JP5339770B2 - Method for manufacturing sintered body - Google Patents

Method for manufacturing sintered body Download PDF

Info

Publication number
JP5339770B2
JP5339770B2 JP2008115134A JP2008115134A JP5339770B2 JP 5339770 B2 JP5339770 B2 JP 5339770B2 JP 2008115134 A JP2008115134 A JP 2008115134A JP 2008115134 A JP2008115134 A JP 2008115134A JP 5339770 B2 JP5339770 B2 JP 5339770B2
Authority
JP
Japan
Prior art keywords
particles
raw material
powder
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008115134A
Other languages
Japanese (ja)
Other versions
JP2009263724A (en
Inventor
豊 小熊
正明 島田
忠 中村
由紀子 尾崎
繁 宇波
純一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
JFE Steel Corp
Original Assignee
Honda Motor Co Ltd
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, JFE Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2008115134A priority Critical patent/JP5339770B2/en
Publication of JP2009263724A publication Critical patent/JP2009263724A/en
Application granted granted Critical
Publication of JP5339770B2 publication Critical patent/JP5339770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は焼結原料粉末を用いた焼結体の製造方法に関する。


The present invention relates to a method for producing a sintered body using sintered raw material powder.


焼結体の強度と靭性を向上させるためにNiを添加した材料が、特許文献1〜5として従来から知られている。
特許文献1には、Fe−C−Cu−Ni−Mo系の焼結原料粉末が記載され、特にFe粒子の表面に合金元素粒子を拡散せしめる際にFe粒子が硬化して圧縮性が低下するのを防止するため、Fe粒子表面に合金元素粒子を拡散合金化させずに、潤滑剤とバインダの共溶融物を用いて合金元素粒子を付着させることが記載され、更に、合金元素粒子の粒径は45μm以下、好ましくは15μm以下のものを60%以上とすることが記載されている。
Conventionally, materials added with Ni to improve the strength and toughness of the sintered body are known as Patent Documents 1 to 5.
Patent Document 1 describes an Fe—C—Cu—Ni—Mo-based sintering raw material powder, and particularly when the alloy element particles are diffused on the surface of the Fe particles, the Fe particles are cured and the compressibility is lowered. In order to prevent this, it is described that the alloy element particles are adhered to the Fe particle surface by using a co-melt of a lubricant and a binder without diffusion alloying the alloy element particles. It is described that the diameter is 45 μm or less, preferably 15 μm or less, and 60% or more.

特許文献2には、Fe−Mo−Mn系の焼結原料粉末にNi粉末を添加する内容が記載され、特に、予合金化法における圧縮性の低下を防止するため、添加するNiの平均粒径をFe−Mo−Mn系予合金粉末の平均粒径の1/10以下にすることが提案されている。   Patent Document 2 describes the content of adding Ni powder to a Fe—Mo—Mn-based sintered raw material powder, and in particular, to prevent a decrease in compressibility in the prealloying method, the average grain of Ni to be added It has been proposed that the diameter be 1/10 or less of the average particle diameter of the Fe—Mo—Mn-based prealloy powder.

特許文献3には、Fe−Mo−Mn系の焼結原料粉末にNi粉末を添加する内容が記載され、特にNiの合金化による圧縮性の低下を防止するため、Fe粉末を平均粒径が50〜80μmの粗粉末と平均粒径が20μm以下の微粉末の組み合わせとし、圧粉成形体を成形する際の圧縮性を改善することが提案されている。   Patent Document 3 describes the content of adding Ni powder to an Fe—Mo—Mn-based sintered raw material powder, and in particular, to prevent a decrease in compressibility due to Ni alloying, the Fe powder has an average particle size. It has been proposed to use a combination of a coarse powder of 50 to 80 μm and a fine powder having an average particle size of 20 μm or less to improve the compressibility when molding a green compact.

特許文献4には、極めて熱膨張率が小さなFe−Co−Ni系のスーパーアンバー合金が記載され、原料粉末の平均粒径として5〜50μmのものが提案されている。   Patent Document 4 describes a Fe-Co-Ni superamber alloy having an extremely small thermal expansion coefficient, and a material powder having an average particle diameter of 5 to 50 μm is proposed.

特許文献5には、熱処理を施さなくて済む焼結原料粉末として、Fe−Ni−Cr−Mo−Mn系のものが開示され、NiについてはFe粉体を硬くして圧縮性を低下せしめるので、0.3〜2.5重量%添加することが開示されている。   Patent Document 5 discloses a Fe-Ni-Cr-Mo-Mn-based powder as a sintering raw material powder that does not need to be heat-treated. For Ni, the Fe powder is hardened and the compressibility is lowered. , 0.3 to 2.5% by weight is disclosed.

特開平1−159301号公報JP-A-1-159301 特開昭62−146203号公報JP 62-146203 A 特開2001−131677号公報JP 2001-131777 A 特開平9−31590号公報JP-A-9-31590 特開2001−81501号公報JP 2001-81501 A

上述した何れの先行技術にあっても、焼結の際にNiをFeに拡散して合金化するのに長時間(通常30分以上)必要になる。また、焼結後の機械的強度が十分とは言えず、更なる強度の向上が望まれる。   In any of the above-described prior arts, it takes a long time (usually 30 minutes or more) to diffuse Ni into Fe to form an alloy during sintering. Moreover, it cannot be said that the mechanical strength after sintering is sufficient, and further improvement in strength is desired.

上記課題を解決するため本発明に係る焼結体の製造方法は、C(黒鉛):0.600〜0.825mass%、Cu(銅):0.975〜1.025mass%、Ni(ニッケル):2.90〜3.10mass%、Fe(鉄):残部である原料粉末を用い、日本粉末冶金工業規格(JPMA)SMF5040相当で、引張強度が13.8KN/mm 以上の焼結体の製造方法であって、原料粉末としてFe粒子の平均粒径は75μm以上100μm以下、Cu粒子は前記Fe粒子よりも小径で平均粒径は25μm以上45μm以下、Ni粒子の平均粒径は0.8以上1.5μm未満の原料粉末を準備する工程と、前記原料粉末を混合し原料混合粉末とする工程と、前記原料混合粉末を成形荷重392〜588N/mm 、金型及び前記原料混合粉末の温度80〜100℃として所定の形状に成形する工程と、焼結温度を1070〜1250℃、焼結時間を20分以下として焼結を行う工程と、からなることを特徴とする。
In order to solve the above-mentioned problems, the manufacturing method of the sintered body according to the present invention is as follows: C ( graphite ): 0.600 to 0.825 mass%, Cu (copper): 0.975 to 1.025 mass%, Ni (nickel) : 2.90-3.10 mass%, Fe (iron): Using the remaining raw material powder, equivalent to Japan Powder Metallurgy Industry Standard (JPMA) SMF5040, with a tensile strength of 13.8 KN / mm 2 or more. In the manufacturing method, the average particle size of Fe particles as raw material powder is 75 μm or more and 100 μm or less, the Cu particles are smaller than the Fe particles, the average particle size is 25 μm or more and 45 μm or less, and the average particle size of Ni particles is 0.8. A step of preparing a raw material powder of less than 1.5 μm, a step of mixing the raw material powder to form a raw material mixed powder, a molding load of 392 to 588 N / mm 2 , a mold and the raw material mixed powder Temperature 8 A step of forming a predetermined shape as to 100 ° C., the sintering temperature 1070-1250 ° C., and wherein the step of performing sintering sintering time as 20 minutes or less, in that it consists of.

本願発明の焼結原料粉末の基本的な成分割合は、日本粉末冶金工業会規格(JPMA)のSMF5040に相当する。
C(炭素)は、焼結体の強度を高めるために添加するものであり、0.600mass%未満では強度が不足し、0.825mass%を超えると過剰なCが析出するので、上記の範囲とする。
Cu(銅)は、焼結体の強度を高めるために添加するものであり、0.975mass%未満では強度が不足し、1.025mass%を超えてもそれ以上の効果が期待できないので、上記の範囲とする。
Ni(ニッケル)は、焼結体の強度と靭性を高めるために添加するものであり、2.90mass%未満では強度と靭性が不足し、3.10mass%を超えてもそれ以上の効果が期待できないので、上記の範囲とする。
The basic component ratio of the sintered raw material powder of the present invention corresponds to SMF5040 of the Japan Powder Metallurgy Association (JPMA) standard.
C (carbon) is added to increase the strength of the sintered body. If the amount is less than 0.600 mass%, the strength is insufficient, and if it exceeds 0.825 mass%, excess C is precipitated. And
Cu (copper) is added to increase the strength of the sintered body. The strength is insufficient if it is less than 0.975 mass%, and no further effect can be expected even if it exceeds 1.025 mass%. The range.
Ni (nickel) is added to increase the strength and toughness of the sintered body. If it is less than 2.90 mass%, the strength and toughness are insufficient, and even if it exceeds 3.10 mass%, further effects are expected. Since this is not possible, the above range is used.

そして、本願発明の特徴となる点は、Fe粒子の平均粒径を100μm以下、Cu粒子の平均粒径をFe粒子よりも小径で45μm以下、Ni粒子の平均粒径を0.8〜1.5μmとした点にある。
各粒子の粒径を上記の範囲とすることで、Fe粒子の間にCu粒子が充填され、Cu粒子とFe粒子の間にNi粒子が充填され、空隙率の低い焼結体が得られる。
また、Ni粒子の平均粒径を0.8〜1.5μmとすることで、焼結(Niの合金化)に要する時間を大幅に短縮することができる。
The features of the present invention are that the average particle size of Fe particles is 100 μm or less, the average particle size of Cu particles is 45 μm or less smaller than the Fe particles, and the average particle size of Ni particles is 0.8 to 1. The point is 5 μm.
By setting the particle size of each particle within the above range, Cu particles are filled between Fe particles, Ni particles are filled between Cu particles and Fe particles, and a sintered body having a low porosity is obtained.
Further, by setting the average particle size of Ni particles to 0.8 to 1.5 μm, the time required for sintering (Ni alloying) can be greatly shortened.

本発明に係る焼結体の製造方法は、上記の構成からなる焼結原料粉末を所定の形状に成形した後に焼結する。そして、前記成形は成形荷重392〜588N/mm、成形温度80〜100℃とし、焼結温度は1070〜1200℃、焼結時間は20分以下とする。 In the method for producing a sintered body according to the present invention, the sintering raw material powder having the above structure is formed into a predetermined shape and then sintered. The molding is performed with a molding load of 392 to 588 N / mm 2 , a molding temperature of 80 to 100 ° C., a sintering temperature of 1070 to 1200 ° C., and a sintering time of 20 minutes or less.

成形時に金型並びに材料粉末を80〜100℃に加熱しておくことで、成形荷重が低減でき、プレス機によって成形できる素材のサイズを大きくすることができる。先行技術に開示された合金化粉末は、純鉄粉に比べて硬度が高くなっており、金型の磨耗を引き起こし、また変形しにくいので成形荷重をより高めなければならないが、本発明はこれを解消することができる。   By heating the mold and the material powder to 80 to 100 ° C. at the time of molding, the molding load can be reduced and the size of the material that can be molded by a press machine can be increased. Although the alloyed powder disclosed in the prior art has higher hardness than pure iron powder, it causes wear of the mold and is difficult to deform, so the molding load must be increased. Can be eliminated.

本発明に係る焼結原料粉末によれば、焼結前の圧粉成形体の充填密度を高くすることができるので、焼結体の強度が向上する。また、Ni粒子の平均粒径を0.8〜1.5μmとしたので、従来のNi粒子(5μm)よりも比表面積が大きくなり、Niの拡散による合金化に要する時間が短くなる。   According to the sintered raw material powder according to the present invention, since the packing density of the green compact before sintering can be increased, the strength of the sintered body is improved. Further, since the average particle diameter of Ni particles is set to 0.8 to 1.5 μm, the specific surface area becomes larger than that of conventional Ni particles (5 μm), and the time required for alloying by diffusion of Ni is shortened.

以下に本発明の実施例を説明する。図1はNi粒子径と焼結体の強度との関係を示すグラフ、図2(a)〜(e)はNi粒子径と焼結拡散状態との関係を示す顕微鏡写真である。   Examples of the present invention will be described below. FIG. 1 is a graph showing the relationship between the Ni particle diameter and the strength of the sintered body, and FIGS. 2A to 2E are micrographs showing the relationship between the Ni particle diameter and the sintered diffusion state.

先ず、以下の成分割合の焼結原料粉末を用意する。
Fe:95.35mass%
Cu: 1.0mass%
C : 0.65mass%
Ni: 3.0mass%
First, a sintering raw material powder having the following component ratios is prepared.
Fe: 95.35 mass%
Cu: 1.0 mass%
C: 0.65 mass%
Ni: 3.0 mass%

前記各成分を構成する粒子の平均粒径は以下の通りである。
Fe粒子:75μm
Cu粒子:25μm
Ni粒子:0.8μm、1μm、2μm、3μm、4μm、5μm
Ni粒子については、上記の6種類の粒径のものを用意し、各粒径ごとに成形及び焼結を行った。
尚、Cについては焼結の際にFeに侵入する侵入型元素であるので、一般的な粒径(5μm)の黒鉛を用いた。
The average particle size of the particles constituting each component is as follows.
Fe particles: 75 μm
Cu particles: 25 μm
Ni particles: 0.8 μm, 1 μm, 2 μm, 3 μm, 4 μm, 5 μm
About Ni particle | grains, the thing of said 6 types of particle size was prepared, and it shape | molded and sintered for every particle size.
Since C is an interstitial element that enters Fe during sintering, graphite having a general particle size (5 μm) was used.

上記の混合粉体100に対し潤滑剤を0.75mass%添加し、偏りがないように混合し、この混合粉体を成形金型に充填し、成形圧力490N/mm、成形温度90℃で、成形体を形成した。成形体はNi粒子の粒径ごとに6種類作成した。 0.75 mass% of lubricant is added to the above mixed powder 100 and mixed so as not to be biased, and this mixed powder is filled in a molding die, at a molding pressure of 490 N / mm 2 and a molding temperature of 90 ° C. A molded body was formed. Six types of compacts were prepared for each Ni particle size.

次いで、上記成形体を焼結温度を1150℃、焼結時間を20分として焼結を行った。焼結体の強度とNi粒子の粒径との関係を図1に示す。また、Ni粒子の各粒径ごとの組織の顕微鏡写真を図2(a)〜(e)に示す。     Subsequently, the compact was sintered at a sintering temperature of 1150 ° C. and a sintering time of 20 minutes. The relationship between the strength of the sintered body and the particle size of the Ni particles is shown in FIG. Moreover, the micrograph of the structure | tissue for every particle size of Ni particle | grains is shown to Fig.2 (a)-(e).

図1から、焼結体の強度とNi粒子の粒径とは比例関係にあり、ギヤなどを焼結体で構成した場合に要求される強度として、13.8KNを目標値とすると、Ni粒子の粒径は0.8〜1.5μmとすべきことが分かる。   From FIG. 1, the strength of the sintered body and the particle size of the Ni particles are in a proportional relationship, and when the target strength is 13.8 KN when the gear or the like is made of a sintered body, the Ni particles It can be seen that the particle size should be 0.8-1.5 μm.

また、図2からNi粒子の粒径が1μm、2μmの場合には、Niの偏析は見られず、これが強度向上に寄与していることが、推察できる。   Further, it can be inferred from FIG. 2 that when the particle size of the Ni particles is 1 μm and 2 μm, no segregation of Ni is observed and this contributes to the strength improvement.

Ni粒子径と焼結体の強度との関係を示すグラフGraph showing the relationship between Ni particle size and strength of sintered body (a)〜(e)はNi粒子径と焼結拡散状態との関係を示す顕微鏡写真(A)-(e) is a micrograph which shows the relationship between Ni particle diameter and a sintering diffusion state.

Claims (1)

C(黒鉛):0.600〜0.825mass%、Cu(銅):0.975〜1.025mass%、Ni(ニッケル):2.90〜3.10mass%、Fe(鉄):残部である原料粉末を用い、日本粉末冶金工業規格(JPMA)SMF5040相当で、引張強度が13.8KN/mm 以上の焼結体の製造方法であって、
原料粉末としてFe粒子の平均粒径は75μm以上100μm以下、Cu粒子は前記Fe粒子よりも小径で平均粒径は25μm以上45μm以下、Ni粒子の平均粒径は0.8以上1.5μm未満の原料粉末を準備する工程と、
前記原料粉末を混合し原料混合粉末とする工程と、
前記原料混合粉末を成形荷重392〜588N/mm、金型及び前記原料混合粉末の温度80〜100℃として所定の形状に成形する工程と、
焼結温度を1070〜1250℃、焼結時間を20分以下として焼結を行う工程と、
からなることを特徴とする焼結体の製造方法。
C ( graphite ): 0.600 to 0.825 mass%, Cu (copper): 0.975 to 1.025 mass%, Ni (nickel): 2.90 to 3.10 mass%, Fe (iron): the balance A method for producing a sintered body having a tensile strength of 13.8 KN / mm 2 or more, equivalent to Japan Powder Metallurgy Industry Standard (JPMA) SMF5040 , using raw material powder ,
The average particle size of Fe particles as raw material powder is 75 μm or more and 100 μm or less, the Cu particles are smaller than the Fe particles, the average particle size is 25 μm or more and 45 μm or less, and the average particle size of Ni particles is 0.8 or more and less than 1.5 μm Preparing a raw material powder;
Mixing the raw material powder to obtain a raw material mixed powder;
Forming the raw material mixed powder into a predetermined shape with a molding load of 392 to 588 N / mm 2 , a mold and a temperature of the raw material mixed powder of 80 to 100 ° C .;
A step of sintering at a sintering temperature of 1070 to 1250 ° C. and a sintering time of 20 minutes or less;
The manufacturing method of the sintered compact characterized by comprising.
JP2008115134A 2008-04-25 2008-04-25 Method for manufacturing sintered body Expired - Fee Related JP5339770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115134A JP5339770B2 (en) 2008-04-25 2008-04-25 Method for manufacturing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115134A JP5339770B2 (en) 2008-04-25 2008-04-25 Method for manufacturing sintered body

Publications (2)

Publication Number Publication Date
JP2009263724A JP2009263724A (en) 2009-11-12
JP5339770B2 true JP5339770B2 (en) 2013-11-13

Family

ID=41389943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115134A Expired - Fee Related JP5339770B2 (en) 2008-04-25 2008-04-25 Method for manufacturing sintered body

Country Status (1)

Country Link
JP (1) JP5339770B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154881A (en) * 1992-02-14 1992-10-13 Hoeganaes Corporation Method of making a sintered metal component
JPH07173503A (en) * 1993-11-04 1995-07-11 Kobe Steel Ltd Binder for powder metallurgy and powdery mixture for powder metallurgy
JPH07228901A (en) * 1994-02-16 1995-08-29 Kobe Steel Ltd Method for adjusting apparent density of mixed powder for powder metallury and mixed powder for powder metallurgy
JP3713811B2 (en) * 1996-05-17 2005-11-09 株式会社神戸製鋼所 High strength sintered steel and method for producing the same
JP4228547B2 (en) * 2000-03-28 2009-02-25 Jfeスチール株式会社 Lubricant for mold lubrication and method for producing high-density iron-based powder compact
JP2002173703A (en) * 2000-12-01 2002-06-21 Univ Nihon Method for manufacturing sintered compact of metal powder
JP2005154828A (en) * 2003-11-25 2005-06-16 Mitsubishi Materials Corp Raw material powder for warm compacting, and warm compacting method

Also Published As

Publication number Publication date
JP2009263724A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP6227903B2 (en) Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
JP5949952B2 (en) Method for producing iron-based sintered body
JP5108531B2 (en) Iron-based composite powder
CN101760664A (en) Bronze powder for powder metallurgy and method of manufacturing the same
JPH0689365B2 (en) Atomized prealloyed steel powder for powder metallurgy
KR20170094321A (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
JP5339770B2 (en) Method for manufacturing sintered body
JP2008214664A (en) Method for manufacturing sintered body, and sintered body
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
JP6738038B2 (en) Iron-based sintered alloy and method for producing the same
JP5177787B2 (en) Method for producing Fe-based sintered alloy and Fe-based sintered alloy
JP2864564B2 (en) Manufacturing method of alloy for molding bullet
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
US6551373B2 (en) Copper infiltrated ferro-phosphorous powder metal
JP3303030B2 (en) Connecting rod excellent in fatigue strength and toughness and method for manufacturing the same
JP5923023B2 (en) Mixed powder for powder metallurgy and method for producing sintered material
JP2017137533A (en) Composite sintered compact and method for producing the same
JP2011214097A (en) Alloy-steel-powder mixed powder with small variation of sintering strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121015

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5339770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees