JP7059698B2 - Method of manufacturing copper film - Google Patents

Method of manufacturing copper film Download PDF

Info

Publication number
JP7059698B2
JP7059698B2 JP2018041318A JP2018041318A JP7059698B2 JP 7059698 B2 JP7059698 B2 JP 7059698B2 JP 2018041318 A JP2018041318 A JP 2018041318A JP 2018041318 A JP2018041318 A JP 2018041318A JP 7059698 B2 JP7059698 B2 JP 7059698B2
Authority
JP
Japan
Prior art keywords
copper
film
base material
anode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018041318A
Other languages
Japanese (ja)
Other versions
JP2019157154A (en
Inventor
祐規 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018041318A priority Critical patent/JP7059698B2/en
Publication of JP2019157154A publication Critical patent/JP2019157154A/en
Application granted granted Critical
Publication of JP7059698B2 publication Critical patent/JP7059698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、銅(Cu)被膜の製造方法に関する。 The present invention relates to a method for producing a copper (Cu) coating.

導電性の基材上に簡便な方法で銅被膜を形成する技術が求められている。その中でも、電気分解によって電極表面に銅被膜を形成する電解析出法は、操作が容易であり、経済的にも優れている面から、開発が進められている。 There is a demand for a technique for forming a copper film on a conductive substrate by a simple method. Among them, the electrolytic precipitation method, which forms a copper film on the electrode surface by electrolysis, is being developed because it is easy to operate and economically excellent.

例えば、特許文献1は、陽極室液を保持するための陽極室と、前記陽極室と陰極とを隔離するための隔膜と、前記陽極室液に電流を流すための陽極と、前記陽極-前記陰極間に電圧を印加するための電源とを備え、前記隔膜は、基材と有機ニトリル化合物とを含み、前記陽極室液に含まれる金属イオンを選択的に透過させることが可能なものからなり、前記隔膜に含まれる前記ニトリル化合物の含有量は、前記隔膜の総乾燥重量に対して0.1重量%以上20重量%以下である電気めっきセルを使用して、温度が室温であり、電流密度が200mA/cmである条件下で、銅被膜を形成する方法を開示している。 For example, Patent Document 1 describes an anode chamber for holding an anode chamber liquid, a diaphragm for separating the anode chamber and the cathode, an anode for passing an electric current through the anode chamber liquid, and the anode-the present. The diaphragm is provided with a power source for applying a current between the cathodes, and the diaphragm contains a substrate and an organic nitrile compound, and can selectively permeate metal ions contained in the anode chamber liquid. The content of the nitrile compound contained in the anode is 0.1% by weight or more and 20% by weight or less based on the total dry weight of the anode, and the temperature is room temperature and the current is current. A method for forming a copper film under the condition of a density of 200 mA / cm 2 is disclosed.

特開2016-222991号公報Japanese Unexamined Patent Publication No. 2016-22291

近年では、高速で被膜を形成(成膜)することができる固相電析法に注目が集まっている。ここで、固相電析法とは、陽極と、陰極となる基材との間に固体電解質膜を配置し、該固体電解質膜を基材に接触させると共に、前記陽極と前記基材との間に電圧を印加し、該固体電解質膜の内部に含有された金属イオンから金属を前記基材の表面に析出することにより、前記金属からなる金属被膜を前記基材の表面に形成する方法である。 In recent years, attention has been focused on a solid phase electrodeposition method capable of forming (forming) a film at high speed. Here, in the solid phase electrodeposition method, a solid electrolyte membrane is placed between an anode and a base material serving as a cathode, the solid electrolyte membrane is brought into contact with the base material, and the anode and the base material are brought into contact with each other. A method of forming a metal film made of the metal on the surface of the base material by applying a voltage between them and precipitating metal from the metal ions contained inside the solid electrolyte film on the surface of the base material. be.

例えば、特開2015-092012号公報は、固相電析法によりニッケル被膜を形成する方法において、固体電解質膜にニッケルイオンを供給するための成膜用ニッケル溶液として、pH4.2~6.1の範囲にあり、成膜時において、前記pHの範囲内で緩衝能を有し、ニッケルイオンと不溶性塩及び錯体を形成しないpH緩衝液をさらに含む成膜用ニッケル溶液を使用することを開示している。 For example, Japanese Patent Application Laid-Open No. 2015-092012 describes pH 4.2 to 6.1 as a nickel solution for film formation for supplying nickel ions to a solid electrolyte film in a method of forming a nickel film by a solid phase electrodeposition method. Disclosed is to use a nickel solution for film formation, which is in the range of the above, has a buffering ability within the above pH range at the time of film formation, and further contains a pH buffer solution which does not form an insoluble salt and a complex with nickel ions. ing.

固相電析法では、一般的な電気めっきに使用する原料溶液と同様の原料溶液が使用される。しかしながら、固相電析法の成膜環境は、一般的な電気めっきの成膜環境と異なるため、一般的な電気めっきにおいて正常な被膜が形成される条件を固相電析法の条件に適用することはできない。例えば、特許文献1に開示される電気めっきの条件を使用して固相電析法により銅被膜を形成しようとしても、良好な銅被膜を得ることができない。 In the solid phase electrodeposition method, a raw material solution similar to the raw material solution used for general electroplating is used. However, since the film formation environment of the solid phase electrodeposition method is different from the film formation environment of general electroplating, the conditions for forming a normal film in general electroplating are applied to the conditions of the solid phase electrodeposition method. Can't be done. For example, even if an attempt is made to form a copper film by a solid phase electrodeposition method using the electroplating conditions disclosed in Patent Document 1, a good copper film cannot be obtained.

つまり、固相電析法では、成膜条件により複数の成膜異常モードが発生するため、高品質の被膜形成と高速成膜(例えば、1μm/min以上)との両立が困難である。 That is, in the solid phase electrodeposition method, since a plurality of film formation abnormality modes occur depending on the film formation conditions, it is difficult to achieve both high-quality film formation and high-speed film formation (for example, 1 μm / min or more).

したがって、本発明は、銅被膜の成膜異常モードを抑制し、高速成膜が可能な銅被膜の製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a method for producing a copper film capable of high-speed film formation by suppressing an abnormal mode of forming a copper film.

固相電析法を利用した銅の成膜において、得られる銅被膜の成膜異常モードとしては、主に固体電解質膜と銅被膜との密着(本明細書等では、「密着異常」ともいう)、及びピンホール(未析出部)の発生が挙げられる。 In the film formation of copper using the solid phase electrodeposition method, the film formation abnormality mode of the obtained copper film is mainly the adhesion between the solid electrolyte film and the copper film (also referred to as "adhesion abnormality" in the present specification and the like). ), And the occurrence of pinholes (unprecipitated portions).

本発明者は、鋭意検討した結果、密着異常が高電流密度で低温処理することにより発生すること、及びピンホールが低電流密度で高温処理することにより発生することを見出し、さらに、所定範囲の温度及び電流密度の成膜条件下にて電圧を印加することにより、これらの銅被膜の成膜異常モードを抑制して、高品質の銅被膜を高速で形成することができることを見出し、本発明を完成した。 As a result of diligent studies, the present inventor has found that adhesion abnormalities are caused by low-temperature treatment at a high current density and pinholes are caused by high-temperature treatment at a low current density. We have found that by applying a voltage under the film forming conditions of temperature and current density, it is possible to suppress the film forming abnormality mode of these copper coatings and form a high quality copper coating at high speed. Was completed.

すなわち、本発明の要旨は以下の通りである。
(1)陽極と、陰極としての基材と、銅イオンを含有する銅溶液を含む固体電解質膜とを、前記固体電解質膜が前記陽極と前記基材との間に位置するように、且つ前記固体電解質膜が前記基材の表面に接触するように配置する工程と、
前記陽極と前記基材との間に電圧を印加することにより、前記基材上に銅被膜を形成する工程と、
を含む銅被膜の製造方法であって、
電流密度及び温度が、前記電流密度をx(mA/cm)、前記温度をy(℃)とするx-y図において、(x,y)=(50,30)、(150,30)及び(150,55)の3点で囲われた範囲内になるように設定される成膜条件下にて、前記電圧を印加する、銅被膜の製造方法。
That is, the gist of the present invention is as follows.
(1) An anode, a base material as a cathode, and a solid electrolyte membrane containing a copper solution containing copper ions are provided so that the solid electrolyte membrane is located between the anode and the base material, and the above. The step of arranging the solid electrolyte membrane so as to be in contact with the surface of the base material,
A step of forming a copper film on the substrate by applying a voltage between the anode and the substrate, and
It is a method for manufacturing a copper film containing
The current density and temperature are (x, y) = (50, 30), (150, 30) in the xy diagram where the current density is x (mA / cm 2 ) and the temperature is y (° C.). A method for producing a copper film, wherein the voltage is applied under the film forming conditions set so as to be within the range surrounded by the three points (150, 55).

本発明によって、固体電解質膜と銅被膜との密着、及びピンホールの発生を抑制し、高速成膜が可能な銅被膜の製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a method for producing a copper film capable of forming a high-speed film by suppressing adhesion between a solid electrolyte film and a copper film and generation of pinholes.

本発明の製造方法に用いることのできる成膜装置の一例の模式的断面図を示す。A schematic cross-sectional view of an example of a film forming apparatus that can be used in the manufacturing method of the present invention is shown. 図1Aの成膜装置を用いて、基材上に銅被膜を形成する工程を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a step of forming a copper film on a substrate using the film forming apparatus of FIG. 1A. 銅被膜中において形成されたピンホールの光学顕微鏡画像である。It is an optical microscope image of a pinhole formed in a copper film. 結晶核密度とピンホール数の関係を示す図である。It is a figure which shows the relationship between the crystal nucleus density and the number of pinholes. 結晶核密度が2個/μmである銅被膜中の銅結晶核のSEM画像である。6 is an SEM image of copper crystal nuclei in a copper coating having a crystal nuclei density of 2 pieces / μm 2 . 結晶核密度が33個/μmである銅被膜中の銅結晶核のSEM画像である。6 is an SEM image of copper crystal nuclei in a copper coating having a crystal nuclei density of 33 pieces / μm 2 . 結晶核密度が30個/μm未満になる電流密度及び温度の条件、固体電解質膜と銅被膜との密着が生じる電流密度及び温度の条件、及び良品が形成される電流密度及び温度の条件の概念図である。Current density and temperature conditions where the crystal nucleus density is less than 30 pieces / μm 2 , current density and temperature conditions where adhesion between the solid electrolyte film and the copper film occurs, and current density and temperature conditions where good products are formed. It is a conceptual diagram. 電流密度及び温度の条件を変更して得られた実施例1~5及び比較例1~8の成膜結果を示す図である。It is a figure which shows the film formation result of Examples 1 to 5 and Comparative Examples 1 to 8 obtained by changing the conditions of a current density and a temperature.

以下、本発明の好ましい実施形態について詳細に説明する。
本明細書では、適宜図面を参照して本発明の特徴を説明する。図面では、明確化のために各部の寸法及び形状を誇張しており、実際の寸法及び形状を正確に描写してはいない。それ故、本発明の技術的範囲は、これら図面に表された各部の寸法及び形状に限定されるものではない。なお、本発明の銅被膜の製造方法は、下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
In the present specification, the features of the present invention will be described with reference to the drawings as appropriate. The drawings exaggerate the dimensions and shapes of each part for clarity and do not accurately depict the actual dimensions and shapes. Therefore, the technical scope of the present invention is not limited to the dimensions and shapes of the parts shown in these drawings. The method for producing a copper film of the present invention is not limited to the following embodiments, and may be modified or improved by those skilled in the art within the scope of the gist of the present invention. Can be carried out.

本発明は、陽極と、陰極としての基材と、銅イオンを含有する銅溶液を含む固体電解質膜とを、前記固体電解質膜が前記陽極と前記基材との間に位置するように、且つ前記固体電解質膜が前記基材の表面に接触するように配置する工程と、前記陽極と前記基材との間に電圧を印加することにより、前記基材上に銅被膜を形成する工程と、を含む銅被膜の製造方法であって、電流密度及び温度が、一定の範囲内になるように設定される成膜条件下にて、前記電圧を印加する、銅被膜の製造方法である。 The present invention comprises an anode, a substrate as a cathode, and a solid electrolyte membrane containing a copper solution containing copper ions so that the solid electrolyte membrane is located between the anode and the substrate. A step of arranging the solid electrolyte film so as to be in contact with the surface of the base material, and a step of forming a copper film on the base material by applying a voltage between the anode and the base material. It is a method for producing a copper film including the above, wherein the voltage is applied under the film forming conditions in which the current density and the temperature are set within a certain range.

本発明では、固体電解質膜を基材に接触させた状態で、陽極と基材との間に電圧を印加することによって、固体電解質膜に含まれる銅イオンが基材の表面で還元される。その結果、基材表面に銅が析出し、銅被膜が形成される。 In the present invention, the copper ions contained in the solid electrolyte membrane are reduced on the surface of the substrate by applying a voltage between the anode and the substrate in a state where the solid electrolyte membrane is in contact with the substrate. As a result, copper is deposited on the surface of the base material and a copper film is formed.

本発明では、電流密度及び温度が、電流密度をx(mA/cm)、温度をy(℃)とするx-y図において、(x,y)=(50,30)、(150,30)及び(150,55)の3点、好ましくは(x,y)=(100,35)、(125,35)及び(125,40)の3点で囲われた範囲内になるように設定される成膜条件下にて、電圧を印加する。 In the present invention, the current density and temperature are (x, y) = (50, 30), (150, in the xy diagram where the current density is x (mA / cm 2 ) and the temperature is y (° C.). 30) and (150,55), preferably within the range surrounded by (x, y) = (100,35), (125,35) and (125,40). A voltage is applied under the set film forming conditions.

言い換えると、電流密度及び温度は、電流密度をx(mA/cm)、温度をy(℃)とするx-y図において、4y-x≦70(x≦150,y≧30)、好ましくは5y-x≦75(x≦125,y≧35)の不等式を満たすように設定される。 In other words, the current density and temperature are preferably 4y-x≤70 (x≤150, y≥30) in the xy diagram where the current density is x (mA / cm 2 ) and the temperature is y (° C.). Is set to satisfy the inequality of 5y−x ≦ 75 (x ≦ 125, y ≧ 35).

したがって、電流密度は、温度に依存して、50mA/cm~150mA/cm、好ましくは100mA/cm~125mA/cmに設定することができ、温度は、電流密度に依存して、30℃~55℃、好ましくは35℃~40℃に設定することができる。 Therefore, the current density can be set to 50 mA / cm 2 to 150 mA / cm 2 , preferably 100 mA / cm 2 to 125 mA / cm 2 , depending on the temperature, and the temperature depends on the current density. It can be set to 30 ° C. to 55 ° C., preferably 35 ° C. to 40 ° C.

本発明により、固体電解質膜と銅被膜との密着、及びピンホールの発生を抑制して、高速で、銅被膜を製造することができる。より具体的には、本発明により、酸化銅の被膜の形成に起因する固体電解質膜と銅被膜との密着を抑制でき、さらに小さい結晶核密度に起因するピンホールの発生を抑制することができる。特に、本発明では、銅被膜を高速、例えば1μm/min以上、好ましくは1.5μm/min~3μm/minで形成させる場合においても、固体電解質膜と銅被膜との密着、及びピンホールの発生を抑制することができる。 INDUSTRIAL APPLICABILITY According to the present invention, the copper film can be produced at high speed by suppressing the adhesion between the solid electrolyte film and the copper film and the generation of pinholes. More specifically, according to the present invention, it is possible to suppress the adhesion between the solid electrolyte film and the copper film caused by the formation of the copper oxide film, and further suppress the generation of pinholes caused by the small crystal nucleus density. .. In particular, in the present invention, even when the copper film is formed at high speed, for example, 1 μm / min or more, preferably 1.5 μm / min to 3 μm / min, the solid electrolyte film adheres to the copper film and pinholes are generated. Can be suppressed.

ここで、本発明において、固相電析法を利用した銅の成膜における、得られる銅被膜の成膜異常モード、すなわち(1)固体電解質膜と銅被膜との密着(密着異常)、及び(2)ピンホール(未析出部)の発生について説明する。 Here, in the present invention, in the film formation of copper using the solid phase electrodeposition method, the film formation abnormality mode of the obtained copper film, that is, (1) adhesion between the solid electrolyte film and the copper film (adhesion abnormality), and (2) The generation of pinholes (unprecipitated portions) will be described.

(1)固体電解質膜と銅被膜との密着(密着異常)
上述のように、密着異常は、高電流密度で低温処理することにより発生する。密着異常の発生メカニズムは、以下のように推察される。ただし、本発明は、下記推察によって限定されない。
(1) Adhesion between solid electrolyte membrane and copper coating (abnormal adhesion)
As described above, the adhesion abnormality is generated by low temperature treatment at a high current density. The mechanism of occurrence of adhesion abnormality is inferred as follows. However, the present invention is not limited to the following inferences.

銅イオンを含む銅溶液を使用して、固体電解質膜を基材に接触させた状態で基材の表面に銅被膜を形成する固相電析法において、過大な電流密度が印加されると、析出界面において、銅イオンの還元以外に、溶液中の水素イオンの還元が起こる。水素イオンの還元、すなわち水素(イオン)の系外への放出は、析出界面付近のpHを一時的に上昇させる。pHの一時的な上昇によって増加した水酸化物イオンは、遊離している銅イオンと結合して、水酸化銅を形成する。生成された水酸化銅は、脱水されることにより、基材の表面上において、酸化銅の被膜を形成する。形成された酸化銅の被膜は、固体電解質膜と強く密着する性質を有する。酸化銅の被膜は、例えば、その表面が固体電解質膜の表面に化学的に結合して密着している場合がある。また、酸化銅の被膜は、例えば、その一部が固体電解質膜の内部構造(空孔など)に入り込んで形成され、機械的に密着している場合がある。その結果、固体電解質膜と銅被膜とが密着してしまう。 In a solid phase electrodeposition method in which a copper film containing a copper ion is used to form a copper film on the surface of a substrate in a state where the solid electrolyte membrane is in contact with the substrate, when an excessive current density is applied, At the precipitation interface, in addition to the reduction of copper ions, the reduction of hydrogen ions in the solution occurs. The reduction of hydrogen ions, that is, the release of hydrogen (ions) out of the system, temporarily raises the pH near the precipitation interface. Hydroxide ions increased by a temporary increase in pH combine with free copper ions to form copper hydroxide. The produced copper hydroxide is dehydrated to form a copper oxide film on the surface of the substrate. The formed copper oxide film has the property of strongly adhering to the solid electrolyte film. The surface of the copper oxide film may be chemically bonded and adhered to the surface of the solid electrolyte film, for example. Further, the copper oxide film may be formed, for example, by partially entering the internal structure (pores or the like) of the solid electrolyte film, and may be in close contact with each other mechanically. As a result, the solid electrolyte film and the copper film are in close contact with each other.

(2)ピンホール(未析出部)の発生
上述のように、ピンホールは、低電流密度で高温処理することにより発生する。ピンホールの発生メカニズムは、以下のように推察される。ただし、本発明は、下記推察によって限定されない。
(2) Generation of pinholes (unprecipitated portions) As described above, pinholes are generated by high-temperature treatment at a low current density. The mechanism of pinhole generation is inferred as follows. However, the present invention is not limited to the following inferences.

銅イオンを含む銅溶液を使用して、固体電解質膜を基材に接触させた状態で基材の表面に銅被膜を形成する固相電析法において、印加される電流密度が小さいと、成膜初期に析出する結晶の存在密度(結晶核密度)が小さくなる。結晶核密度が小さいと、その後の増膜により結晶が成長しても結晶粒間が埋まりきらず、埋まりきらない部分がピンホールとして残留する。図2に、銅被膜中において形成されたピンホールの光学顕微鏡画像を示す。 In a solid phase electrodeposition method in which a copper film containing a copper ion is used to form a copper film on the surface of a substrate in a state where the solid electrolyte film is in contact with the substrate, when the applied current density is small, it is formed. The abundance density (crystal nucleus density) of crystals precipitated at the initial stage of the film becomes smaller. If the crystal nucleus density is low, even if the crystal grows due to the subsequent film thickening, the space between the crystal grains is not completely filled, and the unfilled portion remains as a pinhole. FIG. 2 shows an optical microscope image of a pinhole formed in a copper coating.

ここで、図3に、結晶核密度とピンホール数の関係を示す。図3において、結晶核密度は、狙い膜厚を0.1μmとしたとき、すなわち、成膜初期における、被膜1μm当たりの結晶核の個数として定義され、ピンホール数は、銅被膜1cm当たりのピンホールの個数として定義される。また、図4に、結晶核密度が2個/μmである銅被膜中の銅結晶核のSEM画像を示し、図5に、結晶核密度が33個/μmである銅被膜中の銅結晶核のSEM画像を示す。 Here, FIG. 3 shows the relationship between the crystal nucleus density and the number of pinholes. In FIG. 3, the crystal nucleus density is defined as the number of crystal nuclei per 1 μm 2 of the coating film when the target film thickness is 0.1 μm, that is, at the initial stage of film formation, and the number of pinholes is per 1 cm 2 of the copper coating film. It is defined as the number of pinholes in. Further, FIG. 4 shows an SEM image of copper crystal nuclei in a copper coating having a crystal nuclei density of 2 pieces / μm 2 , and FIG. 5 shows copper in a copper coating having a crystal nuclei density of 33 pieces / μm 2 . The SEM image of the crystal nucleus is shown.

図3~5より、結晶核密度が大きくなるにつれてピンホール数が少なくなることがわかる。したがって、ピンホールのない高品質な銅被膜を形成するためには、成膜初期の結晶核の析出状態をち密化する必要がある。ピンホール数を、1個/cm以下、好ましくは0個/cmにするためには、結晶核密度を、30個/μm以上、好ましくは33個/μm以上にする。 From FIGS. 3 to 5, it can be seen that the number of pinholes decreases as the crystal nucleus density increases. Therefore, in order to form a high-quality copper film without pinholes, it is necessary to densify the state of precipitation of crystal nuclei at the initial stage of film formation. In order to reduce the number of pinholes to 1 / cm 2 or less, preferably 0 / cm 2 , the crystal nucleus density should be 30 / μm 2 or more, preferably 33 / μm 2 or more.

本発明者は、鋭意検討した結果、電流密度及び温度が上述した範囲になるよう設定される成膜条件下にて電圧を印加することにより、密着異常、及びピンホールの発生を抑制することができることを見出した。ここで、当該温度は、基材下に設置された熱電対で測定することができる。 As a result of diligent studies, the present inventor has been able to suppress adhesion abnormalities and the occurrence of pinholes by applying a voltage under the film forming conditions set so that the current density and temperature are within the above-mentioned ranges. I found out what I could do. Here, the temperature can be measured with a thermocouple installed under the substrate.

図6に、結晶核密度が30個/μm未満になる、すなわち、ピンホールが発生する電流密度及び温度の条件、固体電解質膜と銅被膜との密着が生じる電流密度及び温度の条件、及び良品が形成される電流密度及び温度の条件の概念図を示す。 In FIG. 6, the crystal nucleus density is less than 30 pieces / μm 2 , that is, the current density and temperature conditions where pinholes occur, the current density and temperature conditions where the solid electrolyte film and the copper film adhere to each other, and the conditions. The conceptual diagram of the current density and temperature conditions in which a good product is formed is shown.

本発明では、固相電析法により銅被膜を形成する。具体的には、固体電解質膜を基材(陰極)に接触させた状態で、陽極と基材との間に電圧を印加することによって、基材の表面に銅被膜を形成する。このような固相電析法による本発明に係る製造方法を実施することができる成膜装置の一例を図1A及び図1Bに示す。 In the present invention, a copper film is formed by a solid phase electrodeposition method. Specifically, a copper film is formed on the surface of the base material by applying a voltage between the anode and the base material in a state where the solid electrolyte film is in contact with the base material (cathode). 1A and 1B show an example of a film forming apparatus capable of carrying out the manufacturing method according to the present invention by such a solid phase electrodeposition method.

図1Aは、成膜装置1Aの模式的断面図である。成膜装置1Aは、陽極11と、陰極としての基材Bと、陽極11と基材Bとの間に配置された固体電解質膜13と、陽極11と基材Bとの間に電圧を印加する電源部16とを備えている。 FIG. 1A is a schematic cross-sectional view of the film forming apparatus 1A. The film forming apparatus 1A applies a voltage between the anode 11, the base material B as a cathode, the solid electrolyte film 13 arranged between the anode 11 and the base material B, and the anode 11 and the base material B. It is provided with a power supply unit 16.

成膜装置1Aは、ハウジング20を更に備えている。ハウジング20には、陽極11と固体電解質膜13との間に銅溶液Lが配置されるように、銅溶液Lを収容する第1収容室21が形成されている。第1収容室21に収容された銅溶液Lは、固体電解質膜13と陽極11とに接触している。 The film forming apparatus 1A further includes a housing 20. The housing 20 is formed with a first storage chamber 21 for accommodating the copper solution L so that the copper solution L is arranged between the anode 11 and the solid electrolyte membrane 13. The copper solution L contained in the first storage chamber 21 is in contact with the solid electrolyte membrane 13 and the anode 11.

第1収容室21には、基材Bの表面Baの大きさよりも大きい第1開口部22が形成されている。第1開口部22は、固体電解質膜13で覆われており、銅溶液Lは、第1収容室21内に流動可能な状態で封止されている。 In the first storage chamber 21, a first opening 22 larger than the size of the surface Ba of the base material B is formed. The first opening 22 is covered with the solid electrolyte membrane 13, and the copper solution L is sealed in the first storage chamber 21 in a fluid state.

成膜装置1Aは、基材Bを載置する載置台40を更に備えている。 The film forming apparatus 1A further includes a mounting table 40 on which the base material B is placed.

成膜装置1Aは、ハウジング20の上部に押圧部30Aを更に備えている。 The film forming apparatus 1A further includes a pressing portion 30A on the upper portion of the housing 20.

図1Bは、図1Aの成膜装置1Aを用いて、基材Bの表面Baに銅被膜Fを形成する工程を説明するものである。 FIG. 1B describes a step of forming a copper film F on the surface Ba of the base material B by using the film forming apparatus 1A of FIG. 1A.

図1Bに示す通り、基材Bを載置台40に載置した状態で、載置台40とハウジング20とを相対的に移動させて、固体電解質膜13と載置台40との間に基材Bを挟み込み、固体電解質膜13を介して銅溶液Lを基材Bの表面Baに配置する。 As shown in FIG. 1B, with the base material B mounted on the mounting table 40, the mounting table 40 and the housing 20 are relatively moved, and the base material B is placed between the solid electrolyte membrane 13 and the mounting table 40. The copper solution L is placed on the surface Ba of the base material B via the solid electrolyte membrane 13.

次に、電源部16によって、陽極11と基材Bとの間に電圧を印加し、固体電解質膜13に含まれる銅イオンを基材Bの表面Baで還元し、表面Baに銅を析出させて、銅被膜Fを形成する。 Next, a voltage is applied between the anode 11 and the base material B by the power supply unit 16, the copper ions contained in the solid electrolyte film 13 are reduced on the surface Ba of the base material B, and copper is deposited on the surface Ba. To form a copper film F.

本発明では、陽極として、例えば、無酸素銅を挙げることができる。陽極は、溶解性陽極であってもよいし、不溶性陽極であってもよい。 In the present invention, the anode may be, for example, oxygen-free copper. The anode may be a soluble anode or an insoluble anode.

本発明では、基材(陰極)としては、例えば、金属材料を用いることができる。金属材料としては、銅やアルミニウムなどの金属材料からなる基材、又は樹脂若しくはシリコン基材の処理表面に金属下地層(銅やアルミニウム)が形成されている基材を用いることができる。 In the present invention, for example, a metal material can be used as the base material (cathode). As the metal material, a base material made of a metal material such as copper or aluminum, or a base material having a metal base layer (copper or aluminum) formed on the treated surface of a resin or silicon base material can be used.

本発明では、固体電解質膜としては、銅溶液に接触させることにより、銅イオンを内部に含浸することができ、電圧を印加したときに基材の表面において銅イオン由来の銅が析出することができるものであれば、特に限定されるものではない。固体電解質膜の材質としては、たとえばデュポン社製のナフィオン(登録商標)などのフッ素系樹脂、炭化水素系樹脂、ポリアミック酸樹脂、旭硝子社製のセレミオン(CMV、CMD、CMFシリーズ)などのイオン交換機能を有する樹脂を挙げることができる。 In the present invention, the solid electrolyte membrane can be impregnated with copper ions by contacting it with a copper solution, and copper derived from copper ions can be deposited on the surface of the base material when a voltage is applied. If it can be done, it is not particularly limited. Examples of the material of the solid electrolyte membrane include fluororesins such as Nafion (registered trademark) manufactured by DuPont, hydrocarbon resins, polyamic acid resins, and ion exchanges such as Celemion (CMV, CMD, CMF series) manufactured by Asahi Glass Co., Ltd. Examples thereof include resins having a function.

本発明において、固体電解質膜の厚さは、例えば、50μm~400μm、100μm~200μmである。 In the present invention, the thickness of the solid electrolyte membrane is, for example, 50 μm to 400 μm and 100 μm to 200 μm.

本発明において、銅溶液に添加して溶解させる銅化合物としては、例えば、塩化物若しくは臭化物などのハロゲン化合物、硫酸塩若しくは硝酸塩などの無機塩、又は酢酸塩若しくはクエン酸塩などの有機酸塩を挙げることができる。具体的には、銅化合物としては、例えば、塩化銅、硫酸銅、又は酢酸銅を挙げることができる。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。銅イオンの濃度は、特に制限されるものではないが、例えば、0.1mol/L~2.0mol/L、より好ましくは、0.8mol/L~1.2mol/Lである。 In the present invention, as the copper compound to be added and dissolved in the copper solution, for example, a halogen compound such as chloride or bromide, an inorganic salt such as sulfate or nitrate, or an organic acid salt such as acetate or citrate is used. Can be mentioned. Specifically, examples of the copper compound include copper chloride, copper sulfate, and copper acetate. These can be used alone or in combination of two or more. The concentration of copper ions is not particularly limited, but is, for example, 0.1 mol / L to 2.0 mol / L, more preferably 0.8 mol / L to 1.2 mol / L.

本発明では、銅溶液のpHは、好ましくは2.0~5.0であり、より好ましくは2.5~4.5である。このようなpHに設定することによって、銅の析出電流効率を向上させることができ、銅被膜を高速で形成し易くできる。なお、銅被膜の成膜速度は、pH以外にも、例えば、銅溶液中の銅イオンや、電流値、陽極材料、陽極面積、温度などの条件により調整することができる。 In the present invention, the pH of the copper solution is preferably 2.0 to 5.0, more preferably 2.5 to 4.5. By setting such a pH, the efficiency of copper precipitation current can be improved, and a copper film can be easily formed at high speed. The film forming rate of the copper film can be adjusted by, for example, conditions such as copper ions in the copper solution, current value, anode material, anode area, and temperature, in addition to pH.

本発明では、銅溶液は、銅イオンに加えて、任意の他の成分を含んでいてもよい。銅溶液は、例えば、溶媒、pH緩衝剤を含んでいてもよい。溶媒としては、例えば、水又はエタノールを挙げることができる。pH緩衝剤としては、例えば、酢酸-酢酸銅、又はコハク酸-コハク酸銅を挙げることができる。 In the present invention, the copper solution may contain any other components in addition to the copper ions. The copper solution may contain, for example, a solvent and a pH buffer. Examples of the solvent include water and ethanol. Examples of the pH buffering agent include acetic acid-copper acetate or succinic acid-copper succinate.

以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれらにより限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the technical scope of the present invention is not limited thereto.

[実施例1]
<銅溶液の作製>
銅溶液として、硫酸銅を1.0mol/Lの濃度で含む水溶液を用意し、この水溶液に酢酸を適量滴下してpHを3.0に調整し、銅溶液を調製した。
[Example 1]
<Preparation of copper solution>
As a copper solution, an aqueous solution containing copper sulfate at a concentration of 1.0 mol / L was prepared, and an appropriate amount of acetic acid was added dropwise to this aqueous solution to adjust the pH to 3.0 to prepare a copper solution.

<銅被膜の成膜>
上述した図1A及び図1Bに示す成膜装置1Aを用いる液圧法により、銅被膜を成膜した。
<Copper film formation>
A copper film was formed by the hydraulic method using the film forming apparatus 1A shown in FIGS. 1A and 1B described above.

基材(陰極)として、Cuスパッタ膜付きSi基板(スパッタ膜厚:300nm)を用いた。陽極として、銅メッシュを用いた。固体電解質膜として、デュポン社製のナフィオンN117を用いた。 A Si substrate with a Cu sputter film (sputter film thickness: 300 nm) was used as the substrate (cathode). A copper mesh was used as the anode. As the solid electrolyte membrane, Nafion N117 manufactured by DuPont was used.

次に、図1Bに示すように、成膜装置の押圧部により固体電解質膜を基材に約0.5MPaの圧力で押し当てた。そして、銅溶液を第1収容室に充填し、固体電解質膜に銅イオンを供給した。 Next, as shown in FIG. 1B, the solid electrolyte membrane was pressed against the substrate with a pressure of about 0.5 MPa by the pressing portion of the film forming apparatus. Then, the copper solution was filled in the first storage chamber, and copper ions were supplied to the solid electrolyte membrane.

次に、基材Bの温度を温度調節器により43℃に一定に保ちつつ、電源部16により、電流密度が100mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(3秒間)、又は狙い1μmの膜厚(30秒間)になるような時間で、銅被膜を形成した。成膜速度は2μm/minであった。 Next, while keeping the temperature of the base material B constant at 43 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 100 mA / cm 2 . A copper film was formed at a time such that the target film thickness was 0.1 μm (3 seconds) or the target film thickness was 1 μm (30 seconds). The film forming speed was 2 μm / min.

[実施例2]
基材Bの温度を温度調節器により43℃に一定に保ちつつ、電源部16により、電流密度が150mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(2秒間)、又は狙い1μmの膜厚(20秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は3μm/minであった。
[Example 2]
While keeping the temperature of the base material B constant at 43 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 150 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (2 seconds) or the target film thickness was 1 μm (20 seconds). The film forming speed was 3 μm / min.

[実施例3]
基材Bの温度を温度調節器により35℃に一定に保ちつつ、電源部16により、電流密度が75mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(4秒間)、又は狙い1μmの膜厚(40秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は1.5μm/minであった。
[Example 3]
While keeping the temperature of the base material B constant at 35 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 75 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (4 seconds) or the target film thickness was 1 μm (40 seconds). The film forming speed was 1.5 μm / min.

[実施例4]
基材Bの温度を温度調節器により40℃に一定に保ちつつ、電源部16により、電流密度が125mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(2.5秒間)、又は狙い1μmの膜厚(24秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は2.5μm/minであった。
[Example 4]
While keeping the temperature of the base material B constant at 40 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 125 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (2.5 seconds) or the target film thickness was 1 μm (24 seconds). The film forming speed was 2.5 μm / min.

[実施例5]
基材Bの温度を温度調節器により47℃に一定に保ちつつ、電源部16により、電流密度が150mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(2秒間)、又は狙い1μmの膜厚(20秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は3μm/minであった。
[Example 5]
While keeping the temperature of the base material B constant at 47 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 150 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (2 seconds) or the target film thickness was 1 μm (20 seconds). The film forming speed was 3 μm / min.

[比較例1]
基材Bの温度を温度調節器により25℃に一定に保ちつつ、電源部16により、電流密度が50mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(6秒間)、又は狙い1μmの膜厚(60秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は1μm/minであった。
[Comparative Example 1]
While keeping the temperature of the base material B constant at 25 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 50 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (6 seconds) or the target film thickness was 1 μm (60 seconds). The film forming speed was 1 μm / min.

[比較例2]
基材Bの温度を温度調節器により25℃に一定に保ちつつ、電源部16により、電流密度が100mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(3秒間)、又は狙い1μmの膜厚(30秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は2μm/minであった。
[Comparative Example 2]
While keeping the temperature of the base material B constant at 25 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 100 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (3 seconds) or the target film thickness was 1 μm (30 seconds). The film forming speed was 2 μm / min.

[比較例3]
基材Bの温度を温度調節器により25℃に一定に保ちつつ、電源部16により、電流密度が150mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(2秒間)、又は狙い1μmの膜厚(20秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は3μm/minであった。
[Comparative Example 3]
While keeping the temperature of the base material B constant at 25 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 150 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (2 seconds) or the target film thickness was 1 μm (20 seconds). The film forming speed was 3 μm / min.

[比較例4]
基材Bの温度を温度調節器により43℃に一定に保ちつつ、電源部16により、電流密度が50mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(6秒間)、又は狙い1μmの膜厚(60秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は1μm/minであった。
[Comparative Example 4]
While keeping the temperature of the base material B constant at 43 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 50 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (6 seconds) or the target film thickness was 1 μm (60 seconds). The film forming speed was 1 μm / min.

[比較例5]
基材Bの温度を温度調節器により60℃に一定に保ちつつ、電源部16により、電流密度が50mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(6秒間)、又は狙い1μmの膜厚(60秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は1μm/minであった。
[Comparative Example 5]
While keeping the temperature of the base material B constant at 60 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 50 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (6 seconds) or the target film thickness was 1 μm (60 seconds). The film forming speed was 1 μm / min.

[比較例6]
基材Bの温度を温度調節器により60℃に一定に保ちつつ、電源部16により、電流密度が100mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(3秒間)、又は狙い1μmの膜厚(30秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は2μm/minであった。
[Comparative Example 6]
While keeping the temperature of the base material B constant at 60 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 100 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (3 seconds) or the target film thickness was 1 μm (30 seconds). The film forming speed was 2 μm / min.

[比較例7]
基材Bの温度を温度調節器により60℃に一定に保ちつつ、電源部16により、電流密度が150mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(2秒間)、又は狙い1μmの膜厚(20秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は3μm/minであった。
[Comparative Example 7]
While keeping the temperature of the base material B constant at 60 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 150 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (2 seconds) or the target film thickness was 1 μm (20 seconds). The film forming speed was 3 μm / min.

[比較例8]
基材Bの温度を温度調節器により50℃に一定に保ちつつ、電源部16により、電流密度が175mA/cmとなるように陽極と基材との間に電圧を印加し、狙い0.1μmの膜厚(1.7秒間)、又は狙い1μmの膜厚(17秒間)になるような時間で、銅被膜を形成したこと以外は、実施例1と同様にして銅被膜を形成した。成膜速度は3.5μm/minであった。
[Comparative Example 8]
While keeping the temperature of the base material B constant at 50 ° C. by the temperature controller, a voltage is applied between the anode and the base material by the power supply unit 16 so that the current density becomes 175 mA / cm 2 , and the aim is 0. A copper film was formed in the same manner as in Example 1 except that the copper film was formed at a time such that the film thickness was 1 μm (1.7 seconds) or the target film thickness was 1 μm (17 seconds). The film forming speed was 3.5 μm / min.

<評価>
1.結晶核密度の測定
実施例1~5及び比較例1~8において得られた0.1μmの銅被膜をSEM画像で観察した。2値化処理により判定した結晶核数を観察画像の面積で除した値を結晶核密度とした。
<Evaluation>
1. 1. Measurement of Crystal Nucleus Density The 0.1 μm copper coatings obtained in Examples 1 to 5 and Comparative Examples 1 to 8 were observed by SEM images. The value obtained by dividing the number of crystal nuclei determined by the binarization process by the area of the observed image was taken as the crystal nuclei density.

2.成膜異常の判定
実施例1~5及び比較例1~8において得られた1μmの銅被膜について、成膜異常(固体電解質膜と銅被膜との密着)の有無を外観で判別した。
2. 2. Judgment of film formation abnormality With respect to the 1 μm copper coatings obtained in Examples 1 to 5 and Comparative Examples 1 to 8, the presence or absence of film formation abnormality (adhesion between the solid electrolyte film and the copper film) was visually determined.

<結果>
表1に、実施例1~5及び比較例1~8における、成膜時の温度及び電流密度の条件における結晶核密度及び成膜異常の有無の結果を示す。
<Result>
Table 1 shows the results of the presence or absence of crystal nucleus density and film formation abnormality under the conditions of temperature and current density at the time of film formation in Examples 1 to 5 and Comparative Examples 1 to 8.

Figure 0007059698000001
Figure 0007059698000001

図7に、電流密度及び温度の条件を変更して得られた実施例1~5及び比較例1~8の成膜結果を示す。図7において、成膜異常がなく、且つ結晶核密度が30個/μm以上であった例(実施例)を○で表し、成膜異常が認められたか、又は結晶核密度が30個/μm未満であった例(比較例)を×で表している。図7からも明らかな通り、電流密度及び温度が、(電流密度,温度)=(50,30)、(150,30)及び(150,55)の3点で囲われた範囲内になるように設定される成膜条件下にて電圧を印加した場合に、良品である銅被膜が得られることがわかった。 FIG. 7 shows the film forming results of Examples 1 to 5 and Comparative Examples 1 to 8 obtained by changing the current density and temperature conditions. In FIG. 7, an example (Example) in which there was no film formation abnormality and the crystal nuclei density was 30 pieces / μm 2 or more is indicated by ◯, and a film formation abnormality was observed or the crystal nuclei density was 30 pieces / μm / μm 2. An example (comparative example) having a size of less than μm 2 is indicated by ×. As is clear from FIG. 7, the current density and temperature should be within the range surrounded by the three points (current density, temperature) = (50,30), (150,30) and (150,55). It was found that a good copper film can be obtained when a voltage is applied under the film forming conditions set in.

1A 成膜装置
11 陽極
13 固体電解質膜
16 電源部
20 ハウジング
21 第1収容室
22 第1開口部
30A 押圧部
40 載置台
L 銅溶液
B 基材(陰極)
Ba 基材の表面
F 銅被膜
1A film forming apparatus 11 anode 13 solid electrolyte membrane 16 power supply unit 20 housing 21 first accommodation chamber 22 first opening 30A pressing unit 40 mounting table L copper solution B base material (cathode)
Ba Substrate surface F Copper coating

Claims (4)

陽極と、陰極としての基材と、銅イオンを含有する銅溶液を含む固体電解質膜とを、前記固体電解質膜が前記陽極と前記基材との間に位置するように、且つ前記固体電解質膜が前記基材の表面に接触するように配置する工程と、
前記陽極と前記基材との間に電圧を印加することにより、前記基材上に銅被膜を形成する工程と、
を含む銅被膜の製造方法であって、
前記基材が、銅から形成されている基材、又は樹脂若しくはシリコン基材の処理表面に銅が形成されている基材であり、
前記銅溶液が、銅イオンを0.1mol/L~2.0mol/Lの濃度で含むpH2.0~5.0の水溶液であり、
電流密度及び温度が、前記電流密度をx(mA/cm2)、前記温度をy(℃)とするx-y図において、(x,y)=(50,30)、(150,30)及び(150,55)の3点で囲われた範囲内になるように設定される成膜条件下にて、前記電圧を印加する、銅被膜の製造方法。
An anode, a base material as a cathode, and a solid electrolyte membrane containing a copper solution containing copper ions are provided so that the solid electrolyte membrane is located between the anode and the base material, and the solid electrolyte membrane is provided. And the step of arranging the substrate so as to be in contact with the surface of the substrate,
A step of forming a copper film on the substrate by applying a voltage between the anode and the substrate, and
It is a method for manufacturing a copper film containing
The base material is a base material made of copper, or a base material having copper formed on the treated surface of a resin or silicon base material.
The copper solution is an aqueous solution having a pH of 2.0 to 5.0 containing copper ions at a concentration of 0.1 mol / L to 2.0 mol / L.
The current density and temperature are (x, y) = (50, 30), (150, 30) in the xy diagram where the current density is x (mA / cm 2 ) and the temperature is y (° C.). A method for producing a copper film, wherein the voltage is applied under the film forming conditions set so as to be within the range surrounded by the three points (150, 55).
前記基材が、Cuスパッタ膜付きSi基板である、請求項1に記載の銅被膜の製造方法。The method for producing a copper film according to claim 1, wherein the substrate is a Si substrate with a Cu sputter film. 前記銅溶液が、銅イオンを0.8mol/L~1.2mol/Lの濃度で含むpH2.5~4.5の水溶液である、請求項1又は2に記載の銅被膜の製造方法。The method for producing a copper film according to claim 1 or 2, wherein the copper solution is an aqueous solution having a pH of 2.5 to 4.5 containing copper ions at a concentration of 0.8 mol / L to 1.2 mol / L. 前記銅溶液が、硫酸銅を1.0mol/Lの濃度で含むpH3.0の水溶液である、請求項1~3のいずれか一項に記載の銅被膜の製造方法。The method for producing a copper film according to any one of claims 1 to 3, wherein the copper solution is an aqueous solution having a pH of 3.0 containing copper sulfate at a concentration of 1.0 mol / L.
JP2018041318A 2018-03-07 2018-03-07 Method of manufacturing copper film Active JP7059698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041318A JP7059698B2 (en) 2018-03-07 2018-03-07 Method of manufacturing copper film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041318A JP7059698B2 (en) 2018-03-07 2018-03-07 Method of manufacturing copper film

Publications (2)

Publication Number Publication Date
JP2019157154A JP2019157154A (en) 2019-09-19
JP7059698B2 true JP7059698B2 (en) 2022-04-26

Family

ID=67995774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041318A Active JP7059698B2 (en) 2018-03-07 2018-03-07 Method of manufacturing copper film

Country Status (1)

Country Link
JP (1) JP7059698B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284386A1 (en) 2010-05-19 2011-11-24 Willey Mark J Through silicon via filling using an electrolyte with a dual state inhibitor
JP2013023693A (en) 2011-07-14 2013-02-04 Ishihara Chem Co Ltd Imidazole ring-bonded type oxyalkylene compound and plating bath containing the compound
WO2015162775A1 (en) 2014-04-25 2015-10-29 株式会社Jcu High-speed filling method for copper
JP2017125251A (en) 2016-01-15 2017-07-20 株式会社豊田中央研究所 Electric plating cell and manufacturing method of metallic film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931415B1 (en) * 1970-07-10 1974-08-21
JPS59200786A (en) * 1983-04-28 1984-11-14 Okuno Seiyaku Kogyo Kk Copper sulphate plating bath and plating method using said bath
JPH01165786A (en) * 1987-12-22 1989-06-29 Hitachi Cable Ltd Solid phase plating method
KR20150080398A (en) * 2013-12-31 2015-07-09 주식회사 에이피씨티 Method for Manufacturing Solder Bumps for Flip Chips and Metal Electroplating Solution for the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284386A1 (en) 2010-05-19 2011-11-24 Willey Mark J Through silicon via filling using an electrolyte with a dual state inhibitor
JP2013023693A (en) 2011-07-14 2013-02-04 Ishihara Chem Co Ltd Imidazole ring-bonded type oxyalkylene compound and plating bath containing the compound
WO2015162775A1 (en) 2014-04-25 2015-10-29 株式会社Jcu High-speed filling method for copper
JP2017125251A (en) 2016-01-15 2017-07-20 株式会社豊田中央研究所 Electric plating cell and manufacturing method of metallic film

Also Published As

Publication number Publication date
JP2019157154A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
TWI478185B (en) Super capacitor and method for manufacturing the same
US8980438B2 (en) Porous metal foil and production method therefor
WO2014156310A1 (en) Apparatus and method for forming metal coating film film
CN109137035B (en) Preparation method of aluminum-based copper-clad plate
EP3930996B1 (en) Composite copper foil and method of fabricating the same
CN104480492B (en) A kind of method that ionic liquid electrodeposition prepares Ni La alloys
JP6065886B2 (en) Metal film deposition method
CN109023462B (en) Method for preparing polydopamine film layer by magnesium and magnesium alloy surface electropolymerization
TW201140627A (en) Method for producing aluminum foil electrode of carbon nano-tube
JP5967034B2 (en) Metal film forming apparatus and film forming method
WO2015050192A1 (en) Nickel solution for forming film and film-forming method using same
KR20170121280A (en) Method for producing electrolytic aluminum foil
TWI598005B (en) Thick copper layer and method for manufacturing the same
TW200949872A (en) Process for producing dielectric film and process for producing capacitor layer forming material using the process for producing dielectric film
CN104357886A (en) Method for chemically depositing diffused tin-zinc crystal nucleus on surface of high-purity aluminum foil for medium/high-voltage positive electrode
JP7059698B2 (en) Method of manufacturing copper film
CN103774193A (en) Method for electrolytic-depositing dispersed zinc crystal nucleuses on surface of medium-high voltage electronic aluminum foil
JP6933116B2 (en) Nickel film manufacturing method
JP2020532825A (en) Electrochemically active powder metallization process
JP5949696B2 (en) Metal film forming apparatus and film forming method
JP6936955B2 (en) Cathode drum for metal leaf manufacturing and metal leaf manufacturing method
JP6930634B2 (en) Nickel film forming method and nickel solution for use in the method
CN108642536B (en) Method for electrodepositing metallic zinc in ionic liquid by using 1, 2-dichloroethane as additive
JP2022067280A (en) Method of manufacturing copper coat film
WO2024098288A1 (en) Fe-co-ni-cu-zn high-entropy alloy and preparation method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R151 Written notification of patent or utility model registration

Ref document number: 7059698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151