JP2008237122A - Stirring device - Google Patents

Stirring device Download PDF

Info

Publication number
JP2008237122A
JP2008237122A JP2007083150A JP2007083150A JP2008237122A JP 2008237122 A JP2008237122 A JP 2008237122A JP 2007083150 A JP2007083150 A JP 2007083150A JP 2007083150 A JP2007083150 A JP 2007083150A JP 2008237122 A JP2008237122 A JP 2008237122A
Authority
JP
Japan
Prior art keywords
stirring
sample
solution
shaft portion
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007083150A
Other languages
Japanese (ja)
Other versions
JP4981499B2 (en
Inventor
Toru Taniguchi
徹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reika Kogyo KK
Original Assignee
Reika Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reika Kogyo KK filed Critical Reika Kogyo KK
Priority to JP2007083150A priority Critical patent/JP4981499B2/en
Publication of JP2008237122A publication Critical patent/JP2008237122A/en
Application granted granted Critical
Publication of JP4981499B2 publication Critical patent/JP4981499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/16Vibrating; Shaking; Tilting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/20Baffles; Ribs; Ribbons; Auger vanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis

Landscapes

  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stirring device capable of more uniformly stirring a specimen and a solution and continuously and stably getting a cultured specimen or a cleaned specimen. <P>SOLUTION: The stirring device 1 is provided with a casing 2, a shaft 4 placed in the casing 2 and connected to a vibration source 3, stirring blades 5 vibrating in longitudinal direction by the vibration of the shaft 4 to stir a specimen, partition plates 6 protruded from the inner circumference of the casing 2 and dividing the flow channel into a plurality of stirring chambers 7, a filtering member 10 attached in a manner to encircle the stirring blades 5, dividing the stirring chamber 7 into an inner stirring chamber 8 and an outer stirring chamber 9 and passing a waste generated by the stirring of the specimen, a solution feeding pipe 11 to send a solution, a solution feeding port 12 connected to the solution feeding pipe 11 and to feed the solution to the inner stirring chamber 8, and a solution discharging port 13 to discharge the waste-containing drainage passed through the filtering member 10 from the outer stirring chamber 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は攪拌装置に係り、特に、試料に溶液を供給しつ、攪拌羽根を用いて試料と溶液とを攪拌し、試料の攪拌により発生した廃棄物を排出する攪拌装置に関する。   The present invention relates to a stirrer, and more particularly to a stirrer that supplies a solution to a sample, stirs the sample and the solution using a stirring blade, and discharges waste generated by stirring the sample.

多細胞生物の細胞や組織の一部、或いは微生物を人工的な環境下で増殖させる方法として培養が採用されている。すなわち、培養により、タンパク質や核酸、その他の特定細胞や組織を大量に抽出したり、菌類、藻類、原生動物、細菌類等の微生物を大量に発生させたりすることが可能となる。なお、本発明に係る培養の対象となる試料は、上記の細胞や組織、又は微生物に限らず、培養により増殖される全てのものを含む。   Culture is adopted as a method for growing a part of cells and tissues of a multicellular organism or a microorganism in an artificial environment. That is, by culturing, it becomes possible to extract a large amount of proteins, nucleic acids, and other specific cells and tissues, and to generate a large amount of microorganisms such as fungi, algae, protozoa, and bacteria. Note that the sample to be cultured according to the present invention is not limited to the above-described cells, tissues, or microorganisms, but includes all those grown by culture.

この培養には、可溶性栄養源を含む液体中で増殖させる液体培養という増殖様態を採る場合がある。例えば、血液等の細胞や組織、乳酸、有機酸、核酸、酵素等の微生物を増殖させる場合である。この液体培養には、衝撃に対して脆弱な細胞を増殖させる場合に用いられる静置培養、振とう培養、攪拌培養などがある。   This culture may take a growth mode called liquid culture in which the culture is grown in a liquid containing a soluble nutrient source. For example, when cells such as blood and tissues, microorganisms such as lactic acid, organic acid, nucleic acid, and enzyme are grown. This liquid culture includes stationary culture, shaking culture, stirring culture, and the like used when proliferating cells vulnerable to impact.

振とう培養とは、0.5Hz〜数Hz程度の頻度で培養容器を振動させ増殖速度を向上させる方法である。特許文献1に、振とう培養に関する例を示す。ここでは、細胞や組織等の試料の恒温振とうによる培養方法とその装置が開示されている。このように、振とう培養では、培養すべき細胞や組織等を培地中に注入した三角フラスコ等の容器に入れ、この容器を振とう機の振とう台上に載上して振動を加えるものである。その他、タッパーやシャーレ等の容器において少ない液量で振とうさせるシーソー振とう培養、遠沈管等を転倒攪拌する変動形揺動による振とう培養等がある。   Shaking culture is a method of improving the growth rate by vibrating the culture vessel at a frequency of about 0.5 Hz to several Hz. Patent Document 1 shows an example related to shaking culture. Here, a culture method and a device thereof by constant temperature shaking of a sample such as a cell or tissue are disclosed. Thus, in shaking culture, cells or tissues to be cultured are placed in a container such as an Erlenmeyer flask into which the medium has been poured, and this container is placed on a shaking table of a shaker to add vibration. It is. In addition, there are a seesaw shaking culture in which a small amount of liquid is shaken in a container such as a tapper or a petri dish, and a shaking culture by a variable swing that agitates a centrifuge tube.

また、攪拌培養とは、攪拌子又はスクリュー等の翼の回転により細胞や微生物等の試料と培地とを混合させる方法である。この混合により細胞や微生物等の試料を培地成分に接触させ、攪拌しない静置培養法と比較して増殖速度を上げることができる。さらに、液体培地を強制的に攪拌して深い液内で行う培養を特に液体深部培養といい、例えば微生物たんぱく質の生産などに用いられている。   Stirring culture is a method in which a sample such as cells or microorganisms is mixed with a medium by rotating a blade such as a stirrer or a screw. By this mixing, samples such as cells and microorganisms are brought into contact with the medium components, and the growth rate can be increased as compared with a stationary culture method without stirring. Furthermore, culture in which a liquid medium is forcibly stirred and carried out in a deep liquid is called liquid deep culture, and is used, for example, for the production of microbial proteins.

この液体深部培養においては、培養槽内に各種の攪拌翼を設置し、この攪拌翼を回転軸に取り付けて回転させ、培養槽内の液体培地に下記の旋回流を発生させて混合する方法が一般的である。図12に、一般的な培養槽及び培養槽内に設けられた攪拌翼の例を示す。図12(a)の培養槽30には、攪拌軸34に取り付けられた櫂型翼31を、図12(b)には、図12(a)のE−E断面を示す。この櫂型翼31は培養槽30内に水平回転流35を発生させる。図12(c)の培養槽30には、攪拌軸34に取り付けられたプロペラ型翼32を、図12(d)には、図12(c)のF−F断面を示す。このプロペラ型翼32は水平回転流35に加えて半径方向の流れである放射流36も発生させる。   In this submerged culture, various stirring blades are installed in the culture tank, and the stirring blade is attached to a rotating shaft and rotated, and the following swirl flow is generated in the liquid medium in the culture tank and mixed. It is common. FIG. 12 shows an example of a general culture tank and a stirring blade provided in the culture tank. 12 (a) shows a saddle type blade 31 attached to the stirring shaft 34, and FIG. 12 (b) shows an EE cross section of FIG. 12 (a). The saddle type blade 31 generates a horizontal rotating flow 35 in the culture tank 30. 12 (c) shows a propeller blade 32 attached to a stirring shaft 34, and FIG. 12 (d) shows a cross section taken along line FF of FIG. 12 (c). In addition to the horizontal rotating flow 35, the propeller blade 32 also generates a radial flow 36 that is a radial flow.

また、液体培養には、その培地添加のタイミングによる分類として、回分培養、半回分培養、連続培養がある。回分培養とは、いわゆるバッチ処理方法であり、1回ごとに新たな培地を用意して培養を行う方法である。また、半回分培養とは、培養中に培地自体や倍地中の特定の成分を添加する培養方法である。さらに、連続培養とは、一定の速度で培養器に培地を供給し、同時に同量の培養液を排出させる培養方法である。この連続培養は、他の培養方法と比較して培養環境を一定に保ちやすく、生産性が安定するという特徴を有する。例えば微生物たんぱく質の生産に用いられる攪拌翼を用いた攪拌培養は、上記の培養法のうち回分培養により行われるのが一般的である。   Moreover, liquid culture includes batch culture, semi-batch culture, and continuous culture as classification according to the timing of addition of the medium. Batch culture is a so-called batch processing method, in which a new medium is prepared for each culture and cultured. Semi-batch culture is a culture method in which the medium itself or specific components in the medium are added during the culture. Furthermore, continuous culture is a culture method in which a medium is supplied to the incubator at a constant rate and simultaneously the same amount of culture medium is discharged. This continuous culture is characterized in that the culture environment is easily kept constant and the productivity is stable as compared with other culture methods. For example, stirring culture using a stirring blade used for production of a microbial protein is generally performed by batch culture among the above culture methods.

さらに、培養には、所望の細胞や組織或いは微生物を、血液などの多細胞生物の一部から、又は自然界から採取された土壌や水などから分離させ適切な培地により培養して増殖させる粗培養がある。この場合には、培養の前段階として細胞や組織或いは微生物に付着した付着物を分離させる工程が行われる。また、混合物から純物質を物理的或いは化学的に分離する、例えば、細胞の場合には、細胞の塊から所望の単細胞を分離する単離といわれる工程が行われる。また、この単離とは、例えば、微粉末を含む紛体を液体中で洗浄して分離する場合など、多細胞生物の細胞や組織の一部、或いは微生物以外の物質を分離する場合も含まれる。なお、本発明に係る試料の洗浄には、この粗培養や細胞などの単離が含まれ、さらに一般の物質を対象とした洗浄も含まれる。   Furthermore, the culture is a rough culture in which desired cells, tissues or microorganisms are separated from a part of multicellular organisms such as blood or from soil or water collected from the natural world, and are cultured in an appropriate medium for growth. There is. In this case, a step of separating the adhering matter attached to the cells, tissues or microorganisms is performed as a pre-stage of the culture. Further, a pure substance is physically or chemically separated from the mixture. For example, in the case of cells, a process called isolation is performed to separate desired single cells from a cell mass. In addition, this isolation includes the case of separating a part of cells or tissues of a multicellular organism or a substance other than a microorganism, for example, when a powder containing fine powder is washed and separated in a liquid. . In addition, the washing | cleaning of the sample which concerns on this invention includes isolation | separation of this rough culture, a cell, etc., and also the washing | cleaning for common substances.

一方、特許文献2には、攪拌混合装置および殺菌装置および洗浄装置が開示されている。ここでは、紛体を短時間で均一に溶解又は加熱溶融させ、加熱により流動性を向上させ攪拌混合装置、及び短時間で殺菌又は減菌が可能な殺菌装置、及び短時間で洗浄可能な洗浄装置が開示されている。   On the other hand, Patent Document 2 discloses a stirring and mixing device, a sterilizing device, and a cleaning device. Here, the powder is uniformly dissolved or heated and melted in a short time, the fluidity is improved by heating, the stirring and mixing device, the sterilizing device that can be sterilized or sterilized in a short time, and the cleaning device that can be cleaned in a short time Is disclosed.

特開2005−269921号公報JP 2005-269921 A 特開2005−58916号公報JP 2005-58916 A

上述した振とう培養では、容器全体を振動させるため、容器内の液体培地の流動が均一ではなく部分的なむらが発生する。また、試料と液体培地とは、同じように流動するため混合効果が低い。また、振とう培養は、三角フラスコ等の容器を用いる回分培養であり、試料への溶液の供給と試料から排出される廃棄物の処理とを連続して安定的に行うことは難しい。   In the shaking culture described above, the entire container is vibrated, so the flow of the liquid medium in the container is not uniform, and partial unevenness occurs. Moreover, since the sample and the liquid medium flow in the same manner, the mixing effect is low. In addition, the shaking culture is a batch culture using a container such as an Erlenmeyer flask, and it is difficult to stably and continuously supply the solution to the sample and treat the waste discharged from the sample.

また、上述した攪拌培養では、攪拌翼の回転により試料と液体培地との混合効果は得られるが、培地の粘度が高い場合には、回転軸や培養槽の周囲に混合が不十分な部分が発生し、混合効果にむらが生じる。一方、培地の粘度が低い場合には、攪拌翼を回転させると培養槽内の培地全体が、水平回転流等の旋回流を起こし攪拌力が低下する。また、攪拌翼の回転により発生するせん断力で試料を損傷する虞がある。さらに、上述した攪拌培養は一般的に回分培養により行われ、試料への溶液の供給と試料から排出される廃棄物の処理とを連続して安定的に行うことは難しい。   In addition, in the agitation culture described above, the mixing effect of the sample and the liquid medium can be obtained by the rotation of the agitation blade, but when the viscosity of the medium is high, there is insufficient mixing around the rotating shaft and the culture tank. Occurs and the mixing effect becomes uneven. On the other hand, when the viscosity of the medium is low, when the stirring blade is rotated, the entire medium in the culture tank causes a swirling flow such as a horizontal rotating flow and the stirring force is reduced. In addition, the sample may be damaged by the shearing force generated by the rotation of the stirring blade. Furthermore, the agitation culture described above is generally performed by batch culture, and it is difficult to continuously and stably supply the solution to the sample and treat the waste discharged from the sample.

本願の目的は、かかる課題を解決し、試料と溶液とをより均一に攪拌し、培養された試料又は洗浄された試料を連続して安定的に得る攪拌装置を提供することである。   An object of the present application is to solve such a problem, and to provide a stirring device that stirs a sample and a solution more uniformly and obtains a cultured sample or a washed sample continuously and stably.

上記目的を達成するため、本発明に係る攪拌装置は、試料が含まれた溶液が流通する流通路をその内部に有するケーシングと、ケーシング内に配置され振動源に接続された軸部と、軸部の回りに取り付けられ、軸部の振動によりその軸方向に振動して試料を攪拌させる攪拌羽根と、ケーシングの内周面から突出し、流通路を複数の攪拌室に仕切る仕切り板と、攪拌羽根を包囲するように取り付けられ、攪拌室を内部攪拌室と外部攪拌室とに区分し、試料の攪拌により発生した廃棄物を通過させる濾過部材と、溶液を流通させる溶液供給管と、溶液供給管と連結し、溶液を内部攪拌室に供給する溶液供給口と、濾過部材を通過した廃棄物を含む排液を外部攪拌室から排出する排液排出口と、を備えることを特徴とする。   In order to achieve the above object, a stirrer according to the present invention includes a casing having therein a flow passage through which a solution containing a sample flows, a shaft portion disposed in the casing and connected to a vibration source, a shaft Agitating blades that are attached around the part and vibrate in the axial direction by the vibration of the shaft part to stir the sample, a partition plate that protrudes from the inner peripheral surface of the casing and partitions the flow path into a plurality of stirring chambers, and the stirring blades The stirring chamber is divided into an internal stirring chamber and an external stirring chamber, a filtering member that allows waste generated by stirring the sample to pass therethrough, a solution supply pipe that circulates the solution, and a solution supply pipe And a solution supply port for supplying the solution to the internal stirring chamber, and a drainage discharge port for discharging the drainage liquid containing the waste that has passed through the filter member from the external stirring chamber.

また、本発明に係る攪拌装置は、溶液には、試料の培養に用いられる培養液が含まれ、試料の攪拌により発生した廃棄物を排液排出口から排出させることが好ましい。   In the stirring device according to the present invention, it is preferable that the solution includes a culture solution used for culturing the sample, and waste generated by stirring the sample is discharged from the drainage outlet.

また、本発明に係る攪拌装置は、溶液には、付着物が付着した試料の洗浄に用いられる洗浄液が含まれ、試料の攪拌により分離した付着物を廃棄物として排液排出口から排出させることが好ましい。   In the stirring device according to the present invention, the solution includes a cleaning liquid used for cleaning the sample to which the adhered matter is attached, and the adhered matter separated by stirring the sample is discharged as waste from the drainage outlet. Is preferred.

また、本発明に係る攪拌装置は、試料を排出させる試料排出口を備え、溶液供給口と排液排出口と濾過部材とが、複数の攪拌室にそれぞれ設けられ、仕切り板は流体が流通する開口を有し、複数の攪拌室を通過した試料を試料排出口から排出させることが好ましい。   In addition, the stirring device according to the present invention includes a sample discharge port for discharging the sample, a solution supply port, a drainage discharge port, and a filtering member are provided in each of the plurality of stirring chambers, and fluid flows through the partition plate. It is preferable to discharge the sample having an opening and having passed through the plurality of stirring chambers from the sample discharge port.

また、本発明に係る攪拌装置は、溶液供給管が、外部から仕切り板を貫通して溶液を内部攪拌室に供給することが好ましい。   In the stirring device according to the present invention, the solution supply pipe preferably feeds the solution to the internal stirring chamber through the partition plate from the outside.

また、本発明に係る攪拌装置は、排液を流通させて排液排出口と連結する排液排出管を備え、排液排出管が、仕切り板を貫通して排液を外部攪拌室から排出することが好ましい。   Further, the stirring device according to the present invention includes a drainage discharge pipe that circulates drainage and connects to a drainage discharge port, and the drainage discharge pipe passes through the partition plate and discharges the drainage from the external stirring chamber. It is preferable to do.

また、本発明に係る攪拌装置は、攪拌濾過部材が、軸部との間に開口を有する仕切り板を介してケーシングの内周面と接続し、ケーシングの内部には、流通路を攪拌濾過部材と仕切り板とにより仕切られた複数の攪拌室が設けられることが好ましい。   Further, in the stirring device according to the present invention, the stirring and filtering member is connected to the inner peripheral surface of the casing through a partition plate having an opening between the shaft portion, and a flow passage is provided inside the casing. It is preferable to provide a plurality of stirring chambers partitioned by a partition plate.

さらに、本発明に係る攪拌装置は、軸部が複数の軸に分割され、隣接する軸の端部同士が、バネ及びダンパを介して接続され、軸の振動数をそれぞれ変化させることが好ましい。   Further, in the stirring device according to the present invention, it is preferable that the shaft portion is divided into a plurality of shafts, and end portions of adjacent shafts are connected to each other via a spring and a damper to change the frequency of the shaft.

上記構成により、本発明に係る攪拌装置は、攪拌室に試料が含まれた溶液を供給する溶液供給口と、廃棄物を含む排液を排出する排液排出口とを有し、試料への溶液の供給と試料から排出される廃棄物の排出とを安定的に連続処理することが可能となる。また、試料は、軸部の振動によりその軸方向に振動して試料を攪拌させる攪拌羽根により、後述する周期的に反転する流れが溶液内に発生し、攪拌室内でのより均一な攪拌による混合効果が発生する。   With the above configuration, the stirring device according to the present invention has a solution supply port for supplying a solution containing the sample in the stirring chamber, and a drainage discharge port for discharging the drainage liquid containing waste, It is possible to stably and continuously process the supply of the solution and the discharge of the waste discharged from the sample. In addition, the sample is mixed in the stirring chamber by more uniform stirring because a periodically reversing flow, which will be described later, is generated in the solution by a stirring blade that vibrates in the axial direction by the vibration of the shaft and stirs the sample. An effect occurs.

以上のように、本発明に係る攪拌装置によれば、試料と溶液とを効果的に攪拌し、培養された試料又は洗浄された試料を連続して安定的に得ることが可能となる。   As described above, according to the stirrer according to the present invention, it is possible to stir the sample and the solution effectively and obtain the cultured sample or the washed sample continuously and stably.

以下に、図面を用いて本発明に係る攪拌装置につき、詳細に説明する。   Below, the stirring apparatus which concerns on this invention is demonstrated in detail using drawing.

(第1の実施形態)
まず、本攪拌装置1の構成について説明する。図1に、攪拌装置1の第1の実施形態の概略構成を示す。また、図2に、図1のA−A断面を示す。本実施形態の攪拌装置1は、ケーシング2、軸部4、攪拌羽根5、仕切り板6、濾過部材10、溶液供給管11、溶液供給口12、及び排液排出口13から構成される。また、攪拌装置1には、軸部4と接続し、軸部4をその軸方向に振動させる振動源3が設けられる。また、攪拌装置1には、試料を攪拌室7内に供給する試料供給口17及び試料を攪拌室7から排出させる試料排出口16が設けられる。
(First embodiment)
First, the configuration of the stirring device 1 will be described. In FIG. 1, schematic structure of 1st Embodiment of the stirring apparatus 1 is shown. FIG. 2 shows a cross section taken along the line AA in FIG. The stirring device 1 of this embodiment includes a casing 2, a shaft portion 4, a stirring blade 5, a partition plate 6, a filtering member 10, a solution supply pipe 11, a solution supply port 12, and a drainage discharge port 13. Further, the stirring device 1 is provided with a vibration source 3 that is connected to the shaft portion 4 and vibrates the shaft portion 4 in the axial direction. Further, the stirring device 1 is provided with a sample supply port 17 for supplying a sample into the stirring chamber 7 and a sample discharge port 16 for discharging the sample from the stirring chamber 7.

ケーシング2は、その内部に細胞や微生物等の試料が含まれた溶液が流通する流通路22を有する。本実施形態では、この流通路22は、仕切り板6により複数の攪拌室7に分割される。図1では、この流通路22は4つの攪拌室7及び1つの試料排出室23から構成されるが、この攪拌室7の数は4つに限らず任意の数で良い。また、試料排出室23は設けられず、最外部の攪拌室7に試料排出口16が設けられ、そこから試料が排出されても良い。仕切り板6は、ケーシング2の内面から突出して設けられる。また、仕切り板6は、図2に示すように、内部に開口部21を有する環状の板であり、ケーシング2の内部の軸部4との間には隙間がある。軸部4は、この仕切り板6の開口部21内を貫通する。また、軸部4はケーシング2の内部にシール材18でシールされて挿入される。攪拌室7は、図2に示すように円形に取り付けられた濾過部材10により、内部攪拌室8と外部攪拌室9とに区分される。この濾過部材10が、攪拌羽根5を包囲するように取り付けられ、攪拌羽根5は内部攪拌室8の内部に納められる。なお、攪拌羽根5は、図1では各攪拌室7に2枚ずつ配置されるが、その枚数はこれに限らない。   The casing 2 has a flow passage 22 through which a solution containing a sample such as a cell or a microorganism flows. In the present embodiment, the flow passage 22 is divided into a plurality of stirring chambers 7 by the partition plate 6. In FIG. 1, the flow passage 22 includes four stirring chambers 7 and one sample discharge chamber 23, but the number of the stirring chambers 7 is not limited to four and may be any number. Further, the sample discharge chamber 23 is not provided, and the sample discharge port 16 is provided in the outermost stirring chamber 7 from which the sample may be discharged. The partition plate 6 is provided so as to protrude from the inner surface of the casing 2. Further, as shown in FIG. 2, the partition plate 6 is an annular plate having an opening 21 inside, and there is a gap between the shaft portion 4 inside the casing 2. The shaft portion 4 passes through the opening 21 of the partition plate 6. The shaft portion 4 is inserted into the casing 2 while being sealed with a sealing material 18. As shown in FIG. 2, the stirring chamber 7 is divided into an internal stirring chamber 8 and an external stirring chamber 9 by a filter member 10 attached in a circular shape. The filter member 10 is attached so as to surround the stirring blade 5, and the stirring blade 5 is accommodated in the internal stirring chamber 8. In FIG. 1, two stirring blades 5 are arranged in each stirring chamber 7, but the number is not limited to this.

この濾過部材10にはフィルタが貼られる。濾過部材10は、後述するように、試料を通過させず、廃棄物を通過させる役割を有する。従って、このフィルタの網目は、その役割に適した大きさのものが選択されるが、試料及び廃棄物のスケールによりミクロレベルの粗さの網目(ファインメッシュ)が選択されても良い。また、フィルタは、例えば、ステンレス製、セラミック製から成るが、これに限らず高分子(ナノフィルタ膜)等であっても良い。このフィルタにより、攪拌羽根5による攪拌により培養される試料は、この濾過部材10で堰き止められ、攪拌室7を順次移動して試料排出室23へと向かい、試料の攪拌により発生した廃棄物、例えば、試料の老廃物は、この濾過部材10を通過して外部に排出される。また、付着物が付着した試料は、この濾過部材10で堰き止められ、攪拌室7を順次移動して試料排出室23へと向かい、試料から分離された付着物はこの濾過部材10を通過して外部に排出される。   A filter is affixed to the filter member 10. As will be described later, the filter member 10 has a role of allowing waste to pass without passing the sample. Therefore, the mesh of this filter is selected to have a size suitable for its role, but a mesh having a micro level roughness (fine mesh) may be selected depending on the scale of the sample and waste. The filter is made of, for example, stainless steel or ceramic, but is not limited thereto, and may be a polymer (nanofilter film) or the like. By this filter, the sample to be cultured by stirring by the stirring blade 5 is blocked by the filter member 10, and moves sequentially through the stirring chamber 7 to the sample discharge chamber 23, and waste generated by stirring the sample, For example, waste samples are passed through the filter member 10 and discharged outside. Further, the sample to which the adhering matter is attached is blocked by the filter member 10, moves in the stirring chamber 7 sequentially toward the sample discharge chamber 23, and the adhering matter separated from the sample passes through the filtering member 10. Discharged outside.

本実施形態では、溶液供給管11、溶液供給口12及び排液排出口13は、攪拌室7ごとに設けられる。図3に、溶液供給管11及び溶液供給口12につき、図1の一部分を拡大した断面で示す。溶液供給管11は、仕切り板6の板厚内に埋め込まれ、ケーシング2の外部とケーシング2の内部の内部攪拌室8とを連通する。また、溶液供給管11のケーシング2の内部側には溶液供給口12が設けられ、内部攪拌室8と流通する。また、図1に示すように、排液排出口13はケーシング2を貫通して設けられ、ケーシング2の内部の外部攪拌室9とケーシング2の外部とを連通する。図4に、排液の排出についての他の実施例を示す。この実施例では、排液排出管14は、仕切り板6の板厚内に埋め込まれ、ケーシング2の内部の外部攪拌室9とケーシング2の外部とを連通する。また、排液排出管14のケーシング2の内部側には排液吸引口20が設けられ、排液は排液吸引口20から吸引されて排液排出口19から排出される。本実施形態では、図2に示すように、これら溶液供給管11、溶液供給口12及び排液排出口13,19は、攪拌室7ごとに各々1箇所に設けられるが、その個数はこれに限らず2箇所以上であっても良い。   In the present embodiment, the solution supply pipe 11, the solution supply port 12, and the drainage discharge port 13 are provided for each stirring chamber 7. FIG. 3 shows an enlarged cross section of a part of FIG. 1 with respect to the solution supply pipe 11 and the solution supply port 12. The solution supply pipe 11 is embedded in the thickness of the partition plate 6 and communicates the outside of the casing 2 and the internal stirring chamber 8 inside the casing 2. Further, a solution supply port 12 is provided on the inside of the casing 2 of the solution supply pipe 11 and circulates with the internal stirring chamber 8. Further, as shown in FIG. 1, the drainage outlet 13 is provided through the casing 2, and communicates the external stirring chamber 9 inside the casing 2 with the outside of the casing 2. FIG. 4 shows another embodiment of drainage. In this embodiment, the drainage discharge pipe 14 is embedded in the thickness of the partition plate 6 and communicates the external stirring chamber 9 inside the casing 2 and the outside of the casing 2. A drainage suction port 20 is provided on the inside of the casing 2 of the drainage discharge pipe 14, and the drainage is sucked from the drainage suction port 20 and discharged from the drainage discharge port 19. In the present embodiment, as shown in FIG. 2, the solution supply pipe 11, the solution supply port 12, and the drainage discharge ports 13, 19 are provided at one location for each stirring chamber 7, but the number of these is It is not limited to two or more locations.

このように、攪拌装置1は、各攪拌室7に培養液を含む溶液を供給する手段と廃棄物を含む排液を排出する手段とを備える。これらの手段により、試料への溶液の供給と試料から発生する排液の排出とを連続処理する連続培養が可能となる。また、粗培養や単離の場合においても、付着物が付着した細胞の塊や微粉末を含む紛体が、洗浄液を含む溶液を供給する手段と付着物を含む排液を排出する手段により、試料への溶液の供給と試料から発生する排液の排出とを連続処理する連続処理が可能となる。   As described above, the stirring device 1 includes means for supplying a solution containing the culture solution to each stirring chamber 7 and means for discharging the waste liquid containing waste. By these means, continuous culture in which the supply of the solution to the sample and the discharge of the drainage generated from the sample are continuously performed becomes possible. Also, in the case of coarse culture or isolation, the sample containing the clumps of cells and fine powder with the adherent adhered to the sample by means of supplying the solution containing the washing liquid and discharging the waste liquid containing the adherent. It is possible to perform continuous processing for continuously processing the supply of the solution to the liquid and the discharge of the drainage generated from the sample.

培養される試料とは、例えば、血液等の細胞や組織、乳酸、有機酸、核酸、酵素等の微生物であるが、これらの細胞や組織、又は微生物に限らず、培養により増殖される全てのものを含む。また、この試料が含まれた溶液とは、これらの試料を培養するために必要な培養液である。これらの試料は、攪拌装置1のケーシング2の内部で供給される培養液により細胞を構成する物質を合成し、それを組み立てることにより新たな細胞を作り出し増殖する。従って、培養液には、この試料の増殖に必要な栄養源が含まれる。栄養源としては、例えば炭水化物類、油類、有機酸類といった炭素源、尿素などの窒素源、無機塩類などが挙げられる。また、細胞の増殖は環境因子の影響を受ける。環境因子には温度、圧力、光線、pH、浸透圧、溶存酸素などがある。連続培養では、これらの環境因子を常に適切な状態に維持することができ、安定的な培養が可能となる。   The sample to be cultured is, for example, a cell or tissue such as blood, or a microorganism such as lactic acid, organic acid, nucleic acid, or enzyme, but is not limited to such a cell or tissue or microorganism, Including things. Moreover, the solution containing this sample is a culture solution necessary for culturing these samples. These samples synthesize a substance that constitutes a cell with a culture solution supplied inside the casing 2 of the agitator 1 and assemble it to create new cells and proliferate. Therefore, the nutrient solution necessary for the growth of this sample is included in the culture solution. Examples of nutrient sources include carbon sources such as carbohydrates, oils, and organic acids, nitrogen sources such as urea, and inorganic salts. Cell proliferation is affected by environmental factors. Environmental factors include temperature, pressure, light, pH, osmotic pressure, and dissolved oxygen. In continuous culture, these environmental factors can always be maintained in an appropriate state, and stable culture is possible.

洗浄される試料とは、培養される前段階の細胞や組織、微生物、或いは純物質を物理的或いは化学的に分離する場合の混合物が含まれる。また、洗浄される試料には、単離される細胞の塊が含まれ、微粉末を分離する紛体も含まれる。溶液に含まれる洗浄液とは、こういった単離や分離を促進するものを総称する。勿論、洗浄液には細胞や組織、微生物などの生物の場合には、培養に用いられる培養液も含まれる。   The sample to be washed includes a mixture in the case of physically or chemically separating cells, tissues, microorganisms, or pure substances in a previous stage to be cultured. Further, the sample to be washed contains a lump of cells to be isolated, and also includes a powder that separates fine powder. The cleaning liquid contained in the solution is a generic term for those that promote such isolation and separation. Of course, in the case of organisms such as cells, tissues, and microorganisms, the washing solution includes a culture solution used for culture.

次に、図1を用いて本攪拌装置1の1の培養方法について説明する。試料を含んだ溶液は、まず試料供給口17から供給される。この溶液は、仕切り板6の内側の開口部21を通じて試料供給口17側の攪拌室7から試料排出口16側の攪拌室7へと順次移動していく。試料の供給が完了すると、軸部4に接続された攪拌羽根5が振動源3により軸方向に振動する。一方、各攪拌室7の溶液供給管11からは培養液が供給され、溶液供給口12から内部攪拌室8へと注入される。この軸方向の振動により、溶液内の試料と注入された培養液に含まれる栄養源とが混合される。この混合される際に、溶液には攪拌羽根5により乱流が発生し、内部攪拌室8全体にわたり、後述するほぼ均一な混合が行われる。試料は、この混合により培養液に含まれる栄養源等を摂取し増殖する。そして、試料は成長に伴い排泄物を排出する。また、この排泄物は溶液中の培養に不要なものとともに廃棄物として、内部攪拌室8から濾過部材10を通過して外部攪拌室9へと移動する。一方、試料自体は濾過部材10を通過できないため内部攪拌室8内に留まる。この廃棄物を含む溶液は排液として外部攪拌室9に連通する排液排出口13から排出される。   Next, the culture method 1 of the stirring apparatus 1 will be described with reference to FIG. The solution containing the sample is first supplied from the sample supply port 17. This solution sequentially moves from the stirring chamber 7 on the sample supply port 17 side to the stirring chamber 7 on the sample discharge port 16 side through the opening 21 inside the partition plate 6. When the supply of the sample is completed, the stirring blade 5 connected to the shaft portion 4 is vibrated in the axial direction by the vibration source 3. On the other hand, a culture solution is supplied from the solution supply pipe 11 of each stirring chamber 7 and is injected from the solution supply port 12 into the internal stirring chamber 8. By this axial vibration, the sample in the solution and the nutrient source contained in the injected culture solution are mixed. During the mixing, turbulent flow is generated in the solution by the stirring blade 5, and substantially uniform mixing described later is performed over the entire internal stirring chamber 8. The sample grows by ingesting nutrient sources contained in the culture medium by this mixing. And a sample discharges excrement with growth. Further, the excrement is moved to the external stirring chamber 9 from the internal stirring chamber 8 through the filtering member 10 as waste together with the waste unnecessary for the culture in the solution. On the other hand, the sample itself cannot pass through the filter member 10 and therefore remains in the internal stirring chamber 8. The solution containing the waste is discharged as drainage from a drainage outlet 13 communicating with the external stirring chamber 9.

この攪拌羽根5が軸方向に振動する攪拌方法は、攪拌羽根5が往復運動を行い、その運動方向が連続して反転することに特徴がある。すなわち、試料を含む溶液は、攪拌羽根5の往復運動により「折りたたみ」と「引き伸ばし」とを繰り返し、局所的な混合が促進される。この混合は、さらにケーシング2内部の流通路22が仕切り板6で仕切られることでより効果が発揮され、攪拌室7の内部においてより均一な攪拌による混合効果が発生する。また、この攪拌方法は、細胞や組織或いは微生物にとってより損傷の危険性の少ない好ましい攪拌方法である。すなわち、流体に水平回転流等の旋回流を起こす従来の攪拌方法では、攪拌翼の回転により発生するせん断力が試料を損傷する虞がある。また、試料は旋回流ともなって移動させられストレスが発生する。一方、本攪拌方法の「折りたたみ」及び「引き伸ばし」は、試料に対する圧力の変化であり、せん断力と比較して損傷の危険性は少ない。また試料は局所的な圧力の変化であり、旋回流と比較して試料の移動はより少なくストレスが少ない。   The stirring method in which the stirring blade 5 vibrates in the axial direction is characterized in that the stirring blade 5 performs a reciprocating motion and the motion direction is continuously reversed. That is, the solution containing the sample repeats “folding” and “stretching” by the reciprocating motion of the stirring blade 5 to promote local mixing. This mixing is more effective when the flow path 22 in the casing 2 is further partitioned by the partition plate 6, and a mixing effect due to more uniform stirring occurs in the stirring chamber 7. Moreover, this stirring method is a preferable stirring method with less risk of damage for cells, tissues or microorganisms. That is, in the conventional stirring method in which a swirling flow such as a horizontal rotating flow is generated in the fluid, there is a risk that the shearing force generated by the rotation of the stirring blade may damage the sample. Further, the sample is moved as a swirling flow, and stress is generated. On the other hand, “folding” and “stretching” of the present stirring method are changes in pressure on the sample, and there is less risk of damage compared to shear force. Also, the sample is a local pressure change, and there is less sample movement and less stress compared to the swirl flow.

本実施形態では、試料を含んだ溶液を試料供給口17から加圧しながら供給する。従って、試料は、この圧力により時間の経過と共に試料排出口16側へと移動してゆく。そして、一定期間の経過後に、試料排出室23へと移動し、資料排出口16から排出される。このように、本実施形態の攪拌装置1によれば、試料は、各攪拌室7を移動しながら、その都度、培養液の供給と廃棄物の排出とを受けて増殖を重ね、試料を連続して安定的に培養することが可能である。また、増殖した試料を順次取り出すことが可能となる。   In the present embodiment, a solution containing a sample is supplied from the sample supply port 17 while being pressurized. Accordingly, the sample moves toward the sample discharge port 16 with the passage of time due to this pressure. After a certain period of time, the sample moves to the sample discharge chamber 23 and is discharged from the material discharge port 16. Thus, according to the stirrer 1 of the present embodiment, the sample is continuously propagated by receiving the supply of the culture solution and the discharge of waste each time while moving through the respective stirring chambers 7. It is possible to culture stably. In addition, the proliferated sample can be taken out sequentially.

また、本実施形態の攪拌装置1は、試料の洗浄に用いることができる。すなわち、採取された試料には付着物が付着している場合があり、洗浄液が含まれる溶液により上述した要領で攪拌羽根5により攪拌する。攪拌羽根5の軸方向の振動により、溶液内の試料と注入された洗浄液とが混合される。この混合される際に、溶液には攪拌羽根5により乱流が発生し、内部攪拌室8全体にわたってほぼ均一に混合が行われる。この混合により試料に付着した付着物が分離される。そして、この付着物は廃棄物として、内部攪拌室8から濾過部材10を通過して外部攪拌室9へと移動する。一方、試料自体は濾過部材10を通過できないため内部攪拌室8内に留まる。この付着物は排液として外部攪拌室9に連通する排液排出口13から排出される。この洗浄液の供給と廃棄物の排出とを攪拌室7ごとに行い攪拌することで、試料からの付着物の分離を連続して安定的に行うことが可能となる。   Moreover, the stirring apparatus 1 of this embodiment can be used for the washing | cleaning of a sample. That is, the collected sample may have adhered matter, and is stirred by the stirring blade 5 in the manner described above with the solution containing the cleaning liquid. The sample in the solution and the injected cleaning liquid are mixed by the vibration in the axial direction of the stirring blade 5. During this mixing, a turbulent flow is generated in the solution by the stirring blade 5 and the mixing is performed almost uniformly throughout the internal stirring chamber 8. The adhering matter adhering to the sample is separated by this mixing. And this deposit | attachment passes as the waste from the internal stirring chamber 8 through the filtration member 10, and moves to the external stirring chamber 9. FIG. On the other hand, the sample itself cannot pass through the filter member 10 and therefore remains in the internal stirring chamber 8. This deposit is discharged from a drainage outlet 13 communicating with the external stirring chamber 9 as drainage. By supplying the cleaning liquid and discharging the waste for each stirring chamber 7 and stirring, it becomes possible to continuously and stably separate the deposits from the sample.

本実施形態では、試料を含んだ溶液を試料供給口17から加圧しながら供給する。従って、付着物が付着した試料は、この圧力により時間の経過と共に試料排出口16側へと移動してゆく。その間に付着物は次第に分離され、一定期間の経過後に試料排出室23へと移動し、試料排出口16から排出される。このように、本実施形態の攪拌装置1によれば、試料から付着物を連続的に分離させることが可能であり、付着物が分離された試料を順次取り出すことが可能となる。   In the present embodiment, a solution containing a sample is supplied from the sample supply port 17 while being pressurized. Therefore, the sample to which the deposits are attached moves toward the sample discharge port 16 with the passage of time due to this pressure. In the meantime, the deposit is gradually separated, moves to the sample discharge chamber 23 after a certain period of time, and is discharged from the sample discharge port 16. Thus, according to the stirring device 1 of the present embodiment, the deposits can be continuously separated from the sample, and the samples from which the deposits have been separated can be sequentially taken out.

(第2の実施形態)
図5に、攪拌装置の第2の実施形態の概略構成を示す。また、図6に、図1のB−B断面を示す。本実施形態の攪拌装置100は、攪拌室7がそれぞれ独立して試料の攪拌を行う構成である。すなわち、仕切り板26は、軸部4とシール材24により接続され、攪拌室7相互は溶液が流通しない。また、図1に示す、試料供給口17、試料排出室23及び試料排出口16は設けられない。なお、上記第1の実施形態と同一の構成には同一の符号を付し、その説明を省略する。
(Second Embodiment)
In FIG. 5, schematic structure of 2nd Embodiment of a stirring apparatus is shown. FIG. 6 shows a BB cross section of FIG. The stirring device 100 of the present embodiment is configured such that the stirring chambers 7 independently stir the sample. That is, the partition plate 26 is connected by the shaft portion 4 and the sealing material 24, and the solution does not flow between the stirring chambers 7. Further, the sample supply port 17, the sample discharge chamber 23, and the sample discharge port 16 shown in FIG. 1 are not provided. In addition, the same code | symbol is attached | subjected to the structure same as the said 1st Embodiment, and the description is abbreviate | omitted.

本実施形態では、試料の供給及び排出は、溶液供給管11を通じて溶液供給口12から行われる。すなわち、溶液供給口12からの試料を含んだ溶液の供給が完了した後、溶液供給口12から溶液を連続して供給して試料を増殖させる。試料の増殖が所定の程度になると、溶液供給口12から試料を含んだ溶液を吸引して溶液供給管11を通じてケーシング2の外部に排出する。   In the present embodiment, the sample is supplied and discharged from the solution supply port 12 through the solution supply pipe 11. That is, after the supply of the solution containing the sample from the solution supply port 12 is completed, the solution is continuously supplied from the solution supply port 12 to proliferate the sample. When the growth of the sample reaches a predetermined level, the solution containing the sample is sucked from the solution supply port 12 and discharged to the outside of the casing 2 through the solution supply pipe 11.

このように、本実施形態では、複数の攪拌室7が独立して試料の培養又は洗浄を行い、それぞれが同一の軸部4により攪拌される。これにより、攪拌室7には、異なる種類の試料を供給することができ、それらを同時に培養又は洗浄することが可能となる。また、洗浄して付着物を分離した後に培養する試料の場合には、洗浄の工程と培養の工程とを1つの攪拌装置100により連続して安定的に行うことが可能となる。   Thus, in this embodiment, the plurality of stirring chambers 7 independently culture or wash the sample, and each is stirred by the same shaft portion 4. As a result, different types of samples can be supplied to the stirring chamber 7, and these can be cultured or washed simultaneously. Further, in the case of a sample that is cultured after being washed and separated from adhering matter, the washing step and the culturing step can be continuously performed stably by one stirring device 100.

(第3の実施形態)
図7に、攪拌装置の第3の実施形態の概略構成を示す。また、図8に図7のC−C断面を示す。本実施形態の攪拌装置200は、第1の実施形態の攪拌装置1に攪拌濾過部材15が付加されたものである。攪拌濾過部材15は、円環状の仕切り板6の内部の開口部21に設けられる円環状の部材であり、外側が仕切り板6に固定され、内側が軸部4に固定される。なお、上記第1の実施形態と同一の構成には同一の符号を付し、その説明を省略する。
(Third embodiment)
In FIG. 7, schematic structure of 3rd Embodiment of a stirring apparatus is shown. FIG. 8 shows a CC cross section of FIG. The stirring device 200 of this embodiment is obtained by adding a stirring filter member 15 to the stirring device 1 of the first embodiment. The stirring filter member 15 is an annular member provided in the opening 21 inside the annular partition plate 6, and the outside is fixed to the partition plate 6 and the inside is fixed to the shaft portion 4. In addition, the same code | symbol is attached | subjected to the structure same as the said 1st Embodiment, and the description is abbreviate | omitted.

この攪拌濾過部材15は、それが取り付けられる仕切り板6とともに攪拌室7を仕切る要素となる。従って、仕切り板6と協働して攪拌室7での攪拌羽根5の攪拌による混合効果を上げる。また、攪拌濾過部材15の内側は、軸部4と接続されるために、軸部4の軸方向の振動にともない軸方向に振動する。一方、攪拌濾過部材15の外側は仕切り板6により固定されているため振動しない。これにより、攪拌濾過部材15は、その両側の攪拌室7の内部の溶液に攪拌羽根5とは異なる振動による乱流を発生させる。   The stirring filter member 15 is an element that partitions the stirring chamber 7 together with the partition plate 6 to which it is attached. Accordingly, in cooperation with the partition plate 6, the mixing effect by the stirring of the stirring blade 5 in the stirring chamber 7 is increased. Further, since the inside of the stirring and filtering member 15 is connected to the shaft portion 4, it vibrates in the axial direction as the shaft portion 4 vibrates in the axial direction. On the other hand, since the outside of the stirring filter member 15 is fixed by the partition plate 6, it does not vibrate. Thereby, the stirring filtration member 15 generates a turbulent flow due to vibration different from that of the stirring blade 5 in the solution inside the stirring chamber 7 on both sides thereof.

この攪拌濾過部材15にはフィルタが貼られる。攪拌濾過部材15は、試料を通過させ役割を有する。従って、このフィルタの網目は、その役割に適した大きさのものが選択されるが、試料及び廃棄物のスケールによりミクロレベルの粗さの網目(ファインメッシュ)が選択されても良い。また、フィルタは、例えば、ステンレス製、セラミック製から成るが、これに限らず高分子(ナノフィルタ膜)等であっても良い。   A filter is attached to the stirring filter member 15. The stirring filter member 15 has a role of allowing the sample to pass therethrough. Therefore, the mesh of this filter is selected to have a size suitable for its role, but a mesh having a micro level roughness (fine mesh) may be selected depending on the scale of the sample and waste. The filter is made of, for example, stainless steel or ceramic, but is not limited thereto, and may be a polymer (nanofilter film) or the like.

本実施形態は、例えば結合した細胞の塊を攪拌羽根5及び攪拌濾過部材15により単離させて抽出する場合にも用いられる。すなわち、攪拌濾過部材15のフィルタの網目の粗さを、細胞の塊は通過させず単離された細胞を通過させるように調節する。また、試料は、この振動する攪拌濾過部材15に接触することで結合力が弱まるか、或いは結合力が切れて単離が促進される。   This embodiment is also used when, for example, the bound cell mass is isolated and extracted by the stirring blade 5 and the stirring filter member 15. That is, the coarseness of the mesh of the filter of the stirring filter member 15 is adjusted so that the isolated cells can pass through without passing the cell mass. Further, the sample is brought into contact with the vibrating stirring filter member 15 so that the binding force is weakened or the binding force is cut off to promote the isolation.

また、この攪拌濾過部材15の網目の粗さを、試料供給口17側を粗くし、試料排出口16側を細かくすることができる。これにより、試料供給口17から加圧された細胞の塊は内部攪拌室8で分離され、より小さな塊となったものから試料排出口16側へと移動し、試料排出口16から排出される。   Further, the mesh of the stirring filter member 15 can be made coarse on the sample supply port 17 side and fine on the sample discharge port 16 side. As a result, the mass of cells pressurized from the sample supply port 17 is separated in the internal stirring chamber 8, moves from the smaller mass to the sample discharge port 16 side, and is discharged from the sample discharge port 16. .

また、この攪拌濾過部材15は、上述したように、試料を通過させる役割を有するが、フィルタ自身が振動することで、試料や廃棄物のフィルタの網目への目詰まりが起きにくいという特徴を有する。   Further, as described above, the stirring and filtering member 15 has a role of allowing the sample to pass therethrough, but has a feature that clogging of the sample and waste into the filter mesh is less likely to occur due to vibration of the filter itself. .

(第4の実施形態)
図9に、攪拌装置の第4の実施形態を示す。本実施形態の攪拌装置300は、第1の実施形態の攪拌装置1の軸部4にダンパ25及びバネ26が取り付けられたものである。また、このダンパ25及びバネ26による構成は、図5に示す第2の実施形態、又は図7に示す第3の実施形態に組み込んでも良い。なお、上記第1の実施形態と同一の構成には同一の符号を付し、その説明を省略する。
(Fourth embodiment)
FIG. 9 shows a fourth embodiment of the stirring device. The stirring device 300 of the present embodiment has a damper 25 and a spring 26 attached to the shaft portion 4 of the stirring device 1 of the first embodiment. Further, the configuration of the damper 25 and the spring 26 may be incorporated in the second embodiment shown in FIG. 5 or the third embodiment shown in FIG. In addition, the same code | symbol is attached | subjected to the structure same as the said 1st Embodiment, and the description is abbreviate | omitted.

図10に、軸部4の一部に取り付けられたダンパ25及びバネ26をそれぞれ記号により示す。このように、軸部4は、軸部4a及び軸部4bに離間して切り離され、それぞれの端部においてダンパ25及びバネ26を介して直列に接続される。このダンパ25及びバネ26により、その試料供給口17側の軸部4aの振動数を、その試料排出口16側の軸部4bの振動数に対して低減された値とすることが可能となる。   In FIG. 10, the damper 25 and the spring 26 attached to a part of the shaft portion 4 are shown by symbols. In this way, the shaft portion 4 is separated and separated from the shaft portion 4a and the shaft portion 4b, and is connected in series via the damper 25 and the spring 26 at the respective end portions. The damper 25 and the spring 26 enable the vibration frequency of the shaft portion 4a on the sample supply port 17 side to be a value reduced with respect to the vibration frequency of the shaft portion 4b on the sample discharge port 16 side. .

図11に、ダンパ25及びバネ26の1つの実施例を示す。ダンパ25には例えば粘弾性材27を用いた機構を用いた構成とし、バネ26には、例えばスプリング28を用いた構成とすることができる。この実施例では、軸部4aには振動子29が取り付けられ固定される。一方、軸部4bには、この振動子29を包み込む凹部37が軸部4bの内部に設けられる。この振動子29は、本実施例では板状であるが、例えば棒状などの他の断面形状であっても良い。この振動子29と凹部37との隙間には粘弾性材27が埋め込まれる。この粘弾性材27は、接着などの手段により凹部37の壁面に固定される。また、振動子29が凹部37の内部に埋め込まれる長さ(図11中のL)は後述する粘弾性材27によるエネルギ吸収量により決定される。さらに、軸部4aと軸部4bとは、バネ26の一種であるスプリング28により接続される。このスプリング28は、軸部4aと軸部4bとの相対的な移動に対して弾性変形をし、復元力により元の間隔に戻す役割を有する。スプリング28は、図11では振動子29の左右に2個配置されているが、その個数はこれに限らない。   FIG. 11 shows an embodiment of the damper 25 and the spring 26. For example, the damper 25 may be configured using a mechanism using a viscoelastic material 27, and the spring 26 may be configured using, for example, a spring 28. In this embodiment, the vibrator 29 is attached and fixed to the shaft portion 4a. On the other hand, the shaft portion 4b is provided with a recess 37 that encloses the vibrator 29 inside the shaft portion 4b. The vibrator 29 has a plate shape in the present embodiment, but may have another cross-sectional shape such as a rod shape. A viscoelastic material 27 is embedded in the gap between the vibrator 29 and the recess 37. The viscoelastic material 27 is fixed to the wall surface of the recess 37 by means such as adhesion. Further, the length (L in FIG. 11) in which the vibrator 29 is embedded in the recess 37 is determined by the amount of energy absorbed by the viscoelastic material 27 described later. Further, the shaft portion 4 a and the shaft portion 4 b are connected by a spring 28 that is a kind of the spring 26. The spring 28 has a role of elastically deforming relative to the relative movement between the shaft portion 4a and the shaft portion 4b and returning to the original interval by a restoring force. Although two springs 28 are arranged on the left and right of the vibrator 29 in FIG. 11, the number is not limited to this.

この粘弾性材27は、流体のような粘性とスプリングのような弾性とを併せ持った力学的挙動をする高分子材料である。図11において、軸部4bが軸部4aに対して矢印で示す方向に振動すると、振動子29と軸部4aとの間に設けられた粘弾性材27はせん断力を受けてせん断変形する。粘弾性材27は、このせん断変形により塑性化し、この非線形な挙動により運動エネルギを吸収して熱エネルギに変換する。従って、試料供給口17側の軸部4aの振動エネルギ(E0)は、この粘弾性材27により一部熱エネルギ(δE)となる。このエネルギ吸収により、試料排出口16側の軸部4bに伝達される振動エネルギ(Ex)は、Ex=E0−δEに減衰される。この減衰された振動エネルギにより、試料排出口16側の軸部4bの振動数は、試料供給口17側の軸部4aの振動数より低減された値となる。 The viscoelastic material 27 is a polymer material that has a mechanical behavior having both a fluid-like viscosity and a spring-like elasticity. In FIG. 11, when the shaft portion 4b vibrates in the direction indicated by the arrow with respect to the shaft portion 4a, the viscoelastic material 27 provided between the vibrator 29 and the shaft portion 4a receives a shear force and undergoes shear deformation. The viscoelastic material 27 is plasticized by this shear deformation, and absorbs kinetic energy and converts it into thermal energy by this non-linear behavior. Therefore, the vibration energy (E 0 ) of the shaft portion 4 a on the sample supply port 17 side is partly heat energy (δE) by the viscoelastic material 27. By this energy absorption, the vibration energy (Ex) transmitted to the shaft portion 4b on the sample discharge port 16 side is attenuated to Ex = E 0 −δE. Due to the damped vibration energy, the vibration frequency of the shaft portion 4b on the sample discharge port 16 side becomes a value lower than the vibration frequency of the shaft portion 4a on the sample supply port 17 side.

本実施形態のように軸部4を分割し、分割された軸部4a及び4bの端部にダンパ25及びバネ26を取り付けることで、複数の攪拌室7のうちその内部の攪拌羽根5の振動の振動数(或いは周期)を異ならせることが可能となる。これにより、初期の攪拌室7では比較的低い振動数による攪拌を行い、試料が移動した後の攪拌室7では比較的高い振動数による攪拌を行うことができる。また、振動源3の位置を試料供給口17側に設置することで、初期の攪拌室7では比較的高い振動数による攪拌を行い、試料が移動した後の攪拌室7では比較的低い振動数による攪拌を行うことができる。また、図5に示す第2の実施形態の場合には、それぞれ独立した攪拌室7のうち、その内部の攪拌羽根5の振動数(或いは周期)を異ならせ、例えば、それぞれ要求される振動数が異なる攪拌及び洗浄を同時に行うことも可能となる。なお、図9では、ダンパ25及びバネ26を取り付ける位置は2箇所となっているが、この取付け位置及び個数は、上述した攪拌装置300の使用方法により決定される。   The shaft portion 4 is divided as in this embodiment, and the damper 25 and the spring 26 are attached to the end portions of the divided shaft portions 4a and 4b, so that the vibration of the stirring blades 5 inside the plurality of stirring chambers 7 can be obtained. It is possible to vary the frequency (or period) of. Thereby, stirring at a relatively low frequency can be performed in the initial stirring chamber 7, and stirring at a relatively high frequency can be performed in the stirring chamber 7 after the sample has moved. In addition, by setting the position of the vibration source 3 on the sample supply port 17 side, the initial stirring chamber 7 performs stirring at a relatively high frequency, and the stirring chamber 7 after the sample has moved has a relatively low frequency. Can be stirred. Further, in the case of the second embodiment shown in FIG. 5, the frequency (or period) of the stirring blades 5 in the independent stirring chambers 7 is made different, for example, the required frequency However, it is possible to carry out stirring and washing simultaneously. In FIG. 9, there are two positions where the damper 25 and the spring 26 are attached. The attachment position and the number are determined by the method of using the stirring device 300 described above.

本発明に係る攪拌装置の第1の実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 1st Embodiment of the stirring apparatus which concerns on this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 溶液供給管及び溶液供給口を示す図1の部分拡大断面図である。It is the elements on larger scale of FIG. 1 which show a solution supply pipe | tube and a solution supply port. 排液の排出についての他の実施例を示す部分拡大断面図である。It is a partial expanded sectional view which shows the other Example about discharge | emission of drainage. 本発明に係る攪拌装置の第2の実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 2nd Embodiment of the stirring apparatus which concerns on this invention. 図5のB−B断面図である。It is BB sectional drawing of FIG. 本発明に係る攪拌装置の第3の実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 3rd Embodiment of the stirring apparatus which concerns on this invention. 図7のC−C断面図である。It is CC sectional drawing of FIG. 本発明に係る攪拌装置の第4の実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 4th Embodiment of the stirring apparatus which concerns on this invention. 第4の実施形態のダンパ及びバネを示す説明図である。It is explanatory drawing which shows the damper and spring of 4th Embodiment. 図10のダンパに粘弾性材を用い、バネにスプリングを用いた場合の断面図である。It is sectional drawing at the time of using a viscoelastic material for the damper of FIG. 10, and using a spring for a spring. 従来の培養槽及び培養槽内に設けられた攪拌翼の例を示す側面図及びその断面図である。It is the side view which shows the example of the stirring blade provided in the conventional culture tank and the culture tank, and its sectional drawing.

符号の説明Explanation of symbols

1,100,200,300 攪拌装置、2 ケーシング、3 振動源、4,4a,4b 軸部、5 攪拌羽根、6,26 仕切り板、7 攪拌室、8 内部攪拌室、9 外部攪拌室、10 濾過部材、11 溶液供給管、12 溶液供給口、13,19 排液排出口、14 排液排出管、15 攪拌濾過部材、16 試料排出口、17 試料供給口、18、24 シール材、20 排液吸引口、21 開口部、22 流通路、23 試料排出室、25 ダンパ、26 バネ、27 粘弾性材、28 スプリング、29 振動子、30 培養槽、31 櫂型翼、32 プロペラ型翼、33 平羽根タービン型翼、34 攪拌軸、35 水平回転流、36 放射流、37 凹部。   1,100,200,300 Stirring device, 2 casing, 3 vibration source, 4,4a, 4b shaft, 5 stirring blade, 6,26 partition plate, 7 stirring chamber, 8 internal stirring chamber, 9 external stirring chamber, 10 Filtration member, 11 Solution supply pipe, 12 Solution supply port, 13, 19 Drainage discharge port, 14 Drainage discharge pipe, 15 Stirring filtration member, 16 Sample discharge port, 17 Sample supply port, 18, 24 Sealing material, 20 Drainage Liquid suction port, 21 opening, 22 flow path, 23 sample discharge chamber, 25 damper, 26 spring, 27 viscoelastic material, 28 spring, 29 vibrator, 30 culture tank, 31 saddle type wing, 32 propeller type wing, 33 Flat blade turbine blade, 34 stirring shaft, 35 horizontal rotating flow, 36 radial flow, 37 recess.

Claims (9)

試料が含まれた溶液が流通する流通路をその内部に有するケーシングと、
ケーシング内に配置され振動源に接続された軸部と、
軸部の回りに取り付けられ、軸部の振動によりその軸方向に振動して試料を攪拌させる攪拌羽根と、
ケーシングの内周面から突出し、流通路を複数の攪拌室に仕切る仕切り板と、
攪拌羽根を包囲するように取り付けられ、攪拌室を内部攪拌室と外部攪拌室とに区分し、試料の攪拌により発生した廃棄物を通過させる濾過部材と、
溶液を流通させる溶液供給管と、
溶液供給管と連結し、溶液を内部攪拌室に供給する溶液供給口と、
濾過部材を通過した廃棄物を含む排液を外部攪拌室から排出する排液排出口と、
を備えることを特徴とする攪拌装置。
A casing having therein a flow passage through which a solution containing the sample flows,
A shaft portion disposed in the casing and connected to a vibration source;
A stirring blade that is attached around the shaft portion and vibrates in the axial direction by the vibration of the shaft portion to stir the sample;
A partition plate protruding from the inner peripheral surface of the casing and partitioning the flow passage into a plurality of stirring chambers;
A filtration member attached to surround the stirring blades, dividing the stirring chamber into an internal stirring chamber and an external stirring chamber, and allowing a waste generated by stirring the sample to pass through,
A solution supply pipe for circulating the solution;
A solution supply pipe connected to the solution supply pipe and supplying the solution to the internal stirring chamber;
A drainage outlet for draining waste liquid containing waste that has passed through the filter member from the external stirring chamber;
A stirrer comprising:
請求項1に記載の攪拌装置において、溶液には、試料の培養に用いられる培養液が含まれ、試料の攪拌により発生した廃棄物を排液排出口から排出させることを特徴とする攪拌装置。   The stirrer according to claim 1, wherein the solution includes a culture solution used for culturing the sample, and waste generated by stirring the sample is discharged from a drainage outlet. 請求項1又は2に記載の攪拌装置において、溶液には、付着物が付着した試料の洗浄に用いられる洗浄液が含まれ、試料の攪拌により分離した付着物を廃棄物として排液排出口から排出させることを特徴とする攪拌装置。   3. The stirrer according to claim 1 or 2, wherein the solution includes a cleaning liquid used for cleaning the sample to which the adhered matter is attached, and the adhered matter separated by the stirring of the sample is discharged from the drainage outlet as waste. A stirrer characterized in that 請求項1乃至3のいずれか1に記載の攪拌装置において、試料を排出させる試料排出口を備え、溶液供給口と排液排出口と濾過部材とは、複数の攪拌室にそれぞれ設けられ、仕切り板は流体が流通する開口を有し、複数の攪拌室を通過した試料を試料排出口から排出させることを特徴とする攪拌装置。   4. The stirring device according to claim 1, further comprising a sample discharge port for discharging the sample, wherein the solution supply port, the drainage discharge port, and the filtering member are provided in each of the plurality of stirring chambers, and are partitioned. The plate has an opening through which a fluid circulates, and discharges a sample that has passed through a plurality of stirring chambers from a sample discharge port. 請求項1乃至4のいずれか1に記載の攪拌装置において、溶液供給管は、外部から仕切り板を貫通して溶液を内部攪拌室に供給することを特徴とする攪拌装置。   5. The stirring device according to claim 1, wherein the solution supply pipe passes the partition plate from the outside and supplies the solution to the internal stirring chamber. 6. 請求項1乃至5のいずれか1に記載の攪拌装置において、排液を流通させて排液排出口と連結する排液排出管を備え、排液排出管は、仕切り板を貫通して排液を外部攪拌室から排出することを特徴とする攪拌装置。   6. The agitation device according to claim 1, further comprising a drainage discharge pipe that circulates the drainage and connects to the drainage outlet, the drainage discharge pipe penetrating the partition plate and draining the liquid. Is discharged from the external stirring chamber. 請求項1乃至6のいずれか1に記載の攪拌装置において、フィルタからなり、周辺部はケーシングの内周面と接続し、中央部は軸部に固定され、軸部の振動によりその軸方向に振動する攪拌濾過部材を備えることを特徴とする攪拌装置。   The stirring device according to any one of claims 1 to 6, comprising a filter, wherein the peripheral portion is connected to the inner peripheral surface of the casing, the central portion is fixed to the shaft portion, and the shaft portion is vibrated in the axial direction by vibration of the shaft portion. A stirring device comprising a vibrating stirring filter member. 請求項7に記載の攪拌装置において、攪拌濾過部材は、軸部との間に開口を有する仕切り板を介してケーシングの内周面と接続し、ケーシングの内部には、流通路を攪拌濾過部材と仕切り板とにより仕切られた複数の攪拌室が設けられることを特徴とする攪拌装置。   8. The stirring apparatus according to claim 7, wherein the stirring filter member is connected to the inner peripheral surface of the casing via a partition plate having an opening between the shaft portion, and a flow passage is provided inside the casing. And a plurality of stirring chambers partitioned by a partition plate. 請求項1乃至8のいずれか1に記載の攪拌装置において、軸部は複数の軸に分割され、隣接する軸の端部同士は、バネ及びダンパを介して接続され、軸の振動数をそれぞれ変化させることを特徴とする攪拌装置。   The stirring device according to any one of claims 1 to 8, wherein the shaft portion is divided into a plurality of shafts, and end portions of adjacent shafts are connected to each other via a spring and a damper, and the vibration frequencies of the shafts are respectively determined. A stirrer characterized by being changed.
JP2007083150A 2007-03-28 2007-03-28 Stirrer Expired - Fee Related JP4981499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083150A JP4981499B2 (en) 2007-03-28 2007-03-28 Stirrer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083150A JP4981499B2 (en) 2007-03-28 2007-03-28 Stirrer

Publications (2)

Publication Number Publication Date
JP2008237122A true JP2008237122A (en) 2008-10-09
JP4981499B2 JP4981499B2 (en) 2012-07-18

Family

ID=39909208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083150A Expired - Fee Related JP4981499B2 (en) 2007-03-28 2007-03-28 Stirrer

Country Status (1)

Country Link
JP (1) JP4981499B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157401A (en) * 2013-03-29 2013-06-19 北京中衡国通能源科技有限责任公司 Vibration agitating type mixing device
CN107899472A (en) * 2017-12-19 2018-04-13 新乡市恒星科技有限责任公司 A kind of lubricating grease processing agitating device
CN108699502A (en) * 2016-02-23 2018-10-23 康宁股份有限公司 Bioreactor and its method for carrying out successive cell culture is perfused
JP2019140985A (en) * 2018-02-21 2019-08-29 エイブル株式会社 Cell dispersion method and cell dispersion apparatus
JP2021058192A (en) * 2020-12-10 2021-04-15 バイアサイト インク Stem cell aggregate suspension composition and differentiation method therefor
CN115178130A (en) * 2022-07-26 2022-10-14 鹤壁正华有色金属有限公司 Copper substrate polishing solution processing device
CN116393074A (en) * 2023-03-28 2023-07-07 湖南省麦克斯新能源有限公司 Reaction kettle for lithium ion battery production
CN117258629A (en) * 2023-11-22 2023-12-22 河北田加力生物科技股份有限公司 Broken fish stirring device and method for preparing amino acid fertilizer by using deep sea fish

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239140A (en) * 1999-12-22 2001-09-04 Reika Kogyo Kk Device for reaction and agitation, device for reaction, fractionation and filtration, and method for fractionation, method for preparation and method for filtration
JP2004230272A (en) * 2003-01-29 2004-08-19 Reika Kogyo Kk Stirring and mixing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239140A (en) * 1999-12-22 2001-09-04 Reika Kogyo Kk Device for reaction and agitation, device for reaction, fractionation and filtration, and method for fractionation, method for preparation and method for filtration
JP2004230272A (en) * 2003-01-29 2004-08-19 Reika Kogyo Kk Stirring and mixing apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157401A (en) * 2013-03-29 2013-06-19 北京中衡国通能源科技有限责任公司 Vibration agitating type mixing device
US11136542B2 (en) 2016-02-23 2021-10-05 Corning Incorporated Perfusion bioreactor and method for using same to perform a continuous cell culture
CN108699502A (en) * 2016-02-23 2018-10-23 康宁股份有限公司 Bioreactor and its method for carrying out successive cell culture is perfused
JP2019505240A (en) * 2016-02-23 2019-02-28 コーニング インコーポレイテッド Perfusion bioreactor and method of use for performing continuous cell culture
CN107899472A (en) * 2017-12-19 2018-04-13 新乡市恒星科技有限责任公司 A kind of lubricating grease processing agitating device
JP2019140985A (en) * 2018-02-21 2019-08-29 エイブル株式会社 Cell dispersion method and cell dispersion apparatus
JP7064191B2 (en) 2018-02-21 2022-05-10 エイブル株式会社 Cell dispersal method and cell disperser
JP2021058192A (en) * 2020-12-10 2021-04-15 バイアサイト インク Stem cell aggregate suspension composition and differentiation method therefor
CN115178130A (en) * 2022-07-26 2022-10-14 鹤壁正华有色金属有限公司 Copper substrate polishing solution processing device
CN116393074A (en) * 2023-03-28 2023-07-07 湖南省麦克斯新能源有限公司 Reaction kettle for lithium ion battery production
CN116393074B (en) * 2023-03-28 2024-04-02 湖南省麦克斯新能源有限公司 Reaction kettle for lithium ion battery production
CN117258629A (en) * 2023-11-22 2023-12-22 河北田加力生物科技股份有限公司 Broken fish stirring device and method for preparing amino acid fertilizer by using deep sea fish
CN117258629B (en) * 2023-11-22 2024-01-30 河北田加力生物科技股份有限公司 Broken fish stirring device and method for preparing amino acid fertilizer by using deep sea fish

Also Published As

Publication number Publication date
JP4981499B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4981499B2 (en) Stirrer
KR101910685B1 (en) Methods and systems for harvesting cells
AU2006340808B2 (en) Pneumatic bioreactor
Mason Sonochemistry: current uses and future prospects in the chemical and processing industries
Junne et al. How scalable and suitable are single-use bioreactors?
JP2007535902A (en) Automated cell culture system and method
CN110257227B (en) Bioreactor for animal cell culture
JP2015500033A (en) Continuous perfusion filtration equipment
JP2018161115A (en) Cell culture apparatus and cell culture method
US10597629B2 (en) Method and system for preparation of substrate for use in anaerobic digestion of organic waste
CN114127248A (en) Bioreactor for growing microorganisms
WO2017141394A1 (en) Reaction device capable of performing centrifugation
JP6744161B2 (en) Separation device, culture device and separation method
CN214915241U (en) Inner wall cleaning device is used in biological fodder stirring
WO2017056695A1 (en) Cell culture apparatus
JP2007222064A (en) Hollow fiber type culture apparatus
CN206799648U (en) A kind of algae culture and toxicological test device
Jossen et al. Single-Use Systems in Biopharmaceutical Manufacture: State of the Art and Recent Trends
JPH06141850A (en) Culture system for animal cell and method for culture of animal cell
JPH05304943A (en) Device for culturing organism
CA3059826C (en) Method for processing a liquid sample
JP2016036274A (en) Cell peeling method, cell peeling device, and cell culture system
JP6423942B1 (en) Microcarrier stirring culture device
WO2004014808A1 (en) Methods of treating waste slurry in animal waste lagoons
US20240093155A1 (en) Method of changing culture medium of a culture using spinfilters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees