhesive material, was applied to the bottom surface.

具体的には、底面にポリジメチルシロキサン(PDMS)を薄く塗布した細胞培養ディッシュ(PDMS処理ディッシュ)上に、ハニカム1辺100μmのキャピラリ構造を有するマイクロ担体を静置し、これにHepG2-pEGFP細胞を播種した。播種から3,8, 10,13, 15, 17, 20日間培養した後にこれを取り出し、phosphate buffered salineにて洗浄して担体に付着した細胞を回収した。次いで回収した細胞を0.1%Tween-20溶液中にて凍結融解を繰り返すことにより細胞質分画を得た。この細胞質分画中の蛍光強度を測定し、標準GFPにて作成した検量線(図12参照)にあてはめて得られたGFP量を用いてマイクロ担体に接着した細胞数の経時的変化を評価した。また比較のため、PDMSを塗布しない細胞培養ディッシュ(PDMS未処理ディッシュ)を用いて同様に実験を行った。     Specifically, on a cell culture dish (PDMS-treated dish) with a thin coating of polydimethylsiloxane (PDMS) on the bottom surface, a microcarrier having a capillary structure with a honeycomb side of 100 μm is allowed to stand and HepG2-pEGFP cells Sowing. After culturing for 3, 8, 10, 13, 15, 17, and 20 days after seeding, this was taken out and washed with phosphate buffered saline to recover the cells attached to the carrier. Next, the collected cells were repeatedly freeze-thawed in a 0.1% Tween-20 solution to obtain a cytoplasmic fraction. The fluorescence intensity in this cytoplasmic fraction was measured, and the change over time in the number of cells adhered to the microcarrier was evaluated using the amount of GFP obtained by fitting to a calibration curve (see FIG. 12) prepared with standard GFP. . For comparison, the same experiment was performed using a cell culture dish without PDMS (PDMS-untreated dish).

結果を図25に示す。培養開始当初の増殖速度はPDMS未処理ディッシュ上とPDMS処理ディッシュ上とでほとんど違いはみられなかった。しかし、PDMS未処理ディッシュ上では培養10日程度でGFP量のピークが存在するのに対し、PDMS処理ディッシュ上では培養20日目を迎えてもGFP量が増加しており、長期にわたり細胞培養が可能であった。この結果の要因としては、PDMSの良好な酸素透過性、PDMS内における多量の酸素含有量などが考えられる。つまり、PDMSの、高濃度の溶液中の酸素を取り込み、低濃度の溶液中には酸素を放出するという性質が関係していると考えられる。細胞培養ディッシュ上のマイクロ担体のキャピラリ内培養では、培養日数を重ねるごとにキャピラリ内の細胞数が増加し、酸素供給が追いつかない状態に陥ると思われる。これが、PDMS上であれば、PDMSから酸素供給がなされるため、細胞培養ディッシュ上で培養した場合よりも、細胞の増殖が長期間続くものと思われる。     The results are shown in FIG. The growth rate at the beginning of the culture was almost the same between the PDMS-untreated dish and the PDMS-treated dish. However, on the PDMS-untreated dish, there is a peak of GFP in about 10 days of culture, whereas on the PDMS-treated dish, the amount of GFP has increased even after the 20th day of culture. It was possible. As a factor of this result, good oxygen permeability of PDMS, a large amount of oxygen content in PDMS, etc. can be considered. That is, it is considered that PDMS has a property of taking in oxygen in a high concentration solution and releasing oxygen in a low concentration solution. In the in-capillary culture of the microcarrier on the cell culture dish, the number of cells in the capillary increases as the number of culture days increases, and it seems that oxygen supply cannot catch up. If this is on PDMS, oxygen supply is provided from PDMS, so cell growth is likely to continue for a longer time than when cultured on a cell culture dish.

この結果よりPDMS上におけるマイクロ担体内細胞培養は、高密度細胞培養において有用であると考えられる。     From this result, it is considered that cell culture in a microcarrier on PDMS is useful in high-density cell culture.

また、図25より、PDMS上での培養でマイクロ担体内にて得られた最大接着細胞数は、ハニカム1辺100 mmのパターン部(多孔構造体)(容量:50.27 mm2)において、1.63×106 cells/scaffold(3.24×107 cells/ml)となる。したがって、細胞培養シャーレ上において、5×106cells/ml程度の密度にて細胞培養ができれば高密度培養だといわれていることを考えると、それよりも6倍以上の高密度培養が可能なことが示された。 Further, from FIG. 25, the maximum number of adherent cells obtained in the microcarrier by culture on PDMS is 1.63 × in the pattern portion (porous structure) (capacity: 50.27 mm 2 ) having a side of honeycomb of 100 mm. 10 6 cells / scaffold (3.24 × 10 7 cells / ml). Therefore, considering that cell culture can be performed at a density of about 5 × 10 6 cells / ml on a cell culture dish, it is said that high-density culture is possible. It was shown that.

この結果より、PDMS上でのマイクロ担体内の細胞培養は、長期にわたる高密度細胞培養に対して有効であると考えられる。     From this result, it is considered that cell culture in a microcarrier on PDMS is effective for long-term high-density cell culture.

実験例7 細胞培養リアクターによる細胞培養
本発明の細胞培養リアクターの一態様を図26に示す。当該細胞培養リアクターは、本発明の三次元微細構造を有する基板(マイクロ担体)(6)を複数枚、一定の間隔を置いて積層させた状態で収納することができる溝部(13)を有する内側セル(11)と、当該内側セルを収納し培養液をシーリングするための外側セル(12)とから構成される。内側セルにはマイクロ担体を固定する上記溝部を20箇所設け、マイクロ担体を20枚積層した。当該マイクロ担体は長方形形状とし、細胞接着数をできるだけ稼ぐように、16×16 mmのキャピラリ面積を有する(キャピラリ担体の支持のための外枠を含めると19×21 mmの大きさ)。このキャピラリ担体の外枠が内側セルの溝に填るように設計した。また、細胞培養リアクター内の培養液のpH変化が、培養液の色の変化として目視で確認できるようにするため、リアクター材料として光透過性に優れるアクリルを使用した。
Experimental Example 7 Cell Culture by Cell Culture Reactor One embodiment of the cell culture reactor of the present invention is shown in FIG. The cell culture reactor has an inner groove portion (13) that can accommodate a plurality of substrates (microcarriers) (6) having a three-dimensional microstructure of the present invention (6) stacked in a predetermined interval. A cell (11) and an outer cell (12) for containing the inner cell and sealing the culture medium are constituted. The inner cell was provided with 20 groove portions for fixing the microcarriers, and 20 microcarriers were laminated. The microcarrier is rectangular and has a capillary area of 16 × 16 mm so as to obtain as many cell adhesions as possible (a size of 19 × 21 mm when an outer frame for supporting the capillary carrier is included). It was designed so that the outer frame of this capillary carrier fits into the groove of the inner cell. In addition, acrylic having excellent light transmittance was used as a reactor material so that the pH change of the culture solution in the cell culture reactor can be visually confirmed as a change in the color of the culture solution.

図27に当該細胞培養リアクターの内部セル内の概要を示す。ここでは、説明の都合、細胞培養リアクターの内部セルにマイクロ担体(細胞培養担体基板)が10枚、間隔をおいて積層させた状態で配置した状態を示している。ここで、少なくとも流体の流入口(2)と流出口(3)を有するセル(1)内に、キャピラリの内壁表面に生細胞が付着してなるマイクロ担体(6)が10枚間隔をおいて積層されており、液体培地が、流入口(2)からセル内に流入し、当該セル内に配置されたマイクロ担体の積層間を通って流出口(3)からセル外に排出されるように、液体培地の流路(流入路(8)、分岐路(9)、流出路(10))が形成されている。     FIG. 27 shows an outline of the internal cell of the cell culture reactor. Here, for convenience of explanation, a state is shown in which ten microcarriers (cell culture carrier substrates) are arranged in an inner cell of the cell culture reactor in a state of being stacked at intervals. Here, in the cell (1) having at least the fluid inflow port (2) and the outflow port (3), there are 10 microcarriers (6) formed by living cells attached to the inner wall surface of the capillary at intervals. So that the liquid medium flows into the cell from the inlet (2), passes through the stack of microcarriers arranged in the cell, and is discharged out of the cell from the outlet (3). A liquid medium flow path (inflow path (8), branch path (9), outflow path (10)) is formed.

より具体的には当該細胞培養リアクターは、少なくとも流体の流入口(2)と流出口(3)を有するセル(1)内に、
(A)キャピラリ(4)内にスフェロイド(5)が形成されたマイクロ担体(6)が20枚間隔をおいて積層されており、
(B)(a)流入口(2)から液体培地(7)をセル(1)内に流入するための少なくとも1つの流入路(8)、
(b)上記流入路(8)から分岐し、2枚以上間隔をおいて積層されたマイクロ担体(6)の層間に連通した3以上の分岐路(9)、及び
(c)21つの分岐路(9)が合流する少なくとも1つの流出路(10)を有し、
流入口(2)から流入した液体培地(7)が、これらの流路を通じて流出口(3)からセル外に排出されるように、流路が形成されている。さらにこの細胞培養リアクターは、図3にその模式図を示すように、流入路(8)が流体の流れる方向に向かって先細になるように形成され、また流出路(10)が流体の流れる方向に向かって幅広になるように形成されてなる。こうした細胞培養リアクターを用いることで、更なる培養細胞の増殖によりスフェロイドが形成され、マイクロ担体のキャピラリ内がスフェロイドによりふさがれた場合にも、液体培地の流路ならびに流量を安定・均一に確保することができる。
More specifically, the cell culture reactor comprises at least a cell (1) having a fluid inlet (2) and an outlet (3),
(A) The microcarriers (6) in which the spheroids (5) are formed in the capillaries (4) are stacked with an interval of 20 sheets,
(B) (a) at least one inflow channel (8) for allowing the liquid medium (7) to flow into the cell (1) from the inlet (2);
(B) Three or more branch paths (9) and (c) 21 branch paths that branch from the inflow path (8) and communicate with each other between the layers of the microcarriers (6) stacked at intervals of two or more. (9) has at least one outflow channel (10) where it merges;
The flow path is formed so that the liquid medium (7) flowing in from the inflow port (2) is discharged out of the cell from the outflow port (3) through these flow paths. Further, as shown in the schematic diagram of FIG. 3, the cell culture reactor is formed so that the inflow path (8) is tapered toward the direction of fluid flow, and the outflow path (10) is in the direction of fluid flow. It is formed so as to become wider toward the front. By using these cell culture reactors, even when spheroids are formed by further growth of cultured cells and the capillaries of the microcarriers are blocked by spheroids, the flow path and flow rate of the liquid medium are ensured stably and uniformly. be able to.

当該細胞培養リアクターを用いた細胞培養システムを図28に示す。内側セル(11)の細胞培養エリアに、事前にハニカム形状の貫通孔内(キャピラリ内)に細胞を播種したマイクロ担体(ハニカム形状の一辺の長さ:200mm、100mm、50mm)(6)を20段設置し、培養液をポンプ(21)を用いて0.83ml/hour、3ml/hourまたは10ml/hourの流速で環流した。なお、送液は0.83ml/hourおよび3ml/hourの流速ではシリンジポンプにより、また10ml/hour流速ではペリスタホンプにより行った。その結果、図29に示すように、キャピラリサイズ(ハニカム形状の一辺の長さ)の別にかかわらず細胞が良好に増殖すること、また継続して細胞が培養できることが認められた。また、図30に示すように、マイクロ担体の貫通孔を通過する細胞培養液の流速が遅いと、溶存酸素濃度ならびに栄養分の不足を招くため培養成績は低下する傾向がみられた。このため、細胞培養リアクターは、図28に示すように、液体培地の溶存酸素濃度を測定するための「溶存酸素濃度測定装置」とともに、当該濃度に反応して液体培地の流速を調節する「流速コントロール装置」を備えていることが好ましい。「溶存酸素濃度測定装置」としては、例えばLED等の光源(24)と分光器(25)を有する光学式溶存酸素濃度測定装置(C)を挙げることができる。当該装置はコンピューター(D)を介して「流速コントロール部」と連動しており、液体培地の流速が調整できるようになっていることが好ましい。     A cell culture system using the cell culture reactor is shown in FIG. In the cell culture area of the inner cell (11), 20 microcarriers (the length of one side of the honeycomb shape: 200 mm, 100 mm, 50 mm) (6) with cells seeded in the honeycomb-shaped through-hole (capillary) in advance (20) A stage was installed, and the culture solution was refluxed using a pump (21) at a flow rate of 0.83 ml / hour, 3 ml / hour, or 10 ml / hour. In addition, liquid feeding was performed with a syringe pump at a flow rate of 0.83 ml / hour and 3 ml / hour, and with a perista phone at a flow rate of 10 ml / hour. As a result, as shown in FIG. 29, it was confirmed that the cells proliferated well regardless of the capillary size (the length of one side of the honeycomb shape) and that the cells could be continuously cultured. In addition, as shown in FIG. 30, when the flow rate of the cell culture solution passing through the through-hole of the microcarrier was slow, the culture results tended to decrease because the dissolved oxygen concentration and nutrients were insufficient. For this reason, as shown in FIG. 28, the cell culture reactor, together with the “dissolved oxygen concentration measuring device” for measuring the dissolved oxygen concentration of the liquid medium, adjusts the flow rate of the liquid medium in response to the concentration. It is preferable to provide a “control device”. Examples of the “dissolved oxygen concentration measuring device” include an optical dissolved oxygen concentration measuring device (C) having a light source (24) such as an LED and a spectroscope (25). The apparatus is preferably linked with the “flow rate control unit” via the computer (D) so that the flow rate of the liquid medium can be adjusted.

また本発明の細胞培養リアクターは、図28に示すように、さらに「pH測定装置」(22)または「電解質濃度測定装置」(23)を有するととともに、当該pHまたは電解質濃度に反応して液体培地のpH,電解質濃度または流速を調節する「pHコントロール部」、「電解質コントロール部」または「流速コントロール部」を備えていることが好ましい。「pH測定装置」(22)としては、例えばpH測定用電極、「電解質濃度測定装置」(23)としては、例えば導電率測定用電極を挙げることができる。当該測定部はコンピューターを介して「pHコントロール部」、「電解質コントロール部」または「流速コントロール部」と連動しており、液体培地のpH、電解質濃度または流量が調整できるようになっていることが好ましい。     Further, as shown in FIG. 28, the cell culture reactor of the present invention further has a “pH measurement device” (22) or an “electrolyte concentration measurement device” (23), and is responsive to the pH or electrolyte concentration. It is preferable that a “pH control unit”, “electrolyte control unit” or “flow rate control unit” for adjusting the pH, electrolyte concentration or flow rate of the medium is provided. Examples of the “pH measurement device” (22) include an electrode for pH measurement, and examples of the “electrolyte concentration measurement device” (23) include an electrode for conductivity measurement. The measurement unit is linked with the “pH control unit”, “electrolyte control unit” or “flow rate control unit” via a computer, and the pH, electrolyte concentration or flow rate of the liquid medium can be adjusted. preferable.

細胞培養リアクター内の流速分布を数値流体力学(Computational Fluid Dynamics,CFD)の手法により、CFD解析ソフトウェアFLUENT(ANSYS JAPAN製)を用いて解析した。キルヒホッフの法則に従い、流入口と、流入路から分岐してマイクロ担体の層間に形成された分岐路における流量の総和を一定にすることにより、流路の最適化を行った。流入路は、液体培地が流れる方向に向かって先細になるように、流入路から流路が分岐するごとに流路幅を0.8、0.6、0.4および0.2 mmとし、また流出路は、液体培地が流れる方向に向かって幅広になるように、分岐路から合流するごとに流路幅を0.2、0.4、0.6および0.8 mmとした(図31の(A))。ここで図の左側に示すカラム(カラーグラデーション)は流路内を流れる流体(液体培地)の流速(m/s、メートル/秒)を示す。図31(カラー図)に示すように、マイクロ担体中のカラーが同じであることから、セル内に積層されたマイクロ担体間で流速のバラツキが少ないことがわかる。     The flow velocity distribution in the cell culture reactor was analyzed by CFD analysis software FLUENT (manufactured by ANSYS JAPAN) by the method of Computational Fluid Dynamics (CFD). In accordance with Kirchhoff's law, the flow path was optimized by keeping the sum of the flow rates at the inlet and the branch path formed between the microcarrier layers branched from the inlet path. Each time the flow path branches off from the inflow path, the width of the flow path is set to 0.8, 0.6, 0.4, and 0.2 mm so that the inflow path tapers in the direction in which the liquid medium flows. The flow path widths were set to 0.2, 0.4, 0.6, and 0.8 mm each time they joined from the branch path so as to become wider in the flowing direction ((A) of FIG. 31). Here, the column (color gradation) shown on the left side of the figure indicates the flow velocity (m / s, meter / second) of the fluid (liquid medium) flowing in the flow path. As shown in FIG. 31 (color diagram), since the colors in the microcarriers are the same, it can be seen that there is little variation in flow rate between the microcarriers stacked in the cell.

この結果から、流入路については、そこから流路を分岐するたびに、マイクロ担体の層間に形成された流路幅分だけ狭くし、流出路については、分岐路から合流するたびに、マイクロ担体の層間に形成された流路幅分だけ広くしたリアクター形状が最適であることがいえる。     From this result, the inflow path is narrowed by the width of the flow path formed between the layers of the microcarrier each time the flow path is branched therefrom, and the outflow path is each time the microcarrier is joined from the branch path. It can be said that the reactor shape widened by the width of the channel formed between the layers is optimal.

また、細胞スフェロイドが形成されずキャピラリ部(貫通穴)が存在している形状にてCFD解析を行った結果を図31(B)に示す。その結果、マイクロ担体の貫通孔においても流れが生じているため、細胞スフェロイドが形成されていない状態においても、リアクターの性能は減少せず細胞培養は可能であることが示された。
図32に実際のリアクターと同等のスケールのモデルにてCFD解析を行った結果を示す。キャピラリ内にスフェロイドが形成されたマイクロ担体を20枚積層した状態の細胞培養リアクター内において、マイクロ担体層にはほぼ均一に流れが生じている様子が分かる。
In addition, FIG. 31B shows the result of CFD analysis performed in a shape in which the cell spheroid is not formed and the capillary part (through hole) is present. As a result, it was shown that since the flow also occurred in the through-holes of the microcarrier, the cell performance was possible without reducing the performance of the reactor even when the cell spheroids were not formed.
FIG. 32 shows the result of CFD analysis using a model having the same scale as that of an actual reactor. It can be seen that in the cell culture reactor in which 20 microcarriers having spheroids formed in the capillaries are stacked, a flow is almost uniformly generated in the microcarrier layer.

0:本発明の細胞培養リアクター
1:細胞培養槽
2:細胞培養担体基板における流体の流入口
3:細胞培養担体基板における流体の流出口
4:貫通孔(キャピラリ)
5:生細胞
5’: スフェロイド
6:細胞培養担体基板(マイクロ担体)
7:液体培地(流体)
8:流入路
9:分岐路
10:流出路
11:細胞培養層の内側セル
12:細胞培養層の外側セル
13:溝部
14:測定器具との連結部
21:ポンプ
22:pH測定装置
23:電解質濃度測定装置
24:光源
25:分光度
26:ドレイン
(A):細胞培養リアクタ部
(B):pH、電解質濃度測定システム
(C):光学式溶存酸素濃度測定システム
(D)コンピュータ
0: Cell culture reactor of the present invention 1: Cell culture tank 2: Fluid inlet in the cell culture carrier substrate 3: Fluid outlet in the cell culture carrier substrate 4: Through hole (capillary)
5: Live cells
5 ': Spheroid 6: Cell culture carrier substrate (micro carrier)
7: Liquid medium (fluid)
8: Inflow path 9: Branch path
10: Outflow channel
11: Inside cell culture layer
12: Outer cell of cell culture layer
13: Groove
14: Connection with measuring instrument
21: Pump
22: pH measuring device
23: Electrolyte concentration measuring device
24: Light source
25: Spectral intensity
26: Drain (A): Cell culture reactor section (B): pH, electrolyte concentration measurement system (C): Optical dissolved oxygen concentration measurement system (D) Computer

Claims (15)

多孔構造部を有する細胞培養担体基板であって、当該多孔構造部に形成された貫通孔が一辺の長さ若しくは直径が50μm〜500μm未満の三角〜六角のいずれかの多角形状の貫通孔であることを特徴とする細胞培養担体基板。   A cell culture support substrate having a porous structure, wherein the through-hole formed in the porous structure is a polygonal through-hole of any one of a triangle to a hexagon having a side length or diameter of 50 μm to less than 500 μm A cell culture carrier substrate characterized by the above. 上記多角形状が菱形形状、平行四辺形またはハニカム形状であることを特徴とする、請求項1に記載する細胞培養担体基板。   The cell culture carrier substrate according to claim 1, wherein the polygonal shape is a rhombus shape, a parallelogram shape, or a honeycomb shape. 基板の少なくとも多孔構造部の厚みが200μm〜10mmである、請求項1または2に記載する細胞培養担体基板。   The cell culture support substrate according to claim 1 or 2, wherein at least the porous structure part of the substrate has a thickness of 200 µm to 10 mm. ポリメチルメタクリレート、ポリジメチルシロキサン、パリレン、ポリイミド、ポリテトラフルオロエチレン、エポキシ系感光性樹脂、ポリスチレン、ポリカーボネート、およびシクロオレフィンポリマーからなる群から選択される1種または2種以上の樹脂から形成されてなる、請求項1乃至3のいずれかに記載する細胞培養担体基板。   Formed from one or more resins selected from the group consisting of polymethyl methacrylate, polydimethylsiloxane, parylene, polyimide, polytetrafluoroethylene, epoxy photosensitive resin, polystyrene, polycarbonate, and cycloolefin polymer. The cell culture carrier substrate according to any one of claims 1 to 3. 細胞培養担体基板の少なくとも細胞培養表面が加工処理されてなるものである、請求項1乃至4のいずれかに記載する細胞培養担体基板。   The cell culture carrier substrate according to any one of claims 1 to 4, wherein at least a cell culture surface of the cell culture carrier substrate is processed. 少なくとも流体の流入口と流出口を有する細胞培養槽内に、請求項1乃至5のいずれかに記載する細胞培養担体基板が2枚以上間隔をおいて積層された状態で配置されてなる細胞培養リアクター。   A cell culture in which at least two cell culture support substrates according to any one of claims 1 to 5 are disposed in a cell culture tank having at least a fluid inlet and an outlet and are stacked with an interval therebetween. reactor. 上記細胞培養担体基板が、その多孔構造部の貫通孔に生細胞が付着しているものであって、液体培地が流入口から細胞培養槽内に流入し、当該槽内の細胞培養担体基板の多孔構造部の貫通孔を通って流出口から細胞培養槽外に排出されるように、液体培地の流路が形成されてなることを特徴とする、請求項6に記載する細胞培養リアクター。   The cell culture carrier substrate has living cells attached to the through-holes of the porous structure portion, and the liquid medium flows into the cell culture tank from the inlet, and the cell culture carrier substrate in the tank The cell culture reactor according to claim 6, wherein a flow path of the liquid medium is formed so as to be discharged from the cell outlet through the through hole of the porous structure portion to the outside of the cell culture tank. 少なくとも流体の流入口と流出口を有する細胞培養槽内に、
(A)貫通孔内にスフェロイドを形成しえる生細胞が付着してなる細胞培養担体基板が2枚以上間隔をおいて積層されており、
(B)(a)流入口から液体培地を細胞培養槽内に流入するための少なくとも1つの流入路、
(b)上記流入路から分岐し、2枚以上間隔をおいて積層された細胞培養担体基板の層間に連通した3以上の分岐路、及び
(c)3以上の分岐路が合流する少なくとも1つの流出路を有し、
流入口から流入した液体培地が、これらの流路を通じて流出口から細胞培養槽外に排出されるように、液体培地の流路が形成されてなることを特徴とする、請求項6に記載する細胞培養リアクター。
In a cell culture vessel having at least a fluid inlet and an outlet,
(A) Two or more cell culture carrier substrates formed by adhering live cells capable of forming spheroids in the through-holes are laminated at intervals,
(B) (a) at least one inflow path for allowing the liquid medium to flow into the cell culture tank from the inflow port;
(B) Three or more branch paths that branch from the inflow path and communicate with each other between two or more cell culture carrier substrates stacked at intervals, and (c) at least one of the three or more branch paths merges. Has an outflow channel,
The liquid medium flow path is formed so that the liquid medium flowing in from the inflow port is discharged from the outflow port to the outside of the cell culture tank through these flow paths. Cell culture reactor.
上記流入路が流体の流れる方向に向かって先細になるように形成され、上記流出路が流体の流れる方向に向かって幅広になるように形成されてなるものである、請求項8に記載する細胞培養リアクター。 9. The cell according to claim 8, wherein the inflow path is formed so as to taper in a direction in which the fluid flows, and the outflow path is formed so as to be wide in the direction in which the fluid flows. Culture reactor. 請求項6乃至9のいずれかに記載する細胞培養リアクターに加えて、液体培地の溶存酸素量、pHまたは電解質濃度に反応して、細胞培養リアクターに送液する液体培地の流速、pHまたは電解質濃度を調節する装置を含む、細胞培養システム。   In addition to the cell culture reactor according to any one of claims 6 to 9, the flow rate, pH or electrolyte concentration of the liquid medium fed to the cell culture reactor in response to the dissolved oxygen amount, pH or electrolyte concentration of the liquid medium A cell culture system, comprising a device for regulating. 請求項1乃至5のいずれかに記載する細胞培養担体基板、請求項6乃至9のいずれかに記載する細胞培養リアクター、または請求項10に記載する細胞培養システムを用いることを特徴とする細胞の培養方法。   A cell culture carrier substrate according to any one of claims 1 to 5, a cell culture reactor according to any one of claims 6 to 9, or a cell culture system according to claim 10 is used. Culture method. 多孔構造部の貫通孔内に細胞が付着した請求項1乃至5のいずれかに記載する細胞培養担体基板を、液体培地を入れた細胞培養槽内に配置し、細胞培養担体基板の貫通孔内で細胞を培養する工程を有する、請求項11に記載する細胞の培養方法。   The cell culture carrier substrate according to any one of claims 1 to 5, wherein cells adhere to the through hole of the porous structure part, is placed in a cell culture tank containing a liquid medium, and the cell culture carrier substrate The cell culturing method according to claim 11, further comprising a step of culturing the cell. 細胞培養担体基板を液体培地中で浮遊させた状態で培養するか、細胞培養担体基板を液体培地中で浮遊させた状態で撹拌しながら培養するか、細胞培養担体基板を液体培地中で浮遊させた状態で液体培地を循環させながら培養することを特徴とする請求項11または12に記載する細胞の培養方法。   Culturing the cell culture support substrate in a suspended state in a liquid medium, culturing the cell culture support substrate in a suspended state in a liquid culture medium, or suspending the cell culture support substrate in a liquid culture medium 13. The method for culturing cells according to claim 11 or 12, wherein the cells are cultured while circulating a liquid medium. 請求項1乃至5のいずれかに記載する細胞培養担体基板を、ポリジメチルシロキサン塗布面上に配置して細胞を培養する工程を有する、請求項11または12に記載する細胞の培養方法。   The method for culturing cells according to claim 11 or 12, comprising a step of culturing cells by disposing the cell culture carrier substrate according to any one of claims 1 to 5 on a polydimethylsiloxane-coated surface. 請求項6乃至9のいずれかに記載する細胞培養リアクターとして、請求項14に記載する細胞の培養方法により得られた細胞培養担体基板を積層したものを用いることを特徴とした、請求項11に記載する細胞の培養方法。   The cell culture reactor according to any one of claims 6 to 9, wherein a cell culture support substrate obtained by the cell culture method according to claim 14 is used. The cell culture method described.
JP2010040610A 2010-02-25 2010-02-25 Method for three-dimensional high-density cell culture using microspace structure Pending JP2011172533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040610A JP2011172533A (en) 2010-02-25 2010-02-25 Method for three-dimensional high-density cell culture using microspace structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040610A JP2011172533A (en) 2010-02-25 2010-02-25 Method for three-dimensional high-density cell culture using microspace structure

Publications (1)

Publication Number Publication Date
JP2011172533A true JP2011172533A (en) 2011-09-08

Family

ID=44686036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040610A Pending JP2011172533A (en) 2010-02-25 2010-02-25 Method for three-dimensional high-density cell culture using microspace structure

Country Status (1)

Country Link
JP (1) JP2011172533A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233252A (en) * 2013-06-03 2014-12-15 株式会社日立製作所 Culture container, culture system and culture apparatus
WO2016121767A1 (en) * 2015-01-26 2016-08-04 宇部興産株式会社 Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane
JP2017212952A (en) * 2016-06-01 2017-12-07 大日本印刷株式会社 Production method of cell aggregate
JP2017536817A (en) * 2014-10-29 2017-12-14 コーニング インコーポレイテッド Cell culture insert
WO2018029970A1 (en) * 2016-08-10 2018-02-15 Cyberdyne株式会社 Method for producing three-dimensional structure of cells and system for producing three-dimensional structure
JPWO2018163687A1 (en) * 2017-03-10 2019-03-14 日本精工株式会社 Manipulation system
JP2019076070A (en) * 2017-10-27 2019-05-23 株式会社豊田中央研究所 Porous scaffold for cells and uses thereof
CN110055174A (en) * 2019-02-27 2019-07-26 中国医学科学院生物医学工程研究所 A kind of classification inoculation apparatus and its application method for three-dimensional cell cultivation
CN112430540A (en) * 2020-10-21 2021-03-02 英诺维尔智能科技(苏州)有限公司 Compact reactor capable of being placed in biological incubator
KR20210087375A (en) * 2020-01-02 2021-07-12 경북대학교 산학협력단 Cryopreservation Method of Biomimetic Chip Cultured with Cell
WO2021177792A1 (en) * 2020-03-06 2021-09-10 경희대학교산학협력단 Microcarrier-based four-dimensional cell culture device and method for monitoring cell culture using same
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
WO2022140187A1 (en) * 2020-12-21 2022-06-30 Upside Foods, Inc. Fluid conduit with radial expansion of fluid flow
WO2022140185A1 (en) * 2020-12-22 2022-06-30 Upside Foods, Inc. Systems and methods for cultivating tissue on porous substrates
JP2022538636A (en) * 2019-06-27 2022-09-05 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Biointerface for growing seaweed
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
CN115287189A (en) * 2022-08-18 2022-11-04 重庆大学 Micro-fluidic chip for rapidly preparing cell spheres and cell sphere preparation method
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
JP2014233252A (en) * 2013-06-03 2014-12-15 株式会社日立製作所 Culture container, culture system and culture apparatus
JP2017536817A (en) * 2014-10-29 2017-12-14 コーニング インコーポレイテッド Cell culture insert
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
JPWO2016121767A1 (en) * 2015-01-26 2017-11-24 宇部興産株式会社 Long-term cell culture using a polyimide porous membrane, and cryopreservation method of cells using a polyimide porous membrane
US10443037B2 (en) 2015-01-26 2019-10-15 Ube Industries, Ltd. Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane
US10626365B2 (en) 2015-01-26 2020-04-21 Ube Industries, Ltd. Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane
WO2016121767A1 (en) * 2015-01-26 2016-08-04 宇部興産株式会社 Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane
CN113142187A (en) * 2015-01-26 2021-07-23 宇部兴产株式会社 Long-term culture and cryopreservation method of cells using polyimide porous membrane
CN113142187B (en) * 2015-01-26 2022-07-01 宇部兴产株式会社 Long-term culture and cryopreservation method of cells using polyimide porous membrane
JP2017212952A (en) * 2016-06-01 2017-12-07 大日本印刷株式会社 Production method of cell aggregate
WO2018029970A1 (en) * 2016-08-10 2018-02-15 Cyberdyne株式会社 Method for producing three-dimensional structure of cells and system for producing three-dimensional structure
US11746316B2 (en) 2016-08-10 2023-09-05 Cyberdyne Inc. Three-dimensional structuring method and three-dimensional structuring system of cells
JPWO2018029970A1 (en) * 2016-08-10 2019-06-06 Cyberdyne株式会社 Method for three-dimensional structure of cells and three-dimensional structure system
JPWO2018163687A1 (en) * 2017-03-10 2019-03-14 日本精工株式会社 Manipulation system
US11235317B2 (en) 2017-03-10 2022-02-01 Nsk Ltd. Tubular instrument and manipulation system
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
JP2019076070A (en) * 2017-10-27 2019-05-23 株式会社豊田中央研究所 Porous scaffold for cells and uses thereof
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
CN110055174A (en) * 2019-02-27 2019-07-26 中国医学科学院生物医学工程研究所 A kind of classification inoculation apparatus and its application method for three-dimensional cell cultivation
JP2022538636A (en) * 2019-06-27 2022-09-05 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Biointerface for growing seaweed
KR102297527B1 (en) 2020-01-02 2021-09-03 경북대학교 산학협력단 Cryopreservation Method of Biomimetic Chip Cultured with Cell
KR20210087375A (en) * 2020-01-02 2021-07-12 경북대학교 산학협력단 Cryopreservation Method of Biomimetic Chip Cultured with Cell
KR102458606B1 (en) * 2020-03-06 2022-10-25 경희대학교 산학협력단 Microcarrier based-4 dimensional cell culture apparatus and method for monitoring cell culture using the same
KR20210112881A (en) * 2020-03-06 2021-09-15 경희대학교 산학협력단 Microcarrier based-4 dimensional cell culture apparatus and method for monitoring cell culture using the same
WO2021177792A1 (en) * 2020-03-06 2021-09-10 경희대학교산학협력단 Microcarrier-based four-dimensional cell culture device and method for monitoring cell culture using same
CN112430540A (en) * 2020-10-21 2021-03-02 英诺维尔智能科技(苏州)有限公司 Compact reactor capable of being placed in biological incubator
WO2022140187A1 (en) * 2020-12-21 2022-06-30 Upside Foods, Inc. Fluid conduit with radial expansion of fluid flow
WO2022140185A1 (en) * 2020-12-22 2022-06-30 Upside Foods, Inc. Systems and methods for cultivating tissue on porous substrates
US11912967B2 (en) 2020-12-22 2024-02-27 Upside Foods, Inc. Systems and methods for cultivating tissue on porous substrates
CN115287189A (en) * 2022-08-18 2022-11-04 重庆大学 Micro-fluidic chip for rapidly preparing cell spheres and cell sphere preparation method
CN115287189B (en) * 2022-08-18 2023-12-12 重庆大学 Microfluidic chip for quickly preparing cell spheres and cell sphere preparation method

Similar Documents

Publication Publication Date Title
JP2011172533A (en) Method for three-dimensional high-density cell culture using microspace structure
Jensen et al. Is it time to start transitioning from 2D to 3D cell culture?
Liu et al. A review of manufacturing capabilities of cell spheroid generation technologies and future development
Ni et al. Cell culture on MEMS platforms: a review
JP6949385B2 (en) Cell culture support, cell culture device, cell culture kit, and cell sheet
US8815595B2 (en) Substrate for forming a three-dimensional tissue construct and method of use
CN104703698B (en) Cell culture
JP2010088347A (en) Method and container for spheroid culture
JP6021802B2 (en) Culture method and drug screening method
JP2016093149A (en) Cell culture apparatus, and cell culture method
EP1921450A1 (en) Test method using cells and test kit therefor
JP2015211688A (en) Method for inducing differentiation of embryonic stem cell or artificial pluripotent stem cell
JP5608662B2 (en) Method and apparatus for constraining a multicellular array to a stable, static and reproducible spatial arrangement
JP2010233456A (en) Cell assembly-forming tool, cell assembly-culturing tool, cell assembly-transferring kit and method for culturing cell assembly
WO2021075502A1 (en) Cell sheet production device and cell sheet
JP5594658B2 (en) Substance distribution control method, device, cell culture method, cell differentiation control method
Torisawa et al. Transwells with microstamped membranes produce micropatterned two-dimensional and three-dimensional co-cultures
US20130203145A1 (en) Continuous Flow Bioreactor for Magnetically Stabilized Three-Dimensional Tissue Culture
Licata et al. Bioreactor technologies for enhanced organoid culture
Mai et al. MatriGrid® Based Biological Morphologies: Tools for 3D Cell Culturing
Baye et al. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process
JP7101377B2 (en) Cell culture substrate, cell culture container, and cell culture method
Mohandas et al. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research
US8592139B2 (en) Test method using cells and test kit therefor
Yang et al. Patterned microwell arrays for single-cell analysis and drug screening