JP3889766B2 - High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method - Google Patents
High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method Download PDFInfo
- Publication number
- JP3889766B2 JP3889766B2 JP2005092611A JP2005092611A JP3889766B2 JP 3889766 B2 JP3889766 B2 JP 3889766B2 JP 2005092611 A JP2005092611 A JP 2005092611A JP 2005092611 A JP2005092611 A JP 2005092611A JP 3889766 B2 JP3889766 B2 JP 3889766B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- rolled steel
- less
- strength hot
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、乗用車、トラック等の自動車や産業機械等に使用される高強度熱延鋼板およびその製造方法に関するものであり、特にその優れた穴拡げ加工性を活かして上記各種用途の部品素材として有効に活用できる高強度熱延鋼板、およびこうした熱延鋼板を製造するための有用な方法に関するものである。 The present invention relates to a high-strength hot-rolled steel sheet used for automobiles such as passenger cars and trucks, industrial machines, and the like, and a method for producing the same. The present invention relates to a high-strength hot-rolled steel sheet that can be effectively used, and a useful method for producing such a hot-rolled steel sheet.
近年、省エネルギーの観点からの自動車の燃費向上のための車体の軽量化や、自動車の衝突安全性の確保等を背景として、より高強度(例えば、引張強度で780MPa以上)の熱延鋼板の需要が増加してきている。またこうした高強度熱延鋼板が用いられる用途において、当該熱延鋼板には伸びは勿論のこと穴拡げ加工性が優れていることが要求される。こうしたことから、素材として用いられる高強度鋼板における穴拡げ性を改善するための技術が各種提案されている。 In recent years, demand for hot-rolled steel sheets with higher strength (for example, 780 MPa or more in tensile strength) against the background of weight reduction of vehicle bodies to improve fuel efficiency of automobiles from the viewpoint of energy saving and ensuring safety of automobile collisions, etc. Has been increasing. In applications where such high-strength hot-rolled steel sheets are used, the hot-rolled steel sheets are required to have excellent hole expansion workability as well as elongation. For these reasons, various techniques for improving hole expansibility in high-strength steel sheets used as raw materials have been proposed.
こうした加工用高強度熱延鋼板として、残留オーステナイトやマルテンサイトを有する複合組織鋼板が広く知られている。例えば特許文献1には、フェライト、ベイナイト、残留オーステナイトおよびマルテンサイト組織からなる複合組織鋼板であって、極低P鋼化、ミクロ組織や介在物の最大長さ等の制御、ミクロ組織の硬さ制御等によって、穴拡げ性を向上させる方法が提案されている。
As such a high-strength hot-rolled steel sheet for processing, a multi-structure steel sheet having retained austenite and martensite is widely known. For example,
また例えば特許文献2には、フェライトを主体としたフェライト−ベイナイト組織で、鋼中TiやNbと反応していない非固定炭素量と、時効処理時に粒界に析出して強度を高める未析出炭素量を制御した高強度鋼板が提案されている。更に、特許文献3には、ミクロ組織が主にフェライトからなり、ベイニティックフェライトとポリゴナル・フェライトで構成されるミクロ組織を有する高強度熱延鋼板とすることによって穴拡げ加工性を改善する技術が提案されている。またこの技術においては、上記組織を作り込むために、熱間圧延終了後からコイルに巻取る工程での冷却条件とそれを制御するための方法が開示されている。
Further, for example,
しかしながら、これまで提案されている技術では、安定して良好な穴拡げ加工性を発揮できていないのが実情である。
本発明は、上記した従来の高強度熱延鋼板が持つ問題を解決するためになされたものであって、その目的は、引張強度が780MPa以上の高強度熱延鋼板であって、優れた伸びおよび穴拡げ加工性を有する高強度熱延鋼板、並びにこうした高強度熱延鋼板を製造するための有用な方法を提供することにある。 The present invention has been made in order to solve the problems of the above-described conventional high-strength hot-rolled steel sheet, and the purpose thereof is a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, and has excellent elongation. It is another object of the present invention to provide a high-strength hot-rolled steel sheet having hole expandability and a useful method for producing such a high-strength hot-rolled steel sheet.
上記目的を達成し得た本発明の高強度熱延鋼板とは、C:0.05〜0.15%(質量%の意味、以下同じ)、Si:1.50%以下(0%を含まない)、Mn:0.5〜2.5%、P:0.035%以下(0%を含まない)、S:0.01%以下(0%を含む)、Al:0.020〜0.15%、Ti:0.05〜0.2%を夫々含有し、残部がFeおよび不可避不純物からなる鋼板であって、金属組織が60〜95体積%のベイナイトの他、固溶強化または析出強化したフェライトまたはフェライトとマルテンサイトを含む組織であり、当該鋼板の衝撃試験で得られる破面遷移温度vTrsが0℃以下である点に要旨を有するものである。 The high-strength hot-rolled steel sheet of the present invention that can achieve the above-mentioned object is: C: 0.05 to 0.15% (meaning of mass%, the same applies hereinafter), Si: 1.50% or less (including 0% Mn: 0.5 to 2.5%, P: 0.035% or less (not including 0%), S: 0.01% or less (including 0%), Al: 0.020 to 0 .15%, Ti: 0.05 to 0.2% of each steel sheet, the balance being Fe and unavoidable impurities, the metal structure being 60 to 95% by volume of bainite, solid solution strengthening or precipitation It is a structure containing reinforced ferrite or ferrite and martensite, and has a gist in that the fracture surface transition temperature vTrs obtained by an impact test of the steel sheet is 0 ° C. or less.
本発明の熱延鋼板においては、必要によって更に、(a)Ni:1.0%以下(0%を含まない)、(b)Cr:1.0%以下(0%を含まない)、(c)Mo:0.5%以下(0%を含まない)、(d)Nb:0.1%以下(0%を含まない)、(e)B:0.01%以下(0%を含まない)、(f)Ca:0.01%以下(0%を含まない)、(g)Cu:1.0%以下(0%を含まない)、等を含有させることも有効であり、含有させる元素の種類に応じて熱延鋼板の特性が更に改善される。 In the hot-rolled steel sheet of the present invention, if necessary, (a) Ni: 1.0% or less (not including 0%), (b) Cr: 1.0% or less (not including 0%), ( c) Mo: 0.5% or less (excluding 0%), (d) Nb: 0.1% or less (not including 0%), (e) B: 0.01% or less (including 0%) (F) Ca: 0.01% or less (not including 0%), (g) Cu: 1.0% or less (not including 0%), etc. are also effective and contained. The properties of the hot-rolled steel sheet are further improved according to the type of element to be used.
一方、上記のような高強度熱延鋼板を製造するに当っては、前記化学成分を有する鋼スラブを1150〜1300℃の温度範囲に加熱する工程と、加熱後の鋼スラブをAr3変態点以上の仕上げ温度で熱間圧延して鋼板とする工程と、熱間圧延後の鋼板を400〜550℃の温度域まで平均冷却速度:30℃/秒以上で冷却してコイルに巻取る工程と、巻取り後のコイルを300℃以下の温度まで平均冷却速度:50〜400℃/時で冷却する工程を含むようにして製造すれば良い。 On the other hand, in producing the above-described high-strength hot-rolled steel sheet, a step of heating the steel slab having the chemical components to a temperature range of 1150 to 1300 ° C., and the steel slab after heating the Ar 3 transformation point A step of hot rolling at the above finishing temperature to form a steel plate, and a step of cooling the steel plate after hot rolling to a temperature range of 400 to 550 ° C. at an average cooling rate of 30 ° C./second or more and winding it on a coil The coil after winding may be manufactured so as to include a step of cooling to a temperature of 300 ° C. or lower at an average cooling rate of 50 to 400 ° C./hour.
本発明によれば、化学成分組成およびミクロ組織の他、破面遷移温度vTrsを適切に制御することによって、伸びおよび穴拡げ加工性に優れた熱延鋼板が実現でき、こうした熱延鋼板は板厚2mmにおいて、引張強度780MPa以上、伸びが20%以上、および穴拡げ率60%以上の高強度熱延鋼板となる。こうした熱延鋼板では、従来では成形性の観点から適用されなかった熱延鋼板を自動車や産業機械等の様々な部材に適用することができ、部材の低コスト化に寄与するばかりか、各種部品の板厚低減および自動車の衝突安全性の向上を可能とし、しいては自動車の高性能化に寄与するものとなる。 According to the present invention, by appropriately controlling the fracture surface transition temperature vTrs in addition to the chemical composition and microstructure, a hot-rolled steel sheet excellent in elongation and hole expansion workability can be realized. When the thickness is 2 mm, a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, an elongation of 20% or more, and a hole expansion ratio of 60% or more is obtained. In such hot-rolled steel sheets, hot-rolled steel sheets that were not conventionally applied from the viewpoint of formability can be applied to various members such as automobiles and industrial machines, which not only contributes to cost reduction of members, but also various parts. This makes it possible to reduce the plate thickness and improve the collision safety of the automobile, thereby contributing to the enhancement of the performance of the automobile.
本発明者らは、穴拡げ加工性に優れた高強度熱延鋼板を実現するべく、様々な角度から検討した。その結果、鋼の化学成分組成を適切に調整したうえで、製造条件を規制し、鋼材のミクロ組織をフェライトおよびフェライトからなり、ベイナイト体積率が60〜95%とし、更にTiCおよび/またはNbやMoの炭化物をこの組織中に微細に析出させるようにすれば、引張強度が780MPa以上の鋼板が実現できることが判明した。また、コイルに巻取った後に、巻取りコイルの冷却条件を制御することによって、衝撃試験によって求められる破面遷移温度vTrsを制御することが可能となり、この破面遷移温度vTrsを適切な範囲となるようにすれば熱延鋼板の穴拡げ加工性を良好にできることを見出し、本発明を完成した。以下、本発明が完成された経緯に沿って、その作用効果について説明する。 The present inventors examined from various angles in order to realize a high-strength hot-rolled steel sheet excellent in hole expansion workability. As a result, after appropriately adjusting the chemical composition of the steel, the production conditions are regulated, the microstructure of the steel material is made of ferrite and ferrite, the bainite volume fraction is 60 to 95%, and TiC and / or Nb or It was found that a steel sheet having a tensile strength of 780 MPa or more can be realized by finely depositing Mo carbide in this structure. In addition, by controlling the cooling condition of the winding coil after winding the coil, it is possible to control the fracture surface transition temperature vTrs obtained by the impact test. As a result, it was found that the hole expansion workability of the hot-rolled steel sheet can be improved, and the present invention has been completed. Hereinafter, along with the background of the completion of the present invention, the function and effect will be described.
780MPa以上の引張強度を有する鋼板において、伸びおよび穴拡げ加工性(以下、「穴拡げ性」と呼ぶ)を向上させるには、できるだけ低C化し、主相をベイナイト組織とすると共に、固溶強化および析出強化したフェライト組織を適切な体積分率で含有させることが有効であり、低C化することで、ベイナイトの硬度を低減させて、ベイナイトの延性を改善させると共に、固溶強化や析出強化したフェライトとの硬度差を小さくできることから、高い伸びと高い穴拡げ性を確保できるものと考えられる。しかしながら、同一組成、同一条件で熱間圧延された鋼板であっても、コイルによって穴拡げ性が変化することがある。 In order to improve the elongation and hole expansion workability (hereinafter referred to as “hole expansion property”) in a steel sheet having a tensile strength of 780 MPa or more, the C is made as low as possible, the main phase is made a bainite structure, and solid solution strengthening is performed. In addition, it is effective to contain precipitation strengthened ferrite structure at an appropriate volume fraction, and by lowering C, the hardness of bainite is reduced, the ductility of bainite is improved, and solid solution strengthening and precipitation strengthening are performed. It can be considered that high elongation and high hole expansibility can be secured because the difference in hardness from the obtained ferrite can be reduced. However, even if the steel sheet is hot rolled under the same composition and the same conditions, the hole expandability may change depending on the coil.
そこで、本発明者らは、穴拡げ性と靭性の関係について着目し、衝撃試験で求められる破面遷移温度vTrsと穴拡げ性の関係について調査したところ、これらには良好な相関関係があり、穴拡げ率(測定方法については後述する)で60%以上の良好な穴拡げ性を確保するためには、破面遷移温度vTrsを0℃以下となるようにすれば良いことを見出したのである(後記図1、3参照)。 Therefore, the present inventors paid attention to the relationship between hole expandability and toughness, and investigated the relationship between the fracture surface transition temperature vTrs and hole expandability required in the impact test, and these have a good correlation, It was found that the fracture surface transition temperature vTrs should be 0 ° C. or lower in order to ensure good hole expandability of 60% or more with a hole expansion rate (measurement method will be described later). (See FIGS. 1 and 3 below).
上記の破面遷移温度vTrsの高い(即ち、靭性値の低い)鋼板について更に詳細に調査したところ、低温破壊させると粒界破壊すること、およびこの粒界破面をオージェ分析装置を用いて分析するとPの粒界偏析が生じていることが観察された。これに対して、靭性が良好(即ち、破面遷移温度が低い)とされる鋼板では、低温で破壊させても劈開破壊しか認められず、粒界に偏析した元素の有無については確認できないことが判明した。 The above-mentioned steel sheet with a high fracture surface transition temperature vTrs (that is, a low toughness value) was investigated in more detail, and it was found that grain boundary fracture occurred when subjected to low temperature fracture, and this grain boundary fracture surface was analyzed using an Auger analyzer. Then, it was observed that P grain boundary segregation occurred. On the other hand, in steel sheets with good toughness (that is, fracture surface transition temperature is low), only cleaving fractures are observed even when fractured at low temperatures, and the presence or absence of segregated elements at grain boundaries cannot be confirmed. There was found.
上記のようなフェライト粒界に偏析するPは、巻取りコイルの冷却が徐冷となることによって、粒内に比べて不安定な粒界にPが拡散・偏析したものと考えることができた。本発明者らは、上記のようなPの偏析を防止すれば靭性を良好にできるとの観点から、その手段について更に検討を重ねた結果、拡散時間を短くすることが有効ではないかとの着想に基づいて、そのための具体的手段について様々な角度から検討を加えた。その結果、鋼板をコイルに巻取った後、300℃以下の温度範囲まで50℃/時(以下、「℃/hr」と記す)以上の平均冷却速度で冷却することによって、破面遷移温度vTrsが低くなって靭性値が向上し得ることが判明したのである(後記図2、4参照)。 The P segregating at the ferrite grain boundaries as described above could be thought to be that P diffused and segregated at grain boundaries that were unstable compared to the inside of the grains due to the slow cooling of the winding coil. . From the viewpoint that the toughness can be improved by preventing the segregation of P as described above, the present inventors have further studied the means, and as a result, thought that it would be effective to shorten the diffusion time. Based on the above, we examined the specific means for that from various angles. As a result, after winding the steel sheet in a coil, the fracture surface transition temperature vTrs is obtained by cooling at an average cooling rate of 50 ° C./hour (hereinafter referred to as “° C./hr”) to a temperature range of 300 ° C. or lower. It has been found that the toughness value can be improved by lowering (see FIGS. 2 and 4 below).
本発明の熱延鋼板では、その基本的な機械的特性(降伏強度YS、引張強さTS、伸びEL等)を具備させるためには、その化学成分組成も適切に調整する必要があるが、本発明で規定する化学成分組成の範囲限定理由は次の通りである。 In the hot-rolled steel sheet of the present invention, in order to provide the basic mechanical properties (yield strength YS, tensile strength TS, elongation EL, etc.), it is necessary to appropriately adjust the chemical composition, The reasons for limiting the range of the chemical composition defined in the present invention are as follows.
C:0.05〜0.15%
Cは強度向上元素として基本的な成分であり、鋼板の引張強度780MPa以上を確保するためには0.05%以上含有させる必要がある。しかしながら、C含有量が0.15%を超えると、ミクロ組織にフェライト以外の第2相(例えば、マルテンサイト等)が生成、増加してしまい、穴拡げ性が劣化することになる。尚、C含有量の好ましい下限は0.06%であり、好ましい上限は0.10%である。
C: 0.05 to 0.15%
C is a basic component as a strength improving element, and it is necessary to contain 0.05% or more in order to ensure a tensile strength of 780 MPa or more of the steel sheet. However, if the C content exceeds 0.15%, the second phase other than ferrite (for example, martensite and the like) is generated and increased in the microstructure, and the hole expandability is deteriorated. In addition, the minimum with preferable C content is 0.06%, and a preferable upper limit is 0.10%.
Si:1.5%以下(0%を含まない)
Siはポリゴナルフェライトの生成を促進し、伸びおよび穴拡げ性を低下させずに強度を確保するのに有効は元素である。こうした効果はその含有量が増加するにつれて大きくなるが、過剰に含有されると表面性状が顕著に劣化すると共に、熱間変形抵抗を増大させ、鋼板の製造が困難になるので、その含有量は1.5%以下とすべきである。尚、Si含有量の好ましい下限は0.2%であり、好ましい上限は1.0%である。
Si: 1.5% or less (excluding 0%)
Si is an element effective in promoting the formation of polygonal ferrite and ensuring strength without deteriorating elongation and hole expansibility. These effects increase as the content increases. However, if the content is excessive, the surface properties are significantly deteriorated, the hot deformation resistance is increased, and the manufacture of the steel sheet becomes difficult. Should be less than 1.5%. In addition, the minimum with preferable Si content is 0.2%, and a preferable upper limit is 1.0%.
Mn:0.5〜2.5%
Mnは鋼を固溶強化するのに有用な元素であり、780MPa以上の引張強度を確保するためには、少なくとも0.5%以上含有させる必要がある。しかしながら、Mnを過剰に含有させると焼き入れ性が高くなり過ぎて変態生成物を多量に生成し、高い穴拡げ率を確保することが困難になるので、2.5%以下とすべきである。尚、Mn含有量の好ましい下限は1.4%であり、好ましい上限は2.3%である。
Mn: 0.5 to 2.5%
Mn is an element useful for solid solution strengthening of steel, and in order to ensure a tensile strength of 780 MPa or more, it is necessary to contain at least 0.5% or more. However, if Mn is contained excessively, the hardenability becomes too high and a large amount of transformation product is generated, and it becomes difficult to ensure a high hole expansion rate, so it should be 2.5% or less. . In addition, the minimum with preferable Mn content is 1.4%, and a preferable upper limit is 2.3%.
P:0.035%以下(0%を含まない)
Pは、延性を劣化させずに、鋼を固溶強化するのに有効な元素であり、本発明では特に重要な元素である。Pの含有量が過剰になると、コイル巻取り後の冷却中に粒界中に偏析し、靭性を劣化させ、破面遷移温度vTrsを上昇させることになる。こうしたことから、Pの含有量は、0.035%以下とするのが良い。尚、P含有量の好ましい上限は、0.025%である。
P: 0.035% or less (excluding 0%)
P is an element effective for solid solution strengthening of steel without deteriorating ductility, and is an especially important element in the present invention. When the content of P is excessive, segregation occurs in the grain boundary during cooling after coil winding, which deteriorates toughness and raises the fracture surface transition temperature vTrs. For these reasons, the P content is preferably 0.035% or less. In addition, the upper limit with preferable P content is 0.025%.
S:0.01%以下(0%を含む)
Sは製造工程で不可避的に混入する元素であるが、穴拡げ性に悪影響を及ぼす硫化物系介在物を形成するので、できるだけ低減することが好ましい。こうした観点から、S含有量は0.01%以下に抑制するのが良い。尚S含有量の好ましい上限は、0.008%であり、より好ましくは0.005%以下とするのが良い。
S: 0.01% or less (including 0%)
S is an element inevitably mixed in the manufacturing process, but it forms sulfide inclusions that adversely affect hole expansibility, so it is preferable to reduce it as much as possible. From such a viewpoint, the S content is preferably suppressed to 0.01% or less. In addition, the upper limit with preferable S content is 0.008%, It is good to set it as 0.005% or less more preferably.
Al:0.02〜0.15%
Alは溶製時の脱酸元素として添加され、鋼の清浄度を向上させるのに有効な元素であるが。こうした効果を発揮させためには、Alが0.02%以上含有させる必要があるが、その含有量が過剰になるとアルミナ系介在物が多量に生成して表面疵の原因となるので、0,15%以下とする必要がある。尚、Al含有量の好ましい下限は0.025%であり、好ましい上限は0.06%である。
Al: 0.02-0.15%
Although Al is added as a deoxidizing element during melting, it is an effective element for improving the cleanliness of steel. In order to exert such an effect, it is necessary to contain Al by 0.02% or more. However, if the content is excessive, a large amount of alumina inclusions are generated and cause surface defects. It is necessary to make it 15% or less. In addition, the minimum with preferable Al content is 0.025%, and a preferable upper limit is 0.06%.
Ti:0.05〜0.2%
Tiは,フェライト中のCやNを析出物として析出強化し、フェライトを強化すると共に、フェライト中の固溶C量およびセメンタイト量を低減し、穴拡げ性を向上させるのに有効な元素であり、780MPa以上の引張強度を確保する上で重要な元素である。これらの効果を発揮させるためには、Ti含有量は0.05%以上とする必要がある。しかしながら、Ti含有量が過剰になると延性が劣化すると共に、上記効果も飽和するので0.2%以下とする必要がある。尚、Ti含有量の好ましい下限は0.08%であり、好ましい上限は0.18%である。
Ti: 0.05 to 0.2%
Ti is an element effective for precipitation strengthening by using C and N in ferrite as precipitates, strengthening ferrite, reducing the amount of dissolved C and cementite in ferrite, and improving hole expandability. , An element important in securing a tensile strength of 780 MPa or more. In order to exert these effects, the Ti content needs to be 0.05% or more. However, if the Ti content is excessive, the ductility deteriorates and the above effect is saturated, so it is necessary to make it 0.2% or less. In addition, the minimum with preferable Ti content is 0.08%, and a preferable upper limit is 0.18%.
本発明の熱延鋼板においては、上記成分の他はFeおよび不可避不純物(例えば、VやSn等)からなるものであるが、必要によってNi,Cr,Mo,Nb,B,Ca、Cu等を含有することも有効である。これらの元素を含有させるときの範囲規定理由は次の通りである。 In the hot-rolled steel sheet of the present invention, in addition to the above components, it consists of Fe and inevitable impurities (for example, V, Sn, etc.). Ni, Cr, Mo, Nb, B, Ca, Cu, etc. It is also effective to contain. The reason for defining the range when these elements are contained is as follows.
Ni:1%以下(0%を含まない)
Niは、鋼を固溶強化するのに有効な元素であるが、その含有量が過剰になるとその効果が飽和して経済的に不利となるので1%以下とするのが良い。Ni添加による上記効果はその含有量が増大するにつれて大きくなるが、フェライト単相組織鋼で780MPa以上の引張強度を確保という観点からしてして、Niは少なくとも0.1%含有させることが好ましく、より好ましくは0.2%以上含有させるのが良い。また、Ni含有量の好ましい上限は0.8%であり、より好ましくは0.5%以下とするのが良い。
Ni: 1% or less (excluding 0%)
Ni is an element effective for solid solution strengthening of steel, but if its content is excessive, its effect is saturated and economically disadvantageous, so it should be 1% or less. The above-mentioned effect due to the addition of Ni increases as the content thereof increases. However, from the viewpoint of securing a tensile strength of 780 MPa or more in the ferrite single-phase structure steel, it is preferable to contain Ni at least 0.1%. More preferably, the content is 0.2% or more. Moreover, the upper limit with preferable Ni content is 0.8%, More preferably, it is good to set it as 0.5% or less.
Cr:1.0%以下(0%を含まない)
Crは、鋼中Cを析出物にして析出強化し、フェライトを強化するのに有効な元素であるが、その含有量が過剰になってもその効果が飽和して経済的に不利となるので1.0%以下とするのが良い。Cr添加による上記効果はその含有量が増大するにつれて大きくなるが、上記効果を有効に発揮させるためには、そのCrは少なくとも0.1%含有させることが好ましく、より好ましくは0.2%以上含有させるのが良い。また、Cr含有量の好ましい上限は0.8%であり、より好ましくは0.5%以下とするのが良い。
Cr: 1.0% or less (excluding 0%)
Cr is an element effective for strengthening the precipitation by strengthening the ferrite with C in the steel as a precipitate, but even if its content is excessive, its effect is saturated and economically disadvantageous. It is good to set it as 1.0% or less. The above effect due to the addition of Cr increases as the content thereof increases, but in order to effectively exhibit the above effect, it is preferable to contain the Cr at least 0.1%, more preferably 0.2% or more. It is good to contain. Moreover, the upper limit with preferable Cr content is 0.8%, More preferably, it is good to set it as 0.5% or less.
Mo:0.5%以下(0%を含まない)
Moは炭化物としてフェライト中に析出し、フェライトを析出強化するうえで非常に有効な元素である。また巻取りコイルが冷却されるときに、フェライト粒界にPが偏析し、靭性値を低下させ、破面遷移温度vTrsが上昇するのを防止することにも有効に作用する。こうした効果はその含有量が増加するにつれて大きくなるが、Moの含有量が過剰になるとその効果が飽和するので0.5%以下とすることが好ましい。
Mo: 0.5% or less (excluding 0%)
Mo precipitates in the ferrite as a carbide and is an extremely effective element for strengthening the precipitation of ferrite. Further, when the winding coil is cooled, it effectively acts to prevent P from segregating at the ferrite grain boundaries, lowering the toughness value, and increasing the fracture surface transition temperature vTrs. Such an effect increases as the content thereof increases. However, if the Mo content becomes excessive, the effect is saturated, so 0.5% or less is preferable.
Nb:0.1%以下(0%を含まない)
Nbは、熱間終了後のオーステナイトから生成するフェライトを微細化して、穴拡げ性の向上に寄与する元素である。また、鋼中CおよびNを析出物にして析出強化し、フェライトを強化するのに有効である。こうした効果はその含有量が増加するにつれて大きくなるが、その含有量が過剰になってもその効果が飽和して経済的に不利となるので、0.1%以下とするのが良い。Nbによる上記効果を有効に発揮させるためには、0.01%以上含有させることが好ましく、より好ましくは0.02%以上含有させるのが良い。尚、Nb含有量の好ましい上限は0.08%であり、より好ましいは0.07%以下とするのが良い。
Nb: 0.1% or less (excluding 0%)
Nb is an element that refines the ferrite produced from austenite after hot end and contributes to improvement of hole expansibility. Moreover, it is effective for strengthening the precipitation by making C and N in steel into precipitates and strengthening the ferrite. Such an effect increases as the content increases. However, even if the content is excessive, the effect is saturated and disadvantageous economically. In order to effectively exhibit the above-described effect by Nb, it is preferable to contain 0.01% or more, and more preferably 0.02% or more. In addition, the upper limit with preferable Nb content is 0.08%, More preferably, it is good to set it as 0.07% or less.
B:0.01%以下(0%を含まない)
Bは、鋼の粒界エネルギーを低下させ、Pの粒界偏析を抑制するのに有効な元素である。こうした効果はその含有量が増加するにつれて大きくなるが、過剰に含有してもその効果が飽和するので、0.01%以下とすることが好ましい。尚、B含有量の好ましい下限は0.001%であり、より好ましい上限は0.005%である。
B: 0.01% or less (excluding 0%)
B is an element effective for reducing the grain boundary energy of steel and suppressing the grain boundary segregation of P. Such an effect increases as the content thereof increases. However, since the effect is saturated even if the content is excessive, the content is preferably 0.01% or less. In addition, the minimum with preferable B content is 0.001%, and a more preferable upper limit is 0.005%.
Ca:0.01%以下(0%を含まない)
Caは鋼板中の硫化物を球状化し、穴拡げ性を向上させるのに有効な元素であるが、その含有量が過剰になるとその効果が飽和するので0.01%以下とすることが好ましい。Ca添加による効果を有効に発揮させるためには、Caは0.001%以上含有させることが好ましい。尚、Caのより好ましい上限は0.005%である。
Ca: 0.01% or less (excluding 0%)
Ca is an element effective for spheroidizing the sulfides in the steel sheet and improving the hole expansibility. However, when the content is excessive, the effect is saturated, so 0.01% or less is preferable. In order to effectively exhibit the effect of addition of Ca, Ca is preferably contained in an amount of 0.001% or more. A more preferable upper limit of Ca is 0.005%.
Cu:1.0%以下(0%を含まない)
Cuは、Ti、Nbと共に添加した場合、TiCおよびNbCの均一微細析出を促進し、微細析出による強度上昇と更に穴拡げ性も向上するので有効な元素であるが、その含有量が過剰になってもその効果が飽和して経済的に不利となるので1.0%以下とするのが良い。Cu添加よる上記効果はその含有量が増加するにつれて大きくなるが、上記効果を有効に発揮させるためには、Cuは少なくとも0.1%以上含有させることが好ましく、より好ましくは0.3%以上含有させるのが良い。また、Cu含有量の好ましい上限は0.8%である。
Cu: 1.0% or less (excluding 0%)
Cu, when added together with Ti and Nb, is an effective element because it promotes uniform fine precipitation of TiC and NbC and improves strength and further expandability due to fine precipitation, but its content becomes excessive. However, the effect is saturated and economically disadvantageous, so 1.0% or less is preferable. The above effect due to the addition of Cu increases as the content thereof increases. However, in order to effectively exhibit the above effect, it is preferable to contain Cu at least 0.1%, more preferably 0.3% or more. It is good to contain. Moreover, the upper limit with preferable Cu content is 0.8%.
本発明の熱延鋼板では、高強度で且つ高い穴拡げ性を有し、延性に優れたものとするためには、金属組織の構成も重要な要件となる。高強度と高い穴拡げ性を実現するためには、高強度でありながらマルテンサイトよりもフェライトとの硬度差が小さいベイナイトを主相とし、且つ延性を確保するためにフェライトを含有させる必要がある。こうした観点から、金属組織中のベイナイト相は60〜95体積%の範囲とすることによって、高強度で加工性の良好な鋼板とすることができる。 In the hot-rolled steel sheet of the present invention, the structure of the metal structure is an important requirement in order to have high strength, high hole expansibility, and excellent ductility. In order to realize high strength and high hole expansibility, it is necessary to use bainite, which has high strength but has a hardness difference smaller than that of martensite, as the main phase, and to contain ferrite in order to ensure ductility. . From such a point of view, by setting the bainite phase in the metal structure in the range of 60 to 95% by volume, a steel sheet having high strength and good workability can be obtained.
本発明の鋼板における金属組織は、基本的に(ベイナイト+フェライト)であるが、フェライトの一部がマルテンサイトになっていても良い。尚、本発明において「フェライト」とは、ポリゴナルフェライト、擬ポリゴナルフェライトは含むものであり、アシュキュラーフェライトやベイニティックフェライト等の転位密度の高い組織は本発明における「ベイナイト」に含まれるものである。 The metal structure in the steel sheet of the present invention is basically (bainite + ferrite), but part of the ferrite may be martensite. In the present invention, the term “ferrite” includes polygonal ferrite and pseudopolygonal ferrite, and structures having a high dislocation density such as ashular ferrite and bainitic ferrite are included in “bainite” in the present invention. Is.
次に、本発明の製造方法について説明する。本発明の高強度鋼板を製造するには、前述のごとく少なくともコイル巻取り後の冷却速度を適切に制御する必要があり、他の条件(熱間圧延条件)については通常の条件に従えば良いが、本発明の製造方法における基本的な製造条件は下記の通りである。 Next, the manufacturing method of this invention is demonstrated. In order to produce the high-strength steel sheet of the present invention, it is necessary to appropriately control at least the cooling rate after coil winding as described above, and other conditions (hot rolling conditions) may be in accordance with normal conditions. However, the basic production conditions in the production method of the present invention are as follows.
本発明の高強度熱延鋼板を製造するに当っては、まず上記のように化学成分組成に制御した鋼板を、常法によりスラブ鋳片とし、熱間圧延に供されることになるが、このときのスラブ加熱温度は1150℃以上とする必要がある。これはオーステナイト中にTiCやNb(C,N)が固溶し始める温度であり、この温度以上に加熱することによって、添加したTiやNbを鋼中に効果的に固溶させることができる。固溶したTiやNbは、熱間圧延終了後のフェライト生成時にフェライト中の固溶Cや固溶Nと反応し化合物として析出し、鋼板を析出強化することで、所望の引張強度を得ることができる。但し、この加熱温度があまり高くなり過ぎると、加熱炉の損傷やエネルギーコストの増大を招くことになるので、1300℃以下とする必要がある。 In producing the high-strength hot-rolled steel sheet of the present invention, first, the steel sheet controlled to the chemical component composition as described above is made into a slab slab by a conventional method, and will be subjected to hot rolling. The slab heating temperature at this time needs to be 1150 ° C. or higher. This is the temperature at which TiC and Nb (C, N) begin to dissolve in austenite. By heating above this temperature, the added Ti and Nb can be effectively dissolved in the steel. Solid solution Ti or Nb reacts with solid solution C or solid solution N in the ferrite during the formation of ferrite after completion of hot rolling, precipitates as a compound, and obtains a desired tensile strength by precipitation strengthening the steel sheet. Can do. However, if this heating temperature becomes too high, the heating furnace will be damaged and the energy cost will be increased.
熱間圧延に際しては、基本的には通常の熱間圧延条件に従えば良く、特別な条件的制約はないが、熱間圧延仕上げ温度は、オーステナイト単相温度域であるAr3変態点以上の温度とする必要がある。熱間圧延温度が低下してAr3変態点未満となると、熱間圧延がフェライト−オーステナイトの二相組織で終了することになるので、加工フェライト(加工組織の意味)が残り、延性および穴拡げ性が劣化することになる。また、表層部に粗大組織が形成され、伸びが低下することになる。更に、熱間圧延中に固溶Nbや固溶Tiが炭窒化物として析出するが、この析出物は強度上昇には寄与しない。その結果、フェライト中に析出してフェライトの強度上昇に関与できなくなり、本来の添加目的である析出強化量が減少してしまい、鋼材の所望の強度が得られなくなる。 In hot rolling, it is basically sufficient to follow normal hot rolling conditions and there are no special restrictions, but the hot rolling finishing temperature is higher than the Ar 3 transformation point which is the austenite single phase temperature range. Need to be temperature. When the hot rolling temperature falls below the Ar 3 transformation point, the hot rolling ends with a two-phase structure of ferrite-austenite, so that the processed ferrite (meaning of the processed structure) remains, ductility and hole expansion. Will deteriorate. Moreover, a coarse structure is formed in the surface layer portion, and the elongation is lowered. Furthermore, solute Nb and solute Ti precipitate as carbonitride during hot rolling, but this precipitate does not contribute to the increase in strength. As a result, it precipitates in the ferrite and cannot participate in increasing the strength of the ferrite, the amount of precipitation strengthening, which is the original purpose of addition, decreases, and the desired strength of the steel material cannot be obtained.
熱間圧延終了後の冷却では、400〜550℃の巻取り温度範囲まで、平均冷却速度を30℃/秒(以下、「℃/s」と記す)以上で冷却する必要があるが、これはオーステナイトから生成するベイナイト組織を均一な整細粒組織とし、延性および穴拡げ性を向上させるためである。即ち、このときの平均冷却速度が30℃/sよりも遅くなると、変態後のフェライトが粗大化し、またベイナイト内部に析出する炭化物の凝集、成長が進み、粗大な炭化物が生成して、延性および穴拡げ性が劣化することになる。 In cooling after the end of hot rolling, it is necessary to cool at an average cooling rate of 30 ° C./second (hereinafter referred to as “° C./s”) or more to a coiling temperature range of 400 to 550 ° C., This is because the bainite structure generated from austenite is made into a uniform fine-grained structure, and the ductility and hole expansibility are improved. That is, when the average cooling rate at this time becomes slower than 30 ° C./s, the ferrite after the transformation becomes coarse, and the agglomeration and growth of carbides precipitated inside the bainite progresses to produce coarse carbides. Hole expandability will deteriorate.
巻取り温度を400〜550℃の温度範囲とするのは、鋼のミクロ組織をベイナイト主体の組織とするためである。即ち、巻取り温度が400℃よりも低くなると、マルテンサイト組織が生成し、穴拡げ性が低下することになる。また、炭窒化物の析出強化量が不足してしまい、所望の強度が得られなくなってしまう。 The reason for setting the coiling temperature in the temperature range of 400 to 550 ° C. is that the microstructure of the steel is a bainite-based structure. That is, when the coiling temperature is lower than 400 ° C., a martensite structure is generated, and the hole expandability is lowered. Moreover, the precipitation strengthening amount of carbonitride is insufficient, and a desired strength cannot be obtained.
一方、巻取り温度が550℃を超えて高温になると、セメンタイトが析出してパーライト組織が混入し、強度が却って低下することになる。また穴拡げ性も低下することになる。こうしたことから、巻取り温度は400〜550℃の温度範囲とする必要があり、好ましくは400〜500℃の温度範囲とするのが良い。 On the other hand, when the coiling temperature is higher than 550 ° C., cementite is precipitated and pearlite structure is mixed, and the strength is decreased instead. Moreover, the hole expandability is also lowered. For these reasons, the coiling temperature needs to be in the temperature range of 400 to 550 ° C, and preferably in the temperature range of 400 to 500 ° C.
巻取った後のコイルの冷却では、鋼中Pのフェライト粒界への偏析を防止するために、巻取り温度から300℃以下の温度範囲までの平均冷却速度を50℃/hr以上とする必要がある。この平均冷却速度よりも遅くなると、冷却中にフェライト粒界へのPの析出が起こり、衝撃試験で求まる破面遷移温度vTrsが高くなり、良好な穴拡げ性が得られなくなる。 In cooling the coil after winding, in order to prevent segregation of P in the steel to the ferrite grain boundary, the average cooling rate from the coiling temperature to a temperature range of 300 ° C. or less needs to be 50 ° C./hr or more. There is. If it becomes slower than this average cooling rate, precipitation of P occurs at the ferrite grain boundary during cooling, and the fracture surface transition temperature vTrs obtained by the impact test becomes high, and good hole expansibility cannot be obtained.
尚、コイルに巻取った後の冷却速度を上記のように確保する手段については、特に限定されるものではないが、例えば巻取りコイルに送風機を用いて衝風冷却する方法、衝風にミストを含ませ(衝風+ミスト)冷却する方法、巻取りコイルに散水ノズルを用いて水冷する方法、更には、水槽に巻取りコイルを浸漬する方法等が挙げられる。 The means for ensuring the cooling rate after winding the coil as described above is not particularly limited. For example, a method of cooling the winding coil by using a blower, a method of blasting a mist And a method of cooling by using a water spray nozzle in a winding coil, a method of immersing the winding coil in a water tank, and the like.
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
実施例1
下記表1に示す化学成分組成を有する各種鋼スラブを、1250℃のスラブ加熱温度にて30分保持した後、通常の熱間圧延工程によって、仕上げ圧延温度を900℃で厚さ:4mmの熱延鋼板を得た。その後、平均冷却速度:30℃/sで冷却し、電気加熱炉を用いた600℃の巻取り温度で30分の巻取り処理後、その後の冷却速度を変えるため、冷却速度を制御した炉冷却、炉から取り出し後に放冷、衝風冷却、(衝風+ミスト)冷却、シャワー冷却、水槽への浸漬等による冷却を行い、各種熱延鋼板を得た。
Example 1
After holding various steel slabs having the chemical composition shown in Table 1 below at a slab heating temperature of 1250 ° C. for 30 minutes, the final rolling temperature is 900 ° C. and the thickness is 4 mm by a normal hot rolling process. A rolled steel sheet was obtained. Then, cooling at an average cooling rate of 30 ° C./s, and after a winding process of 30 minutes at a winding temperature of 600 ° C. using an electric heating furnace, the cooling rate is controlled in order to change the subsequent cooling rate. After taking out from the furnace, cooling was performed by cooling, blast cooling, (blast + mist) cooling, shower cooling, immersion in a water tank, and the like to obtain various hot-rolled steel sheets.
このようにして得られた熱延鋼板について、JIS5号試験片による圧延方向に直角方向(C方向)の衝撃試験を行って機械的特性(降伏強度YS、引張強さTS、伸びEL等)を測定する共に、穴拡げ性を下記の方法によって測定した穴拡げ率λで評価すると共に、破面遷移温度vTrsを下記の方法によって測定した。また、各鋼板のミクロ組織を、ナイタール腐食後、走査型電子顕微鏡にて、フェライト、ベイナイト、マルテンサイトを同定し、ベイナイト面積率を画像解析装置によって測定した。尚、衝撃試験片は、得られた熱延鋼板の両面を研削し、厚さ:2.5mmのサブサイズ試験片で試験を行った。 The hot-rolled steel sheet thus obtained is subjected to an impact test in the direction perpendicular to the rolling direction (C direction) with a JIS No. 5 test piece to obtain mechanical properties (yield strength YS, tensile strength TS, elongation EL, etc.). In addition to the measurement, the hole expandability was evaluated by the hole expansion rate λ measured by the following method, and the fracture surface transition temperature vTrs was measured by the following method. The microstructure of each steel sheet was subjected to nital corrosion, and then ferrite, bainite, and martensite were identified with a scanning electron microscope, and the area ratio of bainite was measured with an image analyzer. In addition, the impact test piece ground both surfaces of the obtained hot-rolled steel plate, and tested it with the subsize test piece of thickness: 2.5mm.
[穴拡げ率λ測定法]
初期穴直径:10mm(d0)の打ち抜き穴を60°円錐ポンチで打ち抜き側から押し広げ、割れが板厚方向に貫通した時点での穴径d(mm)を測定し、次式によって穴拡げ率λを測定した。
λ=[(d−d0)/d0]×100(%)[d0=10mm]
[Method for measuring hole expansion rate λ]
Initial hole diameter: 10 mm (d 0 ) punched hole is punched out from the punched side with a 60 ° conical punch, and the hole diameter d (mm) is measured when the crack penetrates in the plate thickness direction. The rate λ was measured.
λ = [(d−d 0 ) / d 0 ] × 100 (%) [d 0 = 10 mm]
[破面遷移温度vTrsの測定方法]
機械加工によって作製したJIS4号衝撃試験片を用い、JIS Z2242に準拠した試験方法で衝撃試験を行い、JISに準拠した方法で脆性破面率(若しくは「延性破面率」)を求め、(試験温度vs脆性破面率)の曲線から、脆性破面率が50%となる遷移温度vTrsを求めた。
[Measurement method of fracture surface transition temperature vTrs]
Using a JIS No. 4 impact test piece produced by machining, an impact test is conducted by a test method in accordance with JIS Z2242, and a brittle fracture surface ratio (or “ductile fracture surface ratio”) is obtained by a method in accordance with JIS. The transition temperature vTrs at which the brittle fracture surface ratio becomes 50% was determined from the curve of (temperature vs. brittle fracture surface ratio).
これらの結果を、製造条件と共に下記表2に示す。また、これらの結果に基づき、破面遷移温度vTrsと穴拡げ率λの関係を図1に、コイル巻取り後の冷却速度と破面遷移温度vTrsの関係を図2に、夫々示す。 These results are shown in Table 2 below together with the production conditions. Based on these results, the relationship between the fracture surface transition temperature vTrs and the hole expansion ratio λ is shown in FIG. 1, and the relationship between the cooling rate after coil winding and the fracture surface transition temperature vTrs is shown in FIG.
図1から明らかなように、破面遷移温度vTrsと穴拡げ率λには良好な相関関係が認められ、目標とする良好な穴拡げ率λ(λ=60%)を確保するためには、破面遷移温度vTrsを0℃以下とすれば良いことが分かる。尚、穴拡げ性に良否を判定する基準としては、「穴拡げ率λ:60%以上」とするが、これは高強度熱延鋼板が適用される各種の部材に加工するときに要求される特性レベルである。 As is clear from FIG. 1, a good correlation is observed between the fracture surface transition temperature vTrs and the hole expansion rate λ, and in order to ensure the target good hole expansion rate λ (λ = 60%), It can be seen that the fracture surface transition temperature vTrs should be 0 ° C. or lower. In addition, as a criterion for judging whether or not the hole expandability is good, “hole expansion ratio λ: 60% or more” is required, but this is required when processing into various members to which a high-strength hot-rolled steel sheet is applied. It is a characteristic level.
一方、図2から明らかなように、巻取りコイルの冷却をシミュレートした冷却速度により、穴拡げ率λに影響する破面遷移温度vTrsが変化することが分かる。このとき破面遷移温度vTrsを、目標とする0℃以下に確保するためには、平均冷却速度で50℃/hr以上の冷却速度で冷却する必要があることが分かる。 On the other hand, as is apparent from FIG. 2, it is understood that the fracture surface transition temperature vTrs that affects the hole expansion ratio λ varies depending on the cooling rate that simulates the cooling of the winding coil. At this time, in order to secure the fracture surface transition temperature vTrs at a target of 0 ° C. or lower, it is understood that the average cooling rate needs to be cooled at a cooling rate of 50 ° C./hr or higher.
このときの衝撃試験片についての破面をSEM観察したところ、破面遷移温度vTrsの高い試験片での脆性破面には、粒界破面が観察された。これに対して、破面遷移温度vTrsの低い試験片の脆性破面では、劈開破面のみが観察された。そこで、この粒界破面部をオージェ電子分光分析器を用いて測定した結果、粒界には高濃度のPを検出した。従って、このフェライト粒界に偏析したPが母材の靭性値を低下させ、穴拡げ試験時の亀裂伝播を抑制できなくなり、低い特性になるものと考えることができた。即ち、コイルの巻取り後の冷却速度を制御することによって、フェライト粒界に偏析するPの拡散が抑制され、穴拡げ率λ値の高い特性が得られることになることが分かる。 When the fracture surface of the impact test piece at this time was observed with an SEM, a grain boundary fracture surface was observed on the brittle fracture surface of the test piece having a high fracture surface transition temperature vTrs. On the other hand, only the cleaved fracture surface was observed in the brittle fracture surface of the specimen having a low fracture surface transition temperature vTrs. Therefore, as a result of measuring the grain boundary fracture surface portion using an Auger electron spectroscopic analyzer, a high concentration of P was detected at the grain boundary. Therefore, it can be considered that P segregated at the ferrite grain boundaries lowers the toughness value of the base material and prevents crack propagation during the hole expansion test, resulting in low characteristics. That is, it can be seen that by controlling the cooling rate after winding the coil, the diffusion of P segregated at the ferrite grain boundaries is suppressed, and a characteristic with a high hole expansion ratio λ value can be obtained.
実施例2
下記表3に示す化学成分組成を有する各種鋼スラブを、1250℃のスラブ加熱温度にて30分保持した後、通常の熱間圧延工程によって、仕上げ圧延温度を900〜930℃で厚さ:4mmの熱延鋼板を得た。その後、平均冷却速度:30℃/秒で冷却し、電気加熱炉を用いた450〜650℃の巻取り温度で30分の巻取り処理後、その後の冷却速度を変えるため、冷却速度を制御した炉冷却、炉から取り出し後に放冷、衝風冷却、(衝風+ミスト)冷却、シャワー冷却、水槽への浸漬による冷却等を行い、各種熱延鋼板を得た。
Example 2
After holding various steel slabs having the chemical composition shown in Table 3 below at a slab heating temperature of 1250 ° C. for 30 minutes, the finish rolling temperature is 900 to 930 ° C. and the thickness is 4 mm by a normal hot rolling process. A hot rolled steel sheet was obtained. Thereafter, the cooling rate was controlled at an average cooling rate of 30 ° C./second, and after 30 minutes of winding at 450 to 650 ° C. using an electric heating furnace, the cooling rate was controlled in order to change the subsequent cooling rate. After cooling from the furnace, taking out from the furnace, cooling, blast cooling, (blast + mist) cooling, shower cooling, cooling by immersion in a water tank, etc. were performed to obtain various hot rolled steel sheets.
このようにして得られた熱延鋼板について、JIS5号試験片による圧延方向に直角方向の引張試験を行って機械的特性(降伏強度YS、引張強さTS、伸びEL等)を測定する共に、穴拡げ性および破面遷移温度を実施例1と同様の方法によって測定した。その結果を製造条件(圧延仕上げ温度、巻取り温度、巻取り後の冷却速度)と共に、下記表4に示す。また、これらの結果に基づき、破面遷移温度vTrsと穴拡げ率λとの関係を図3に、コイル巻取り後の平均冷却速度と破面遷移温度vTrsの関係を図4に夫々示す。 The hot-rolled steel sheet thus obtained is subjected to a tensile test perpendicular to the rolling direction with a JIS No. 5 test piece to measure mechanical properties (yield strength YS, tensile strength TS, elongation EL, etc.) Hole expansibility and fracture surface transition temperature were measured in the same manner as in Example 1. The results are shown in Table 4 below together with the production conditions (rolling finishing temperature, winding temperature, cooling rate after winding). Based on these results, the relationship between the fracture surface transition temperature vTrs and the hole expansion ratio λ is shown in FIG. 3, and the relationship between the average cooling rate after coil winding and the fracture surface transition temperature vTrs is shown in FIG.
図3から明らかなように、実施例1と同様に、破面遷移温度vTrsと穴拡げ率λには良好な相関関係が認められ、目標とする良好な穴拡げ率λ(λ=60%)を確保するためには、破面遷移温度vTrsを0℃以下とすれば良いことが分かる。また図4から明らかなように、巻取りコイルの冷却をシミュレートした冷却速度により、穴拡げ率λに影響する破面遷移温度vTrsが変化することが分かる。このとき破面遷移温度vTrsを、目標とする0℃以下を確保するためには、平均冷却速度で50℃/hr以上の冷却速度で冷却する必要があることが分かる。尚、図4の破線で囲んだ部分は、化学成分組成が本発明で規定する範囲を外れることによって、破面遷移温度vTrsが上昇したものである。 As is clear from FIG. 3, as in Example 1, there is a good correlation between the fracture surface transition temperature vTrs and the hole expansion rate λ, and the target good hole expansion rate λ (λ = 60%). It can be seen that the fracture surface transition temperature vTrs should be 0 ° C. or lower in order to ensure the above. As can be seen from FIG. 4, the fracture surface transition temperature vTrs that affects the hole expansion ratio λ varies depending on the cooling rate that simulates the cooling of the winding coil. At this time, in order to ensure the target fracture surface transition temperature vTrs of 0 ° C. or less, it is understood that the average cooling rate needs to be cooled at a cooling rate of 50 ° C./hr or more. In addition, the part enclosed with the broken line of FIG. 4 is what the fracture surface transition temperature vTrs rose because the chemical component composition deviated from the range prescribed | regulated by this invention.
またこれらの結果から、次のように考察できる。試験No.12〜15、17、18、20〜25、27、28、30、31のものは、本発明で規定する要件の全てを満足するものであり、機械的特性および穴拡げ率ともに良好であり、高強度でしかも加工性の良好な熱間圧延鋼板が実現できていることが分かる。 From these results, it can be considered as follows. Test No. Those of 12-15, 17, 18, 20-25, 27, 28, 30, 31 satisfy all of the requirements defined in the present invention, and both the mechanical properties and the hole expansion rate are good. It can be seen that a hot-rolled steel sheet having high strength and good workability can be realized.
これに対して、試験No.16、19、26、29、32〜39のものでは、本発明で規定するいずれかの要件を欠いており、機械的特性および穴拡げ性の少なくともいずれかの特性が劣化している。 In contrast, test no. The ones of 16, 19, 26, 29, and 32-39 lack any of the requirements defined in the present invention, and at least one of mechanical characteristics and hole expansibility is deteriorated.
まず、試験No.16、19、26、29のものでは、コイル巻取り後の平均冷却速度が小さいものであり、破面遷移温度vTrsが高くなって、良好な穴拡げ性が得られていない。また試験No.32、33のものでは、Si含有量が過剰の鋼板であり(表3の鋼種J)、破面遷移温度vTrsが高くなって、良好な穴拡げ性が得られていない。 First, test no. In the samples of 16, 19, 26, and 29, the average cooling rate after coil winding is small, the fracture surface transition temperature vTrs is high, and good hole expansibility is not obtained. In addition, Test No. Those of 32 and 33 are steel sheets with excessive Si content (steel type J in Table 3), the fracture surface transition temperature vTrs is increased, and good hole expansibility is not obtained.
試験No.34、35のものでは、Mn含有量が過剰の鋼板であり(表3の鋼種K)、延性(伸び)が低下すると共に、破面遷移温度vTrsが高くなって、良好な穴拡げ性が得られていない。試験No.36のものでは、P含有量が過剰の鋼板であり(表3の鋼種L)、破面遷移温度vTrsが高くなって、良好な穴拡げ性が得られていない。 Test No. 34 and 35 are steel sheets with an excessive Mn content (steel type K in Table 3), the ductility (elongation) is lowered, the fracture surface transition temperature vTrs is increased, and good hole expansibility is obtained. It is not done. Test No. No. 36 is a steel sheet with an excessive P content (steel type L in Table 3), the fracture surface transition temperature vTrs is increased, and good hole expansibility is not obtained.
