JP7063810B2 - High-strength duplex stainless steel with a minimum tensile strength of 600 MPa, hot-rolled, precipitation-strengthened, and finely divided crystal grains, and a method for manufacturing the same. - Google Patents

High-strength duplex stainless steel with a minimum tensile strength of 600 MPa, hot-rolled, precipitation-strengthened, and finely divided crystal grains, and a method for manufacturing the same. Download PDF

Info

Publication number
JP7063810B2
JP7063810B2 JP2018534952A JP2018534952A JP7063810B2 JP 7063810 B2 JP7063810 B2 JP 7063810B2 JP 2018534952 A JP2018534952 A JP 2018534952A JP 2018534952 A JP2018534952 A JP 2018534952A JP 7063810 B2 JP7063810 B2 JP 7063810B2
Authority
JP
Japan
Prior art keywords
steel sheet
duplex stainless
stainless steel
hot
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534952A
Other languages
Japanese (ja)
Other versions
JP2020509151A (en
Inventor
ラオ チンタ アッパ
クンデュ サウラブ
パサック プラシャント
クマール ギリ スシル
モニア ソウメンデュ
ダス バクシ スバーンカル
センティル クマール ジー
ブイ. マハシャブデ ヴィネイ
Original Assignee
タータ スチール リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タータ スチール リミテッド filed Critical タータ スチール リミテッド
Publication of JP2020509151A publication Critical patent/JP2020509151A/en
Application granted granted Critical
Publication of JP7063810B2 publication Critical patent/JP7063810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、熱間圧延された高強度二相鋼の製造方法に関するものである。さらに本発明は、600MPa超の引張強さおよび25%の全伸びを有する熱間圧延された高強度二相鋼に関するものである。 The present invention relates to a method for producing a hot-rolled high-strength duplex stainless steel. Further, the present invention relates to hot-rolled high-strength duplex stainless steels having a tensile strength of over 600 MPa and a total elongation of 25%.

自動車の燃料消費及びそれによる排出は、大気汚染の主要な要因の1つである。環境に配慮した軽量車両設計が、環境汚染問題に対処するために要求されている。軽量自動車の成功には、先進の高強度鋼(AHSS)の鋼鈑の利用が必要とされる。しかし、AHSS鋼鈑は成形性に劣るため、様々な自動車部品に容易に適用できるものではない。そのため、AHSS鋼鈑の延性および成形性に対する要求はますます増大している。したがって、この流れに対処するには、ホイールウェブ用途などの自動車部品用の、優れた均一伸び、加工硬化率および全伸びと組み合わされた高引張強度を有する熱延鋼板の開発が必要であった。 Vehicle fuel consumption and its emissions are one of the major causes of air pollution. Environmentally friendly lightweight vehicle design is required to address environmental pollution issues. The success of lightweight vehicles requires the use of advanced high-strength steel (AHSS) steel plates. However, since AHSS steel plate is inferior in formability, it cannot be easily applied to various automobile parts. Therefore, the demand for ductility and formability of AHSS steel sheets is increasing more and more. Therefore, addressing this trend required the development of hot-rolled steel sheets with high tensile strength combined with excellent uniform elongation, work hardening and total elongation for automotive parts such as wheel web applications. ..

したがって、自動車構造用およびホイールウエブ用途に使用される既存の鋼種を置き換えるには、最小で600MPaの引張強さを有するだけでなく、良好な成形性および良好な表面品質を有する熱延鋼板を開発する必要がある 。 Therefore, to replace existing steel grades used in automotive structures and wheel web applications, we have developed hot-rolled steel sheets that not only have a minimum tensile strength of 600 MPa, but also have good formability and good surface quality. There is a need to .

欧州特許出願公開第1398392号(A1)および米国特許第8337643号は、最小で590MPaの引張強さを有する熱間圧延された二相(フェライト+マルテンサイト)鋼を製造する方法を開示している。提案された鋼は、強度を有するものの、多量のSi(最小で、0.5重量%(欧州特許出願)、0.2重量%(米国特許))を含有する。Siが存在すると、一般に虎マークと呼ばれる表面スケールの発生を起こすであろう。 European Patent Application Publication No. 1398392 (A1) and US Patent No. 8337643 disclose methods for producing hot-rolled two-phase (ferrite + martensite) steels with a minimum tensile strength of 590 MPa. .. The proposed steel has strength but contains a large amount of Si (minimum 0.5% by weight (European patent application), 0.2% by weight (US patent)). The presence of Si will cause the generation of surface scales commonly referred to as tiger marks.

欧州特許第2053139号(B1)には、熱延鋼板を成形後に、440~640MPaの範囲で変化する引張強さを達成するように熱処理を行う方法が開示されている。しかし、この特許の本質的構成である成形後の熱処理は、加工コストが増加することにつながりやすく、量産に適さない。 European Patent No. 2053139 (B1) discloses a method of forming a hot-rolled steel sheet and then performing a heat treatment so as to achieve a tensile strength varying in the range of 440 to 640 MPa. However, the heat treatment after molding, which is an essential configuration of this patent, tends to lead to an increase in processing cost and is not suitable for mass production.

欧州特許出願公開第2578714号(A1)には、焼き入れ硬化性および伸びフランジ性に優れた最小で590MPaの引張強さを有する熱延鋼板の製造方法が開示されている。提案された方法によれば、この鋼は1.7~2.5重量%のMnを含有しなければならない。このように多量にMnを添加すると、Mnは厚さ方向中央部に偏析しやすく、プレス成形時に割れが発生するだけでなく、所望の伸びフランジ性を得にくくなる。 European Patent Application Publication No. 2578714 (A1) discloses a method for producing a hot-rolled steel sheet having excellent quench curability and stretch flangeability and a tensile strength of at least 590 MPa. According to the proposed method, this steel must contain 1.7-2.5% by weight Mn. When Mn is added in such a large amount, Mn tends to segregate in the central portion in the thickness direction, not only cracks occur during press molding, but also it becomes difficult to obtain the desired stretch flangeability.

鋼の開発には、自動車のホイールを理解することも重要である。自動車用ホイールはディスクおよびリムから構成されている。ディスクはプレス成形されるが、リムはフレア接続され、突き合わせフラッシュ溶接の後にロール成形される。したがって、ディスクを形成するために必要な材料は、良好な深絞り性、伸び成形性および伸びを有する必要があるが、リムを形成するために必要な材料は、溶接後に良好な成形性を有する必要がある。ホイールディスクおよびリムがそれぞれの工程で形成された後、スポット溶接またはアーク溶接によって組み立てられる。したがって、リムおよびディスクに使用する両方の材料は、良好なスポット溶接性を有する必要がある。自動車ホイール使用の観点から、自動車ホイールに最も重要な機能要件は耐久性であり、これは車輪材料の疲労強度を増加させることによって向上させることができる。 Understanding the wheels of an automobile is also important for the development of steel. Automotive wheels consist of discs and rims. The discs are press molded, but the rims are flared and rolled after butt flash welding. Therefore, the material required to form the disc must have good deep drawability, elongation formability and elongation, while the material required to form the rim has good formability after welding. There is a need. Wheel discs and rims are formed in each process and then assembled by spot welding or arc welding. Therefore, both materials used for rims and discs need to have good spot weldability. From the point of view of automobile wheel use, the most important functional requirement for automobile wheels is durability, which can be improved by increasing the fatigue strength of the wheel material.

近年行われた様々な研究では、析出硬化鋼および二相(DP)鋼の両方がホイールディスク用途に適していることが示されている。疲労強度の検討から、ホイール用の鋼の引張強さの上限は約600MPa(または85ksi)である(イリエ、ツノヤマ、シノザキ、カトウ、「SAEペーパー」、第880695号、1988年(T. Irie、Tsunoyama、M.Shinozaki and T.Kato:SAE Paper No. 880695、1988)。これは、引張強さが600MPaを超えると、ノッチ感度が増大して疲労強度が低下するためである。600MPa(またはHR-DP600)の引張強さを有する熱延DP鋼は、優れた強度および成形性と同時に良好な伸び(大きいn値)およびスポット溶接性のためにホイールディスク用途に非常に一般的な選択となっている。しかし、HR-DP600をどの圧延機でも製造することは難しい。なぜなら、最終的な機械的特性を決定する所望のミクロ組織を得るためには、多くのプロセスパラメータ、例えば、仕上圧延温度、冷却速度などが最適化される必要があり、ランアウトテーブルの長さ、利用可能な水量など圧延機構成を考慮して微調整する必要がある。既存のすべての特許および文献は、鋼の疲労寿命のためにフェライトの強度を増加させるためにかなりの量のSiを含有させる。 Various studies conducted in recent years have shown that both precipitation hardened steels and two-phase (DP) steels are suitable for wheel disc applications. From the examination of fatigue strength, the upper limit of the tensile strength of steel for wheels is about 600 MPa (or 85 ksi) (Irie, Tsunoyama, Shinozaki, Kato, "SAE Paper", No. 880695, 1988 (T. Irie,). Tsunoyama, M. Shinozaki and T. Kato: SAE Paper No. 880695, 1988). This is because when the tensile strength exceeds 600 MPa, the notch sensitivity increases and the fatigue strength decreases. 600 MPa (or HR). Hot-rolled DP steel with a tensile strength of -DP600) has become a very popular choice for wheel disc applications due to its excellent strength and formability as well as good elongation (large n value) and spot weldability. However, it is difficult to manufacture the HR-DP600 on any rolling mill, because many process parameters, such as the finish rolling temperature, are needed to obtain the desired microstructure that determines the final mechanical properties. , Cooling rate etc. need to be optimized, runout table length, available water volume etc. need to be fine-tuned taking into account the rolling mill configuration. All existing patents and literature are steel fatigue. It contains a significant amount of Si to increase the strength of the ferrite for life.

欧州特許出願公開第1398392号明細書European Patent Application Publication No. 1398392 米国特許第8337643号明細書US Pat. No. 8,376,43 欧州特許第2053139号明細書European Patent No. 2053139 欧州特許出願公開第2578714号明細書European Patent Application Publication No. 2578714

イリエ、ツノヤマ、シノザキ、カトウ、「SAEペーパー」、第880695号、1988年Irie, Tsunoyama, Shinozaki, Kato, "SAE Paper", No. 880695, 1988

先行技術に内在する上記の限定を考慮して、本発明の目的は、Si含有量が低く600MPa超の引張強さを有する熱間圧延された析出強化高強度二相鋼板を製造する方法を提案することである。
本開示の他の目的は、Si含有量が低い熱間圧延された析出強化高強度二相鋼板を製造する方法を提案することである。
本開示の他の目的は、Si含有量が低く600MPa超の引張強さを有する熱間圧延された析出強化高強度二相鋼板を提案することである。
本開示の更に他の目的は、Si含有量が低い熱間圧延された析出強化高強度二相鋼板を提案することである。
In view of the above limitations inherent in the prior art, an object of the present invention is to propose a method for producing a hot-rolled precipitation-strengthened high-strength two-phase steel sheet having a low Si content and a tensile strength of more than 600 MPa. It is to be.
Another object of the present disclosure is to propose a method for producing a hot-rolled precipitation-strengthened high-strength two-phase steel sheet having a low Si content.
Another object of the present disclosure is to propose a hot-rolled precipitation-strengthened high-strength two-phase steel sheet having a low Si content and a tensile strength of more than 600 MPa.
Yet another object of the present disclosure is to propose a hot-rolled precipitation-strengthened high-strength two-phase steel sheet with a low Si content.

本発明は、二相鋼板を製造する方法を提供する。この方法は、
化学組成が、重量%で、C:0.03~0.12、Mn:0.8~1.5、Si:<0.1、Cr:0.3~0.7、S:最大0.008、P:最大0.025、Al:0.01~0.1、N:最大0.007、Nb:0.005~0.035、V:最大0.06の溶融鋼を製造するステップ、
溶融鋼をスラブに連続鋳造するステップ、
仕上圧延温度(FRT)840±30℃でスラブを熱延鋼板に熱間圧延するステップ、
熱延鋼板を冷却速度40~70℃/sで中間温度(TINT)720≦TINT≦650に達するまでランアウトテーブル上で冷却するステップ、
熱延鋼板を5~7秒間自然冷却するスッテプ、および
熱延鋼板を40~70℃/sの冷却速度で400℃未満の巻取り温度まで急冷して残留する炭素富化オーステナイトをマルテンサイトに変態させるステップを含む。
The present invention provides a method for manufacturing a two-phase steel sheet. This method
The chemical composition is by weight%, C: 0.03 to 0.12, Mn: 0.8 to 1.5, Si: <0.1, Cr: 0.3 to 0.7, S: maximum 0. 008, P: maximum 0.025, Al: 0.01 to 0.1, N: maximum 0.007, Nb: 0.005 to 0.035, V: maximum 0.06 step for producing molten steel,
Steps to continuously cast molten steel into slabs,
A step of hot rolling a slab onto a hot-rolled steel sheet at a finish rolling temperature (FRT) of 840 ± 30 ° C.
A step of cooling a hot-rolled steel sheet on a runout table at a cooling rate of 40 to 70 ° C./s until an intermediate temperature (TINT) 720 ≤ T INT 650 is reached.
A step that naturally cools a hot-rolled steel sheet for 5 to 7 seconds, and a carbon-enriched austenite that remains after quenching the hot-rolled steel sheet to a winding temperature of less than 400 ° C at a cooling rate of 40 to 70 ° C / s is transformed into martensite. Includes steps to make.

本発明の一具体例による高強度二相鋼を製造する方法の様々なステップ。Various steps in the method of producing high-strength duplex stainless steel according to one embodiment of the present invention. 本発明の一具体例による高強度二相鋼を得るための冷却曲線の略図。FIG. 6 is a schematic diagram of a cooling curve for obtaining a high-strength duplex stainless steel according to a specific example of the present invention. 本発明の一具体例による鋼鈑1の引張応力-歪み曲線。Tensile stress-strain curve of steel plate 1 according to a specific example of the present invention. 本発明の一具体例による鋼鈑1の光学顕微鏡写真(ナイタールエッチング)。An optical micrograph (night game etching) of a steel plate 1 according to a specific example of the present invention. 本発明の一具体例によるレペラエッチング試料の光学顕微鏡像(白:マルテンサイト(α)、黒:フェライト(α´))。An optical microscope image of a repera-etched sample according to a specific example of the present invention (white: martensite (α), black: ferrite (α')). 本発明の一具体例によるレペラエッチング試料の光学顕微鏡像(2μm程度の微細結晶粒が見える)。An optical microscope image of a repera-etched sample according to a specific example of the present invention (fine crystal grains of about 2 μm can be seen). 本発明の一具体例による鋼鈑1の走査型電子顕微鏡像。A scanning electron microscope image of a steel plate 1 according to a specific example of the present invention. (a)フェライトマトリクス内の1つの析出物のTEM明視野像。(b)図8(a)の暗視野像。(c)Nb(C,N)析出物の制限視野回折パターン。(d)Nb(C,N)析出物の暗視野像。(e)析出物のEDSスペクトル。(f)析出物の組成。(A) TEM bright-field image of one precipitate in the ferrite matrix. (B) Dark field image of FIG. 8 (a). (C) Selected area diffraction pattern of Nb (C, N) precipitates. (D) Dark field image of Nb (C, N) precipitate. (E) EDS spectrum of precipitate. (F) Composition of precipitate.

本発明の様々な具体例により、以下のステップを含む二相鋼板を製造する方法が提供される。すなわち、この方法は、
化学組成が、重量%で、C:0.03~0.12、Mn:0.8~1.5、Si:0.1未満、Cr:0.3~0.7、S:最大0.008、P:最大0.025、Al:0.01~0.1、N:最大0.007、Nb:0.005~0.035、V:最大0.06の溶融鋼を製造するステップ、
溶融鋼をスラブに連続鋳造するステップ、
仕上圧延温度(FRT)840±30℃でスラブを熱延鋼板に熱間圧延するステップ、
熱延鋼板を冷却速度40~70℃/sで中間温度(TINT)720≦TINT≦650に達するまでランアウトテーブル上で冷却するステップ、
熱延鋼板を5~7秒間自然冷却するスッテプ、および
熱延鋼板を40~70℃/sの冷却速度で400℃未満の巻取り温度まで急冷して残留する炭素富化オーステナイトをマルテンサイトに変態させるステップを含む。
Various embodiments of the present invention provide a method of manufacturing a two-phase steel sheet comprising the following steps. That is, this method
The chemical composition is C: 0.03 to 0.12, Mn: 0.8 to 1.5, Si: less than 0.1, Cr: 0.3 to 0.7, S: maximum 0. 008, P: maximum 0.025, Al: 0.01 to 0.1, N: maximum 0.007, Nb: 0.005 to 0.035, V: maximum 0.06 step for producing molten steel,
Steps to continuously cast molten steel into slabs,
A step of hot rolling a slab onto a hot-rolled steel sheet at a finish rolling temperature (FRT) of 840 ± 30 ° C.
A step of cooling a hot-rolled steel sheet on a runout table at a cooling rate of 40 to 70 ° C./s until an intermediate temperature (TINT) 720 ≤ T INT 650 is reached.
A step that naturally cools a hot-rolled steel sheet for 5 to 7 seconds, and a carbon-enriched austenite that remains after quenching the hot-rolled steel sheet to a winding temperature of less than 400 ° C at a cooling rate of 40 to 70 ° C / s is transformed into martensite. Includes steps to make.

本発明の他の具体例によれば、重量%で、C:0.03~0.12、Mn:0.8~1.5、Si:0.1未満、Cr:0.3~0.7、S:最大0.008、P:最大0.025、Al:0.01~0.1、N:最大0.007、Nb:0.005~0.035、V:最大0.06の化学組成を有する二相鋼板が提供される。 According to another specific example of the present invention, in% by weight, C: 0.03 to 0.12, Mn: 0.8 to 1.5, Si: less than 0.1, Cr: 0.3 to 0. 7, S: maximum 0.008, P: maximum 0.025, Al: 0.01 to 0.1, N: maximum 0.007, Nb: 0.005 to 0.035, V: maximum 0.06 A two-phase steel plate having a chemical composition is provided.

図1に二相鋼板を製造する方法100を示す。ステップ104では溶融鋼を製造する。溶融鋼の組成は、重量%で、C:0.03~0.12、Mn:0.8~1.5、Si:0.1未満、Cr:0.3~0.7、S:最大0.008、P:最大0.025、Al:0.01~0.1、N:最大0.007、Nb:0.005~0.035、V:最大0.06である。 FIG. 1 shows a method 100 for manufacturing a two-phase steel sheet. In step 104, molten steel is manufactured. The composition of the molten steel is C: 0.03 to 0.12, Mn: 0.8 to 1.5, Si: less than 0.1, Cr: 0.3 to 0.7, S: maximum in% by weight. 0.008, P: maximum 0.025, Al: 0.01 to 0.1, N: maximum 0.007, Nb: 0.005 to 0.035, V: maximum 0.06.

各合金元素の添加および各元素の制限は、目標のミクロ組織および特性を達成するために不可欠である。 The addition of each alloying element and the limitation of each element are essential to achieve the target microstructure and properties.

C:0.03~0.12%
炭素は、最も効果的かつ経済的な強化元素の1つである。炭素は、NbまたはVと結合して、炭化物または炭窒化物を形成し、これにより析出強化が起こる。これは、鋼中に0.03%以上のCを必要とする。しかし、良好な溶接性を得るためには、炭素含有量を0.12%未満に制限しなければならない。
C: 0.03 to 0.12%
Carbon is one of the most effective and economical fortifying elements. Carbon combines with Nb or V to form carbides or carbonitrides, which causes precipitation strengthening. This requires 0.03% or more C in the steel. However, in order to obtain good weldability, the carbon content must be limited to less than 0.12%.

Mn:0.8~1.5%:
マンガンは、フェライトを固溶強化するだけでなく、オーステナイトからフェライトへの変態温度を低下させ、それによってフェライト粒径を微細化する。しかし、Mn含有量は1.5%超にすることはできない。このような高含有量では連続鋳造時に中心偏析の発生を高める。
Mn: 0.8-1.5%:
Manganese not only strengthens the solid solution of ferrite, but also lowers the transformation temperature from austenite to ferrite, thereby reducing the ferrite grain size. However, the Mn content cannot exceed 1.5%. Such a high content increases the occurrence of central segregation during continuous casting.

Si<0.1重量%
ケイ素は、Mnのように非常に効果的な固溶強化元素である。しかし、Siは、熱間圧延における表面スケールの問題を招く。表面スケールの形成を防止するために0.1%未満に制限すべきである。
Si <0.1% by weight
Silicon is a very effective solid solution strengthening element like Mn. However, Si leads to surface scale problems in hot rolling. It should be limited to less than 0.1% to prevent the formation of surface scales.

Nb:最大0.035%
ニオブは、微量添加であっても結晶粒微細化のための最も強力な微量元素である。ニオブは、固溶体中ではオーステナイトからフェライトへの変態温度を低下させ、フェライト粒径を微細化するだけでなく、ベイナイトのような低温変態生成物の生成を促進する。しかし、Nbの有効性を保証するために、変態温度に達する前にNbを析出させてはならない。圧延が開始される前に全Nb成分が固溶体に残ることを確実にするために、そして単独で添加されるために、最大Nb含有量は0.035%に制限する。
Nb: Maximum 0.035%
Niobium is the most potent trace element for grain refinement, even when added in trace amounts. Niobium lowers the austenite-to-ferrite transformation temperature in a solid solution, not only reducing the ferrite grain size, but also promoting the formation of low temperature transformation products such as bainite. However, in order to guarantee the effectiveness of Nb, Nb must not be precipitated before reaching the transformation temperature. The maximum Nb content is limited to 0.035% to ensure that all Nb components remain in the solid solution before rolling is initiated and to be added alone.

V: 最大0.06%
バナジウムによる微量合金化も、析出強化および結晶粒微細化をもたらす。オーステナイトへのバナジウムの溶解度は、他の微小合金元素のそれよりも大きいため、変態前に固溶体に残る可能性が高い。相変態の間に、バナジウムは相対的な炭素および窒素含有量に応じて、粒界に炭化物および/または窒化物として析出し、析出強化および結晶粒微細化をもたらす。所望の強化を達成するためには、NbまたはVのいずれかを添加することが必要である。両者を添加することもできる。Vのみを添加する場合、最大で0.06重量%が必要である。
V: Up to 0.06%
Vanadium microalloying also results in precipitation strengthening and grain refinement. Since the solubility of vanadium in austenite is higher than that of other microalloy elements, it is likely to remain in the solid solution before transformation. During the phase transformation, vanadium precipitates at the grain boundaries as carbides and / or nitrides, depending on the relative carbon and nitrogen content, resulting in precipitation strengthening and grain refinement. It is necessary to add either Nb or V to achieve the desired enhancement. Both can be added. When only V is added, a maximum of 0.06% by weight is required.

P: 最大0.025%
リンの含有量が高いと、Pの粒界への偏析による靭性および溶接性の低下を招くため、最大0.025%に制限する必要がある。
P: Maximum 0.025%
A high phosphorus content causes a decrease in toughness and weldability due to segregation of P into grain boundaries, and therefore needs to be limited to a maximum of 0.025%.

S:最大0.008%
硫黄含有量は制限しなければならない。そうでなければ、介在物が非常に多くなり成形性を劣化させる。
S: Maximum 0.008%
Sulfur content should be limited. Otherwise, the inclusions will be very large and the formability will be deteriorated.

N:<0.007
N含有量が多すぎると、Nb(C、N)の溶解温度が上昇し、Nbの有効性が低下する。窒素含有量を低下させることは、溶接部の熱影響部における時効安定性、靱性および粒界型応力腐食割れに対する耐性にも良い影響を及ぼす。したがって、窒素含有量は0.007未満に保つべきであることが好ましい。
N: <0.007
If the N content is too high, the melting temperature of Nb (C, N) will rise and the effectiveness of Nb will decrease. Reducing the nitrogen content also has a positive effect on aging stability, toughness and resistance to intergranular stress corrosion cracking in the heat-affected zone of the weld. Therefore, it is preferable that the nitrogen content should be kept below 0.007.

Al:0.01~0.1
Alは、溶鋼から望ましくない酸素を除去するために使用する。したがって、鋼は、ある量のAlを含む。その量は0.05重量%まででよい。製鋼における過剰(高)なAlは、鋳造中のノズルの目詰まりの他に、鋳造スラブの熱変形を減少させるために大きな問題である。したがって、Alは0.1重量%に制限する必要がある。
Al: 0.01-0.1
Al is used to remove unwanted oxygen from molten steel. Therefore, the steel contains a certain amount of Al. The amount may be up to 0.05% by weight. Excessive (high) Al in steelmaking is a major problem because it reduces thermal deformation of the cast slab as well as nozzle clogging during casting. Therefore, Al needs to be limited to 0.1% by weight.

ステップ108において、溶融鋼をスラブに連続鋳造する。
特定された組成の溶融鋼を、まず、従来型の連続鋳造機または薄スラブ鋳造機のいずれかにより連続鋳造する。薄スラブ鋳造機で鋳造する際、鋳造スラブの温度が950℃未満の温度に低下することは許されない。薄スラブ温度が950℃を下回ると、Nbの析出が起こるからである。その後の再加熱工程で析出物を完全に固溶させることは困難であり、析出強化に効果がなくなるからである。
In step 108, molten steel is continuously cast into a slab.
The molten steel of the specified composition is first continuously cast by either a conventional continuous casting machine or a thin slab casting machine. When casting in a thin slab casting machine, it is not permissible for the temperature of the casting slab to drop below 950 ° C. This is because when the thin slab temperature is lower than 950 ° C., precipitation of Nb occurs. This is because it is difficult to completely dissolve the precipitate in the subsequent reheating step, and the effect of strengthening the precipitate is lost.

再加熱
上記に特定した組成のスラブを鋳造した後、そのスラブを1100℃~1200℃の温度で20分~2時間再加熱する。それ以前の加工処理ステップで形成されたNbおよび/またはVの析出物を完全に固溶させることを確実にするために、再加熱温度は1100℃超でなければならない。再加熱温度が1200℃を超えることは、オーステナイトが粗大化し、および/または過剰なスケールによる損失を招くため望ましくない。
Reheating After casting a slab with the composition specified above, the slab is reheated at a temperature of 1100 ° C to 1200 ° C for 20 minutes to 2 hours. The reheating temperature should be above 1100 ° C. to ensure that the Nb and / or V precipitates formed in the previous processing steps are completely dissolved. A reheating temperature above 1200 ° C. is not desirable as it causes austenite coarsening and / or loss due to excessive scale.

ステップ112において、スラブを、仕上圧延温度(FRT)840±30℃で熱延鋼鈑に熱間圧延する。 In step 112, the slab is hot-rolled into a hot-rolled steel plate at a finish rolling temperature (FRT) of 840 ± 30 ° C.

熱間圧延は、従来の熱間圧延機で圧延を行う場合、再結晶温度よりも高い温度で行う粗工程と、再結晶温度未満の温度で行う仕上工程とから構成される。鋼鈑を連続処理工程を用いて製造する場合、別個の粗圧延機はなく、圧延スケジュールは、鋳造組織を最初のスタンドで破壊し、再結晶温度未満で仕上げ圧延を行なうように設計される。より具体的には、いずれの設定でも仕上げ圧延はTFRTが840±30℃の温度で行う必要がある。 Hot rolling is composed of a roughing process performed at a temperature higher than the recrystallization temperature and a finishing process performed at a temperature lower than the recrystallization temperature when rolling with a conventional hot rolling machine. When the steel plate is manufactured using a continuous processing process, there is no separate rough rolling machine and the rolling schedule is designed to break the cast structure at the first stand and perform finish rolling below the recrystallization temperature. More specifically, in any setting, the finish rolling needs to be performed at a temperature of 840 ± 30 ° C. in TFRT.

ランアウトテーブル(ROT)での層状冷却
ステップ116で、ランアウトテーブル上で熱間圧延鋼鈑を冷却速度40℃~70℃/sで冷却する。この冷却速度は、中間温度(TINT)720≦TINT≦650を達成するまで維持する。
Layered cooling on the run-out table (ROT) In step 116, the hot-rolled steel plate is cooled on the run-out table at a cooling rate of 40 ° C. to 70 ° C./s. This cooling rate is maintained until the intermediate temperature (T INT ) 720 ≤ T INT ≤ 650 is achieved.

冷却速度は、パーライトの生成を防止するために、40℃/秒よりも大きくすべきである。どのようなパーライトまたは疑似パーライトでも形成されると、引張強度および伸びフランジ性の両方の劣化がもたらされる。冷却速度が大きいと、フェライト開始温度が低下し、フェライト粒径の微細化ももたらされる。また、フェライトの成長も阻害される。冷却速度を高め、圧延スケジュールを制御することによって、2~6μmの所望の結晶粒径を達成できる。所望量のフェライトが形成されないので、冷却速度は70℃/sを超えてはならない。この大きな冷却速度は、中間温度まで続ける。中間温度(TINT)は、650℃≦TINT≦720℃とすべきである。 The cooling rate should be greater than 40 ° C./sec to prevent the formation of pearlite. The formation of any pearlite or pseudo-pearlite results in deterioration of both tensile strength and stretch flangeability. When the cooling rate is high, the ferrite starting temperature is lowered, and the ferrite grain size is also made finer. In addition, the growth of ferrite is also inhibited. By increasing the cooling rate and controlling the rolling schedule, the desired crystal grain size of 2 to 6 μm can be achieved. The cooling rate should not exceed 70 ° C./s because the desired amount of ferrite is not formed. This large cooling rate continues to intermediate temperatures. The intermediate temperature (T INT ) should be 650 ° C ≤ T INT ≤ 720 ° C.

ステップ120では、鋼鈑をRoT上で搬送しながら自然冷却させる。空冷時間は非常に重要で、5~7秒である。鋼鈑の空冷時間が5秒未満だと、十分な量のフェライトが形成されない。他方、鋼鈑の空冷時間が7秒超だと、マルテンサイト量が不十分になる。 In step 120, the steel plate is naturally cooled while being conveyed on the RoT. Air cooling time is very important, 5-7 seconds. If the air cooling time of the steel plate is less than 5 seconds, a sufficient amount of ferrite will not be formed. On the other hand, if the air cooling time of the steel plate exceeds 7 seconds, the amount of martensite becomes insufficient.

この時間の間にオーステナイトはフェライトに変態する。しかし、完全に変態するには時間が不十分であるため、オーステナイト全体がフェライトに変態することはない。その結果、自然冷却の終了時に残留しているオーステナイトは炭素富化(リッチ)になっている。フェライトは鋼の平均炭素量を含有できないからである。 During this time, austenite transforms into ferrite. However, the entire austenite does not transform into ferrite because there is not enough time to completely transform it. As a result, the austenite remaining at the end of natural cooling is carbon-rich. This is because ferrite cannot contain the average carbon content of steel.

ステップ120で自然冷却の後、ステップ124において、鋼鈑を、さらに急冷する。これにより、残留していた炭素富化オーステナイトが確実にマルテンサイトに変態する。この期間の冷却速度は、400℃未満の巻取り温度に達するまで40℃~70℃/sである。冷却温度は、100℃程度の低温にできる。 After natural cooling in step 120, the steel plate is further rapidly cooled in step 124. This ensures that the remaining carbon-enriched austenite is transformed into martensite. The cooling rate during this period is 40 ° C. to 70 ° C./s until a winding temperature of less than 400 ° C. is reached. The cooling temperature can be as low as about 100 ° C.

固溶元素および微量合金化元素からの強化の寄与は限定されたものである。また、圧延および冷却の制御により可能な結晶粒の微細化の程度は2μmに制限される。これにより、高強度二相鋼が得られる。 The contribution of reinforcement from solid solution elements and trace alloying elements is limited. Further, the degree of grain refinement possible by controlling rolling and cooling is limited to 2 μm. As a result, high-strength duplex stainless steel can be obtained.

得られたミクロ組織は、フェライトのマトリクス内にマルテンサイト粒子/相を有するものである。ミクロ組織は均一である。換言すれば、フェライトマトリックス全体に均一にマルテンサイト相が分布している。さらに、ベイナイトまたは疑似パーライト/パーライトおよび粒界セメンタイトが回避されており、高強度二相鋼板は、良好な加工硬化率、低降伏強さおよび連続降伏を達成する。ミクロ組織の各相の寄与を以下に示す。 The resulting microstructure has martensitic particles / phase in the ferrite matrix. The microstructure is uniform. In other words, the martensite phase is uniformly distributed throughout the ferrite matrix. In addition, bainite or pseudo-pearlite / pearlite and grain boundary cementite are avoided, and high-strength two-phase steel sheets achieve good work hardening, low yield strength and continuous yield. The contribution of each phase of the microstructure is shown below.

a)フェライト
本発明による熱延鋼板は75~90体積%のフェライトを有する。フェライトは、Mnからの寄与による固溶強化により強化される。適切な加工条件を用いると、結晶粒径は2~5μmに制限される。フェライトの微粒化は、フェライトをホールペッチ(Hall-Petch)の関係によって強化する。また、微細なNb、V(CN)析出物の生成により析出強化される。
a) Ferrite The hot-rolled steel sheet according to the present invention has 75 to 90% by volume of ferrite. Ferrite is strengthened by solid solution strengthening due to contribution from Mn. With appropriate processing conditions, the crystal grain size is limited to 2-5 μm. Aluminization of ferrite enhances ferrite by a Hall-Petch relationship. Further, precipitation is strengthened by the formation of fine Nb and V (CN) precipitates.

b)マルテンサイト
ミクロ組織中のマルテンサイトの量は、10~25体積%である。マルテンサイトによる強化は、その構造、炭素含有量および高転位密度によるものである。
b) Martensite The amount of martensite in the microstructure is 10-25% by volume. Martensite reinforcement is due to its structure, carbon content and high dislocation density.

c)ベイナイト
ミクロ組織中のマルテンサイトの量は5体積%未満である。
c) The amount of martensite in the bainite microstructure is less than 5% by volume.

高強度二相鋼板は、第二相としてのマルテンサイトと結合したフェライトマトリクス中に微細な析出物が存在するため、疲労寿命が向上している。 The high-strength two-phase steel sheet has an improved fatigue life because fine precipitates are present in the ferrite matrix bonded to martensite as the second phase.

得られた高強度二相鋼板の降伏強さは350~500MPaである。得られた引張強さは、最小で600MPaである。均一伸び、全伸びは最小でそれぞれ16%、22%である。 The yield strength of the obtained high-strength two-phase steel sheet is 350 to 500 MPa. The obtained tensile strength is at least 600 MPa. The minimum uniform elongation and total elongation are 16% and 22%, respectively.

さらに、高強度二相鋼板の加工硬化指数(n)は0.15~0.16である。高強度二相鋼板の降伏強さの引張強さに対する比は0.6~0.8であり、打ち抜き穴の穴拡げ率は約40%である。 Further, the work hardening index (n) of the high-strength two-phase steel sheet is 0.15 to 0.16. The ratio of the yield strength of the high-strength two-phase steel sheet to the tensile strength is 0.6 to 0.8, and the hole expansion rate of the punched hole is about 40%.

例示のみを目的として、方法100(鋼鈑1)による(表1に示す)組成を有するスラブをCSPミルにより連続鋳造して、そのスラブを熱間圧延した。鋼鈑の機械的性質を表2、表3および表4に示す。鋼鈑のミクロ組織を図4、図5、図6および図7に示す。得られた機械的性質およびミクロ組織から、化学成分およびROT冷却パラメータが本開示の要件に適合する場合に目標の特性が達成できることが明らかである。 For the purpose of illustration only, a slab having a composition (shown in Table 1) according to the method 100 (steel plate 1) was continuously cast by a CSP mill, and the slab was hot-rolled. The mechanical properties of the steel plate are shown in Table 2, Table 3 and Table 4. The microstructure of the steel plate is shown in FIGS. 4, 5, 6 and 7. From the mechanical properties and microstructure obtained, it is clear that the desired properties can be achieved if the chemical composition and ROT cooling parameters meet the requirements of the present disclosure.

光学顕微鏡(ナイタールおよびレペラによりエッチングした)およびSEMによるミクロ組織を図4、図5、図6および図7に示す。そのミクロ組織はフェライトとマルテンサイトからなっている。50mmの測定部長さの引張試験サンプルを、ASTM E8規格に準拠して作製した。典型的な引張曲線を図3に示す。図表から明らかなように、新たに開発された鋼は600MPa以上の引張強さ、16%の均一伸び、22%以上の全伸びを有し、0.15という大きな加工硬化指数、降伏比(引張強さに対する降伏強さ)が0.6~0.8である。鋼は、フェライトマトリクス中に微細な析出物が分散している。これらの析出物の同定は、TEMにおけるエネルギー分散型分光法(EDS)および選択的領域回折(SAD)技術を用いて確認される。図8a~fに示すように、析出物は主としてNb(C、N)である。また、鋼は3μm未満の非常に微細な平均結晶粒径を有する。 Microstructures by light microscope (etched with Nital and Repeller) and SEM are shown in FIGS. 4, 5, 6 and 7. Its microstructure consists of ferrite and martensite. Tensile test samples with a measuring section length of 50 mm were prepared in accordance with ASTM E8 standards. A typical tensile curve is shown in FIG. As is clear from the chart, the newly developed steel has a tensile strength of 600 MPa or more, a uniform elongation of 16%, a total elongation of 22% or more, a work hardening index of 0.15, and a yield ratio (tensile). The yield strength with respect to the strength) is 0.6 to 0.8. In steel, fine precipitates are dispersed in the ferrite matrix. Identification of these precipitates is confirmed using energy dispersive spectroscopy (EDS) and selective region diffraction (SAD) techniques in TEM. As shown in FIGS. 8a-f, the precipitate is mainly Nb (C, N). Further, the steel has a very fine average crystal grain size of less than 3 μm.

Figure 0007063810000001
Figure 0007063810000001

Figure 0007063810000002
Figure 0007063810000002

Figure 0007063810000003
Figure 0007063810000003

Figure 0007063810000004
Figure 0007063810000004

Claims (17)

二相鋼板の製造方法であって、
化学組成が、重量%で、C:0.03~0.12、Mn:0.8~1.5、Si:0.1未満、Cr:0.3~0.7、S:最大0.008、P:最大0.025、Al:0.01~0.1、N:最大0.007、Nb:0.005~0.035、V:最大0.06を含み、残部が鉄及び不可避不純物である溶融鋼を製造するステップ、
前記溶融鋼をスラブに連続鋳造するステップ、
仕上圧延温度(FRT)840±30℃で前記スラブを熱延鋼板に熱間圧延するステップ、
前記熱延鋼板を冷却速度40~70℃/sで中間温度(TINT)650℃≦TINT≦720℃に達するまでランアウトテーブル上で冷却するステップ、
前記熱延鋼板を5~7秒間自然冷却するスッテプ、および
前記熱延鋼板を40~70℃/sの冷却速度で400℃未満の巻取り温度まで急冷して残留する炭素富化オーステナイトをマルテンサイトに変態させるステップ
を含み、
前記二相鋼板は、75~90体積%のフェライト、10~25体積%のマルテンサイト、5体積%未満のベイナイトを有し、結晶粒径が2~5μmである、製造方法。
It is a manufacturing method of two-phase steel sheet.
The chemical composition is C: 0.03 to 0.12, Mn: 0.8 to 1.5, Si: less than 0.1, Cr: 0.3 to 0.7, S: maximum 0. 008, P: maximum 0.025, Al: 0.01 to 0.1, N: maximum 0.007, Nb: 0.005 to 0.035, V: maximum 0.06, the balance is iron and unavoidable Steps to manufacture molten steel, which is an impurity,
The step of continuously casting the molten steel into a slab,
A step of hot rolling the slab onto a hot-rolled steel sheet at a finish rolling temperature (FRT) of 840 ± 30 ° C.
A step of cooling the hot-rolled steel sheet on a run-out table at a cooling rate of 40 to 70 ° C./s until an intermediate temperature (T INT ) of 650 ° C ≤ T INT ≤ 720 ° C is reached.
Martensite is a step that naturally cools the hot-rolled steel sheet for 5 to 7 seconds, and martensite that remains after quenching the hot-rolled steel sheet to a winding temperature of less than 400 ° C. at a cooling rate of 40 to 70 ° C./s . Including the step of transforming into
The production method, wherein the two-phase steel sheet has 75 to 90% by volume of ferrite, 10 to 25% by volume of martensite, and less than 5% by volume of bainite, and has a crystal grain size of 2 to 5 μm.
析出物を固溶させるために、連続鋳造された前記スラブを1100℃~1200℃の温度範囲で20分~2時間再加熱する、請求項1に記載された製造方法。 The production method according to claim 1, wherein the continuously cast slab is reheated in a temperature range of 1100 ° C. to 1200 ° C. for 20 minutes to 2 hours in order to dissolve the precipitate. 前記二相鋼板の降伏強さが350~500MPaである、請求項1に記載された製造方法。 The manufacturing method according to claim 1, wherein the two-phase steel sheet has a yield strength of 350 to 500 MPa. 前記二相鋼板が、600MPa以上の引張強さを有する、請求項1に記載された製造方法。 The manufacturing method according to claim 1, wherein the two-phase steel sheet has a tensile strength of 600 MPa or more. 前記二相鋼板が、16%以上の均一伸びを有する、請求項1に記載された製造方法。 The manufacturing method according to claim 1, wherein the two-phase steel sheet has a uniform elongation of 16% or more. 前記二相鋼板が、22%以上の全伸びを有する、請求項1に記載された製造方法。 The manufacturing method according to claim 1, wherein the two-phase steel sheet has a total elongation of 22% or more. 前記二相鋼板の加工硬化指数(n)が0.15~0.16である、請求項1に記載された製造方法。 The manufacturing method according to claim 1, wherein the work hardening index (n) of the two-phase steel sheet is 0.15 to 0.16. 前記二相鋼板の降伏強さの引張強さに対する比が0.6~0.8である、請求項1に記載された製造方法。 The manufacturing method according to claim 1, wherein the ratio of the yield strength of the two-phase steel sheet to the tensile strength is 0.6 to 0.8. 前記二相鋼板は、打ち抜き穴の穴拡げ率が38.5%~40%である、請求項1に記載された製造方法。 The manufacturing method according to claim 1, wherein the two-phase steel sheet has a hole expansion rate of 38.5% to 40% for punched holes. 重量%で、C:0.03~0.12、Mn:0.8~1.5、Si:0.1未満、Cr:0.3~0.7、S:最大0.008、P:最大0.025、Al:0.01~0.1、N:最大0.007、Nb:0.005~0.035、V:最大0.06を含み、残部が鉄及び不可避不純物である化学組成を有し、75~90体積%のフェライト、10~25体積%のマルテンサイト、5体積%未満のベイナイトを有し、結晶粒径が2~5μmである、二相鋼鈑。 By weight%, C: 0.03 to 0.12, Mn: 0.8 to 1.5, Si: less than 0.1, Cr: 0.3 to 0.7, S: maximum 0.008, P: Chemistry containing up to 0.025, Al: 0.01-0.1, N: up to 0.007, Nb: 0.005 to 0.035, V: up to 0.06, with the balance being iron and unavoidable impurities A duplex stainless steel having a composition of 75-90% by volume of ferrite, 10 to 25% by volume of martensite, less than 5% by volume of bainite, and a crystalline grain size of 2 to 5 μm. 前記二相鋼板の降伏強さが350~500MPaである、請求項10に記載された二相鋼鈑。 The duplex stainless steel sheet according to claim 10, wherein the duplex stainless steel has a yield strength of 350 to 500 MPa. 前記二相鋼板が、600MPa以上の引張強さを有する、請求項10に記載された二相鋼鈑。 The duplex stainless steel sheet according to claim 10, wherein the duplex stainless steel sheet has a tensile strength of 600 MPa or more. 前記二相鋼板が、16%以上の均一伸びを有する、請求項10に記載された二相鋼鈑。 The duplex stainless steel sheet according to claim 10, wherein the duplex stainless steel sheet has a uniform elongation of 16% or more. 前記二相鋼板が、22%以上の全伸びを有する、請求項10に記載された二相鋼鈑。 The duplex stainless steel sheet according to claim 10, wherein the duplex stainless steel sheet has a total elongation of 22% or more. 前記二相鋼板の加工硬化指数(n)が0.15~0.16である、請求項10に記載された二相鋼鈑。 The duplex stainless steel plate according to claim 10, wherein the work hardening index (n) of the duplex stainless steel sheet is 0.15 to 0.16. 前記二相鋼板の降伏強さの引張強さに対する比が0.6~0.8である、請求項10に記載された二相鋼鈑。 The duplex stainless steel sheet according to claim 10, wherein the ratio of the yield strength of the duplex stainless steel to the tensile strength is 0.6 to 0.8. 前記二相鋼板は、打ち抜き穴の穴拡げ率が38.5%~40%である、請求項10に記載された二相鋼鈑。
The duplex stainless steel sheet according to claim 10, wherein the duplex stainless steel sheet has a hole expansion ratio of 38.5% to 40%.
JP2018534952A 2017-02-10 2017-05-10 High-strength duplex stainless steel with a minimum tensile strength of 600 MPa, hot-rolled, precipitation-strengthened, and finely divided crystal grains, and a method for manufacturing the same. Active JP7063810B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201731004831 2017-02-10
IN201731004831 2017-02-10
PCT/IN2017/050171 WO2018146695A1 (en) 2017-02-10 2017-05-10 A hot rolled precipitation strengthened and grain refined high strength dual phase steel sheet possessing 600 mpa minimum tensile strength and a process thereof

Publications (2)

Publication Number Publication Date
JP2020509151A JP2020509151A (en) 2020-03-26
JP7063810B2 true JP7063810B2 (en) 2022-05-09

Family

ID=59366465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534952A Active JP7063810B2 (en) 2017-02-10 2017-05-10 High-strength duplex stainless steel with a minimum tensile strength of 600 MPa, hot-rolled, precipitation-strengthened, and finely divided crystal grains, and a method for manufacturing the same.

Country Status (6)

Country Link
US (1) US20200123630A1 (en)
EP (1) EP3408418B1 (en)
JP (1) JP7063810B2 (en)
KR (1) KR20190131408A (en)
ES (1) ES2951778T3 (en)
WO (1) WO2018146695A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020096B (en) * 2019-11-22 2021-05-28 辽宁科技大学 Single LF (low frequency) process low-nitrogen control method for dual-phase automobile steel DP590
CN113926892B (en) * 2020-06-29 2024-07-12 宝山钢铁股份有限公司 Stamping forming process and application of hot-rolled ultra-high strength dual-phase steel part with tensile strength of more than or equal to 980MPa
CN112430772A (en) * 2020-09-28 2021-03-02 甘肃酒钢集团宏兴钢铁股份有限公司 CSP flow-based medium-temperature coiling type hot rolling DP600 production method
KR20230165311A (en) * 2021-04-02 2023-12-05 바오샨 아이론 앤 스틸 유한공사 Two-phase steel with a tensile strength of 980 MPa or more and hot-dip galvanized two-phase steel and rapid heat treatment manufacturing method thereof
CN115029622B (en) * 2022-04-29 2023-05-23 武汉钢铁有限公司 High-surface-quality hot-rolled dual-phase steel and production process thereof
CN115491601A (en) * 2022-09-20 2022-12-20 武汉钢铁有限公司 Economical magnet yoke steel with yield strength of 350MPa grade produced by CSP production line and production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206864A (en) 2004-01-21 2005-08-04 Kobe Steel Ltd High-strength hot rolled steel sheet with excellent workability, fatigue characteristic, and surface characteristic
WO2008123366A1 (en) 2007-03-27 2008-10-16 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same
JP2012197516A (en) 2012-05-08 2012-10-18 Sumitomo Metal Ind Ltd Method for manufacturing hot-rolled steel sheet
CN104451402A (en) 2014-12-19 2015-03-25 山东钢铁股份有限公司 700MPa-grade hot-rolled dual-phase steel and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137426A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Production of low yield ratio, high tensile hot rolled steel plate by mixed structure
JP3235416B2 (en) * 1995-07-24 2001-12-04 住友金属工業株式会社 Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP4051999B2 (en) 2001-06-19 2008-02-27 Jfeスチール株式会社 High tensile hot-rolled steel sheet excellent in shape freezing property and durability fatigue property after forming, and method for producing the same
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
JP4661306B2 (en) * 2005-03-29 2011-03-30 Jfeスチール株式会社 Manufacturing method of ultra-high strength hot-rolled steel sheet
JP5040197B2 (en) 2006-07-10 2012-10-03 Jfeスチール株式会社 Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5348071B2 (en) 2010-05-31 2013-11-20 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
KR20120097173A (en) * 2011-02-24 2012-09-03 현대제철 주식회사 High strength steel sheet and method of manufacturing the same
WO2014002941A1 (en) * 2012-06-26 2014-01-03 新日鐵住金株式会社 High-strength hot-rolled steel sheet and process for producing same
KR20150025952A (en) * 2013-08-30 2015-03-11 현대제철 주식회사 High strength plated hot-rolled steel sheet and method of manufacturing the same
JP6275510B2 (en) * 2014-02-27 2018-02-07 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
DE102016121905A1 (en) * 2016-11-15 2018-05-17 Salzgitter Flachstahl Gmbh Method for producing dual-phase steel wheel discs with improved cold workability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206864A (en) 2004-01-21 2005-08-04 Kobe Steel Ltd High-strength hot rolled steel sheet with excellent workability, fatigue characteristic, and surface characteristic
WO2008123366A1 (en) 2007-03-27 2008-10-16 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same
JP2012197516A (en) 2012-05-08 2012-10-18 Sumitomo Metal Ind Ltd Method for manufacturing hot-rolled steel sheet
CN104451402A (en) 2014-12-19 2015-03-25 山东钢铁股份有限公司 700MPa-grade hot-rolled dual-phase steel and manufacturing method thereof

Also Published As

Publication number Publication date
WO2018146695A1 (en) 2018-08-16
JP2020509151A (en) 2020-03-26
EP3408418A1 (en) 2018-12-05
KR20190131408A (en) 2019-11-26
US20200123630A1 (en) 2020-04-23
EP3408418B1 (en) 2023-05-10
ES2951778T3 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP7063810B2 (en) High-strength duplex stainless steel with a minimum tensile strength of 600 MPa, hot-rolled, precipitation-strengthened, and finely divided crystal grains, and a method for manufacturing the same.
JP5040197B2 (en) Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5283504B2 (en) Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
JP3889766B2 (en) High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
US9994941B2 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP2011225980A (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
JP3889765B2 (en) High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method
JP2013227603A (en) High-strength hot-rolled steel sheet excellent in stretchability, hole expansibility and low-temperature toughness and manufacturing method therefor
RU2768710C1 (en) Hot-rolled steel sheet with high opening ratio and method of manufacture thereof
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
KR101543838B1 (en) Low yield ratio high-strength hot rolled steel sheet having excellent impact resistance and method for manufacturing the same
KR20030020391A (en) High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
KR101630977B1 (en) High strength hot rolled steel sheet having excellent formability and method for manufacturing the same
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
CN116368253A (en) High-strength steel sheet excellent in heat stability and method for producing same
CN113195771B (en) High-strength hot-rolled steel sheet having excellent formability and method for producing same
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
KR101988765B1 (en) Hot rolled steel sheet with excellent durability and method for manufacturing thereof
KR101977487B1 (en) Hot rolled steel sheet with excellent weldability and method for manufacturing thereof
KR101828699B1 (en) Cold-rolled steel sheet for car component and manufacturing method for the same
KR101657835B1 (en) High strength hot-rolled steel sheet having excellent press formability and method for manufacturing the same
KR20130034205A (en) Shape steel and method of manufacturing the shape steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150