JP7057156B2 - Iron powder for powder metallurgy - Google Patents

Iron powder for powder metallurgy Download PDF

Info

Publication number
JP7057156B2
JP7057156B2 JP2018034209A JP2018034209A JP7057156B2 JP 7057156 B2 JP7057156 B2 JP 7057156B2 JP 2018034209 A JP2018034209 A JP 2018034209A JP 2018034209 A JP2018034209 A JP 2018034209A JP 7057156 B2 JP7057156 B2 JP 7057156B2
Authority
JP
Japan
Prior art keywords
mass
powder
iron powder
less
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018034209A
Other languages
Japanese (ja)
Other versions
JP2019147997A (en
Inventor
祐司 谷口
啓文 北条
智 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018034209A priority Critical patent/JP7057156B2/en
Priority to EP19761704.6A priority patent/EP3760343A4/en
Priority to KR1020207026943A priority patent/KR102507938B1/en
Priority to CN201980014359.5A priority patent/CN111741822B/en
Priority to PCT/JP2019/006090 priority patent/WO2019167722A1/en
Publication of JP2019147997A publication Critical patent/JP2019147997A/en
Application granted granted Critical
Publication of JP7057156B2 publication Critical patent/JP7057156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は粉末冶金用鉄粉に関する。 The present invention relates to iron powder for powder metallurgy.

金属粉末を圧粉成形した後に焼結することにより金属部品を形成する粉末冶金が広く行われている。粉末冶金では、一般に、圧粉体の密度を大きくすること、つまり圧粉体の空隙率を小さくすることによって、得られる金属焼結体の機械的強度を大きくすることができる。また、粉末冶金では、圧粉体の強度を大きくすることで、得られる金属焼結体の寸法精度を向上し、歩留まりを増大することができる。 Powder metallurgy is widely used to form metal parts by compacting metal powder and then sintering it. In powder metallurgy, in general, the mechanical strength of the obtained metal sintered body can be increased by increasing the density of the green compact, that is, reducing the porosity of the green compact. Further, in powder metallurgy, by increasing the strength of the green compact, the dimensional accuracy of the obtained metal sintered body can be improved and the yield can be increased.

特開平4-173901号公報には、粉末冶金用鉄粉の見掛密度、つまり静置状態の粉末のかさ比重を比較的大きくすることによって圧粉体の密度を大きくできるが、一定以上に見掛密度を大きくすると圧粉体の強度が不十分となることが記載されている。しかしながら、本発明者らが検証したところ、圧粉体の強度低下が問題となり始める限界領域では、組成が同じ粉末冶金用鉄粉の見掛密度の大小関係と圧粉体の密度との大小関係とが逆転することも少なくないことが分かった。 According to JP-A-4-173901, the apparent density of iron powder for powder metallurgy, that is, the density of the green compact can be increased by relatively increasing the bulk specific gravity of the powder in a stationary state, but it is seen above a certain level. It is described that the strength of the green compact becomes insufficient when the hanging density is increased. However, as a result of verification by the present inventors, in the limit region where the decrease in the strength of the green compact begins to become a problem, the large-small relationship between the apparent density of the iron powder for powder metallurgy having the same composition and the density of the green compact It turned out that it is not uncommon for and to be reversed.

圧粉成形時の成形圧力を高くすれば圧粉体の密度を大きくすることで、圧粉体の密度を大きくすると共に圧粉体の強度を向上することができるが、成形圧力の増大は金型の寿命が短くなる等の不都合を生じるため、金属部品の生産効率が低下する。 By increasing the molding pressure during compaction forming, the density of the green compact can be increased and the strength of the green compact can be increased, but the increase in the forming pressure is gold. Since the life of the mold is shortened and other inconveniences occur, the production efficiency of metal parts is lowered.

特開平4-173901号公報Japanese Unexamined Patent Publication No. 4-173901

上記不都合に鑑みて、本発明は、高強度の焼結体が得られる粉末冶金用鉄粉を提供することを課題とする。 In view of the above inconvenience, it is an object of the present invention to provide iron powder for powder metallurgy, which can obtain a high-strength sintered body.

上記課題を解決するためになされた本発明の一態様に係る粉末冶金用鉄粉は、Cが0.005質量%以下、Siが0.030質量%以下、Pが0.020質量%以下、Sが0.020質量%以下、Oが0.15質量%以下、Mn、Ni、Mo及びCrの合計が3.0質量%以下、且つ残部がFe及び不可避不純物である組成を有し、タップ密度が3.90g/cm以上4.20g/cm以下である。 The iron powder for powder metallurgy according to one aspect of the present invention made to solve the above problems has C of 0.005% by mass or less, Si of 0.030% by mass or less, and P of 0.020% by mass or less. S has 0.020% by mass or less, O is 0.15% by mass or less, the total of Mn, Ni, Mo and Cr is 3.0% by mass or less, and the balance is Fe and unavoidable impurities. The density is 3.90 g / cm 3 or more and 4.20 g / cm 3 or less.

当該粉末冶金用鉄粉は、タップ密度を上記範囲内としたことによって、最密充填状態となるように鉄粉粒子を再配列させることが容易であるので、圧粉成形時の圧縮性に優れ、最終的に得られる焼結体の強度が大きい。 By setting the tap density within the above range, the iron powder for powder metallurgy can easily rearrange the iron powder particles so as to be in the most densely packed state, and thus has excellent compressibility during compaction molding. , The strength of the finally obtained sintered body is high.

ここで、「タップ密度」とは、JIS-Z2512(2012)に準拠して測定される値である。 Here, the "tap density" is a value measured in accordance with JIS-Z2512 (2012).

以上のように、本発明の一態様に係る粉末冶金用鉄粉は、圧粉体の密度が大きく、高強度の焼結体が得られる。 As described above, the iron powder for powder metallurgy according to one aspect of the present invention has a high density of green compact and a high-strength sintered body can be obtained.

粉末冶金用鉄粉のタップ密度と圧粉体の密度との関係を示すグラフである。It is a graph which shows the relationship between the tap density of the iron powder for powder metallurgy, and the density of a green compact. 粉末冶金用鉄粉のタップ密度と圧粉体のラトラー値との関係を示すグラフである。It is a graph which shows the relationship between the tap density of iron powder for powder metallurgy, and the rattler value of a green compact.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[粉末冶金用鉄粉]
本発明の一実施形態に係る粉末冶金用鉄粉は、Cが0.005質量%以下、Siが0.030質量%以下、Pが0.020質量%以下、Mn、Ni、Mo及びCrの合計が3.0質量%以下、且つ残部がFe及び不可避不純物である組成を有し、タップ密度が3.90g/cm以上4.20g/cm以下である。
[Iron powder for powder metallurgy]
The iron powder for powder metallurgy according to the embodiment of the present invention contains C of 0.005% by mass or less, Si of 0.030% by mass or less, P of 0.020% by mass or less, Mn, Ni, Mo and Cr. The total is 3.0% by mass or less, the balance is Fe and unavoidable impurities, and the tap density is 3.90 g / cm 3 or more and 4.20 g / cm 3 or less.

<C(炭素)>
Cは、固溶して当該粉末冶金用鉄粉の粒子を硬化させる元素である。また、Cは、他の不純物と結合して微細な炭化物を形成することによっても、鉄粉粒子を硬化させ得る。鉄粉粒子が硬くなると、圧粉成形時に変形し難くなるので、成形性が低下して圧粉体の密度が低下する。このため、当該粉末冶金用鉄粉におけるCの含有量の上限としては、0.005質量%であり、0.003質量%が好ましく、0.002質量%がより好ましい。
<C (carbon)>
C is an element that dissolves and hardens the particles of the iron powder for powder metallurgy. C can also cure iron powder particles by combining with other impurities to form fine carbides. When the iron powder particles become hard, they are less likely to be deformed during the compaction molding, so that the moldability is lowered and the density of the compaction is lowered. Therefore, the upper limit of the C content in the iron powder for powder metallurgy is 0.005% by mass, preferably 0.003% by mass, and more preferably 0.002% by mass.

<Si(珪素)>
Siは、酸素と結合しやすい元素であり、当該粉末冶金用鉄粉の粒子表面に酸化皮膜を形成する。このSiによる酸化皮膜は還元が容易でないので、得られる焼結体の強度を低下させる。またSiは、鉄粉粒子を硬化させる作用を有するため、当該粉末冶金用鉄粉の圧縮性(圧粉体の密度及び強度)を低下させる。このため、Siの含有量の上限としては、0.030質量%であり、0.020質量%が好ましく、0.015質量%がより好ましい。
<Si (silicon)>
Si is an element that easily binds to oxygen and forms an oxide film on the particle surface of the iron powder for powder metallurgy. Since the oxide film made of Si is not easily reduced, the strength of the obtained sintered body is lowered. Further, since Si has an action of hardening iron powder particles, it lowers the compressibility (density and strength of green compact) of the iron powder for powder metallurgy. Therefore, the upper limit of the Si content is 0.030% by mass, preferably 0.020% by mass, and more preferably 0.015% by mass.

<P(リン)>
Pは、鉄粉粒子を硬化させて、圧縮性を低下させる元素である。このため、Pの含有量の上限としては、0.020質量%であり、0.017質量%が好ましく、0.015質量%がさらに好ましい。
<P (phosphorus)>
P is an element that hardens iron powder particles and lowers compressibility. Therefore, the upper limit of the P content is 0.020% by mass, preferably 0.017% by mass, and even more preferably 0.015% by mass.

<S(硫黄)>
Sは、鉄粉粒子を硬化させて、圧縮性を低下させる元素である。このため、Sの含有量の上限としては、0.020質量%であり、0.015質量%が好ましく、0.010質量%がさらに好ましい。
<S (sulfur)>
S is an element that hardens the iron powder particles and lowers the compressibility. Therefore, the upper limit of the S content is 0.020% by mass, preferably 0.015% by mass, and even more preferably 0.010% by mass.

<O(酸素)>
Oは、鉄粉粒子を硬化させて、圧縮性を低下させる元素である。このため、Oの含有量の上限としては、0.15質量%であり、0.12質量%が好ましく、0.10質量%がさらに好ましい。
<O (oxygen)>
O is an element that hardens iron powder particles and lowers compressibility. Therefore, the upper limit of the O content is 0.15% by mass, preferably 0.12% by mass, and even more preferably 0.10% by mass.

<Mn、Ni、Mo、Cr>
Mn、Ni、Mo及びCrは、固溶して当該粉末冶金用鉄粉を圧粉成形及び焼結して得られる焼結体の強度を向上するために添加される元素である。ただし、これらの元素の含有量が大きくなり過ぎると、鉄粉粒子が硬くなり過ぎて圧縮性が不十分となるおそれがある。このため、Mn、Ni、Mo及びCrの合計含有量の上限としては、3.0質量%であり、2.5質量%が好ましく、2.0質量%がさらに好ましい。
<Mn, Ni, Mo, Cr>
Mn, Ni, Mo and Cr are elements added to improve the strength of the sintered body obtained by solid-melting and compacting and sintering the iron powder for powder metallurgy. However, if the content of these elements becomes too large, the iron powder particles may become too hard and the compressibility may be insufficient. Therefore, the upper limit of the total content of Mn, Ni, Mo and Cr is 3.0% by mass, preferably 2.5% by mass, and even more preferably 2.0% by mass.

<タップ密度>
タップ密度は、鉄粉粒子の再配列のしやすさを表す指標であり、真比重が一定であるとするとその値が大きい程鉄粉粒子がより緻密で空隙率が小さい充填状態に再配列しやすい。このため、タップ密度が大きい程、圧縮性が高く、圧粉成形が容易であり、比較的低い圧力でより密度が大きい圧粉体を得ることができる。一方、タップ密度が過度に大きくなると、鉄粉粒子同士の接着性が不足して得られる圧粉体の強度が不十分となるおそれがある。このため、当該粉末冶金用鉄粉のタップ密度の下限としては、3.90g/cmであり、3.95g/cmが好ましく、3.97g/cmがより好ましい。一方、当該粉末冶金用鉄粉のタップ密度の上限としては、4.20g/cmであり、4.15g/cmが好ましく、4.10g/cmがより好ましい。
<Tap density>
The tap density is an index showing the ease of rearrangement of iron powder particles, and if the true specific gravity is constant, the larger the value, the denser the iron powder particles and the smaller the porosity, the more densely the iron powder particles are rearranged into a packed state. Cheap. Therefore, the larger the tap density, the higher the compressibility, the easier the powder compaction is, and the higher the density of the green compact can be obtained at a relatively low pressure. On the other hand, if the tap density becomes excessively large, the adhesiveness between the iron powder particles may be insufficient and the strength of the green compact obtained may be insufficient. Therefore, the lower limit of the tap density of the powder metallurgy iron powder is 3.90 g / cm 3 , preferably 3.95 g / cm 3 , and more preferably 3.97 g / cm 3 . On the other hand, the upper limit of the tap density of the powder metallurgy iron powder is 4.20 g / cm 3 , preferably 4.15 g / cm 3 , and more preferably 4.10 g / cm 3 .

<粒度分布>
当該粉末冶金用鉄粉における平均目開き45μmの平織り金網を通過する粒子の含有率の下限としては、10質量%が好ましく、12質量%がより好ましい。一方、当該粉末冶金用鉄粉における平均目開き45μmの平織り金網を通過する粒子の含有率の上限としては、20質量%が好ましく、18質量%がより好ましい。当該粉末冶金用鉄粉における平均目開き45μmの平織り金網を通過する粒子の含有率が上記下限に満たない場合、当該粉末冶金用鉄粉の焼結体の強度が不十分となるおそれがある。逆に、当該粉末冶金用鉄粉における平均目開き45μmの平織り金網を通過する粒子の含有率が上記上限を超える場合最終的に得られる圧粉体の強度が不十分となるおそれがある。
<Particle size distribution>
The lower limit of the content of particles passing through the plain woven wire net having an average opening of 45 μm in the iron powder for powder metallurgy is preferably 10% by mass, more preferably 12% by mass. On the other hand, the upper limit of the content of particles passing through the plain woven wire net having an average opening of 45 μm in the iron powder for powder metallurgy is preferably 20% by mass, more preferably 18% by mass. If the content of particles passing through a plain woven wire net having an average opening of 45 μm in the iron powder for powder metallurgy is less than the above lower limit, the strength of the sintered body of the iron powder for powder metallurgy may be insufficient. On the contrary, when the content of the particles passing through the plain woven wire mesh having an average opening of 45 μm in the iron powder for powder metallurgy exceeds the above upper limit, the strength of the finally obtained green compact may be insufficient.

<圧粉体の密度>
当該粉末冶金用鉄粉にステアリン酸亜鉛を0.75質量%添加して7tf/cmの成形圧力で成形したときに得られる圧粉体の密度の下限としては、7.20g/cmが好ましく、7.22g/cmがより好ましい。上記圧粉体の密度が上記下限に満たない場合、最終的に得られる焼結体の強度が不十分となるおそれがある。
<Density of green compact>
The lower limit of the density of the green compact obtained when 0.75% by mass of zinc stearate is added to the powder metallurgy iron powder and the powder is formed at a molding pressure of 7 tf / cm 2 is 7.20 g / cm 3 . Preferably, 7.22 g / cm 3 is more preferable. If the density of the green compact is less than the lower limit, the strength of the finally obtained sintered body may be insufficient.

<圧粉体の強度>
当該粉末冶金用鉄粉にステアリン酸亜鉛を0.75質量%添加して7tf/cmの成形圧力で成形したときに得られる圧粉体の強度の指標であるラトラー値の上限としては、0.75%が好ましく、0.70%がより好ましい。上記圧粉体のラトラー値が上記上限を超える場合、圧粉体の強度が不足して焼結体の寸法精度や歩留まりが不十分となるおそれがある。なお、「ラトラー値」とは、JSPM標準4-69に準拠して測定される値である。
<Strength of green compact>
The upper limit of the rattler value, which is an index of the strength of the green compact obtained when 0.75% by mass of zinc stearate is added to the iron powder for powder metallurgy and the molding pressure is 7 tf / cm 2 , is 0. It is preferably .75%, more preferably 0.70%. If the rattler value of the green compact exceeds the upper limit, the strength of the green compact may be insufficient and the dimensional accuracy and yield of the sintered body may be insufficient. The "latler value" is a value measured in accordance with the JSPM standard 4-69.

<製造方法>
当該粉末冶金用鉄粉は、上述の組成に調製した溶鉄に水を噴射して粉末化する水アトマイズ工程と、この水アトマイズ工程で得られた粉末を還元性ガス雰囲気中で加熱する還元工程と、還元工程で固化した鉄粉を粉砕する粉砕工程とを備える方法により製造することができる。
<Manufacturing method>
The iron powder for powder metallurgy has a water atomizing step of injecting water into the molten iron prepared to the above composition to powder it, and a reducing step of heating the powder obtained in this water atomizing step in a reducing gas atmosphere. , It can be produced by a method including a crushing step of crushing the iron powder solidified in the reduction step.

(水アトマイズ工程)
上記水アトマイズ工程では、炉から流下する溶鉄に水を噴射することによって噴射する微細な鉄粉を得る。この水アトマイズ工程では、噴射する水の水圧を調節することによって、得られる粉末冶金用鉄粉のタップ密度を上述の範囲内に調節する。具体的には、水圧を大きくする程得られる粉末冶金用鉄粉のタップ密度は小さくなる。
(Water atomizing process)
In the water atomizing step, fine iron powder to be injected is obtained by injecting water onto the molten iron flowing down from the furnace. In this water atomizing step, the tap density of the obtained iron powder for powder metallurgy is adjusted within the above range by adjusting the water pressure of the injected water. Specifically, the higher the water pressure, the smaller the tap density of the iron powder for powder metallurgy.

(還元工程)
上記還元工程では、還元性ガス環境下で加熱することにより、水アトマイズ工程で酸化した鉄粉を還元する。
(Reduction process)
In the reduction step, the iron powder oxidized in the water atomizing step is reduced by heating in a reducing gas environment.

上記還元性ガスとしては、例えば水素ガス、アンモニアガス、ブタンガスを用いることができる。 As the reducing gas, for example, hydrogen gas, ammonia gas, butane gas can be used.

(粉砕工程)
上記粉砕工程では、上記還元処理によりケーキ状に固化した鉄粉をミルで粉砕する。鉄粉を十分に粉砕することにより、得られる当該粉末冶金用鉄粉の粒度分布を上記水アトマイズ工程において得られた鉄粉の粒度分布に準ずるものとして、所望のタップ密度を担保する。
(Crushing process)
In the crushing step, the iron powder solidified into a cake by the reduction treatment is crushed by a mill. By sufficiently crushing the iron powder, the particle size distribution of the iron powder for powder metallurgy obtained is similar to the particle size distribution of the iron powder obtained in the water atomizing step, and a desired tap density is ensured.

この粉砕工程で用いるミルとしては、例えばハンマーミル、フェザーミル等を用いることができる。 As the mill used in this crushing step, for example, a hammer mill, a feather mill, or the like can be used.

また、この粉砕工程では、粉砕後の鉄粉を金網で分級して、大きい粒子をミルに再投入することが好ましい。 Further, in this crushing step, it is preferable to classify the crushed iron powder with a wire mesh and re-inject large particles into the mill.

<利点>
当該粉末冶金用鉄粉は、タップ密度を上記範囲内としたことによって、見掛密度が大きくなるように鉄粉粒子を再配列が容易であるので、圧粉成形時の圧縮性に優れ、且つ十分な強度を有する圧粉体を得ることができる。このため、当該粉末冶金用鉄粉は、強度が大きい焼結体を効率よく製造することができる。
<Advantage>
By setting the tap density within the above range, the iron powder for powder metallurgy can easily rearrange the iron powder particles so that the apparent density becomes large, so that the iron powder is excellent in compressibility during powder forming and is excellent in compressibility. A green compact having sufficient strength can be obtained. Therefore, the iron powder for powder metallurgy can efficiently produce a sintered body having high strength.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other embodiments]
The above embodiment does not limit the configuration of the present invention. Therefore, the above-described embodiment can be omitted, replaced or added with components of each part of the above-described embodiment based on the description of the present specification and the common general technical knowledge, and all of them are construed to belong to the scope of the present invention. Should be.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limitedly interpreted based on the description of this Example.

電気炉を用いて溶鉄を調製し、電気炉から流下させた溶鉄に水を噴射する水アトマイズ法により粉末化した。このとき、噴射する水の圧力は30~60kgf/cmの低圧、60~90kgf/cmの中圧、90~120kgf/cmの高圧の3種類の範囲で選択した。次に、得られた鉄粉を脱水及び乾燥し、425μmにて粗粉を除去した後、分解アンモニアガス雰囲気中で880~980℃の温度範囲で30~60分の還元処理を施した。そして、還元処理されてケーキ状に固化した鉄粉をハンマーミルとフェザーミルにて粉砕し、目開き425μm、250μm又は180μmの金網でふるい分けを行って、粉末冶金用鉄粉の試作品No.1~9を得た。 Molten iron was prepared using an electric furnace and pulverized by a water atomization method in which water was sprayed onto the molten iron flowing down from the electric furnace. At this time, the pressure of the water to be sprayed was selected from three types: a low pressure of 30 to 60 kgf / cm 2 , a medium pressure of 60 to 90 kgf / cm 2 , and a high pressure of 90 to 120 kgf / cm 2 . Next, the obtained iron powder was dehydrated and dried to remove coarse powder at 425 μm, and then subjected to a reduction treatment in a temperature range of 880 to 980 ° C. for 30 to 60 minutes in a decomposed ammonia gas atmosphere. Then, the iron powder that had been reduced and solidified into a cake shape was crushed by a hammer mill and a feather mill, and sifted with a wire net having an opening of 425 μm, 250 μm, or 180 μm. Obtained 1-9.

こうして得られた粉末冶金用鉄粉の試作品No.1~9の組成を分析した。C及びSの含有率は、LECO社の炭素・硫黄分析装置「CS-244」を用いて測定した。Oの含有率は、LECO社の酸素・窒素分析装置「TC-400」を用いて測定した。C、S及びO以外の元素の含有率は、島津製作所社のICP発行分析装置「ICPV-5500」を用いて測定した。試作品No.1~9の組成の分析結果を次の表1に示す。 The prototype No. of the iron powder for powder metallurgy thus obtained. The compositions of 1-9 were analyzed. The contents of C and S were measured using a carbon / sulfur analyzer "CS-244" manufactured by LECO. The O content was measured using an oxygen / nitrogen analyzer "TC-400" manufactured by LECO. The content of elements other than C, S and O was measured using an ICP-issued analyzer "ICPV-5500" manufactured by Shimadzu Corporation. Prototype No. The analysis results of the compositions of 1 to 9 are shown in Table 1 below.

Figure 0007057156000001
Figure 0007057156000001

さらに、粉末冶金用鉄粉の試作品No.1~9の粒度分布、及びタップ密度を測定した。なお、粒度分布は、JIS-Z8815(1994)に準拠したふるい分け試験によって測定した。タップ密度は、JIS-Z2512(2012)に準拠して測定した。 Furthermore, the prototype No. of iron powder for powder metallurgy. The particle size distribution of 1 to 9 and the tap density were measured. The particle size distribution was measured by a sieving test based on JIS-Z8815 (1994). The tap density was measured according to JIS-Z2512 (2012).

粉末冶金用鉄粉の試作品No.1~9に潤滑剤としてステアリン酸亜鉛を0.75%添加混合した粉末を7tf/cmの成形圧力で圧粉成形して直径11.28mm、高さ10mmの円柱状の圧粉体を作成した。得られた圧粉体の密度及びラトラー値を測定した。圧粉体の密度は、JIS-Z2501(2000)に準拠して測定した。また、圧粉体のラトラー値は、JSPM標準4-69に準拠して測定した。 Prototype No. of iron powder for powder metallurgy. A powder obtained by adding 0.75% of zinc stearate as a lubricant to 1 to 9 and mixing them is powder-molded at a molding pressure of 7 tf / cm 2 to prepare a columnar green compact having a diameter of 11.28 mm and a height of 10 mm. bottom. The density and rattler value of the obtained green compact were measured. The density of the green compact was measured according to JIS-Z2501 (2000). The rattler value of the green compact was measured according to the JSPM standard 4-69.

粉末冶金用鉄粉の試作品No.1~9の粒度分布、及びタップ密度、並びに粉末冶金用鉄粉の試作品No.1~9の圧粉体の密度及びラトラー値を次の表2にまとめて示す。 Prototype No. of iron powder for powder metallurgy. Particle size distribution of 1 to 9, tap density, and prototype No. of iron powder for powder metallurgy. The densities and rattler values of the green compacts 1 to 9 are summarized in Table 2 below.

Figure 0007057156000002
Figure 0007057156000002

さらに、図1に粉末冶金用鉄粉の試作品No.1~9のタップ密度と圧粉体の密度との関係を示し、図2に粉末冶金用鉄粉の試作品No.1~9のタップ密度と圧粉体のラトラー値との関係を示す。 Further, in FIG. 1, the prototype No. of iron powder for powder metallurgy is shown. The relationship between the tap density of 1 to 9 and the density of the green compact is shown, and FIG. 2 shows the prototype No. of iron powder for powder metallurgy. The relationship between the tap density of 1 to 9 and the rattler value of the green compact is shown.

図示するように、タップ密度と圧粉体の密度及びラトラー値とは略比例関係にあることが確認された。より詳しくは、圧粉体の密度を焼結後に十分な強度が得られる7.20g/cm以上とし、且つ圧粉体のラトラー値を割れや欠けが許容範囲となる0.75%以下とするためには、粉末冶金用鉄粉のタップ密度を3.90g/cm以上4.20g/cm以下とすればよいことが確認できた。 As shown in the figure, it was confirmed that the tap density, the powder density and the rattler value are in a substantially proportional relationship. More specifically, the density of the green compact is 7.20 g / cm 3 or more, which provides sufficient strength after sintering, and the rattler value of the green compact is 0.75% or less, which is within the allowable range for cracking and chipping. It was confirmed that the tap density of the iron powder for powder metallurgy should be 3.90 g / cm 3 or more and 4.20 g / cm 3 or less.

本発明に係る粉末冶金用鉄粉は、例えば歯車等の機械部品の製造に好適に用いることができる。 The iron powder for powder metallurgy according to the present invention can be suitably used for manufacturing mechanical parts such as gears.

Claims (1)

Cが0.005質量%以下、
Siが0.030質量%以下、
Pが0.020質量%以下、
Sが0.020質量%以下、
Oが0.15質量%以下、
Mn、Ni、Mo及びCrの合計が3.0質量%以下、且つ
残部がFe及び不可避不純物である組成を有し、
タップ密度が3.90g/cm以上4.20g/cm以下であり、
平均目開き45μmの平織り金網を通過する粒子の含有率が10質量%以上20質量%以下であり、
ステアリン酸亜鉛を0.75質量%添加して7tf/cm の成形圧で成形した時のラトラー値が0.75%以下である粉末冶金用鉄粉。
C is 0.005% by mass or less,
Si is 0.030% by mass or less,
P is 0.020% by mass or less,
S is 0.020% by mass or less,
O is 0.15% by mass or less,
It has a composition in which the total of Mn, Ni, Mo and Cr is 3.0% by mass or less, and the balance is Fe and unavoidable impurities.
The tap density is 3.90 g / cm 3 or more and 4.20 g / cm 3 or less.
The content of particles passing through a plain weave wire mesh having an average opening of 45 μm is 10% by mass or more and 20% by mass or less .
An iron powder for powder metallurgy having a rattler value of 0.75% or less when zinc stearate is added in an amount of 0.75% by mass and molded at a molding pressure of 7 tf / cm 2 .
JP2018034209A 2018-02-28 2018-02-28 Iron powder for powder metallurgy Active JP7057156B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018034209A JP7057156B2 (en) 2018-02-28 2018-02-28 Iron powder for powder metallurgy
EP19761704.6A EP3760343A4 (en) 2018-02-28 2019-02-19 Iron powder for powder metallurgy
KR1020207026943A KR102507938B1 (en) 2018-02-28 2019-02-19 iron for powder metallurgy
CN201980014359.5A CN111741822B (en) 2018-02-28 2019-02-19 Iron powder for powder metallurgy
PCT/JP2019/006090 WO2019167722A1 (en) 2018-02-28 2019-02-19 Iron powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034209A JP7057156B2 (en) 2018-02-28 2018-02-28 Iron powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2019147997A JP2019147997A (en) 2019-09-05
JP7057156B2 true JP7057156B2 (en) 2022-04-19

Family

ID=67808900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034209A Active JP7057156B2 (en) 2018-02-28 2018-02-28 Iron powder for powder metallurgy

Country Status (5)

Country Link
EP (1) EP3760343A4 (en)
JP (1) JP7057156B2 (en)
KR (1) KR102507938B1 (en)
CN (1) CN111741822B (en)
WO (1) WO2019167722A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224010A (en) 2001-11-20 2003-08-08 Sumitomo Special Metals Co Ltd Compound for rare earth based bonded magnet and bonded magnet using the same
JP2007092162A (en) 2005-02-03 2007-04-12 Jfe Steel Kk Highly compressive iron powder, iron powder for dust core using the same and dust core
JP2013026356A (en) 2011-07-19 2013-02-04 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
JP2013204075A (en) 2012-03-28 2013-10-07 Taiwan Powder Technologies Co Ltd Method for producing fine reduced iron powder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410935B2 (en) * 1972-12-06 1979-05-10
JPS5959810A (en) * 1982-09-30 1984-04-05 Kobe Steel Ltd Steel powder for powder metallurgy and its manufacture
JP2608178B2 (en) 1990-11-07 1997-05-07 川崎製鉄株式会社 Iron powder for powder metallurgy
JPH06256802A (en) * 1993-03-02 1994-09-13 Kawasaki Steel Corp Steel powder for powder metallugy and method for atomizing molten metal by liquid jet
JP3957331B2 (en) * 1993-05-18 2007-08-15 Jfeスチール株式会社 Method for producing water atomized iron powder for powder metallurgy
CN1104570A (en) * 1993-05-18 1995-07-05 川崎制铁株式会社 Atomised iron powder for powder metallurgy
JP3938944B2 (en) * 1993-11-04 2007-06-27 Jfeスチール株式会社 Method for producing water atomized iron powder for powder metallurgy
US5501747A (en) * 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article
US7217328B2 (en) * 2000-11-13 2007-05-15 Neomax Co., Ltd. Compound for rare-earth bonded magnet and bonded magnet using the compound
CN1410208B (en) * 2002-11-25 2011-01-19 莱芜钢铁集团粉末冶金有限公司 Manufacturing method of alloy steel powder by spraying
JP5617529B2 (en) * 2010-10-28 2014-11-05 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224010A (en) 2001-11-20 2003-08-08 Sumitomo Special Metals Co Ltd Compound for rare earth based bonded magnet and bonded magnet using the same
JP2007092162A (en) 2005-02-03 2007-04-12 Jfe Steel Kk Highly compressive iron powder, iron powder for dust core using the same and dust core
JP2013026356A (en) 2011-07-19 2013-02-04 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
JP2013204075A (en) 2012-03-28 2013-10-07 Taiwan Powder Technologies Co Ltd Method for producing fine reduced iron powder

Also Published As

Publication number Publication date
KR20200121858A (en) 2020-10-26
JP2019147997A (en) 2019-09-05
KR102507938B1 (en) 2023-03-08
CN111741822B (en) 2022-06-03
CN111741822A (en) 2020-10-02
WO2019167722A1 (en) 2019-09-06
EP3760343A1 (en) 2021-01-06
EP3760343A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6227903B2 (en) Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
JP6549586B2 (en) Method of manufacturing sintered member and sintered member
WO2012089807A1 (en) Iron based powders for powder injection molding
CA2969511C (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
KR20160045825A (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JP7395635B2 (en) iron-based powder
JP2008528811A (en) Iron-based composite powder
EP1097770A4 (en) Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
KR101531346B1 (en) Method for manufacturing diffusion bonding iron-based powders
JP7057156B2 (en) Iron powder for powder metallurgy
CN102947028B (en) In iron powder metallurgical application for improvement of the composition of size Control and method
CN109843797B (en) Tungsten carbide powder
PL207923B1 (en) Iron-based powder composition
JPWO2019111833A1 (en) Alloy steel powder
JP2005325373A (en) Method for casting iron powder for magnetic material
JPH04173901A (en) Iron powder for powder metallurgy
JPWO2019188833A1 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JP2011214097A (en) Alloy-steel-powder mixed powder with small variation of sintering strength
JP5339770B2 (en) Method for manufacturing sintered body
SU60425A1 (en) Method of making cermet hard alloys
JP5181688B2 (en) Iron-based powder mixture for powder metallurgy
JP2021001381A (en) Alloy steel powder for sintered member, iron based mixed powder for sintered member, and sintered member
JP2020132902A (en) Pre-alloyed steel powder for sintered member, powder for sintered member, and sintered member
JP2010138417A (en) Hollow alloy powder
NGAI et al. Warm compaction forming of a binder-treated fe-base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220308

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7057156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150