試験No.37、38のものは、Ti含有量およびC含有量が夫々過剰の鋼板であり(表3の鋼種M、N)、延性(伸び)が低下している。試験No.39のものでは、C含有量が不足するものであり(表3の鋼種O)、引張強度が低下している。 Test No. Nos. 37 and 38 are steel sheets with excessive Ti and C contents (steel types M and N in Table 3), respectively, and the ductility (elongation) is lowered. Test No. In No. 39, the C content is insufficient (steel type O in Table 3), and the tensile strength is lowered.
Claims (9)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005092611A JP3889766B2 (en) | 2005-03-28 | 2005-03-28 | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method |
CN201010271326.XA CN101906567B (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
EP11160725A EP2351867A1 (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
CN2006800046812A CN101120113B (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
PCT/JP2006/305700 WO2006103991A1 (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
US11/908,423 US8038809B2 (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
EP06729667A EP1865083B1 (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
AT06729667T ATE520794T1 (en) | 2005-03-28 | 2006-03-22 | HIGH STRENGTH HOT ROLLED STEEL SHEET WITH EXCELLENT EXPANSION CAPACITY IN DRILL HOLES AND PRODUCTION PROCESS THEREOF |
KR1020097006940A KR100942087B1 (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
KR1020077022030A KR100942088B1 (en) | 2005-03-28 | 2006-03-22 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
US13/210,807 US8486205B2 (en) | 2005-03-28 | 2011-08-16 | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005092611A JP3889766B2 (en) | 2005-03-28 | 2005-03-28 | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006274318A JP2006274318A (en) | 2006-10-12 |
JP3889766B2 true JP3889766B2 (en) | 2007-03-07 |
Family
ID=37209352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005092611A Expired - Fee Related JP3889766B2 (en) | 2005-03-28 | 2005-03-28 | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3889766B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036312A1 (en) | 2010-09-17 | 2012-03-22 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same |
WO2012036308A1 (en) | 2010-09-17 | 2012-03-22 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet having superior punchability and method for producing same |
WO2014171062A1 (en) | 2013-04-15 | 2014-10-23 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for manufacturing same |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4955496B2 (en) * | 2007-09-28 | 2012-06-20 | 株式会社神戸製鋼所 | High-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability |
JP4978741B2 (en) | 2010-05-31 | 2012-07-18 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same |
JP5029748B2 (en) | 2010-09-17 | 2012-09-19 | Jfeスチール株式会社 | High strength hot rolled steel sheet with excellent toughness and method for producing the same |
EP2489748B1 (en) * | 2011-02-18 | 2017-12-13 | ThyssenKrupp Steel Europe AG | Hot-rolled steel surface product produced from a complex phase steel and method for the manufacture |
BR112013023633A2 (en) * | 2011-03-18 | 2016-12-13 | Nippon Steel & Sumitomo Metal Corp | hot rolled steel sheet with excellent press forming capacity and its production method |
JP5825189B2 (en) * | 2012-04-24 | 2015-12-02 | 新日鐵住金株式会社 | High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same |
KR101758003B1 (en) * | 2013-04-15 | 2017-07-13 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel sheet |
WO2016132549A1 (en) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
KR101957078B1 (en) | 2015-02-20 | 2019-03-11 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel sheet |
WO2016135898A1 (en) | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | Hot-rolled steel sheet or plate |
CN107406929B (en) | 2015-02-25 | 2019-01-04 | 新日铁住金株式会社 | Hot rolled steel plate |
CN109563586B (en) | 2016-08-05 | 2021-02-09 | 日本制铁株式会社 | Steel sheet and plated steel sheet |
CN109563580A (en) | 2016-08-05 | 2019-04-02 | 新日铁住金株式会社 | steel sheet and plated steel sheet |
US11028458B2 (en) | 2017-01-27 | 2021-06-08 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
CN110506134A (en) | 2017-03-31 | 2019-11-26 | 日本制铁株式会社 | Hot rolled steel plate |
MX2021006793A (en) | 2018-12-11 | 2021-07-16 | Nippon Steel Corp | High-strength steel plate having excellent formability, toughness and weldability, and production method of same. |
CN113195761B (en) | 2018-12-11 | 2022-08-09 | 日本制铁株式会社 | High-strength steel sheet having excellent formability and impact resistance, and method for producing high-strength steel sheet having excellent formability and impact resistance |
KR102237622B1 (en) * | 2019-08-26 | 2021-04-07 | 현대제철 주식회사 | High-strength hot-rolled steel sheet and method of manufacturing the same |
CN112522597B (en) * | 2019-09-19 | 2022-10-21 | 宝山钢铁股份有限公司 | Boron-containing high-reaming-hole steel and production method thereof |
CN113670963A (en) * | 2021-07-16 | 2021-11-19 | 包头钢铁(集团)有限责任公司 | Method for preventing low-temperature fracture corrosion |
-
2005
- 2005-03-28 JP JP2005092611A patent/JP3889766B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036312A1 (en) | 2010-09-17 | 2012-03-22 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same |
WO2012036308A1 (en) | 2010-09-17 | 2012-03-22 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet having superior punchability and method for producing same |
WO2014171062A1 (en) | 2013-04-15 | 2014-10-23 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for manufacturing same |
EP3358033A1 (en) | 2013-04-15 | 2018-08-08 | JFE Steel Corporation | High-strength hot-rolled steel sheet and method for manufacturing same |
US10301693B2 (en) | 2013-04-15 | 2019-05-28 | Jfe Steel Corporation | High-strength hot-rolled steel sheet and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2006274318A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3889766B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method | |
KR100942087B1 (en) | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof | |
JP3889765B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method | |
EP3012339B1 (en) | High yield-ratio, high-strength cold rolled steel sheet and production method therefor | |
JP5883211B2 (en) | High-strength cold-rolled steel sheet with excellent workability and method for producing the same | |
KR101232972B1 (en) | Method of producing high-strength steel plates with excellent ductility and plates thus produced | |
EP2256224B1 (en) | High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and weldability, and methods for manufacturing the same | |
KR101114672B1 (en) | High-strength hot rolled steel sheet having excellent composite moldability | |
EP3508601B1 (en) | High-strength steel plate and production method thereof | |
US10472697B2 (en) | High-strength steel sheet and production method therefor | |
JP3846206B2 (en) | High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same | |
EP3255164A1 (en) | High-strength steel sheet and production method therefor | |
CN112292472B (en) | High-strength steel sheet having excellent collision resistance and method for producing same | |
CN112739834A (en) | Hot-rolled steel sheet and method for producing same | |
CN110621794B (en) | High-strength steel sheet having excellent ductility and stretch flangeability | |
EP4176092A1 (en) | Heat treated cold rolled steel sheet and a method of manufacturing thereof | |
JP2006183140A (en) | High-strength cold rolled steel sheet and its production method | |
CN113544299A (en) | High-strength steel sheet and method for producing same | |
JP4848722B2 (en) | Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability | |
EP4123046B1 (en) | Steel sheet | |
JP4385791B2 (en) | Super high strength steel sheet with excellent stretch flangeability and method for producing the same | |
WO2023073411A1 (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof | |
KR101417225B1 (en) | High strength cold rolled steel sheet with excellent stretch flangeability and method of manufacturing the same | |
KR20240106696A (en) | High Strength cold rolled steel sheet having high corrosion resistance and method of manufacturing the same | |
WO2023073410A1 (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3889766 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131208 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |