JP7063709B2 - Equipment for manufacturing substrates with transparent conductive film, manufacturing method for substrates with transparent conductive film - Google Patents

Equipment for manufacturing substrates with transparent conductive film, manufacturing method for substrates with transparent conductive film Download PDF

Info

Publication number
JP7063709B2
JP7063709B2 JP2018087205A JP2018087205A JP7063709B2 JP 7063709 B2 JP7063709 B2 JP 7063709B2 JP 2018087205 A JP2018087205 A JP 2018087205A JP 2018087205 A JP2018087205 A JP 2018087205A JP 7063709 B2 JP7063709 B2 JP 7063709B2
Authority
JP
Japan
Prior art keywords
substrate
transparent conductive
conductive film
film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018087205A
Other languages
Japanese (ja)
Other versions
JP2019189931A (en
Inventor
淳介 松崎
明久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018087205A priority Critical patent/JP7063709B2/en
Priority to CN201910327419.0A priority patent/CN110408896A/en
Publication of JP2019189931A publication Critical patent/JP2019189931A/en
Application granted granted Critical
Publication of JP7063709B2 publication Critical patent/JP7063709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、基体の表面側と裏面側に、水素の含有量が異なる透明導電膜が配されてなる、透明導電膜付き基板の製造装置、透明導電膜付き基板の製造方法に関する。 The present invention relates to an apparatus for manufacturing a substrate with a transparent conductive film and a method for manufacturing a substrate with a transparent conductive film, wherein transparent conductive films having different hydrogen contents are arranged on the front surface side and the back surface side of the substrate.

近年、結晶シリコンと非晶質シリコン(a-Si)とのヘテロ接合を有する太陽電池(ヘテロ型結晶Si太陽電池)が、従来の結晶系シリコン太陽電池に比較して高い変換効率をもつことから注目されている。ヘテロ型結晶Si太陽電池には通常、結晶シリコンの両面に配された非晶質シリコン上にTCO(Transparent Conducting Oxide)が形成される。ここで、TCOとは、透明で電気を流す素材のことであり、たとえば、酸化インジウム、酸化すず、酸化亜鉛などが挙げられる。 In recent years, solar cells having a heterojunction between crystalline silicon and amorphous silicon (a-Si) (hetero-type crystalline Si solar cells) have higher conversion efficiency than conventional crystalline silicon solar cells. Attention has been paid. In a hetero-type crystalline Si solar cell, TCO (Transparent Conducting Oxide) is usually formed on amorphous silicon arranged on both sides of crystalline silicon. Here, TCO is a transparent material that conducts electricity, and examples thereof include indium oxide, tin oxide, and zinc oxide.

太陽電池の受光面側に配されるTCOには、特に、低い抵抗と高い透過率の両立が求めらる。この課題を解消する方策の一つとして、水素を含む透明導電膜を受光面側に設けた太陽電池が知られている(特許文献1)。
しかしながら、太陽電池デバイスの観点では、TCOの下地をなす非晶質シリコン(a-Si)が、水素ガスを含むプラズマに接することによりHOが発生し、これが非晶質シリコン(a-Si)に再付着するなどして、非晶質シリコン(a-Si)とその上に堆積するTCOとの界面には絶縁層が生じる問題があった。このような絶縁層の存在は、積層方向における電気的な流れを阻害する要因となるため、その解決策の開発が期待されていた。
The TCO arranged on the light receiving surface side of the solar cell is particularly required to have both low resistance and high transmittance. As one of the measures to solve this problem, a solar cell in which a transparent conductive film containing hydrogen is provided on the light receiving surface side is known (Patent Document 1).
However, from the viewpoint of the solar cell device, the amorphous silicon (a-Si) that forms the base of the TCO is in contact with the plasma containing hydrogen gas to generate H2O , which is the amorphous silicon (a-Si). ), There is a problem that an insulating layer is formed at the interface between the amorphous silicon (a—Si) and the TCO deposited on the amorphous silicon (a—Si). Since the existence of such an insulating layer becomes a factor that hinders the electrical flow in the stacking direction, the development of a solution thereof has been expected.

国際公開第2013/061637号International Publication No. 2013/061637

本発明は、上記の事情に鑑みてなされたもので、基体の表面側と裏面側に、水素の含有量が異なる透明導電膜が配されてなる、透明導電膜付き基板の製造装置、透明導電膜付き基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a device for manufacturing a substrate with a transparent conductive film, which comprises transparent conductive films having different hydrogen contents arranged on the front surface side and the back surface side of the substrate. It is an object of the present invention to provide a method for manufacturing a substrate with a film.

本発明の請求項1に記載の透明導電膜付き基板の製造装置は、トレイに載置された状態にある基体を熱処理する第三温調手段と共に、前記基体の表面側及び裏面側に各々、第一透明導電膜及び第二透明導電膜を形成する第一成膜手段及び第二成膜手段を備えた成膜室を含む透明導電膜付き基板の製造装置であって、
前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットの近傍には、水素を含む第一プロセスガスを供給する第一プロセスガス導入機構のガス導出部が、前記基体が移動する方向において、前記第一ターゲットのうち上手側に位置するターゲットに対して前記第一プロセスガスを吹きかける位置に配設されており、
前記成膜室内において、前記第二成膜手段をなす、前記基体の裏面側に第二透明導電膜を形成する第二ターゲットの近傍には、水素を含まない第二プロセスガスを供給する第二プロセスガス導入機構のガス導出部が配設されており、
前記基体が前記第一ターゲットの前を通過することにより、該基体の表面側に前記第一透明導電膜をスパッタ法により形成し、前記基体が前記第二ターゲットの前を通過することにより、該基体の裏面側に前記第二透明導電膜をスパッタ法により形成するように、前記第一ターゲットと前記第二ターゲットが前記成膜室内に配置されている、ことを特徴とする。
The apparatus for manufacturing a substrate with a transparent conductive film according to claim 1 of the present invention is provided on the front surface side and the back surface side of the substrate together with a third temperature control means for heat-treating the substrate placed on the tray, respectively. A device for manufacturing a substrate with a transparent conductive film, which includes a film forming chamber provided with a first film forming means and a second film forming means for forming the first transparent conductive film and the second transparent conductive film.
In the film forming chamber, the first process of supplying a first process gas containing hydrogen to the vicinity of the first target forming the first transparent conductive film on the surface side of the substrate, which forms the first film forming means. The gas outlet of the gas introduction mechanism is arranged at a position where the first process gas is sprayed on the target located on the upper side of the first target in the direction in which the substrate moves.
In the film forming chamber, a second process gas containing no hydrogen is supplied in the vicinity of the second target forming the second transparent conductive film on the back surface side of the substrate, which forms the second film forming means. The gas outlet of the process gas introduction mechanism is arranged,
When the substrate passes in front of the first target, the first transparent conductive film is formed on the surface side of the substrate by a sputtering method, and the substrate passes in front of the second target. The first target and the second target are arranged in the film forming chamber so that the second transparent conductive film is formed on the back surface side of the substrate by a sputtering method.

本発明の請求項2に記載の透明導電膜付き基板の製造装置は、請求項1において、前記成膜室には、前記第一ターゲットと前記第二ターゲットとの間に位置する内部空間に連通するように、吸気口を備えた排気手段が1つ以上配置されている、ことを特徴とする。 According to claim 1, the apparatus for manufacturing a substrate with a transparent conductive film according to claim 2 of the present invention communicates the film forming chamber with an internal space located between the first target and the second target. As such, it is characterized in that one or more exhaust means provided with an intake port are arranged.

本発明の請求項3に記載の透明導電膜付き基板の製造装置は、請求項1において、前記トレイが前記基体の表面と裏面を露呈するための開口部、及び、該基体の側面を支持する部位を備え、前記成膜室内において、複数の該トレイがその進行方向に直線的に並んで配され、かつ、複数の該トレイのうち特定トレイは、前記第一ターゲットと前記第二ターゲットの前を通過する際に、その進行方向で、前記特定トレイの前後に位置する先行トレイと後行トレイに各々重なる部位を有しており、前記第一ターゲット側または前記第二ターゲット側から前記特定トレイを見たとき、前記特定トレイはその前後に位置する先行トレイ及び後行トレイと一群をなし、かつ、特定トレイを挟んで先行トレイと後行トレイが一面をなすように、各トレイの移動を制御する手段を備えている、ことを特徴とする。 The apparatus for manufacturing a substrate with a transparent conductive film according to claim 3 of the present invention supports, in claim 1, an opening for the tray to expose the front surface and the back surface of the substrate, and a side surface of the substrate. A plurality of the trays are arranged linearly side by side in the traveling direction in the film forming chamber having a portion, and a specific tray among the plurality of trays is in front of the first target and the second target. Has a portion that overlaps the leading tray and the trailing tray located in front of and behind the specific tray in the traveling direction, and the specific tray is provided from the first target side or the second target side. When looking at, move each tray so that the specific tray forms a group with the leading tray and the trailing tray located in front of and behind it, and the leading tray and the trailing tray are on one side with the specific tray in between. It is characterized by having means for controlling.

本発明の請求項4に記載の透明導電膜付き基板の製造装置は、請求項1において、前記成膜室内において、前記基体が前記第一ターゲットと前記第二ターゲットの前を通過する手前の位置にある内部空間、及び、各ターゲットの前を通過して成膜が行われる位置にある内部空間には、各内部空間ごとに、前記第三温調手段が1つ以上配置されている、ことを特徴とする。 The apparatus for manufacturing a substrate with a transparent conductive film according to claim 4 of the present invention is the position in claim 1 before the substrate passes in front of the first target and the second target in the film forming chamber. In the internal space in the above and in the internal space at the position where the film formation is performed by passing in front of each target, one or more of the third temperature controlling means are arranged for each internal space. It is characterized by.

本発明の請求項5に記載の透明導電膜付き基板の製造装置は、請求項1において、前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットと、移動する前記基体との間に発生した放電空間に向けて、前記水素を含む第一プロセスガスを供給する第一プロセスガス導入機構のガス導出部が、該第一プロセスガスを吹きかける位置に配設されている、ことを特徴とする。 The apparatus for manufacturing a substrate with a transparent conductive film according to claim 5 of the present invention has the first transparent conductive film on the surface side of the substrate, which serves as the first film forming means in the film forming chamber according to claim 1. The gas lead-out unit of the first process gas introduction mechanism that supplies the first process gas containing hydrogen toward the discharge space generated between the first target forming the above and the moving substrate is the first. It is characterized in that it is arranged at a position where the process gas is sprayed.

本発明の請求項6に記載の透明導電膜付き基板の製造装置は、請求項1又は5において、前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットと、移動する前記基体との間に発生した放電空間を包囲するようにチムニーが配設されている、ことを特徴とする。 In claim 1 or 5, the apparatus for manufacturing a substrate with a transparent conductive film according to claim 6 of the present invention is first transparent on the surface side of the substrate forming the first film forming means in the film forming chamber. It is characterized in that a chimney is arranged so as to surround the discharge space generated between the first target forming the conductive film and the moving substrate.

本発明の請求項7に記載の透明導電膜付き基板の製造装置は、請求項1乃至6のいずれか一項において、前記成膜室の前段には、大気雰囲気から導入した、トレイに載置された状態にある、表面及び裏面にa-Si膜が配された基体を、減圧雰囲気において熱処理する第一温調手段を備えた仕込室Lと、前記仕込室から移動されたトレイと基体を、熱処理する第二温調手段を備えた加熱室Hとを備え、前記成膜室の後段には、前記成膜室から移動されたトレイと基体を冷却する搬送室と、前記搬送室から移動されたトレイと基体を、減圧雰囲気から大気雰囲気へ導出する取出室とを備える、ことを特徴とする。 The apparatus for manufacturing a substrate with a transparent conductive film according to claim 7 of the present invention is placed on a tray introduced from an atmospheric atmosphere in front of the film forming chamber in any one of claims 1 to 6. The preparation chamber L provided with the first temperature control means for heat-treating the substrate having the a-Si film on the front surface and the back surface in the prepared state in a reduced pressure atmosphere, and the tray and the substrate moved from the preparation chamber. A heating chamber H provided with a second temperature control means for heat treatment is provided, and in the subsequent stage of the film forming chamber, a transport chamber for cooling the tray and the substrate moved from the film forming chamber and a transport chamber moved from the transport chamber. It is characterized by having a take-out chamber for leading the heat-treated tray and the substrate from the reduced pressure atmosphere to the atmospheric atmosphere.

本発明の請求項8に記載の透明導電膜付き基板の製造方法は、請求項7に記載の仕込室、加熱室、成膜室、搬送室及び取出室を少なくとも備える透明導電膜付き基板の製造装置を用い、トレイに載置された基体の表面及び裏面に配されたa-Si膜上に透明導電膜を形成する、透明導電膜付き基板の製造方法であって、前記仕込室における熱処理温度の最大値をT[℃]、前記加熱室における熱処理温度の最大値をT[℃]、前記成膜室における熱処理温度の最大値をTSP[℃]と各々定義した場合、T≧TSPまたはT≧TSPの関係式を満たす、ことを特徴とする。 The method for manufacturing a substrate with a transparent conductive film according to claim 8 of the present invention is to manufacture a substrate with a transparent conductive film having at least a charging chamber, a heating chamber, a film forming chamber, a transport chamber, and a taking-out chamber according to claim 7. It is a method of manufacturing a substrate with a transparent conductive film, which forms a transparent conductive film on the a-Si film arranged on the front surface and the back surface of the substrate placed on the tray by using an apparatus, and is a heat treatment temperature in the charging chamber. When the maximum value of is defined as TL [° C], the maximum value of the heat treatment temperature in the heating chamber is TH [° C], and the maximum value of the heat treatment temperature in the film formation chamber is T SPC ], TL is defined. It is characterized in that it satisfies the relational expression of ≧ T SP or TH ≧ T SP .

本発明の請求項9に記載の透明導電膜付き基板の製造方法は、請求項8において、前記仕込室の内部空間及び前記加熱室の内部空間にあっては、前記基体はその表面側と裏面側に各々配置された、第一温調手段及び第二温調手段により熱処理される、ことを特徴とする。 The method for manufacturing a substrate with a transparent conductive film according to claim 9 of the present invention is the method of claim 8, wherein in the internal space of the charging chamber and the internal space of the heating chamber, the substrate is on the front surface side and the back surface thereof. It is characterized in that it is heat-treated by the first temperature control means and the second temperature control means, which are arranged on the side respectively.

本発明の請求項10に記載の透明導電膜付き基板の製造方法は、請求項8において、前記成膜室内において、前記基体が前記第一ターゲットの前を通過する手前の位置にある内部空間、及び、該基体が該第一ターゲットの前を通過して成膜が行われる位置にある内部空間にあっては、該基体はその非成膜面側に配置された第三温調手段により熱処理される、ことを特徴とする。 The method for manufacturing a substrate with a transparent conductive film according to claim 10 of the present invention is the internal space in the film forming chamber, which is located before the substrate passes in front of the first target. Further, in the internal space where the substrate passes in front of the first target and the film formation is performed, the substrate is heat-treated by the third temperature control means arranged on the non-deposit surface side thereof. It is characterized by being done.

本発明の請求項11に記載の透明導電膜付き基板の製造方法は、請求項8において、前記成膜室内において、前記基体が前記第二ターゲットの前を通過する手前の位置にある内部空間、及び、該基体が該第二ターゲットの前を通過して成膜が行われる位置にある内部空間にあっては、該基体はその非成膜面側に配置された第三温調手段により熱処理される、ことを特徴とする。 The method for manufacturing a substrate with a transparent conductive film according to claim 11 of the present invention is the internal space in the film forming chamber, which is located before the substrate passes in front of the second target. Further, in the internal space where the substrate passes in front of the second target and the film formation is performed, the substrate is heat-treated by the third temperature control means arranged on the non-deposit surface side thereof. It is characterized by being done.

本発明の透明導電膜付き基板の製造方法により製造される透明導電膜付き基板は、例えば、基体の表面及び裏面に配されたa-Si膜上に、それぞれ第一透明導電膜及び第二透明導電膜を配してなる透明導電膜付き基板であって、前記第一透明導電膜に含まれる水素含有量CH1[atoms/cm]、前記第二透明導電膜に含まれる水素含有量CH2[atoms/cm]と定義した場合、CH1>CH2の関係式を満たす The transparent conductive film-attached substrate manufactured by the method for manufacturing a transparent conductive film-attached substrate of the present invention is, for example, a first transparent conductive film and a second transparent film on a-Si films arranged on the front surface and the back surface of the substrate, respectively. A substrate with a transparent conductive film on which a conductive film is arranged, the hydrogen content C H1 [atoms / cm 3 ] contained in the first transparent conductive film, and the hydrogen content C contained in the second transparent conductive film. When defined as H2 [atoms / cm 3 ], the relational expression of CH1 > CH2 is satisfied .

上記の透明導電膜付き基板は、前記CH1が1021台であり、かつ、前記CH2[atoms/cm]が1020台であることが好ましい。 The substrate with a transparent conductive film preferably has 1021 units of CH1 and 1020 units of CH2 [atoms / cm 3 ] .

本発明に係る太陽電池として、例えば、基体の表面及び裏面に配されたa-Si膜上に、それぞれ第一透明導電膜及び第二透明導電膜を配してなる透明導電膜付き基板を備えた太陽電池であって、前記基体の表面側を光入射面として、前記第一透明導電膜に含まれる水素含有量CH1[atoms/cm]、前記第二透明導電膜に含まれる水素含有量CH2[atoms/cm]と定義した場合、CH1>CH2の関係式を満たす透明導電膜付き基板を備えたものを例示できる As the solar cell according to the present invention, for example, a substrate with a transparent conductive film having a first transparent conductive film and a second transparent conductive film arranged on a-Si films arranged on the front surface and the back surface of the substrate is provided. The solar cell has a hydrogen content CH1 [atoms / cm 3 ] contained in the first transparent conductive film and a hydrogen content contained in the second transparent conductive film, with the surface side of the substrate as the light incident surface. When the quantity C H2 [atoms / cm 3 ] is defined, an example includes a substrate with a transparent conductive film satisfying the relational expression of C H1 > C H2 .

上記の太陽電池は、前記CH1が1021台であり、かつ、前記CH2[atoms/cm]が1020台である、ことが好ましい。 It is preferable that the above-mentioned solar cell has 1021 units of CH1 and 1020 units of CH2 [atoms / cm 3 ] .

本発明に係る透明導電膜(以下ではTCOとも呼ぶ)付き基板の製造装置によれば、第一成膜手段は第一ターゲットと水素を含むプロセスガスを用い、成膜室内において前段に位置する特定の内部空間においてスパッタ法によって基体の表面側に第一透明導電膜を形成する。次いで、第二成膜手段は第二ターゲットと水素を含まないプロセスガスを用い、成膜室内において後段に位置する特定の内部空間においてスパッタ法によって基体の裏面側に第二透明導電膜を形成する。換言すると、本発明の製造装置は、同じ成膜室内には存在するが、基体の進行方向において、前段に位置する特定の成膜空間で水素を含む第一透明導電膜を基体の表面側に成膜した後に、後段に位置する特定の成膜空間で水素を含まない第二透明導電膜を基体の裏面側に成膜できる。
ゆえに、本発明の製造装置は、基体の表裏両面にTCOの下地をなす非晶質シリコン(a-Si)が予め設けてある基板に対して、基板の表面側に水素を含むプロセスガスを用いて第一透明導電膜を形成した際に、水素ガスを含むプラズマに接することによりHOが発生したとしても、これが基体の裏面側に回り込むことによって、基体の裏面側の非晶質シリコン(a-Si)に再付着するなどして、基体の裏面側の非晶質シリコン(a-Si)とその上に堆積するTCOとの界面に絶縁層が生じるという問題が解消される。
したがって、本発明は、基体の表面側と裏面側に、水素の含有量が異なる透明導電膜が配されてなる透明導電膜付き基板の形成に寄与する製造装置をもたらす。
According to the apparatus for manufacturing a substrate with a transparent conductive film (hereinafter also referred to as TCO) according to the present invention, the first film forming means uses a first target and a process gas containing hydrogen, and is specified to be located in the previous stage in the film forming chamber. A first transparent conductive film is formed on the surface side of the substrate by a sputtering method in the internal space of. Next, the second film forming means uses a second target and a process gas containing no hydrogen to form a second transparent conductive film on the back surface side of the substrate by a sputtering method in a specific internal space located at the subsequent stage in the film forming chamber. .. In other words, although the manufacturing apparatus of the present invention exists in the same film forming chamber, the first transparent conductive film containing hydrogen is placed on the surface side of the substrate in a specific film forming space located in the preceding stage in the traveling direction of the substrate. After the film is formed, a hydrogen-free second transparent conductive film can be formed on the back surface side of the substrate in a specific film forming space located in the subsequent stage.
Therefore, the manufacturing apparatus of the present invention uses a process gas containing hydrogen on the surface side of the substrate with respect to the substrate in which amorphous silicon (a-Si) forming the base of TCO is previously provided on both the front and back surfaces of the substrate. Even if H 2 O is generated by contact with a plasma containing hydrogen gas when the first transparent conductive film is formed, the amorphous silicon on the back surface side of the substrate is generated by wrapping around the back surface side of the substrate. The problem that an insulating layer is formed at the interface between the amorphous silicon (a—Si) on the back surface side of the substrate and the TCO deposited on the amorphous silicon (a—Si) due to reattachment to a—Si) is solved.
Therefore, the present invention provides a manufacturing apparatus that contributes to the formation of a substrate with a transparent conductive film in which transparent conductive films having different hydrogen contents are arranged on the front surface side and the back surface side of the substrate.

本発明に係る透明導電膜付き基板の製造方法は、仕込室、加熱室、成膜室、搬送室及び取出室を少なくとも備える透明導電膜付き基板の製造装置を用い、トレイに載置された基体の表面及び裏面に配されたa-Si膜上に透明導電膜を、前記成膜室内で熱処理しながら成膜する前に、前もって前記仕込室と前記加熱室において熱処理を行う。
その際の熱処理条件を、前記仕込室における熱処理温度の最大値をT[℃]、前記加熱室における熱処理温度の最大値をT[℃]、前記成膜室における熱処理温度の最大値をTSP[℃]と各々定義した場合、T≧TSPまたはT≧TSPの関係式を満たすものとする。
この関係式を満たすように、仕込室と加熱室と成膜室における各熱処理温度の最大値を制御することより、成膜室の前段に位置する仕込室と加熱室において、トレイに載置された基体はピーク温度を迎える。成膜室へ移動したトレイに載置された基体は、このピーク温度より低温状態とされる。これにより、トレイに載置された基体による、成膜室内における水の放出や持ち込みが低減される。
したがって、本発明に係る透明導電膜付き基板の製造方法によれば、成膜室内における水の放出や持ち込みが低減されるので、基体の表面側と裏面側に、水素の含有量が異なる透明導電膜が配されてなる透明導電膜付き基板を安定に形成することが可能となる。
The method for manufacturing a substrate with a transparent conductive film according to the present invention uses a substrate manufacturing apparatus with a transparent conductive film having at least a charging chamber, a heating chamber, a film forming chamber, a transport chamber, and a taking-out chamber, and a substrate placed on a tray. Before the transparent conductive film is formed on the a-Si film arranged on the front surface and the back surface of the film while being heat-treated in the film forming chamber, the heat treatment is performed in the preparation chamber and the heating chamber in advance.
The heat treatment conditions at that time are as follows: the maximum value of the heat treatment temperature in the charging chamber is TL [° C.], the maximum value of the heat treatment temperature in the heating chamber is TH [° C.], and the maximum value of the heat treatment temperature in the film formation chamber is set. When each is defined as T SP [° C.], it is assumed that the relational expression of T L ≧ T SP or TH ≧ T SP is satisfied.
By controlling the maximum value of each heat treatment temperature in the preparation chamber, the heating chamber, and the film formation chamber so as to satisfy this relational expression, the tray is placed on the tray in the preparation chamber and the heating chamber located in front of the film formation chamber. The substrate reaches its peak temperature. The substrate placed on the tray moved to the film forming chamber is kept at a temperature lower than this peak temperature. As a result, the discharge and carry-in of water in the film forming chamber by the substrate placed on the tray are reduced.
Therefore, according to the method for manufacturing a substrate with a transparent conductive film according to the present invention, the discharge and carry-in of water in the film forming chamber are reduced, so that the transparent conductive film having different hydrogen contents on the front surface side and the back surface side of the substrate. It is possible to stably form a substrate with a transparent conductive film on which a film is arranged.

上述した本発明の製造装置や製造方法により、基体の表面及び裏面に配されたa-Si膜上に、それぞれ第一透明導電膜及び第二透明導電膜を配してなる透明導電膜付き基板が形成するならば、前記第一透明導電膜に含まれる水素含有量CH1[atoms/cm]、前記第二透明導電膜に含まれる水素含有量CH2[atoms/cm]と定義した場合、CH1>CH2の関係式を満たす、透明導電膜付き基板が得られる。これにより、本発明の透明導電膜付き基板は、基体の表面側と裏面側に、水素の含有量が異なる透明導電膜が配されてなる構成を備え、基体の表面側を光入射面として活用できることから、太陽電池用途に好適である。 A substrate with a transparent conductive film in which a first transparent conductive film and a second transparent conductive film are arranged on a-Si films arranged on the front surface and the back surface of the substrate by the above-mentioned manufacturing apparatus and manufacturing method of the present invention, respectively. Is defined as the hydrogen content C H1 [atoms / cm 3 ] contained in the first transparent conductive film and the hydrogen content C H2 [atoms / cm 3 ] contained in the second transparent conductive film. In this case, a substrate with a transparent conductive film satisfying the relational expression of CH1 > CH2 is obtained. As a result, the substrate with a transparent conductive film of the present invention has a configuration in which transparent conductive films having different hydrogen contents are arranged on the front surface side and the back surface side of the substrate, and the front surface side of the substrate is utilized as a light incident surface. Since it can be used, it is suitable for solar cell applications.

上述した本発明の製造装置や製造方法により、基体の表面及び裏面に配されたa-Si膜上に、それぞれ第一透明導電膜及び第二透明導電膜を配してなる透明導電膜付き基板が得られる。この透明導電膜付き基板を用いることにより、前記基体の表面側を光入射面として、前記第一透明導電膜に含まれる水素含有量CH1[atoms/cm]、前記第二透明導電膜に含まれる水素含有量CH2[atoms/cm]と定義した場合、CH1>CH2の関係式を満たす太陽電池が得られる。この構成を有する太陽電池は、曲線因子(F.F.:Fill Factor)や発電効率(Eff)の向上が図れる。なお、曲線因子は「最大出力(Pmax)を開放電圧(Voc)と短絡電流(Isc)との積で除した値」であり、発電効率は「開放電圧(Voc)、短絡電流密度(Jsc)、曲線因子(F.F.)の積」である。 A substrate with a transparent conductive film in which a first transparent conductive film and a second transparent conductive film are arranged on a-Si films arranged on the front surface and the back surface of the substrate by the above-mentioned manufacturing apparatus and manufacturing method of the present invention, respectively. Is obtained. By using this substrate with a transparent conductive film, the surface side of the substrate is used as a light incident surface, and the hydrogen content CH1 [atoms / cm 3 ] contained in the first transparent conductive film is used for the second transparent conductive film. When the hydrogen content contained is defined as C H2 [atoms / cm 3 ], a solar cell satisfying the relational expression of C H1 > C H 2 is obtained. A solar cell having this configuration can improve the curve factor (FF: Fill Factor) and the power generation efficiency (Eff). The curve factor is "the value obtained by dividing the maximum output (Pmax) by the product of the open circuit voltage (Voc) and the short circuit current (Isc)", and the power generation efficiency is "the open circuit voltage (Voc) and the short circuit current density (Jsc)". , The product of the curve factors (FF) ".

透明導電膜付き基板の製造装置の一例を示す断面図。The cross-sectional view which shows an example of the manufacturing apparatus of the substrate with a transparent conductive film. トレイに載置された状態にある基体の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a substrate placed on a tray. ターゲットが2本の構成例におけるガス導出部を示す拡大断面図。An enlarged cross-sectional view showing a gas lead-out unit in a configuration example in which two targets are used. ターゲットが3本の構成例におけるガス導出部を示す拡大断面図。An enlarged cross-sectional view showing a gas outlet portion in a configuration example in which three targets are used. 透明導電膜付き基板及びこれを含む太陽電池の一例を示す断面図。FIG. 2 is a cross-sectional view showing an example of a substrate with a transparent conductive film and a solar cell including the substrate. 従来の透明導電膜付き基板の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the conventional substrate with a transparent conductive film. 本発明の実施形態に係る透明導電膜付き基板の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the substrate with a transparent conductive film which concerns on embodiment of this invention. 本発明の実験例1~4におけるトレイ温度を示す一覧表。A list showing tray temperatures in Experimental Examples 1 to 4 of the present invention. 本発明の実験例1~4におけるトレイ温度を示すグラフ。The graph which shows the tray temperature in Experimental Examples 1 to 4 of this invention. 透明導電膜の水素含有量のプロファイルを示す図(HO/Ar=0%の場合)。The figure which shows the profile of the hydrogen content of a transparent conductive film (when H 2 O / Ar = 0%). 透明導電膜の水素含有量のプロファイルを示す図(HO/Ar=6%の場合)。The figure which shows the profile of the hydrogen content of a transparent conductive film (in the case of H 2 O / Ar = 6%).

以下、本発明に係る透明導電膜付き基板の製造装置及び製造方法の最良の形態について、図面に基づき説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 Hereinafter, the best mode of the manufacturing apparatus and manufacturing method of the substrate with a transparent conductive film according to the present invention will be described with reference to the drawings. It should be noted that the present embodiment is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified.

<第一実施形態>
以下では、表面及び裏面の両面がa-Si膜により被覆された基体上に、前記a-Si膜を覆うように透明導電膜が配されてなる透明導電膜付き基板の製造方法について、図5を参照して説明する。
図5は、透明導電膜付き基板及びこれを含む太陽電池の一例を示す断面図である。
図5において、透明導電膜付き基板10A(10)を構成する基体101(基板)は平板状の結晶系シリコン基材であり、基体101の表面101aと裏面101bは両面とも、a-Si膜により被覆されている。図5において、基体101の表面101aに向けた(下向きの)矢印は、光入射方向を表している。
<First Embodiment>
In the following, FIG. 5 describes a method for manufacturing a substrate with a transparent conductive film, in which a transparent conductive film is arranged so as to cover the a-Si film on a substrate whose front surface and back surface are both covered with an a-Si film. Will be described with reference to.
FIG. 5 is a cross-sectional view showing an example of a substrate with a transparent conductive film and a solar cell including the substrate.
In FIG. 5, the substrate 101 (substrate) constituting the transparent conductive film-attached substrate 10A (10) is a flat-plate crystalline silicon substrate, and both the front surface 101a and the back surface 101b of the substrate 101 are formed of an a—Si film. It is covered. In FIG. 5, the (downward) arrow pointing toward the surface 101a of the substrate 101 indicates the light incident direction.

光入射側となる表面101aに設けられたa-Si膜(図5ではαと表記)は、表面101aに接して設けられたi型のa-Si膜102と、該i型のa-Si膜102の上に設けられたp型のa-Si膜103と、から構成されている。また、a-Si膜(α)の外面をなすp型のa-Si膜103を覆うように、第一透明導電膜104が設けられている。さらに、第一透明導電膜104の外面には、金属膜からなる電極105が配されている。 The a-Si film (denoted as α in FIG. 5) provided on the surface 101a on the light incident side includes an i-type a-Si film 102 provided in contact with the surface 101a and the i-type a-Si. It is composed of a p-type a—Si film 103 provided on the film 102. Further, the first transparent conductive film 104 is provided so as to cover the p-type a-Si film 103 forming the outer surface of the a-Si film (α). Further, an electrode 105 made of a metal film is arranged on the outer surface of the first transparent conductive film 104.

これに対して、非光入射側となる裏面101bに配置されたa-Si膜(図5ではβと表示)は、裏面101bに接して設けられたi型のa-Si膜112と、該i型のa-Si膜112の上に設けられたn型のa-Si膜113と、から構成されている。また、a-Si膜(β)の外面をなすn型のa-Si膜113を覆うように、第二透明導電膜114が設けられている。さらに、第二透明導電膜114の外面には、金属膜からなる電極115が配されている。 On the other hand, the a-Si film (indicated as β in FIG. 5) arranged on the back surface 101b on the non-light incident side is the i-type a-Si film 112 provided in contact with the back surface 101b. It is composed of an n-type a-Si film 113 provided on the i-type a-Si film 112 and the n-type a-Si film 113. Further, a second transparent conductive film 114 is provided so as to cover the n-type a-Si film 113 forming the outer surface of the a-Si film (β). Further, an electrode 115 made of a metal film is arranged on the outer surface of the second transparent conductive film 114.

本発明では、後述する透明導電膜付き基板の製造装置及び製造方法によって、第一透明導電膜104と第二透明導電膜114に含まれる水素含有量が制御される。すなわち、第一透明導電膜104に含まれる水素含有量CH1[atoms/cm]、前記第二透明導電膜に含まれる水素含有量CH2[atoms/cm]と定義した場合、CH1>CH2の関係式を満たすように、制御される。これにより、本発明の透明導電膜付き基板は、基体の表面側と裏面側に、水素の含有量が異なる透明導電膜が配されてなる構成を備え、基体の表面側を光入射面として活用できることから、太陽電池用途に好適である。 In the present invention, the hydrogen content contained in the first transparent conductive film 104 and the second transparent conductive film 114 is controlled by the manufacturing apparatus and manufacturing method of the substrate with the transparent conductive film described later. That is, when defined as the hydrogen content C H1 [atoms / cm 3 ] contained in the first transparent conductive film 104 and the hydrogen content C H2 [atoms / cm 3 ] contained in the second transparent conductive film, C H1 > It is controlled so as to satisfy the relational expression of CH2 . As a result, the substrate with a transparent conductive film of the present invention has a configuration in which transparent conductive films having different hydrogen contents are arranged on the front surface side and the back surface side of the substrate, and the front surface side of the substrate is utilized as a light incident surface. Since it can be used, it is suitable for solar cell applications.

以下では、基体101に対してa-Si膜(α)とa-Si(β)を配した構造体を中間構造体1A(1)と呼ぶ。この中間構造体1A(1)に対して第一透明導電膜104及び第二透明導電膜114を配した構造体が、透明導電膜付き基板10A(10)である。また、基体101として結晶系シリコン基材を用い、透明導電膜付き基板10A(10)に対して電極105と電極115を配した構造体が、太陽電池100A(100)である。 Hereinafter, the structure in which the a—Si film (α) and the a—Si (β) are arranged with respect to the substrate 101 is referred to as an intermediate structure 1A (1). The structure in which the first transparent conductive film 104 and the second transparent conductive film 114 are arranged with respect to the intermediate structure 1A (1) is the substrate 10A (10) with a transparent conductive film. Further, the solar cell 100A (100) is a structure in which a crystalline silicon base material is used as the substrate 101 and the electrodes 105 and 115 are arranged on the substrate 10A (10) with a transparent conductive film.

後に詳述する本発明の製造装置と製造方法により作製された、上記構成(図5)とした第一透明導電膜104及び第二透明導電膜114を有する透明導電膜付き基板10A(10)は、後述する表2から、基体の表面側と裏面側に、水素の含有量が異なる透明導電膜が配されてなる構成を備えていることが確認された。この構成とした透明導電膜付き基板は、基体の表面側を光入射面として活用できることから、太陽電池用途に好適である。
また、上記構成からなる透明導電膜付き基板を用いた太陽電池は、曲線因子(F.F.:Fill Factor)や発電効率(Eff)の向上が図れることが分かった。
The transparent conductive film-attached substrate 10A (10) having the first transparent conductive film 104 and the second transparent conductive film 114 having the above-mentioned configuration (FIG. 5) manufactured by the manufacturing apparatus and manufacturing method of the present invention described in detail later From Table 2 described later, it was confirmed that the substrate has a structure in which transparent conductive films having different hydrogen contents are arranged on the front surface side and the back surface side. The substrate with a transparent conductive film having this configuration is suitable for solar cell applications because the surface side of the substrate can be used as a light incident surface.
Further, it was found that the solar cell using the substrate with the transparent conductive film having the above structure can improve the curve factor (FF: Fill Factor) and the power generation efficiency (Eff).

なお、図5には明示していないが、基体101の表面101a側には、必要に応じて反射防止層(Anti Reflection Layer:AR層)が配される構成としてもよい。反射防止層としては、たとえば、絶縁性の窒化膜、窒化ケイ素膜、酸化チタン膜、酸化アルミニウム膜などが好適に用いられる。 Although not explicitly shown in FIG. 5, an antireflection layer (Anti Reflection Layer: AR layer) may be arranged on the surface 101a side of the substrate 101, if necessary. As the antireflection layer, for example, an insulating nitride film, a silicon nitride film, a titanium oxide film, an aluminum oxide film and the like are preferably used.

図6及び図7は、透明導電膜付き基板の製造方法を示すフローチャートであり、図6は従来例を示しており、図7は本発明の実施形態を示している。従来例に対して本発明の実施形態は、以下に詳述する「S16、S17」の工程で相違する。 6 and 7 are flowcharts showing a method of manufacturing a substrate with a transparent conductive film, FIG. 6 shows a conventional example, and FIG. 7 shows an embodiment of the present invention. The embodiments of the present invention differ from the conventional examples in the steps of "S16, S17" described in detail below.

従来の透明導電膜付き基板は、図6に示すS51~S58の工程フローを経て形成される。すなわち、「c-Si(n)準備、テクスチャー形成(両面)、i型a-Si形成(両面)、p型a-Si形成(表面)、n型a-Si形成(裏面)、水なしTCO形成(表面)、水あり(又は水なし)TCO形成(裏面)、電極形成(両面)」からなる8つの工程処理を順に行うことにより製造される。 The conventional substrate with a transparent conductive film is formed through the process flow of S51 to S58 shown in FIG. That is, "c-Si (n) preparation, texture formation (both sides), i-type a-Si formation (both sides), p-type a-Si formation (front surface), n-type a-Si formation (back surface), waterless TCO. It is manufactured by sequentially performing eight process treatments of "formation (front surface), water (or no water) TCO formation (back surface), and electrode formation (both sides)".

特に、従来の透明導電膜付き基板の製造方法においては、受光面となる表面側のTCO膜を成膜する際には「水を含まないプロセスガス」を用い、非受光面となる裏面側のTCO膜を成膜する際には「水を含むプロセスガス」を用いて、この順番で成膜した場合には、裏面側のTCO膜を形成する際に用いた「水を含むプロセスガス」が、前もって成膜済である表面側のTCO膜面に回り込み、水が付着した状態にあるTCO膜面上に、電極が形成されることになる。そのため、表面側のTCOと電極との間で電気的な不具合が生じる虞があった。 In particular, in the conventional method for manufacturing a substrate with a transparent conductive film, a "water-free process gas" is used when forming a TCO film on the front surface side which is a light receiving surface, and the back surface side which is a non-light receiving surface is used. When the TCO film is formed, the "process gas containing water" is used, and when the film is formed in this order, the "process gas containing water" used when forming the TCO film on the back surface side is used. The electrode is formed on the TCO film surface on the surface side, which has been formed in advance, and has water adhered to the TCO film surface. Therefore, there is a possibility that an electrical defect may occur between the TCO on the surface side and the electrode.

これに対し、本発明の透明導電膜付き基板は、図75に示すS11~S18の工程フローを経て形成される。すなわち、「c-Si(n)準備、テクスチャー形成(両面)、i型a-Si形成(両面)、p型a-Si形成(表面)、n型a-Si形成(裏面)、水ありTCO形成(表面)、水なしTCO形成(裏面)、電極形成(両面)」からなる8つの工程処理を順に行うことにより製造される。この順番で成膜した場合、裏面側のTCO膜は「水を含まないプロセスガス」を用いるため、前もって成膜済である表面側のTCO膜面に回り込んだとしても、表面側のTCO膜面上に水が付着した状態になる虞はない。これにより、水の影響を受けることなく、表面側のTCO膜面上に電極が形成される。そのため、表面側のTCOと電極との間で電気的な不具合が発生する問題が解消される。 On the other hand, the substrate with a transparent conductive film of the present invention is formed through the process flow of S11 to S18 shown in FIG. 75. That is, "c-Si (n) preparation, texture formation (both sides), i-type a-Si formation (both sides), p-type a-Si formation (front surface), n-type a-Si formation (back surface), TCO with water. It is manufactured by sequentially performing eight process treatments consisting of "formation (front surface), waterless TCO formation (back surface), and electrode formation (both sides)". When the film is formed in this order, the TCO film on the back surface side uses a "process gas that does not contain water", so even if it wraps around the TCO film surface on the front surface side that has already been film-formed in advance, the TCO film on the front surface side. There is no risk of water adhering to the surface. As a result, the electrode is formed on the TCO film surface on the surface side without being affected by water. Therefore, the problem that an electrical defect occurs between the TCO on the surface side and the electrode is solved.

上述した本発明の透明導電膜付き基板を製造するためには、たとえば、図1に示すような透明導電膜付き基板の製造装置が好適である。図2は、図1の製造装置において、トレイに載置された状態にある基体の一例を示す断面図である。以下では、図1及び図2を参照して、本発明に係る透明導電膜付き基板の製造装置を詳述する。 In order to manufacture the above-mentioned substrate with a transparent conductive film of the present invention, for example, an apparatus for manufacturing a substrate with a transparent conductive film as shown in FIG. 1 is suitable. FIG. 2 is a cross-sectional view showing an example of a substrate placed on a tray in the manufacturing apparatus of FIG. Hereinafter, the apparatus for manufacturing a substrate with a transparent conductive film according to the present invention will be described in detail with reference to FIGS. 1 and 2.

<スパッタ装置>
本発明における透明導電膜付き基板の製造方法では、透明導電膜の下地に相当するa-Si膜(α、β)は、公知のCVD装置によって基体101の上に予め形成されたものを用いる。ここで、2つの透明導電膜104(TCO1)、114(TCO2)は、図1に示すような、スパッタ法を用いて成膜する製造装置(以下、スパッタ装置と呼ぶ)700により形成できる。製造装置700は、インライン式スパッタリング装置であり、基体101を水平に保持して搬送する搬送機構を備えた、水平搬送型のスパッタリング装置である。スパッタ装置700における放電形式は、DCに限定されず、RFや(DC+RF)重畳であってもよい。
<Spattering equipment>
In the method for manufacturing a substrate with a transparent conductive film in the present invention, the a—Si film (α, β) corresponding to the substrate of the transparent conductive film is previously formed on the substrate 101 by a known CVD apparatus. Here, the two transparent conductive films 104 (TCO1) and 114 (TCO2) can be formed by a manufacturing apparatus (hereinafter referred to as a sputtering apparatus) 700 for forming a film by a sputtering method as shown in FIG. The manufacturing apparatus 700 is an in-line sputtering apparatus, which is a horizontal conveying type sputtering apparatus provided with a conveying mechanism for horizontally holding and conveying the substrate 101. The discharge type in the sputtering apparatus 700 is not limited to DC, and may be RF or (DC + RF) superimposition.

図1に示すスパッタ装置においては、複数のプロセス室[仕込室L、加熱室H、成膜入口室ENT、第1成膜室SP1、第2成膜室SP2、第3成膜室SP3、第4成膜室SP4、成膜出口室EXT、搬送室B、取出室UL]が直列に接続して配置されている。a-Si膜(α、β)が形成された基体101[中間構造体1A(1)]を搭載したトレイ400は、各プロセス室を順に通過することにより、本発明の実施形態に係る透明導電膜を中間構造体1A(1)上に作製する。 In the sputtering apparatus shown in FIG. 1, a plurality of process chambers [preparation chamber L, heating chamber H, film formation inlet chamber ENT, first film formation chamber SP1, second film formation chamber SP2, third film formation chamber SP3, first 4 film formation chamber SP4, film formation outlet chamber EXT, transfer chamber B, take-out chamber UL] are connected and arranged in series. The tray 400 on which the substrate 101 [intermediate structure 1A (1)] on which the a—Si film (α, β) is formed passes through each process chamber in order, so that the transparent conductivity according to the embodiment of the present invention is obtained. A film is made on the intermediate structure 1A (1).

すなわち、後述するように、本発明では、所望の温度に熱処理された基体101が、4つ成膜室(SP1→SP2→SP3→SP4)内を通過することにより、基体101の表面側[光入射面として用いられるa-Si膜(α)の上]には「水素含有量の多い第一透明導電膜104(TCO1)」を形成し、基体101の裏面側[非光入射面として用いられるa-Si膜(β)の上]には、水素含有量の少ない第二透明導電膜114(TCO2)を形成する。 That is, as will be described later, in the present invention, the substrate 101 heat-treated to a desired temperature passes through the four film forming chambers (SP1 → SP2 → SP3 → SP4), whereby the surface side of the substrate 101 [light]. On the a—Si film (α) used as the incident surface], a “first transparent conductive film 104 (TCO1) having a high hydrogen content” is formed, and the back surface side of the substrate 101 [used as a non-light incident surface]. On the a-Si film (β)], a second transparent conductive film 114 (TCO2) having a low hydrogen content is formed.

第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)をスパッタ法により形成する際に、図2に示すような構成のトレイ400が好適に用いられる。すなわち、トレイ400は、被処理体である基体101の表面αと裏面βを露呈するための第一開口部400aと第二開口部400bを備えた本体401と、本体401の内側に位置する第一突出部402と、本体401の外側に位置する第二突出部403a、403bとから構成されている。 When the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2) are formed by the sputtering method, the tray 400 having the configuration shown in FIG. 2 is preferably used. That is, the tray 400 has a main body 401 having a first opening 400a and a second opening 400b for exposing the front surface α and the back surface β of the substrate 101 to be treated, and a second body located inside the main body 401. It is composed of one protruding portion 402 and second protruding portions 403a and 403b located outside the main body 401.

第一突出部402は、第一開口部400aが第二開口部400bより大きく設定されるように、本体401の内側において基体101を載置する。これにより、第一開口部400aは本体401の内側面401sにより規定され、第二開口部400bは突出部402の内側面402sにより規定される。これは光入射側となる第一透明導電膜104(TCO1)を、非光入射側となる第二透明導電膜114(TCO2)に比べて、より大面積で形成するためである。 The first protrusion 402 places the substrate 101 inside the main body 401 so that the first opening 400a is set larger than the second opening 400b. As a result, the first opening 400a is defined by the inner side surface 401s of the main body 401, and the second opening 400b is defined by the inner side surface 402s of the protrusion 402. This is because the first transparent conductive film 104 (TCO1) on the light incident side is formed in a larger area than the second transparent conductive film 114 (TCO2) on the non-light incident side.

本体401の外側には、第二突出部403a、403bを備える。トレイ(特定トレイとも呼ぶ)400の進行方向(図2の矢印方向)において、先進するトレイ(先行トレイとも呼ぶ)410の方向に延設された第二突出部403aと、後進するトレイ(後行トレイとも呼ぶ)420の方向に延設された第二突出部403bとは、本体401との接続位置が上下逆転して設けられている。すなわち、トレイ400の第二突出部403aと重なるように、先進するトレイ410には第二突出部413bが配置される。同様に、トレイ400の第二突出部403bと重なるように、後進するトレイ420には第二突出部423aが配置される。 Second protrusions 403a and 403b are provided on the outside of the main body 401. In the traveling direction of the tray (also referred to as a specific tray) 400 (in the direction of the arrow in FIG. 2), the second protruding portion 403a extending in the direction of the advanced tray (also referred to as the leading tray) 410 and the backward tray (backward). The second projecting portion 403b extending in the direction of the (also referred to as a tray) 420 is provided with the connection position with the main body 401 turned upside down. That is, the second protrusion 413b is arranged on the advanced tray 410 so as to overlap the second protrusion 403a of the tray 400. Similarly, the second protruding portion 423a is arranged on the tray 420 to be moved backward so as to overlap the second protruding portion 403b of the tray 400.

これにより、トレイ400の第二突出部403aと先進するトレイ410の第二突出部413bが重なり状態を保つと共に、トレイ400の第二突出部403bと後進するトレイ420の第二突出部423aが重なり状態を保ちながら、3つのトレイ400、410、420が連結されて、第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)のスパッタ成膜が行われる。 As a result, the second protrusion 403a of the tray 400 and the second protrusion 413b of the advanced tray 410 are kept in an overlapping state, and the second protrusion 403b of the tray 400 and the second protrusion 423a of the tray 420 to be moved backward overlap each other. While maintaining the state, the three trays 400, 410, and 420 are connected to perform spatter film formation of the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2).

本発明の製造装置においては、トレイの進行方向において、基体101を載置するトレイ400、410、420が連結されており、トレイ同士の間に空隙が存在しない。ゆえに、トレイ間の空隙を通じて、スパッタ粒子が基体101の非成膜面(たとえば、表面が成膜面の場合は裏面が非成膜面である)に到達する可能性が大幅に低減される。同様に、スパッタに供するプロセスガスの回り込みも抑制される。 In the manufacturing apparatus of the present invention, the trays 400, 410, and 420 on which the substrate 101 is placed are connected in the traveling direction of the trays, and there is no gap between the trays. Therefore, the possibility that the sputter particles reach the non-deposited surface of the substrate 101 (for example, when the front surface is a film-formed surface, the back surface is the non-deposited surface) is greatly reduced through the voids between the trays. Similarly, the wraparound of the process gas to be sputtered is suppressed.

ゆえに、本発明は、基体101の非成膜面にスパッタ粒子が付着したり、基体101の非成膜面がスパッタに供するプロセスガスに曝される、という不具合が回避できる、透明導電膜付き基板の製造装置をもたらす。この作用・効果は、「所望の温度に熱処理された基体101が、4つ成膜室(SP1→SP2→SP3→SP4)内を通過することにより、基体101の表面側[光入射面として用いられるa-Si膜(α)の上]には「水素含有量の多い第一透明導電膜104(TCO1)」を形成し、基体101の裏面側[非光入射面として用いられるa-Si膜(β)の上]には、水素含有量の少ない第二透明導電膜114(TCO2)を形成する」という本発明においては、極めて有効にはたらく。 Therefore, the present invention can avoid problems such as sputter particles adhering to the non-deposited surface of the substrate 101 and the non-deposited surface of the substrate 101 being exposed to the process gas used for sputtering. Brings the manufacturing equipment of. This action / effect is "used as a light incident surface on the surface side of the substrate 101 by passing the substrate 101 heat-treated to a desired temperature through four film forming chambers (SP1 → SP2 → SP3 → SP4). On the a-Si film (α) to be formed], a "first transparent conductive film 104 (TCO1) having a high hydrogen content" is formed, and the back surface side of the substrate 101 [the a-Si film used as a non-light incident surface]. On (β)], a second transparent conductive film 114 (TCO2) having a low hydrogen content is formed. ”In the present invention, it works extremely effectively.

図1のスパッタ装置は、複数のプロセス室[仕込室L、加熱室H、成膜入口室ENT、第1成膜室SP1、第2成膜室SP2、第3成膜室SP3、第4成膜室SP4、成膜出口室EXT、搬送室B、取出室UL]が直列に接続して配置されている。図1のスパッタ装置では、仕込室Lから取出室ULまで、基体101[中間構造体1A(1)]を載置し、基体101を水平に保ちながら搬送する機構(不図示)を備えている。 The sputtering apparatus of FIG. 1 has a plurality of process chambers [preparation chamber L, heating chamber H, film formation inlet chamber ENT, first film formation chamber SP1, second film formation chamber SP2, third film formation chamber SP3, fourth formation. The film chamber SP4, the film formation outlet chamber EXT, the transport chamber B, and the take-out chamber UL] are connected and arranged in series. The sputtering apparatus of FIG. 1 is provided with a mechanism (not shown) for mounting the substrate 101 [intermediate structure 1A (1)] from the charging chamber L to the taking-out chamber UL and transporting the substrate 101 while keeping it horizontal. ..

図1のスパッタ装置において、符号DV1~DV6は何れもドアバルブを表している。第一ドアバルブDV1は、装置外部の大気空間と仕込室Lの内部空間との間を遮断する。第二ドアバルブDV2は、仕込室Lの内部空間と加熱室Hの内部空間との間を遮断する。第三ドアバルブDV3は、加熱室Hの内部空間と成膜入口室ENTの内部空間との間を遮断する。第四ドアバルブDV4は、成膜出口室EXTの内部空間と搬送室Bの内部空間との間を遮断する。第五ドアバルブDV5は、搬送室Bの内部空間と取出室ULの内部空間との間を遮断する。第六ドアバルブDV6は、取出室ULの内部空間と装置外部の大気空間との間を遮断する。 In the sputtering apparatus of FIG. 1, the reference numerals DV1 to DV6 all represent door valves. The first door valve DV1 cuts off the space between the air space outside the device and the internal space of the charging chamber L. The second door valve DV2 cuts off between the internal space of the charging chamber L and the internal space of the heating chamber H. The third door valve DV3 shuts off between the internal space of the heating chamber H and the internal space of the film formation inlet chamber ENT. The fourth door valve DV4 shuts off between the internal space of the film formation outlet chamber EXT and the internal space of the transport chamber B. The fifth door valve DV5 shuts off between the internal space of the transport chamber B and the internal space of the take-out chamber UL. The sixth door valve DV6 shuts off between the internal space of the take-out chamber UL and the atmospheric space outside the device.

図1のスパッタ装置においては、6つのチャンバ(成膜入口室ENT、第1成膜室SP1、第2成膜室SP2、第3成膜室SP3、第4成膜室SP4、及び、成膜出口室EXT)の内部空間が全て連通しており、1つの真空槽を構成している。6つのチャンバにおいて、隣接する位置にあるチャンバどうしの仕切りを示す「一点鎖線」は、隣接する位置にあるチャンバの内部空間が連通していることを意味する。 In the sputtering apparatus of FIG. 1, six chambers (the film forming inlet chamber ENT, the first film forming chamber SP1, the second film forming chamber SP2, the third film forming chamber SP3, the fourth film forming chamber SP4, and the film forming are formed. The internal space of the outlet chamber EXT) is all in communication, forming one vacuum chamber. In the six chambers, the "dashed-dotted line" indicating the partition between the chambers in the adjacent positions means that the internal spaces of the chambers in the adjacent positions communicate with each other.

スパッタ装置の外部空間から仕込室Lの内部空間へ搬入された、トレイ400に搭載された基体101[中間構造体1A(1)]の表面及び裏面の両面には、予め、公知のCVD装置によりa-Si膜が形成されている。基体101は、トレイ400に搭載された状態で、仕込室Lから取出室ULへ向けて、順方向にのみ移動することができる。つまり、図1に示す製造装置においては、トレイ400に搭載された基体101は、逆方向[取出室ULから仕込室Lの方向]へ戻る必要がない。ゆえに、図1のスパッタ装置は、量産性に優れている。 Both the front surface and the back surface of the substrate 101 [intermediate structure 1A (1)] mounted on the tray 400 carried into the internal space of the charging chamber L from the external space of the sputtering apparatus are previously subjected to a known CVD apparatus. An a-Si film is formed. The substrate 101 can be moved only in the forward direction from the charging chamber L to the taking-out chamber UL while being mounted on the tray 400. That is, in the manufacturing apparatus shown in FIG. 1, the substrate 101 mounted on the tray 400 does not need to return in the reverse direction [direction from the take-out chamber UL to the charging chamber L]. Therefore, the sputtering apparatus of FIG. 1 is excellent in mass productivity.

第一ドアバルブDV1の開閉動作を行い、基体101は大気空間(スパッタ装置外部)から仕込室Lの内部空間へ搬入される。第一排気手段P11を用い、仕込室Lの内部空間を所望の減圧雰囲気とする。必要に応じて、仕込室Lの温調手段H11、H12を用い、仕込室Lにおいて基体101の両面から加熱処理が施される。熱処理なしの基体101、あるいは加熱処理により所望の温度になった基体101は、第二ドアバルブDV2の開閉動作を行い、仕込室Lから加熱室Hへ移動される。 The first door valve DV1 is opened and closed, and the substrate 101 is carried from the atmospheric space (outside the sputtering apparatus) into the internal space of the charging chamber L. The first exhaust means P11 is used to make the internal space of the charging chamber L a desired depressurized atmosphere. If necessary, heat treatment is performed from both sides of the substrate 101 in the charging chamber L by using the temperature controlling means H11 and H12 in the charging chamber L. The substrate 101 without heat treatment or the substrate 101 having reached a desired temperature by heat treatment performs an opening / closing operation of the second door valve DV2 and is moved from the charging chamber L to the heating chamber H.

次に、仕込室Lから加熱室Hへ移動された基体101は、地点Aにおいて、温調手段H21、H22により基体101の両面から加熱処理が施される。その際、加熱室Hの内部空間は第二排気手段P21を用い、所望の減圧雰囲気が保持される。加熱室Hにおいて所望の温度になった基体101は、第三ドアバルブDV3の開閉動作を行い、加熱室Hから成膜入口室ENTへ移動される。 Next, the substrate 101 moved from the charging chamber L to the heating chamber H is heat-treated from both sides of the substrate 101 by the temperature control means H21 and H22 at the point A. At that time, the second exhaust means P21 is used for the internal space of the heating chamber H, and a desired depressurized atmosphere is maintained. The substrate 101 having reached a desired temperature in the heating chamber H opens and closes the third door valve DV3, and is moved from the heating chamber H to the film formation inlet chamber ENT.

次に、加熱室Hから成膜入口室ENTへ移動された基体101は、地点Bにおいて、温調手段H311、H312により基体101の両面から加熱処理が施される。成膜入口室ENTにおいて所望の温度になった基体101は、成膜入口室ENTから、4つ成膜室(SP1→SP2→SP3→SP4)の内部空間を通過させることにより所望の成膜を行った後、成膜出口室EXTまで移動される。 Next, the substrate 101 moved from the heating chamber H to the film formation inlet chamber ENT is heat-treated from both sides of the substrate 101 by the temperature control means H311 and H312 at the point B. The substrate 101 having reached the desired temperature in the film forming inlet chamber ENT passes through the internal spaces of the four film forming chambers (SP1 → SP2 → SP3 → SP4) from the film forming inlet chamber ENT to form a desired film formation. After that, it is moved to the film forming outlet chamber EXT.

基体101が収容された成膜入口室ENTの雰囲気は、後段に位置する第一成膜室SP1、第二成膜室SP2、第三成膜室SP3、第四成膜室SP4における、基体101の表裏に形成される第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)が形成される際の雰囲気条件(スパッタ成膜条件など)に合わせて調整される。 The atmosphere of the film forming inlet chamber ENT in which the substrate 101 is housed is the substrate 101 in the first film forming chamber SP1, the second film forming chamber SP2, the third film forming chamber SP3, and the fourth film forming chamber SP4 located in the subsequent stage. It is adjusted according to the atmospheric conditions (spatter film forming conditions and the like) when the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2) formed on the front and back surfaces of the above are formed.

成膜入口室ENTの次に位置する第一成膜室SP1には、基体101が地点Cを通過する際に、基体101の裏面を熱処理する温調手段H322が配置されている。これにより、次の第二成膜室SP2で行われる第一透明導電膜104(TCO1)の形成直前にある基体101の温度を調整可能とされている。 In the first film forming chamber SP1 located next to the film forming inlet chamber ENT, a temperature control means H322 for heat-treating the back surface of the substrate 101 when the substrate 101 passes the point C is arranged. This makes it possible to adjust the temperature of the substrate 101 immediately before the formation of the first transparent conductive film 104 (TCO1) performed in the next second film forming chamber SP2.

第一成膜室SP1の次に位置する第二成膜室SP2には、基体101が地点Dを通過する際に、基体101の裏面を熱処理する温調手段H332と、基体101の表面側に第一透明導電膜104(TCO1)を形成するための1対の回転ターゲットTG21、TG22からなる第一成膜手段と、が配置されている。これにより、第一透明導電膜104(TCO1)の形成時にある基体101は、非成膜面である裏面(図1では下面)から、成膜温度が調整可能とされている。1対の回転ターゲットTG21、TG22に対して、基体101の進行方向において上手側の位置に、2つのプロセスガス供給手段G21、G22の導出口が配置されている。 In the second film forming chamber SP2 located next to the first film forming chamber SP1, the temperature control means H332 for heat-treating the back surface of the substrate 101 when the substrate 101 passes the point D, and the surface side of the substrate 101 A first film forming means composed of a pair of rotating targets TG21 and TG22 for forming the first transparent conductive film 104 (TCO1) is arranged. As a result, the film formation temperature of the substrate 101 at the time of forming the first transparent conductive film 104 (TCO1) can be adjusted from the back surface (lower surface in FIG. 1) which is a non-deposition surface. The outlets of the two process gas supply means G21 and G22 are arranged at positions on the upper side in the traveling direction of the substrate 101 with respect to the pair of rotation targets TG21 and TG22.

このように温度調整された基体101は第二成膜室SP2の地点Dを通過する。このとき、トレイ400は、第一ターゲットTG21、TG22に基体101の表面が対向するように、基体101を水平に維持する。トレイ400によって基体101が地点Dを通過することにより、第一ターゲットTG21、TG22を用いた、たとえばDCスパッタ法によって、基体101の表面側にのみ、第一透明導電膜104(TCO1)が形成される。これにより、基体101の表面(101b)側のa-Si膜(α)上に、第一透明導電膜104(TCO1)が形成される。なお、上述した通り、本発明におけるスパッタ法の放電形式は、DCに限定されず、RFや(DC+RF)重畳であってもよい。 The temperature-adjusted substrate 101 passes through the point D of the second film forming chamber SP2. At this time, the tray 400 keeps the substrate 101 horizontally so that the surface of the substrate 101 faces the first targets TG21 and TG22. By passing the substrate 101 through the point D by the tray 400, the first transparent conductive film 104 (TCO1) is formed only on the surface side of the substrate 101 by, for example, the DC sputtering method using the first targets TG21 and TG22. To. As a result, the first transparent conductive film 104 (TCO1) is formed on the a—Si film (α) on the surface (101b) side of the substrate 101. As described above, the discharge type of the sputtering method in the present invention is not limited to DC, and may be RF or (DC + RF) superposition.

その際、プラズマを形成する第一プロセスガスとして、不活性ガス(たとえばAr)G21と反応性ガス(たとえばOガス)や水素を含むガス(たとえばHO)G22が、基体の進行方向において上手側のターゲットTG21に向けて吹きつけるように供給される。第二成膜室SP2においては、第一ターゲットTG21、TG22が基体101に対して上方に配置されており、デポダウンのスパッタリングが行われる。 At that time, as the first process gas for forming the plasma, an inert gas (for example, Ar) G21 and a gas containing a reactive gas (for example, O2 gas) or hydrogen (for example, H2O ) G22 are used in the traveling direction of the substrate. It is supplied so as to blow toward the target TG21 on the good side. In the second film forming chamber SP2, the first targets TG21 and TG22 are arranged above the substrate 101, and depot down sputtering is performed.

図3は、ターゲットが2本の構成例におけるガス導出部を示す拡大断面図である。図3に示す1対のターゲットは、図1の第二成膜室SP2に配置された1対の第一ターゲットTG21、TG22を表している。図3において、符号400が基体を搭載したトレイであり、白抜きの太い矢印(紙面右向き)がトレイ(すなわち基体)の移動する方向を表している。 FIG. 3 is an enlarged cross-sectional view showing a gas lead-out unit in a configuration example in which two targets are used. The pair of targets shown in FIG. 3 represents a pair of first targets TG21 and TG22 arranged in the second film forming chamber SP2 of FIG. In FIG. 3, reference numeral 400 is a tray on which the substrate is mounted, and a thick white arrow (pointing to the right on the paper surface) indicates the direction in which the tray (that is, the substrate) moves.

図3に示すように、前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットTG21、TG22の近傍には、第一プロセスガスのうち、反応性ガスや水素を含むガスG22を供給する第一プロセスガス導入機構のガス導出部(矢印)が、前記基体が移動する方向[(図3においてはトレイ400の右端から右側へ延びる)白抜きの太い矢印の方向]において、第一ターゲットTG21、TG22のうち上手側に位置するターゲットTG21に向けて第一プロセスガスG22を吹きつける位置に配設される構成が好ましい。この構成によれば、上手側のカソードで水素を消費させ、下手側のカソードでは水素の少ない成膜を行うことができる。これにより、基体の表面側に形成された第一透明導電膜は、初期成長部が水素濃度の高いものとなり、膜厚が厚くなるに連れて水素濃度の低いものとすることができる。 As shown in FIG. 3, in the film forming chamber, in the vicinity of the first targets TG21 and TG22 that form the first film forming means and form the first transparent conductive film on the surface side of the substrate, the first process is performed. Of the gases, the gas lead-out portion (arrow) of the first process gas introduction mechanism that supplies the gas G22 containing reactive gas or hydrogen moves in the direction in which the substrate moves [(in FIG. 3, from the right end to the right side of the tray 400). In the direction of the thick white arrow (extending)], it is preferable that the configuration is arranged at a position where the first process gas G22 is blown toward the target TG21 located on the upper side of the first targets TG21 and TG22. According to this configuration, hydrogen is consumed at the cathode on the upper side, and a film formation with less hydrogen can be performed at the cathode on the lower side. As a result, in the first transparent conductive film formed on the surface side of the substrate, the initial growth portion has a high hydrogen concentration, and the hydrogen concentration can be lowered as the film thickness increases.

なお、図3において、第一プロセスガスのうち、不活性ガスG21を供給する第一プロセスガス導入機構のガス導出部については図示を省略しているが、反応性ガスや水素を含むガスG22と同様に上手側に必ず配設する必要はなく、たとえば下手側などに配設する構成としても構わない。 In FIG. 3, among the first process gases, the gas out-licensing part of the first process gas introduction mechanism that supplies the inert gas G21 is not shown, but it is a gas G22 containing a reactive gas or hydrogen. Similarly, it is not always necessary to dispose of it on the upper side, and it may be arranged on the lower side, for example.

また、上述した構成(ターゲットTG21に向けて第一プロセスガスG22を吹きつける構成)に代えて、前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットTG21、TG22と、移動する前記基体との間に発生した放電空間(プラズマ)に向けて、前記水素を含む第一プロセスガスG22を供給する第一プロセスガス導入機構のガス導出部が、第一プロセスガスG22を吹きかける位置に配設される構成としてもよい。これにより、放電空間(プラズマ)内において水素が均等に含まれる状態が実現できるので、基体上に形成される第一透明導電膜はその膜内において水素含有量の均一化が図れる。 Further, instead of the above-mentioned configuration (a configuration in which the first process gas G22 is blown toward the target TG21), the first transparent conductivity is formed on the surface side of the substrate forming the first film forming means in the film forming chamber. The first process gas introduction mechanism that supplies the first process gas G22 containing hydrogen toward the discharge space (plasma) generated between the first targets TG21 and TG22 forming the film and the moving substrate. The gas lead-out unit may be arranged at a position where the first process gas G22 is sprayed. As a result, a state in which hydrogen is evenly contained in the discharge space (plasma) can be realized, so that the first transparent conductive film formed on the substrate can have a uniform hydrogen content in the film.

図3の構成、すなわち、第一ターゲットが2本の円筒形ターゲットTG21、TG22からなる構成において、チムニーの配設は有効である。図3の構成においてチムニーを配設する場合は、2つの第一ターゲットTG21、TG22を囲むようにチムニーC21、C22を設ける構成が好ましい。チムニーを設けることにより、前記基体の表面側に第一透明導電膜を形成するために用いる、前記水素を含む第一プロセスガスG22が、前記基体の裏面側の成膜(第二透明導電膜の形成)に及ぼす影響を抑制することが可能となる。 In the configuration of FIG. 3, that is, in the configuration in which the first target consists of two cylindrical targets TG21 and TG22, the chimney arrangement is effective. When the chimneys are arranged in the configuration of FIG. 3, it is preferable to provide the chimneys C21 and C22 so as to surround the two first targets TG21 and TG22. By providing the chimney, the first process gas G22 containing hydrogen, which is used to form the first transparent conductive film on the front surface side of the substrate, forms a film on the back surface side of the substrate (of the second transparent conductive film). It is possible to suppress the influence on the formation).

図4は、ターゲットが3本の構成例におけるガス導出部を示す拡大断面図である。
図3には、第一ターゲットTG21、TG22が一対からなる構成を示したが、本発明はこれに限定されるものではない。たとえば、図4に示すように、第一ターゲットが3本の円筒形ターゲットTG21、TG22、TG23からなり、前記基体が移動する方向[(図4においてはトレイ400の右端から右側へ延びる)白抜きの太い矢印の方向]において上手側から下手側へ順に、TG23、TG21、TG22と並べて配設される構成にも、本発明は適用できる。図4におけるTG21、TG22は、図3と同様の1対の第一ターゲットである。
FIG. 4 is an enlarged cross-sectional view showing a gas lead-out unit in a configuration example in which three targets are used.
FIG. 3 shows a configuration in which the first targets TG21 and TG22 are paired, but the present invention is not limited thereto. For example, as shown in FIG. 4, the first target consists of three cylindrical targets TG21, TG22, and TG23, and the direction in which the substrate moves [(in FIG. 4, extending from the right end to the right side of the tray 400) is outlined. The present invention can also be applied to a configuration in which TG23, TG21, and TG22 are arranged side by side in order from the upper side to the lower side in the direction of the thick arrow. TG21 and TG22 in FIG. 4 are a pair of first targets similar to those in FIG.

前記基体が移動する方向において、1つ目の第一ターゲットTG23が単独で前段に位置し、2つ目と3つ目の第一ターゲットTG21、TG22が1対をなして後段に位置する場合は、単独で前段に位置する第一ターゲットTG23に対してのみ、第一プロセスガスを供給する第一プロセスガス導入機構のガス導出部が配設されていればよい。その際、第一ターゲットTG23に対する第一プロセスガスを供給する第一プロセスガス導入機構のガス導出部は、前記基体が移動する方向において、上手側に限定されるものではなく、たとえば、下手側などに配設されてもよい。 When the first target TG23 is independently located in the front stage and the second and third first targets TG21 and TG22 are paired and located in the rear stage in the direction in which the substrate moves. It suffices that the gas outlet of the first process gas introduction mechanism that supplies the first process gas is provided only to the first target TG23 that is independently located in the previous stage. At that time, the gas out-licensing unit of the first process gas introduction mechanism that supplies the first process gas to the first target TG23 is not limited to the upper side in the direction in which the substrate moves, for example, the lower side or the like. It may be arranged in.

前段に位置する第一ターゲットTG23に対して供給された第一プロセスガスは、後段の第一ターゲットTG21、TG22の方向へ流れることにより、後段の第一ターゲットTG21、TG22にも供給可能である。これにより、必ずしも、後段の第一ターゲットTG21、TG22に対して第一プロセスガスを供給する第一プロセスガス導入機構のガス導出部(図3に示すようなガス導出部)を、図4の構成において配設する必要はない。 The first process gas supplied to the first target TG23 located in the previous stage can also be supplied to the first targets TG21 and TG22 in the subsequent stage by flowing in the direction of the first targets TG21 and TG22 in the subsequent stage. As a result, the gas out-licensing unit (gas out-licensing unit as shown in FIG. 3) of the first process gas introduction mechanism that supplies the first process gas to the first targets TG21 and TG22 in the subsequent stage is necessarily configured in FIG. It is not necessary to dispose of it in.

図4の構成、すなわち、第一ターゲットが3本の円筒形ターゲットTG21、TG22、TG23からなる構成においても、チムニーの配設は有効である。、図4の構成においてチムニーを配設する場合は、1つ目の第一ターゲットTG23を囲むように第一のチムニーC23、C24を設けるとともに、2つ目と3つ目の第一ターゲットTG21、TG22を囲むように第二のチムニーC21、C22を設ける構成が好ましい。これにより、図4の構成においても、前述した図3の構成と同様に、チムニーを設ける効果[前記基体の表面側に第一透明導電膜を形成するために用いる、前記水素を含む第一プロセスガスG22が、前記基体の裏面側の成膜(第二透明導電膜の形成)に及ぼす影響を抑制する効果]が安定して得られる。 The chimney arrangement is also effective in the configuration of FIG. 4, that is, in the configuration in which the first target is composed of three cylindrical targets TG21, TG22, and TG23. When the chimneys are arranged in the configuration of FIG. 4, the first chimneys C23 and C24 are provided so as to surround the first first target TG23, and the second and third first targets TG21, It is preferable to provide the second chimneys C21 and C22 so as to surround the TG22. As a result, even in the configuration of FIG. 4, the effect of providing the chimney [the first process containing hydrogen used for forming the first transparent conductive film on the surface side of the substrate, as in the configuration of FIG. 3 described above. The effect of suppressing the influence of the gas G22 on the film formation (formation of the second transparent conductive film) on the back surface side of the substrate] can be stably obtained.

なお、第一ターゲットは4本以上の円筒形ターゲットから構成されてもよい。第一ターゲットが4本の場合、すなわち、上述した1対のターゲット配置を2回繰り返せばよい。同様に、第一ターゲットが5本の場合、1つの第一ターゲットと1対のターゲット配置を2回繰り返せばよい。つまり、本発明は、第一ターゲットが偶数本の円筒形ターゲットからなる場合にも、第一ターゲットが奇数本の円筒形ターゲットからなる場合にも適用することが可能である。 The first target may be composed of four or more cylindrical targets. When there are four first targets, that is, the above-mentioned pair of target arrangements may be repeated twice. Similarly, when there are five first targets, one first target and a pair of target placements may be repeated twice. That is, the present invention can be applied both when the first target is composed of an even number of cylindrical targets and when the first target is composed of an odd number of cylindrical targets.

第二成膜室SP2の次に位置する第三成膜室SP3には、基体101が地点Eを通過する際に、基体101の表面を熱処理する温調手段H331が配置されている。 In the third film forming chamber SP3 located next to the second film forming chamber SP2, a temperature control means H331 that heat-treats the surface of the substrate 101 when the substrate 101 passes the point E is arranged.

第三成膜室SP3の次に位置する第四成膜室SP4には、基体101が地点Fを通過する際に、基体101の表面を熱処理する温調手段H341と、基体101の裏面側に第二透明導電膜114(TCO2)を形成するための1対の回転ターゲットTG41、TG42からなる第二成膜手段と、が配置されている。これにより、第二透明導電膜114(TCO2)の形成時にある基体101は、非成膜面である表面(図1では上面)から、成膜温度が調整可能とされている。2対の回転ターゲットTG41、TG42に対して、基体101の進行方向において上手側の位置に、2つのプロセスガス供給手段G41、G42の導出口が配置されている。 In the fourth film forming chamber SP4 located next to the third film forming chamber SP3, the temperature control means H341 for heat-treating the surface of the substrate 101 when the substrate 101 passes the point F, and the back surface side of the substrate 101 A second film forming means composed of a pair of rotating targets TG41 and TG42 for forming the second transparent conductive film 114 (TCO2) is arranged. As a result, the film formation temperature of the substrate 101 at the time of forming the second transparent conductive film 114 (TCO2) can be adjusted from the surface (upper surface in FIG. 1) which is a non-deposition surface. The outlets of the two process gas supply means G41 and G42 are arranged at positions on the upper side in the traveling direction of the substrate 101 with respect to the two pairs of rotation targets TG41 and TG42.

このように温度調整された基体101は第四成膜室SP4の地点Fを通過する。このとき、トレイ400は、第二ターゲットTG41、TG42に基体101の裏面が対向するように、基体101を水平に維持する。トレイ400によって基体101が地点Fを通過することにより、第二ターゲットTG41、TG42を用いた、たとえばDCスパッタ法によって、基体101の裏面側にのみ、第二透明導電膜114(TCO2)が形成される。これにより、基体101の裏面(101b)側のa-Si膜(β)上に、第二透明導電膜114(TCO2)が形成される。なお、上述した通り、本発明におけるスパッタ法の放電形式は、DCに限定されず、RFや(DC+RF)重畳であってもよい。 The temperature-adjusted substrate 101 passes through the point F of the fourth film forming chamber SP4. At this time, the tray 400 keeps the substrate 101 horizontally so that the back surface of the substrate 101 faces the second targets TG41 and TG42. By passing the substrate 101 through the point F by the tray 400, the second transparent conductive film 114 (TCO2) is formed only on the back surface side of the substrate 101 by, for example, the DC sputtering method using the second targets TG41 and TG42. To. As a result, the second transparent conductive film 114 (TCO2) is formed on the a—Si film (β) on the back surface (101b) side of the substrate 101. As described above, the discharge type of the sputtering method in the present invention is not limited to DC, and may be RF or (DC + RF) superposition.

その際、プラズマを形成するプロセスガスとして、不活性ガス(たとえばArガス)G41や反応性ガス(たとえばOガス)G42が、基体の進行方向において上手側のターゲットTG41または下手側のターゲットTG42に向けて吹きつけるように供給される。第四成膜室SP4においては、ターゲットTG41、TG42が基体101に対して下方に配置されており、デポアップのスパッタリングが行われる。 At that time, as the process gas for forming the plasma, the inert gas (for example, Ar gas) G41 or the reactive gas (for example, O2 gas) G42 is used as the target TG41 on the upper side or the target TG42 on the lower side in the traveling direction of the substrate. It is supplied to blow toward. In the fourth film forming chamber SP4, the targets TG41 and TG42 are arranged below the substrate 101, and depot-up sputtering is performed.

換言すると、前記成膜室内において、前記第二成膜手段をなす、前記基体の裏面側に第二透明導電膜を形成する第二ターゲットTG41、TG42の近傍には、水素を含まない第二プロセスガスを供給する第二プロセスガス導入機構のガス導出部が配設されている。たとえば、第二プロセスガス導入機構のガス導出部は、前記基体が移動する方向において、前記第二ターゲットTG41、TG42のうち、上手側に位置するターゲットTG41や下手側に位置するターゲットTG42に向けて、前記第二プロセスガスを吹きつける位置に配置される構成が好適であるが、本発明はこの構成に限定されるものではない。 In other words, in the film forming chamber, a second process that does not contain hydrogen in the vicinity of the second targets TG41 and TG42 that form the second transparent conductive film on the back surface side of the substrate, which forms the second film forming means. A gas outlet of the second process gas introduction mechanism for supplying gas is arranged. For example, the gas outlet of the second process gas introduction mechanism faces the target TG41 located on the upper side or the target TG42 located on the lower side of the second targets TG41 and TG42 in the direction in which the substrate moves. , The configuration arranged at the position where the second process gas is blown is preferable, but the present invention is not limited to this configuration.

第二ターゲットについても、上述した1対の構成に限定されるものではない。前述した第一ターゲットと同様に、第二ターゲットは3本の円筒形ターゲットを並べて配置してもよいし、第二ターゲットとして4本以上の円筒形ターゲットを並べて配置しても構わない。つまり、本発明は、第二ターゲットが偶数本の円筒形ターゲットからなる場合にも、第二ターゲットが奇数本の円筒形ターゲットからなる場合にも適用することが可能である。 The second target is also not limited to the above-mentioned pair of configurations. Similar to the first target described above, the second target may be arranged by arranging three cylindrical targets side by side, or four or more cylindrical targets may be arranged side by side as the second target. That is, the present invention can be applied both when the second target is composed of an even number of cylindrical targets and when the second target is composed of an odd number of cylindrical targets.

図1には、第一成膜室SP1と第三成膜室SP3において、成膜は行わない仕様構成の製造装置を開示したが、本発明はこの構成に限定されない。たとえば、第一成膜室SP1には、第二成膜室SP2と同様の成膜手段を設けてもよい。第三成膜室SP3には、第四成膜室SP4と同様の成膜手段を設けても構わない。 FIG. 1 discloses a manufacturing apparatus having a specification configuration in which film formation is not performed in the first film forming chamber SP1 and the third film forming chamber SP3, but the present invention is not limited to this configuration. For example, the first film forming chamber SP1 may be provided with the same film forming means as the second film forming chamber SP2. The third film forming chamber SP3 may be provided with the same film forming means as the fourth film forming chamber SP4.

図1のスパッタ装置においては、6つのチャンバ(成膜入口室ENT、第1成膜室SP1、第2成膜室SP2、第3成膜室SP3、第4成膜室SP4、及び、成膜出口室EXT)には、連通した内部空間を減圧雰囲気とするため、複数の排気手段(P31、P332、P331、P352)が配置されている。すなわち、前記6つのチャンバ間には、たとえば、仕切りバルブ、ドアバルブ、差圧バルブなどが、隣接する位置にある成膜室どうしの間に一切設けられていない。これにより、上述した「複数のトレイ(たとえば、トレイ400、410、420)が連結して進行方向へ移動する構成」が実現できる。 In the sputtering apparatus of FIG. 1, six chambers (the film forming inlet chamber ENT, the first film forming chamber SP1, the second film forming chamber SP2, the third film forming chamber SP3, the fourth film forming chamber SP4, and the film forming are formed. In the outlet chamber EXT), a plurality of exhaust means (P31, P332, P331, P352) are arranged in order to create a reduced pressure atmosphere in the communicated internal space. That is, for example, a partition valve, a door valve, a differential pressure valve, and the like are not provided between the six chambers between the film forming chambers located at adjacent positions. As a result, the above-mentioned "configuration in which a plurality of trays (for example, trays 400, 410, 420) are connected and moved in the traveling direction" can be realized.

第三排気手段P31は、成膜入口室ENTの内部空間を主に排気する位置に接続されている。第四排気手段P332は、第二成膜室SP2の内部空間を主に排気する位置に接続されている。第五排気手段P331は、第三成膜室SP3の内部空間を主に排気する位置に接続されている。第六排気手段P352は、成膜出口室EXTの内部空間を主に排気する位置に接続されている。 The third exhaust means P31 is connected to a position where the internal space of the film formation inlet chamber ENT is mainly exhausted. The fourth exhaust means P332 is connected to a position where the internal space of the second film forming chamber SP2 is mainly exhausted. The fifth exhaust means P331 is connected to a position where the internal space of the third film forming chamber SP3 is mainly exhausted. The sixth exhaust means P352 is connected to a position where the internal space of the film formation outlet chamber EXT is mainly exhausted.

中でも、第四排気手段P332と第五排気手段P331は重要である。第四排気手段P332は、第一透明導電膜104(TCO1)を形成するための1対の回転ターゲットTG11、TG22からなる成膜手段が配置された第二成膜室SP2の内部空間を主に排気する。第五排気手段P331は、第二透明導電膜114(TCO2)を形成するための2対の回転ターゲットTG41、TG42からなる成膜手段が配置された第四成膜室SP4の内部空間に手前に位置する、第三成膜室SP3の内部空間を主に排気する。 Above all, the fourth exhaust means P332 and the fifth exhaust means P331 are important. The fourth exhaust means P332 mainly includes the internal space of the second film forming chamber SP2 in which the film forming means composed of a pair of rotating targets TG11 and TG22 for forming the first transparent conductive film 104 (TCO1) is arranged. Exhaust. The fifth exhaust means P331 is in front of the internal space of the fourth film forming chamber SP4 in which the film forming means composed of two pairs of rotation targets TG41 and TG42 for forming the second transparent conductive film 114 (TCO2) is arranged. The internal space of the third film forming chamber SP3, which is located, is mainly exhausted.

これにより、第四排気手段P332と第五排気手段P331は、第一透明導電膜104(TCO1)を形成するための2つのプロセスガス供給手段G21、G22から導入されたプロセスガス[水素含有量の多い第一透明導電膜104(TCO1)を形成するためのガス]が、後工程に位置する、水素含有量の少ない第二透明導電膜114(TCO2)の成膜に影響を及ぼすことがないように機能する。 As a result, the fourth exhaust means P332 and the fifth exhaust means P331 have the process gas [hydrogen content] introduced from the two process gas supply means G21 and G22 for forming the first transparent conductive film 104 (TCO1). Gas for forming a large amount of the first transparent conductive film 104 (TCO1)] does not affect the film formation of the second transparent conductive film 114 (TCO2) having a low hydrogen content, which is located in the subsequent step. Works for.

この後工程に位置する、水素含有量の少ない第二透明導電膜114(TCO2)の成膜に影響を及ぼすことがないように機能を助ける工夫が、上述した「3つのトレイ400、410、420が連結されて、第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)のスパッタ成膜が行われる仕組み」である。 本発明の製造装置においては、複数のトレイ(たとえば、トレイ400、410、420)が連結して進行方向へ移動することにより、トレイ同士の間に空隙が存在しないので、トレイ間の空隙を通じて、スパッタ粒子が基体101の非成膜面(たとえば、表面が成膜面の場合は裏面が非成膜面である)に到達する可能性が大幅に低減される。同様に、スパッタに供するプロセスガスの回り込みも抑制される。したがって、本発明によれば、第一透明導電膜104(TCO1)を形成した後に作製される、水素含有量の少ない第二透明導電膜114(TCO2)が安定に成膜可能とされている。 A device that assists the function so as not to affect the film formation of the second transparent conductive film 114 (TCO2) having a low hydrogen content, which is located in the subsequent step, is the above-mentioned "three trays 400, 410, 420". Is connected to form a sputter film formation of the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2). " In the manufacturing apparatus of the present invention, since a plurality of trays (for example, trays 400, 410, 420) are connected and move in the traveling direction, there is no gap between the trays, so that the gap between the trays is passed through. The possibility that the sputter particles reach the non-deposited surface of the substrate 101 (for example, when the front surface is a film-formed surface, the back surface is the non-deposited surface) is greatly reduced. Similarly, the wraparound of the process gas to be sputtered is suppressed. Therefore, according to the present invention, the second transparent conductive film 114 (TCO2) having a low hydrogen content, which is produced after forming the first transparent conductive film 104 (TCO1), can be stably formed.

このように、4つ成膜室(SP1→SP2→SP3→SP4)内を通過することにより、基体101の表面側[光入射面として用いられるa-Si膜(α)の上]には「水素含有量の多い第一透明導電膜104(TCO1)」が形成され、基体101の裏面側[非光入射面として用いられるa-Si膜(β)の上]には、水素含有量の少ない第二透明導電膜114(TCO2)が形成された基体101が得られる。4つ成膜室(SP1→SP2→SP3→SP4)内を通過した基体101は、成膜出口室EXTの内部空間にある地点Gまでトレイ400によって移動される。 In this way, by passing through the four film forming chambers (SP1 → SP2 → SP3 → SP4), the surface side of the substrate 101 [on the a—Si film (α) used as the light incident surface] is “. The first transparent conductive film 104 (TCO1) having a high hydrogen content is formed, and the back surface side of the substrate 101 [on the a-Si film (β) used as a non-light incident surface] has a low hydrogen content. A substrate 101 on which the second transparent conductive film 114 (TCO2) is formed is obtained. The substrate 101 that has passed through the four film forming chambers (SP1 → SP2 → SP3 → SP4) is moved by the tray 400 to the point G in the internal space of the film forming outlet chamber EXT.

第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)が形成された基体101は、成膜出口室EXTに移動された後(地点G)、第四ドアバルブDV4の開閉動作を行い、成膜出口室EXTから搬送室Bへ移動される。 After the substrate 101 on which the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2) are formed is moved to the film formation outlet chamber EXT (point G), the fourth door valve DV4 is opened and closed. Then, the film is moved from the film forming outlet chamber EXT to the transport chamber B.

搬送室Bへ移動された後(地点H)、第五ドアバルブDV5の開閉動作を行い、搬送室Bから取出室UL(地点I)へ移動される。その後、取出室ULの内部の圧力を大気圧としてから、第六ドアバルブDV6の開閉動作を行うことにより、第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)が形成された基体101は、スパッタ装置の外部へ搬出される。 After being moved to the transport chamber B (point H), the fifth door valve DV5 is opened and closed, and the fifth door valve DV5 is moved from the transport chamber B to the take-out chamber UL (point I). After that, the pressure inside the take-out chamber UL was set to atmospheric pressure, and then the sixth door valve DV6 was opened and closed to form the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2). The substrate 101 is carried out of the sputtering apparatus.

上述したように、図1のスパッタ装置においては、前段に位置する第二成膜室SP2の内部空間に導入された水素を含むガスが、後段に位置する第四成膜室の内部空間へ流出することを防ぐために、第一透明導電膜104(TCO1)を形成するための1対の回転ターゲットTG11、TG22に対して、第四排気手段P332と第五排気手段P331を設ける配置を工夫した。 As described above, in the sputtering apparatus of FIG. 1, the gas containing hydrogen introduced into the internal space of the second film forming chamber SP2 located in the front stage flows out to the internal space of the fourth film forming chamber located in the rear stage. In order to prevent this from happening, the arrangement of providing the fourth exhaust means P332 and the fifth exhaust means P331 with respect to the pair of rotation targets TG11 and TG22 for forming the first transparent conductive film 104 (TCO1) was devised.

また、図1のスパッタ装置においては、前段に位置する第二成膜室SP2の内部空間に導入された水素を含むガスが、後段に位置する第四成膜室の内部空間へ流出することを防ぐために、基体101を載置して移動するトレイ401についても工夫した。すなわち、トレイの進行方向において、基体101を載置するトレイ400、410、420が連結されており、トレイ同士の間に空隙が存在しないようにトレイ400、410、420が連結された状態で移動可能とした。 Further, in the sputtering apparatus of FIG. 1, the gas containing hydrogen introduced into the internal space of the second film forming chamber SP2 located in the front stage flows out to the internal space of the fourth film forming chamber located in the rear stage. In order to prevent this, the tray 401 on which the substrate 101 is placed and moved is also devised. That is, in the traveling direction of the trays, the trays 400, 410, and 420 on which the substrate 101 is placed are connected, and the trays 400, 410, and 420 move in a connected state so that there is no gap between the trays. It was possible.

本発明は、このような排気手段とトレイに関する工夫により、基体の一方の面側から他方の面側(たとえば表面側から裏面側)へスパッタに供するプロセスガスの回り込みが大幅に抑制できるスパッタ装置をもたらす。 The present invention provides a sputtering apparatus capable of significantly suppressing the wraparound of process gas to be sputtered from one surface side to the other surface side (for example, from the front surface side to the back surface side) of the substrate by devising such an exhaust means and a tray. Bring.

また、図1のスパッタ装置は、インライン式スパッタリング装置であるため、透明導電膜付き基板(および太陽電池)を高い生産性で製造することが可能であり、装置のフットプリントを小さくすることができるという利点を有する。さらに、インライン式スパッタリング装置の場合、同じ成膜条件で、均一な膜を製造するには適している。 Further, since the sputtering apparatus of FIG. 1 is an in-line sputtering apparatus, it is possible to manufacture a substrate (and a solar cell) with a transparent conductive film with high productivity, and the footprint of the apparatus can be reduced. It has the advantage of. Further, in the case of an in-line sputtering apparatus, it is suitable for producing a uniform film under the same film forming conditions.

一方、一般的な枚葉式製造装置を用いる場合では、一枚の基板を処理する毎に、先に成膜された基板(成膜後基板)を成膜室から移動室(トランスファチャンバ)に取り出し、次に成膜される基板(成膜前基板)を移動室から成膜室に搬送する必要がある。また、成膜後基板を取り出した後に、成膜室内の残存ガスを除去することによって、成膜室内を清浄な状態にし、その後、成膜前基板を成膜室内に搬送する必要もある。しかしながら、この場合、残存ガスの残存成分が成膜室の壁部等に付着すること等に起因して、残存成分が成膜室から完全に除去されず、残存成分が後に成膜される膜の特性に影響を与える恐れがある。また、基板に膜を形成する際には、成膜室内においてプロセスガスの導入とプロセスガス導入の停止を行い、放電のON/OFFを行っている。この場合、一枚の基板を処理する毎に、下地膜に対する水の吸着量を制御する必要があり、プロセスが困難となり易い。 On the other hand, when a general single-wafer manufacturing apparatus is used, each time a single substrate is processed, the previously formed substrate (post-deposited substrate) is transferred from the film forming chamber to the moving chamber (transfer chamber). It is necessary to take out the substrate (the substrate before film formation) to be deposited next and transfer it from the moving chamber to the film forming chamber. Further, it is also necessary to clean the film-forming chamber by removing the residual gas in the film-forming chamber after taking out the film-forming substrate, and then transport the pre-deposition substrate into the film-forming chamber. However, in this case, the residual component is not completely removed from the film forming chamber due to the residual component of the residual gas adhering to the wall portion of the film forming chamber or the like, and the residual component is formed later on the film. May affect the characteristics of. Further, when the film is formed on the substrate, the process gas is introduced and the process gas introduction is stopped in the film forming chamber, and the discharge is turned on / off. In this case, it is necessary to control the amount of water adsorbed on the undercoat every time one substrate is processed, which tends to make the process difficult.

これに対し、インライン式スパッタリング装置を用いる場合、基体101が仕込室Lから取出室ULへ向けて順方向にのみ移動しながら、連通する内部空間内を通過して、基体101の両面のa-Si膜(α、β)上に、それぞれ第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)が成膜されるため、下地膜であるa-Si膜に対する水の吸着量の制御がシンプルになるという利点がある。また、常に電源がONされているため、成膜に寄与する時間は100[%]であり、高い生産性と低いランニングコストを両立することができる。 On the other hand, when the in-line sputtering apparatus is used, the substrate 101 moves only in the forward direction from the charging chamber L to the taking-out chamber UL, passes through the internal space in which the substrate 101 communicates, and a-on both sides of the substrate 101. Since the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2) are formed on the Si film (α, β), respectively, the amount of water adsorbed on the a-Si film which is the undercoat film. It has the advantage of simplifying the control of. Further, since the power is always turned on, the time contributing to the film formation is 100 [%], and high productivity and low running cost can be achieved at the same time.

また、図1のスパッタ装置においては、連続した閉空間を構成する成膜室(SP1、SP2、SP3、SP4)において、基体101の両面のa-Si膜(α、β)に、それぞれ第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)が成膜されるため、基体101が大気雰囲気に曝されることなく、真空状態を維持したまま、基体101の両面のa-Si膜(α、β)に、それぞれ第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)を形成することができる(真空一貫表裏成膜)。 Further, in the sputtering apparatus of FIG. 1, in the film forming chambers (SP1, SP2, SP3, SP4) forming a continuous closed space, the a—Si films (α, β) on both sides of the substrate 101 are first, respectively. Since the transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2) are formed into a film, the substrate 101 is not exposed to the atmospheric atmosphere, and the a-on both sides of the substrate 101 is maintained in a vacuum state. The first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2) can be formed on the Si film (α, β), respectively (vacuum consistent front and back film formation).

以下では、図1のスパッタ装置を構成する、複数のプロセス室[仕込室L、加熱室H、成膜入口室ENT、第1成膜室SP1、第2成膜室SP2、第3成膜室SP3、第4成膜室SP4、成膜出口室EXT、搬送室B、取出室UL]におけるトレイ温度について検証した結果について説明する。 In the following, a plurality of process chambers [preparation chamber L, heating chamber H, film formation inlet chamber ENT, first film formation chamber SP1, second film formation chamber SP2, third film formation chamber] constituting the sputtering apparatus of FIG. 1 The results of verification of the tray temperature in SP3, the fourth film forming chamber SP4, the film forming outlet chamber EXT, the transport chamber B, and the take-out chamber UL] will be described.

図8は、実験例1~実験例4におけるトレイ温度[℃]を表す一覧表であり、図8において、「Pos.」はプロセス室の名称であり、「Time」はトレイが移動を開始してからの時間であり、たとえば、「240」は「トレイの移動開始から240秒後」を表している。実験例1~4の欄に記載した数字は、その時間(Time)における(各プロセス室に配置された温調手段によって熱処理された)トレイの温度[℃]である。
図9は、図8のトレイ温度[℃]を示すグラフである。図9において、実線は実験例1を、短い点線は実験例2を、長い点線は実験例3を、一点鎖線は実験例4を、それぞれ示している。
FIG. 8 is a list showing the tray temperature [° C.] in Experimental Examples 1 to 4, in FIG. 8, "Pos." Is the name of the process chamber, and "Time" is the tray starting to move. For example, "240" represents "240 seconds after the start of moving the tray". The numbers described in the columns of Experimental Examples 1 to 4 are the temperature [° C.] of the tray (heat-treated by the temperature control means arranged in each process chamber) at that time (Time).
FIG. 9 is a graph showing the tray temperature [° C.] of FIG. In FIG. 9, the solid line shows Experimental Example 1, the short dotted line shows Experimental Example 2, the long dotted line shows Experimental Example 3, and the alternate long and short dash line shows Experimental Example 4.

<実験例1>
実験例1の設定条件では、仕込室Lと加熱室Hで徐々に温度を加え、4つの成膜室(SP1~SP4、特にSP3、SP4)で温度ピークをもたせる。このため、成膜室の内部空間へトレイ表面から水の放出が増大し、スパッタ時のプロセスガスへ悪影響を及ぼす虞がある。
<Experimental Example 1>
Under the setting conditions of Experimental Example 1, the temperature is gradually applied in the charging chamber L and the heating chamber H, and the temperature peaks are given in the four film forming chambers (SP1 to SP4, particularly SP3 and SP4). Therefore, the discharge of water from the tray surface into the internal space of the film forming chamber increases, which may adversely affect the process gas during sputtering.

<実験例2>
実験例2の設定条件では、仕込室Lで加熱して温度ピークをもたせて、トレイ表面から水を脱気する。仕込室Lより後段に位置するプロセス室では、トレイ温度が単調減少させる。これにより、4つの成膜室(SP1~SP4)では、温度ピーク時よりも低温状態をつくることができるので、水の放出や持ち込みを低減できる。
<Experimental Example 2>
Under the setting conditions of Experimental Example 2, water is degassed from the tray surface by heating in the charging chamber L to give a temperature peak. In the process chamber located after the charging chamber L, the tray temperature is monotonically reduced. As a result, in the four film forming chambers (SP1 to SP4), it is possible to create a lower temperature state than at the time of the temperature peak, so that it is possible to reduce the discharge and carry-in of water.

<実験例3>
実験例3の設定条件では、仕込室Lと加熱室Hで加熱してトレイ表面から水を十分に脱気する。その後、成膜入口室ENTと4つの成膜室(SP1~SP4)においても、高温保持時間を設けることにより、脱気効果を高める。
<Experimental example 3>
Under the setting conditions of Experimental Example 3, water is sufficiently degassed from the tray surface by heating in the charging chamber L and the heating chamber H. After that, the degassing effect is enhanced by providing the high temperature holding time also in the film forming inlet chamber ENT and the four film forming chambers (SP1 to SP4).

<実験例4>
実験例4の設定条件では、仕込室Lは真空排気のみ行い、加熱室Hで加熱してトレイ表面から水を脱気する。その後、実験例3と同様に、成膜入口室ENTと4つの成膜室(SP1~SP4)においても、高温保持時間を設けることにより、脱気効果を高める。裏面成膜時の温度調整で若干温度を上昇させているが、事前に加熱脱気できているため、放出ガスの影響は軽微である。
<Experimental Example 4>
Under the setting conditions of Experimental Example 4, only vacuum exhaust is performed in the charging chamber L, and water is degassed from the tray surface by heating in the heating chamber H. After that, as in Experimental Example 3, the degassing effect is enhanced by providing a high temperature holding time in the film forming inlet chamber ENT and the four film forming chambers (SP1 to SP4). Although the temperature is raised slightly by adjusting the temperature at the time of film formation on the back surface, the effect of the released gas is minor because it has been heated and degassed in advance.

図10は、透明導電膜の水素含有量のプロファイルを示す図(HO/Ar=0%の場合)である。図11は、透明導電膜の水素含有量のプロファイルを示す図(HO/Ar=6%の場合)である。図10及び図11は、SIMS分析によって得られた結果である。SIMS分析に用いた測定器は、アルバックファイ製のSIMS6650である。測定条件として、1次イオン種はCsであり、加速電圧は5kVとした。
図10及び図11において、横軸は透明導電膜の深さ(透明導電膜の表面から裏面の方向に透明導電膜を掘った時間)であり、左の縦軸は水素の含有量[atoms/cm]を、右の縦軸は2次イオン強度(16O、115In、28Si)を示している。
FIG. 10 is a diagram showing a profile of the hydrogen content of the transparent conductive film (when H 2 O / Ar = 0%). FIG. 11 is a diagram showing a profile of the hydrogen content of the transparent conductive film (in the case of H 2 O / Ar = 6%). 10 and 11 are the results obtained by SIMS analysis. The measuring instrument used for SIMS analysis is SIMS6650 manufactured by ULVAC-PHI. As the measurement conditions, the primary ion species was Cs + and the acceleration voltage was 5 kV.
In FIGS. 10 and 11, the horizontal axis is the depth of the transparent conductive film (the time when the transparent conductive film is dug from the front surface to the back surface of the transparent conductive film), and the left vertical axis is the hydrogen content [atoms / cm 3 ], and the vertical axis on the right shows the secondary ionic strength (16O, 115In, 28Si).

図10及び図11から、以下の点が明らかとなった。
図10の透明導電膜は、上述した第二透明導電膜114(TCO2)に相当し、その水素含有量が1020[atoms/cm]台であった。
図11の透明導電膜は、上述した第一透明導電膜104(TCO1)に相当し、その水素含有量が1021[atoms/cm]台であった。
From FIGS. 10 and 11, the following points became clear.
The transparent conductive film of FIG. 10 corresponds to the above-mentioned second transparent conductive film 114 (TCO2), and its hydrogen content was in the range of 10 20 [atoms / cm 3 ].
The transparent conductive film of FIG. 11 corresponds to the above-mentioned first transparent conductive film 104 ( TCO1 ), and its hydrogen content was in the range of 1021 [atoms / cm 3 ].

表1は、第一透明導電膜104(TCO1)と第二透明導電膜114(TCO2)を形成する際の代表的な成膜条件である。表1の項目欄において、「Front」は基体の表面側に成膜した第一透明導電膜104(TCO1)を、「Rear」は基体の裏面側に成膜した第二透明導電膜114(TCO2)を、それぞれ意味する。 Table 1 shows typical film forming conditions for forming the first transparent conductive film 104 (TCO1) and the second transparent conductive film 114 (TCO2). In the item column of Table 1, "Front" is the first transparent conductive film 104 (TCO1) formed on the front surface side of the substrate, and "Rear" is the second transparent conductive film 114 (TCO2) formed on the back surface side of the substrate. ) Means each.

Figure 0007063709000001
Figure 0007063709000001

以上の結果より、本発明の透明導電膜付き基板は、基体の表面及び裏面に配されたa-Si膜上に、それぞれ第一透明導電膜及び第二透明導電膜を配してなる透明導電膜付き基板であって、前記第一透明導電膜に含まれる水素含有量CH1[atoms/cm]、前記第二透明導電膜に含まれる水素含有量CH2[atoms/cm]と定義した場合、CH1>CH2の関係式を満たすことにより形成できる。その際に、前記CH1が1021台であり、かつ、前記CH2[atoms/cm]が1020台である。 From the above results, the substrate with a transparent conductive film of the present invention is a transparent conductive film in which a first transparent conductive film and a second transparent conductive film are arranged on a-Si films arranged on the front surface and the back surface of the substrate, respectively. A substrate with a film, defined as a hydrogen content C H1 [atoms / cm 3 ] contained in the first transparent conductive film and a hydrogen content C H2 [atoms / cm 3 ] contained in the second transparent conductive film. If so, it can be formed by satisfying the relational expression of CH1 > CH2 . At that time, the number of CH1 is 1021 , and the number of CH2 [atoms / cm 3 ] is 1020 .

表1のFront条件において、「水(HO)/Ar」の比率を変更し、第一透明導電膜に含まれる水素含有量CH1[atoms/cm]を評価した結果を表2に示す。 Table 2 shows the results of evaluating the hydrogen content C H1 [atoms / cm 3 ] contained in the first transparent conductive film by changing the ratio of "water (H 2 O) / Ar" under the Front conditions in Table 1. show.

Figure 0007063709000002
Figure 0007063709000002

図3に示した構成からなる4種類の太陽電池を作製した。4種類の太陽電池は、基体の表面側(受光面側)に設ける透明導電膜[Front side TCO]と基体の裏面側に設ける透明導電膜[Rear side TCO]、の水素含有量が異なる組み合わせとした。その他の構成は同一とした。表3に示す実験例11~実験例14が、4種類の太陽電池である。太陽電池の評価結果としては、曲線因子FFと発電効率Effとを評価した。 Four types of solar cells having the configuration shown in FIG. 3 were manufactured. The four types of solar cells have different combinations of hydrogen content of the transparent conductive film [Front side TCO] provided on the front surface side (light receiving surface side) of the substrate and the transparent conductive film [Rear side TCO] provided on the back surface side of the substrate. bottom. Other configurations were the same. Experimental Examples 11 to 14 shown in Table 3 are four types of solar cells. As the evaluation results of the solar cell, the curve factor FF and the power generation efficiency Eff were evaluated.

Figure 0007063709000003
Figure 0007063709000003

曲線因子FFは、実験例14の数値で規格化すると、実験例11の場合が1.019、実験例12の場合が0.998、実験例13の場合が1.007であった。
発電効率Effは、実験例14の数値で規格化すると、実験例11の場合が1.044、実験例12の場合が1.032、実験例13の場合が1.010であった。
The curve factor FF was 1.019 in the case of Experimental Example 11, 0.998 in the case of Experimental Example 12, and 1.007 in the case of Experimental Example 13, when standardized by the numerical values of Experimental Example 14.
The power generation efficiency Eff was 1.044 in the case of Experimental Example 11, 1.032 in the case of Experimental Example 12, and 1.010 in the case of Experimental Example 13, when standardized by the numerical values of Experimental Example 14.

以上の結果から、基体の表面側を光入射面として、前記第一透明導電膜に含まれる水素含有量CH1[atoms/cm]、前記第二透明導電膜に含まれる水素含有量CH2[atoms/cm]と定義した場合、CH1>CH2の関係式を満たす太陽電池(実験例11)は、曲線因子(F.F.:Fill Factor)や発電効率(Eff)の向上が図れることが分かった。なお、曲線因子は「最大出力(Pmax)を開放電圧(Voc)と短絡電流(Isc)との積で除した値」であり、発電効率は「開放電圧(Voc)、短絡電流密度(Jsc)、曲線因子(F.F.)の積」である。 From the above results, the hydrogen content C H1 [atoms / cm 3 ] contained in the first transparent conductive film and the hydrogen content C H2 contained in the second transparent conductive film, with the surface side of the substrate as the light incident surface. When defined as [atoms / cm 3 ], a solar cell (Experimental Example 11) that satisfies the relational expression of CH1 > CH2 has improved curve factor (FF: Fill Factor) and power generation efficiency (Eff). It turned out that it could be planned. The curve factor is "the value obtained by dividing the maximum output (Pmax) by the product of the open circuit voltage (Voc) and the short circuit current (Isc)", and the power generation efficiency is "the open circuit voltage (Voc) and the short circuit current density (Jsc)". , The product of the curve factors (FF) ".

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 Although the invention made by the present inventor has been specifically described above based on the embodiment, the present invention is not limited to the above embodiment and can be variously modified without departing from the gist thereof. Needless to say.

本発明は、透明導電膜付き基板の製造装置、透明導電膜付き基板の製造方法、透明導電膜付き基板、及び太陽電池に広く適用可能である。 The present invention is widely applicable to an apparatus for manufacturing a substrate with a transparent conductive film, a method for manufacturing a substrate with a transparent conductive film, a substrate with a transparent conductive film, and a solar cell.

L 仕込室、H 加熱室、ENT 成膜入口室、SP1 第1成膜室、SP2 第2成膜室、SP3 第3成膜室、SP4 第4成膜室、EXT 成膜出口室、B 搬送室、UL 取出室、DV1、DV2、DV3、DV4、DV5、DV6 ドアバルブ、G21、G22 第一プロセスガス導入機構(第一透明導電膜用のプロセスガス供給手段)、G41、G42 第二プロセスガス導入機構(第二透明導電膜用のプロセスガス供給手段)、H11、H12、H21、H22、H311、H312、H322、H332、H331、H341 温調手段、P11、P21、P31、P331、P332、P352、P41、P52 排気手段、TG21、TG22 第一透明導電膜用の回転ターゲット(第一成膜手段)、TG41、TG42 第二透明導電膜用の回転ターゲット(第二成膜手段)、α、β a-Si膜、101 基体、104 第一透明導電膜(TCO1)、114 第二透明導電膜(TCO2)、400 トレイ、 700 スパッタ装置。 L charging room, H heating room, ENT film forming inlet room, SP1 first film forming room, SP2 second film forming room, SP3 third film forming room, SP4 fourth film forming room, EXT film forming exit room, B transport Room, UL take-out room, DV1, DV2, DV3, DV4, DV5, DV6 door valve, G21, G22 1st process gas introduction mechanism (process gas supply means for 1st transparent conductive film), G41, G42 2nd process gas introduction Mechanism (process gas supply means for the second transparent conductive film), H11, H12, H21, H22, H311, H312, H322, H332, H331, H341 temperature control means, P11, P21, P31, P331, P332, P352, P41, P52 Exhaust means, TG21, TG22 Rotating target for the first transparent conductive film (first film forming means), TG41, TG42 Rotating target for the second transparent conductive film (second film forming means), α, β a -Si film, 101 substrate, 104 first transparent conductive film (TCO1), 114 second transparent conductive film (TCO2), 400 trays, 700 sputtering apparatus.

Claims (11)

トレイに載置された状態にある基体を熱処理する第三温調手段と共に、前記基体の表面側及び裏面側に各々、第一透明導電膜及び第二透明導電膜を形成する第一成膜手段及び第二成膜手段を備えた成膜室を含む透明導電膜付き基板の製造装置であって、
前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットの近傍には、水素を含む第一プロセスガスを供給する第一プロセスガス導入機構のガス導出部が、前記基体が移動する方向において、前記第一ターゲットのうち上手側に位置するターゲットに向けて前記第一プロセスガスを吹きつける位置に配設されており、
前記成膜室内において、前記第二成膜手段をなす、前記基体の裏面側に第二透明導電膜を形成する第二ターゲットの近傍には、水素を含まない第二プロセスガスを供給する第二プロセスガス導入機構のガス導出部が配設されており、
前記基体が前記第一ターゲットの前を通過する際に、該基体の表面側に前記第一透明導電膜をスパッタ法により形成し、前記基体が前記第二ターゲットの前を通過する際に、該基体の裏面側に前記第二透明導電膜をスパッタ法により形成するように、前記第一ターゲットと前記第二ターゲットが前記成膜室内に配置されている、ことを特徴とする透明導電膜付き基板の製造装置。
Along with a third temperature control means for heat-treating the substrate placed on the tray, a first film forming means for forming a first transparent conductive film and a second transparent conductive film on the front surface side and the back surface side of the substrate, respectively. And an apparatus for manufacturing a substrate with a transparent conductive film, which includes a film forming chamber provided with a second film forming means.
In the film forming chamber, the first process of supplying a first process gas containing hydrogen to the vicinity of the first target forming the first transparent conductive film on the surface side of the substrate, which forms the first film forming means. The gas outlet of the gas introduction mechanism is arranged at a position where the first process gas is blown toward the target located on the upper side of the first target in the direction in which the substrate moves.
In the film forming chamber, a second process gas containing no hydrogen is supplied in the vicinity of the second target forming the second transparent conductive film on the back surface side of the substrate, which forms the second film forming means. The gas outlet of the process gas introduction mechanism is arranged,
When the substrate passes in front of the first target, the first transparent conductive film is formed on the surface side of the substrate by a sputtering method, and when the substrate passes in front of the second target, the substrate is formed. A substrate with a transparent conductive film, wherein the first target and the second target are arranged in the film forming chamber so that the second transparent conductive film is formed on the back surface side of the substrate by a sputtering method. Manufacturing equipment.
前記成膜室には、前記第一ターゲットと前記第二ターゲットとの間に位置する内部空間に連通するように、吸気口を備えた排気手段が1つ以上配置されている、ことを特徴とする請求項1に記載の透明導電膜付き基板の製造装置。 The film forming chamber is characterized in that one or more exhaust means provided with an intake port are arranged so as to communicate with an internal space located between the first target and the second target. The apparatus for manufacturing a substrate with a transparent conductive film according to claim 1. 前記トレイが前記基体の表面と裏面を露呈するための開口部、及び、該基体の側面を支持する部位を備え、前記成膜室内において、複数の該トレイがその進行方向に直線的に並んで配され、かつ、複数の該トレイのうち特定トレイは、前記第一ターゲットと前記第二ターゲットの前を通過する際に、その進行方向で、前記特定トレイの前後に位置する先行トレイと後行トレイに各々重なる部位を有しており、前記第一ターゲット側または前記第二ターゲット側から前記特定トレイを見たとき、前記特定トレイはその前後に位置する先行トレイ及び後行トレイと一群をなし、かつ、特定トレイを挟んで先行トレイと後行トレイが一面をなすように、各トレイの移動を制御する手段を備えている、ことを特徴とする請求項1に記載の透明導電膜付き基板の製造装置。 The tray has an opening for exposing the front surface and the back surface of the substrate, and a portion supporting the side surface of the substrate, and a plurality of the trays are linearly arranged in the traveling direction in the film forming chamber. Among the plurality of trays arranged, the specific tray is the preceding tray and the trailing tray located in front of and behind the specific tray in the traveling direction when passing in front of the first target and the second target. Each tray has an overlapping portion, and when the specific tray is viewed from the first target side or the second target side, the specific tray forms a group with the preceding tray and the following tray located in front of and behind the specific tray. The substrate with a transparent conductive film according to claim 1, further comprising a means for controlling the movement of each tray so that the leading tray and the trailing tray face one surface with the specific tray sandwiched between them. Manufacturing equipment. 前記成膜室内において、前記基体が前記第一ターゲットと前記第二ターゲットの前を通過する手前の位置にある内部空間、及び、各ターゲットの前を通過して成膜が行われる位置にある内部空間には、各内部空間ごとに、前記第三温調手段が1つ以上配置されている、ことを特徴とする請求項1に記載の透明導電膜付き基板の製造装置。 In the film forming chamber, an internal space at a position before the substrate passes in front of the first target and the second target, and an inside at a position where the film is formed by passing in front of each target. The apparatus for manufacturing a substrate with a transparent conductive film according to claim 1, wherein one or more of the third temperature controlling means are arranged in each internal space. 前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットと、移動する前記基体との間に発生した放電空間に向けて、前記水素を含む第一プロセスガスを供給する第一プロセスガス導入機構のガス導出部が、該第一プロセスガスを吹きかける位置に配設されている、ことを特徴とする請求項1に記載の透明導電膜付き基板の製造装置。 In the film forming chamber, toward the discharge space generated between the first target forming the first transparent conductive film on the surface side of the substrate, which is the first film forming means, and the moving substrate. The transparency according to claim 1, wherein the gas outlet of the first process gas introduction mechanism for supplying the first process gas containing hydrogen is arranged at a position where the first process gas is sprayed. Equipment for manufacturing substrates with conductive films. 前記成膜室内において、前記第一成膜手段をなす、前記基体の表面側に第一透明導電膜を形成する第一ターゲットと、移動する前記基体との間に発生した放電空間を包囲するようにチムニーが配設されている、ことを特徴とする請求項1又は5に記載の透明導電膜付き基板の製造装置。 In the film forming chamber, the discharge space generated between the first target forming the first transparent conductive film on the surface side of the substrate, which is the first film forming means, and the moving substrate is surrounded. The apparatus for manufacturing a substrate with a transparent conductive film according to claim 1 or 5, wherein a chimney is arranged in the surface. 前記成膜室の前段には、大気雰囲気から導入した、トレイに載置された状態にある、表面及び裏面にa-Si膜が配された基体を、減圧雰囲気において熱処理する第一温調手段を備えた仕込室Lと、前記仕込室から移動されたトレイと基体を、熱処理する第二温調手段を備えた加熱室Hとを備え、
前記成膜室の後段には、前記成膜室から移動されたトレイと基体を冷却する搬送室と、前記搬送室から移動されたトレイと基体を、減圧雰囲気から大気雰囲気へ導出する取出室とを備える、ことを特徴とする請求項1乃至6のいずれか一項に記載の透明導電膜付き基板の製造装置。
In the front stage of the film forming chamber, a first temperature control means for heat-treating a substrate introduced from an air atmosphere and placed on a tray and having an a-Si film on the front surface and the back surface in a reduced pressure atmosphere. A charging chamber L provided with the above, and a heating chamber H provided with a second temperature controlling means for heat-treating the tray and the substrate moved from the charging chamber.
In the subsequent stage of the film forming chamber, there is a transport chamber for cooling the tray and the substrate moved from the film forming chamber, and a take-out chamber for leading the tray and the substrate moved from the transport chamber from the reduced pressure atmosphere to the atmospheric atmosphere. The apparatus for manufacturing a substrate with a transparent conductive film according to any one of claims 1 to 6, wherein the apparatus comprises the above.
請求項7に記載の仕込室、加熱室、成膜室、搬送室及び取出室を少なくとも備える透明導電膜付き基板の製造装置を用い、トレイに載置された基体の表面及び裏面に配されたa-Si膜上に透明導電膜を形成する、透明導電膜付き基板の製造方法であって、
前記仕込室における熱処理温度の最大値をT[℃]、前記加熱室における熱処理温度の最大値をT[℃]、前記成膜室における熱処理温度の最大値をTSP[℃]と各々定義した場合、T≧TSPまたはT≧TSPの関係式を満たす、ことを特徴とする透明導電膜付き基板の製造方法。
Using the apparatus for manufacturing a substrate with a transparent conductive film having at least a charging chamber, a heating chamber, a film forming chamber, a transport chamber, and a take-out chamber according to claim 7, the substrates are arranged on the front surface and the back surface of the substrate placed on the tray. A method for manufacturing a substrate with a transparent conductive film, which forms a transparent conductive film on an a-Si film.
The maximum value of the heat treatment temperature in the preparation chamber is T LC ], the maximum value of the heat treatment temperature in the heating chamber is TH [° C], and the maximum value of the heat treatment temperature in the film formation chamber is T SP [° C]. When defined, a method for manufacturing a substrate with a transparent conductive film, which satisfies the relational expression of TL ≧ T SP or TH ≧ T SP .
前記仕込室の内部空間及び前記加熱室の内部空間にあっては、前記基体はその表面側と裏面側に各々配置された、第一温調手段及び第二温調手段により熱処理される、ことを特徴とする請求項8に記載の透明導電膜付き基板の製造方法。 In the internal space of the charging chamber and the internal space of the heating chamber, the substrate is heat-treated by the first temperature controlling means and the second temperature controlling means respectively arranged on the front surface side and the back surface side thereof. The method for manufacturing a substrate with a transparent conductive film according to claim 8. 前記成膜室内において、前記基体が前記第一ターゲットの前を通過する手前の位置にある内部空間、及び、該基体が該第一ターゲットの前を通過して成膜が行われる位置にある内部空間にあっては、該基体はその非成膜面側に配置された第三温調手段により熱処理される、ことを特徴とする請求項8に記載の透明導電膜付き基板の製造方法。 In the film forming chamber, an internal space at a position before the substrate passes in front of the first target, and an inside at a position where the substrate passes in front of the first target and film formation is performed. The method for manufacturing a substrate with a transparent conductive film according to claim 8, wherein the substrate is heat-treated by a third temperature control means arranged on the non-deposited surface side of the space. 前記成膜室内において、前記基体が前記第二ターゲットの前を通過する手前の位置にある内部空間、及び、該基体が該第二ターゲットの前を通過して成膜が行われる位置にある内部空間にあっては、該基体はその非成膜面側に配置された第三温調手段により熱処理される、ことを特徴とする請求項8に記載の透明導電膜付き基板の製造方法。 In the film forming chamber, an internal space at a position before the substrate passes in front of the second target, and an inside at a position where the substrate passes in front of the second target and film formation is performed. The method for manufacturing a substrate with a transparent conductive film according to claim 8, wherein the substrate is heat-treated by a third temperature control means arranged on the non-deposited surface side of the space.
JP2018087205A 2018-04-27 2018-04-27 Equipment for manufacturing substrates with transparent conductive film, manufacturing method for substrates with transparent conductive film Active JP7063709B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018087205A JP7063709B2 (en) 2018-04-27 2018-04-27 Equipment for manufacturing substrates with transparent conductive film, manufacturing method for substrates with transparent conductive film
CN201910327419.0A CN110408896A (en) 2018-04-27 2019-04-23 Band transparent conductive film substrate and its manufacturing equipment and method and solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087205A JP7063709B2 (en) 2018-04-27 2018-04-27 Equipment for manufacturing substrates with transparent conductive film, manufacturing method for substrates with transparent conductive film

Publications (2)

Publication Number Publication Date
JP2019189931A JP2019189931A (en) 2019-10-31
JP7063709B2 true JP7063709B2 (en) 2022-05-09

Family

ID=68357639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087205A Active JP7063709B2 (en) 2018-04-27 2018-04-27 Equipment for manufacturing substrates with transparent conductive film, manufacturing method for substrates with transparent conductive film

Country Status (2)

Country Link
JP (1) JP7063709B2 (en)
CN (1) CN110408896A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170125A1 (en) 2016-03-29 2017-10-05 株式会社アルバック Method for manufacturing substrates with transparent conductive film, apparatus for manufacturing substrates with transparent conductive film, substrate with transparent conductive film, and solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444980B1 (en) * 2008-03-19 2014-09-29 산요덴키가부시키가이샤 Solar cell and method for manufacturing the same
CN102190156B (en) * 2010-02-10 2014-06-25 佳能安内华股份有限公司 Tray-type substrate conveying system, film formation method and manufacturing method of electronic device
JP5831759B2 (en) * 2011-04-28 2015-12-09 日東電工株式会社 Vacuum film-forming method and laminate obtained by the method
US9578718B2 (en) * 2012-05-04 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element and deposition apparatus
JP2016072523A (en) * 2014-09-30 2016-05-09 株式会社カネカ Crystal silicon solar cell, method of manufacturing the same, and solar cell module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170125A1 (en) 2016-03-29 2017-10-05 株式会社アルバック Method for manufacturing substrates with transparent conductive film, apparatus for manufacturing substrates with transparent conductive film, substrate with transparent conductive film, and solar cell

Also Published As

Publication number Publication date
JP2019189931A (en) 2019-10-31
CN110408896A (en) 2019-11-05

Similar Documents

Publication Publication Date Title
JP6653377B2 (en) Method for manufacturing substrate with transparent conductive film, apparatus for manufacturing substrate with transparent conductive film, substrate with transparent conductive film, and solar cell
KR101150142B1 (en) Reactive sputtering zinc oxide transparent conductive oxides onto large area substrates
US8017976B2 (en) Barrier for doped molybdenum targets
US8184963B2 (en) Nozzle-based, vapor-phase, plume delivery structure for use in production of thin-film deposition layer
US20110088762A1 (en) Barrier layer disposed between a substrate and a transparent conductive oxide layer for thin film silicon solar cells
US20100236628A1 (en) Composition and method of forming an insulating layer in a photovoltaic device
US10367116B2 (en) Method of reducing sodium concentration in a transparent conductive oxide layer of a semiconductor device
JPS5934421B2 (en) Thin film manufacturing method
US6413794B1 (en) Method of forming photovoltaic element
US10156009B2 (en) Silver copper indium gallium selenide reactive sputtering method and apparatus, and photovoltaic cell containing same
US20100163406A1 (en) Substrate support in a reactive sputter chamber
JP7063709B2 (en) Equipment for manufacturing substrates with transparent conductive film, manufacturing method for substrates with transparent conductive film
US20200010948A1 (en) Shielded sputter deposition apparatus and method
JP5378534B2 (en) Method for producing chalcopyrite type compound thin film and method for producing thin film solar cell using the same
WO2021072360A1 (en) Thin film deposition systems and deposition methods for forming photovoltaic cells
KR101227102B1 (en) Thin film manufacturing apparatus and method for solar cell
JP3406959B2 (en) Method for forming deposited film by microwave plasma CVD method
TW201503379A (en) Method of forming an absorber layer of a solar cell
JPH06204537A (en) Thin film semiconductor solar cell
US20200010947A1 (en) Shielded sputter deposition apparatus and method
CN110581074A (en) Combined evaporation and sputtering tool for thin film solar cells
CN112151622A (en) Solar cell module and method for producing a solar module
JPS61110772A (en) Multi-layer thin film forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150