JP7056610B2 - Intentional contamination method for semiconductor wafers - Google Patents

Intentional contamination method for semiconductor wafers Download PDF

Info

Publication number
JP7056610B2
JP7056610B2 JP2019033329A JP2019033329A JP7056610B2 JP 7056610 B2 JP7056610 B2 JP 7056610B2 JP 2019033329 A JP2019033329 A JP 2019033329A JP 2019033329 A JP2019033329 A JP 2019033329A JP 7056610 B2 JP7056610 B2 JP 7056610B2
Authority
JP
Japan
Prior art keywords
solution
contaminated
diameter
wafer
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019033329A
Other languages
Japanese (ja)
Other versions
JP2020140988A (en
Inventor
敏視 戸部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019033329A priority Critical patent/JP7056610B2/en
Publication of JP2020140988A publication Critical patent/JP2020140988A/en
Application granted granted Critical
Publication of JP7056610B2 publication Critical patent/JP7056610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、高集積デバイスを作製するための半導体用ウェーハの性能を評価するための方法であり、特に、シリコンウェーハ(半導体ウェーハ)内に存在するとシリコンウェーハの性能を劣化させる金属元素の挙動を知るために、故意に金属元素をシリコンウェーハに導入するための方法に関する。 The present invention is a method for evaluating the performance of a semiconductor wafer for manufacturing a highly integrated device, and in particular, the behavior of a metal element that deteriorates the performance of a silicon wafer when present in a silicon wafer (semiconductor wafer). To know, it relates to a method for deliberately introducing a metal element into a silicon wafer.

半導体集積回路等のデバイスの高密度化、高集積化に伴い、デバイス動作の安定化が頓に望まれてきている。特に、リーク電流や酸化膜耐圧等の特性値改善は重要な課題である。 With the increasing density and high integration of devices such as semiconductor integrated circuits, stabilization of device operation has been desired. In particular, improvement of characteristic values such as leakage current and withstand voltage of oxide film is an important issue.

しかし、金属元素などの汚染物が集積回路基板であるシリコンウェーハ中に混入すると、その後作製したデバイスの安定動作は望めないことになる。例えば、半導体集積回路の製造工程において導入される金属元素は、その元素の種類や濃度により、デバイス特性に悪影響を及ぼすことが広く知られている。 However, if contaminants such as metal elements are mixed into the silicon wafer, which is an integrated circuit board, stable operation of the device manufactured thereafter cannot be expected. For example, it is widely known that a metal element introduced in a manufacturing process of a semiconductor integrated circuit adversely affects device characteristics depending on the type and concentration of the element.

したがって、シリコンウェーハ内に混入した汚染物、特に、金属元素をデバイス活性層から除去する技術が開発されている。その技術をゲッタリングと言い、ウェーハバルクに形成する酸素析出物に金属を析出させるIG(Internal Gettering)や、ウェーハ裏面に多結晶シリコン膜を形成し、その多結晶膜に金属を高濃度固溶させるPBS(Poly-Si Back Seal)などがその代表的な手法である。 Therefore, a technique for removing contaminants mixed in a silicon wafer, particularly a metal element, from a device active layer has been developed. This technique is called gettering, and IG (Internal Getting) that precipitates metal on the oxygen precipitate formed on the wafer bulk, or a polycrystalline silicon film is formed on the back surface of the wafer, and the metal is solid-dissolved in the polycrystalline film at a high concentration. A typical method is PBS (Poly-Si Back Seal).

これらのゲッタリング技術を開発し、その能力を検討する際、金属元素を故意にシリコンウェーハ中に導入し、その挙動を調べることは古くからなされている。その調査には、設定した濃度の金属元素の故意汚染をウェーハに施す必要があり、故意汚染法にも種々の方法が知られている。例えば、SC1(Standard Cleaning 1、NHOH/H/HO混合液)中に金属元素を溶解し、70~100℃に加熱したこの溶液にシリコンウェーハを浸漬する方法や、目的元素の原子吸光用標準液を溶媒で希釈して作製した溶液を親水性のウェーハ表面に塗布し、スピン乾燥させることで目的濃度の故意汚染を行うスピンコート法が挙げられる。 When developing these gettering techniques and examining their capabilities, it has long been practiced to deliberately introduce metal elements into silicon wafers and investigate their behavior. For the investigation, it is necessary to intentionally contaminate the wafer with a metal element having a set concentration, and various methods are known as the intentional contamination method. For example, a method of dissolving a metal element in SC1 (Standard Cleaning 1, NH 3 OH / H 2 O 2 / H 2 O mixed solution) and immersing a silicon wafer in this solution heated to 70 to 100 ° C. An example is a spin coating method in which a solution prepared by diluting a standard solution for atomic absorption of an element with a solvent is applied to a hydrophilic wafer surface and spin-dried to intentionally contaminate the target concentration.

しかし、これらの方法は、いずれもウェーハの全面を均一濃度で汚染するもの(均一汚染法)であるため、汚染濃度の異なる条件でゲッタリング能力を評価する場合などでは、必要な汚染濃度条件の数に応じたウェーハ枚数が必要となる。 However, since all of these methods contaminate the entire surface of the wafer with a uniform concentration (uniform contamination method), when evaluating the gettering ability under conditions with different contamination concentrations, the required contamination concentration conditions are required. The number of wafers corresponding to the number is required.

また、現実に生じる汚染は、金属パーティクルなどが部分的にウェーハに接触、付着することで生じる局所汚染が多い。この場合、汚染部と非汚染部がウェーハ上で境界を作ることになり、その境界部の挙動変化やウェーハ半径方向の拡散が生じることになるため、これらの局所汚染起因の金属挙動調査を行うには、上述の均一汚染法では、対応不可能となる。 In addition, the contamination that actually occurs is often local contamination that occurs when metal particles or the like partially come into contact with and adhere to the wafer. In this case, the contaminated part and the non-contaminated part form a boundary on the wafer, and the behavior of the boundary part changes and the diffusion in the radial direction of the wafer occurs. Therefore, the metal behavior caused by these local contaminations is investigated. However, the above-mentioned uniform contamination method cannot be used.

特開2016-44988号公報Japanese Unexamined Patent Publication No. 2016-44988 特開2014-41030号公報Japanese Unexamined Patent Publication No. 2014-41030 特開2002-270568号公報Japanese Unexamined Patent Publication No. 2002-270568

上述のように、従来の均一汚染法では、局所汚染起因の金属挙動調査を行うことが不可能であった。これまでに、ウェーハ表面を局所的に汚染することは報告されているが(特許文献1~3)、これらの方法は、例えば、故意汚染のための溶液として、Fe、Cr、Niの各濃度が10ppbの5%硝酸ベース混合溶液を調製して用いており(特許文献2)、このような方法では、汚染領域径、汚染濃度を制御することが困難であり、作業性も悪いことが問題であった。 As described above, it has been impossible to investigate the metal behavior caused by local contamination by the conventional uniform contamination method. Although it has been reported that the surface of a wafer is locally contaminated (Patent Documents 1 to 3), these methods have, for example, concentrations of Fe, Cr, and Ni as a solution for intentional contamination. Prepares and uses a 5% nitrate-based mixed solution of 10 ppb (Patent Document 2). With such a method, it is difficult to control the contaminated area diameter and the contaminated concentration, and the workability is also poor. Met.

本発明は、このような問題点に鑑みてなされたもので、ウェーハの限定された局所領域に対し、所望の金属元素を望む濃度に高精度に制御して故意汚染する手法を提供することを目的とする。また、従来の方法に対して作業効率を向上させることも目的とする。 The present invention has been made in view of such problems, and provides a method for intentionally contaminating a limited local region of a wafer by controlling a desired metal element to a desired concentration with high precision. The purpose. It is also an object to improve work efficiency as compared with the conventional method.

上記目的を達成するために、本発明は、半導体ウェーハの性能を評価するために、半導体ウェーハ表面の所定の領域に、所望の金属元素を故意に導入する半導体ウェーハの故意汚染方法であって、
前記金属元素を含む標準液を揮発性液体からなる溶媒で希釈した溶液を汚染溶液として用い、所定の位置に滴下することによって前記半導体ウェーハ表面の所定の位置に汚染領域を形成させることを特徴とする半導体ウェーハの故意汚染方法を提供する。
In order to achieve the above object, the present invention is a method for intentionally contaminating a semiconductor wafer by intentionally introducing a desired metal element into a predetermined region on the surface of the semiconductor wafer in order to evaluate the performance of the semiconductor wafer.
A solution obtained by diluting a standard solution containing a metal element with a solvent consisting of a volatile liquid is used as a contaminating solution, and a contaminated region is formed at a predetermined position on the surface of the semiconductor wafer by dropping the standard solution at a predetermined position. Provided is a method for intentionally contaminating a semiconductor wafer.

このような方法であれば、汚染溶液が揮発性液体で調製されているため、溶媒が短時間で揮発し、従来の手法では困難であった、ウェーハ面内の局所領域の汚染領域径、汚染濃度の制御を安定して実施することができる。また、溶媒が短時間で揮発するため、従来よりも作業効率を向上させることができる。 With such a method, since the contaminated solution is prepared as a volatile liquid, the solvent volatilizes in a short time, and the contaminated area diameter and contamination of the local area in the wafer surface, which was difficult with the conventional method, are contaminated. The concentration can be controlled in a stable manner. Moreover, since the solvent volatilizes in a short time, the work efficiency can be improved as compared with the conventional case.

このとき、前記溶媒をアルコール類とすることが好ましい。
アルコール類は揮発性が高く、本発明の方法における溶媒として好適に用いることができる。
At this time, it is preferable to use alcohols as the solvent.
Alcohols are highly volatile and can be suitably used as a solvent in the method of the present invention.

また、このとき、前記アルコール類をエタノールとすることが好ましい。
エタノールはアルコール類の中でもコスト的に有利であり、本発明の方法における溶媒としてより好適に用いることができる。
At this time, it is preferable to use ethanol as the alcohol.
Ethanol is cost-effective among alcohols and can be more preferably used as a solvent in the method of the present invention.

また、このとき、前記滴下を行う前に、使用する前記汚染溶液及び前記滴下の方法に応じて、予め、前記汚染溶液の滴下溶液量と汚染領域径との関係を求めておき、該関係に基づいて、前記汚染領域径を前記滴下溶液量で制御することが好ましい。 Further, at this time, before the dropping is performed, the relationship between the amount of the dropped solution of the contaminated solution and the diameter of the contaminated area is obtained in advance according to the contaminated solution to be used and the method of the dropping, and the relationship is determined. Based on this, it is preferable to control the diameter of the contaminated area by the amount of the dropped solution.

このような方法であれば、より確実に汚染領域径を制御することができるため、ウェーハ面内の局所的な故意汚染をより安定して実施することができる。 With such a method, the diameter of the contaminated area can be controlled more reliably, so that local intentional contamination in the wafer surface can be carried out more stably.

本発明の方法であれば、汚染溶液が揮発性液体で調製されているため、溶媒が短時間で揮発し、従来の手法では困難であった、ウェーハ面内の局所領域の汚染領域径、汚染濃度の制御を安定して実施することができる。また、溶媒が短時間で揮発するため、従来よりも作業効率を向上させることができる。従って、半導体ウェーハの性能を適切に評価することができる。 In the method of the present invention, since the contaminated solution is prepared as a volatile liquid, the solvent volatilizes in a short time, which is difficult with the conventional method. The concentration can be controlled in a stable manner. Moreover, since the solvent volatilizes in a short time, the work efficiency can be improved as compared with the conventional case. Therefore, the performance of the semiconductor wafer can be appropriately evaluated.

本発明の実施例2における汚染溶液の滴下体積と汚染領域径との関係を示す図である。It is a figure which shows the relationship between the dropping volume of the contaminated solution and the diameter of a contaminated area in Example 2 of this invention.

上記課題を解決するため、本発明者は、半導体ウェーハ表面の所定の領域に、所望の金属元素を故意汚染する方法であって、前記金属元素を含む標準液を揮発性液体からなる溶媒で希釈した溶液を所定の位置に滴下することによって、前記半導体ウェーハ表面の所定の位置に汚染領域を形成する故意汚染方法であれば、局所的な故意汚染を安定して実施することができることを見出し、本発明を完成させるに至った。 In order to solve the above problems, the present inventor is a method of intentionally contaminating a predetermined region on the surface of a semiconductor wafer with a desired metal element, and dilutes a standard solution containing the metal element with a solvent consisting of a volatile liquid. It has been found that if the intentional contamination method is to form a contaminated region at a predetermined position on the surface of the semiconductor wafer by dropping the prepared solution at a predetermined position, local intentional contamination can be stably carried out. The present invention has been completed.

即ち、本発明は、半導体ウェーハの性能を評価するために、半導体ウェーハ表面の所定の領域に、所望の金属元素を故意に導入する半導体ウェーハの故意汚染方法であって、
前記金属元素を含む標準液を揮発性液体からなる溶媒で希釈した溶液を汚染溶液として用い、所定の位置に滴下することによって前記半導体ウェーハ表面の所定の位置に汚染領域を形成させることを特徴とする半導体ウェーハの故意汚染方法である。
That is, the present invention is a method for intentionally contaminating a semiconductor wafer by intentionally introducing a desired metal element into a predetermined region on the surface of the semiconductor wafer in order to evaluate the performance of the semiconductor wafer.
A solution obtained by diluting a standard solution containing a metal element with a solvent consisting of a volatile liquid is used as a contaminating solution, and a contaminated region is formed at a predetermined position on the surface of the semiconductor wafer by dropping the standard solution at a predetermined position. This is a method of intentionally contaminating semiconductor wafers.

以下、実施の形態について述べる。 Hereinafter, embodiments will be described.

本発明では、半導体ウェーハの局所汚染をするための汚染溶液を調製するために、金属元素の標準液を用いる。金属元素の厳密な濃度の規定された標準液は市販されており、ほとんどの調査対象となる元素の標準液を入手できる。例えば、Feを対象とするならば、硝酸Fe(III)を0.38%(鉄として、1000mg/L=1000ppm)含有する、0.2mol/L硝酸溶液として市販されているものを用いることができる。もちろん、金属元素の標準液は金属元素の濃度が規定されていればよく、市販のものでなくても、濃度を調整したものを用いればよい。このような標準液を揮発性液体、例えば、エタノールで希釈したものを汚染溶液とし、ウェーハ上に滴下し、数分、室温で放置すれば、揮発性のエタノールは蒸発により失われ、溶解させた鉄のみがウェーハ上に残存することになる。この残存鉄の原子数は、滴下した際に用いた汚染溶液に含まれる鉄原子数と同じと見てよいため、望む鉄原子数をウェーハ上に故意汚染することが可能となる。 In the present invention, a standard solution of a metal element is used to prepare a contaminated solution for locally contaminating a semiconductor wafer. Standard solutions with strict concentrations of metal elements are commercially available, and standard solutions for most of the elements to be investigated are available. For example, when Fe is targeted, a commercially available 0.2 mol / L nitric acid solution containing 0.38% of Fe (III) nitric acid (1000 mg / L = 1000 ppm as iron) can be used. can. Of course, the standard solution of the metal element may have a specified concentration of the metal element, and even if it is not commercially available, a solution having an adjusted concentration may be used. When such a standard solution was diluted with a volatile liquid, for example, ethanol, as a contaminated solution, dropped onto a wafer, and left at room temperature for several minutes, the volatile ethanol was lost by evaporation and dissolved. Only iron will remain on the wafer. Since the number of atoms of the residual iron can be regarded as the same as the number of iron atoms contained in the contaminated solution used at the time of dropping, it is possible to intentionally contaminate the desired number of iron atoms on the wafer.

希釈に用いる溶媒としては、エタノールのほか、メタノールやIPA(イソプロピルアルコール)などのアルコール類であることが好ましいが、揮発性液体であれば特に限定されない。なお、コスト的に有利であるため、溶媒はエタノールであることがより好ましい。 The solvent used for dilution is preferably alcohols such as methanol and IPA (isopropyl alcohol) in addition to ethanol, but is not particularly limited as long as it is a volatile liquid. In addition, it is more preferable that the solvent is ethanol because it is advantageous in terms of cost.

上記の局所汚染を実施する際、滴下する汚染溶液の体積に比例して、汚染される領域面積が決定される。例えば、溶媒としてエタノールを使用し、マイクロピペットなどを使用して溶液を10μL滴下すると、直径約25mmの円の領域にエタノール溶液が広がり、やがてエタノールは短時間に蒸発するため、その直径25mmの円領域が目的元素の汚染領域となる。溶液量を減らし、2μL滴下とすれば、この汚染領域を直径約12mmと狭めることができる。 When performing the above-mentioned local contamination, the area of the contaminated area is determined in proportion to the volume of the contaminated solution to be dropped. For example, when ethanol is used as a solvent and 10 μL of the solution is dropped using a micropipette or the like, the ethanol solution spreads in a region of a circle having a diameter of about 25 mm, and the ethanol evaporates in a short time. The area becomes the contaminated area of the target element. By reducing the amount of solution and dropping 2 μL, this contaminated area can be narrowed to a diameter of about 12 mm.

このように汚染領域径の制御は、滴下溶液の体積で制御できる。ここで、異なる溶媒を用いる場合や滴下の方法を変更した場合、その滴下溶液体積と汚染領域径の関係は必ずしも、上記の関係にならないが、使用溶液や滴下方法に応じて、あらかじめ、その滴下溶液体積と汚染領域径の関係を求めておけばよい。 In this way, the diameter of the contaminated area can be controlled by the volume of the dropping solution. Here, when a different solvent is used or the dropping method is changed, the relationship between the dropping solution volume and the diameter of the contaminated area does not necessarily have the above relationship, but the dropping is performed in advance depending on the solution used and the dropping method. The relationship between the solution volume and the diameter of the contaminated area may be obtained.

また、このとき、溶媒に用いる揮発性液体の純度は、汚染領域径や汚染濃度の制御に影響するため、高純度のものが好ましいが、滴下溶液量と汚染領域径の関係を予め求めておくことで、局所汚染の目的は達成することができる。 At this time, the purity of the volatile liquid used as the solvent affects the control of the contaminated area diameter and the contaminated concentration, so a high-purity one is preferable, but the relationship between the amount of the dropped solution and the contaminated area diameter is obtained in advance. Thus, the purpose of local pollution can be achieved.

上記のことから、前記滴下を行う前に、使用する前記汚染溶液及び前記滴下の方法に応じて、予め、前記汚染溶液の滴下溶液量と汚染領域径との関係を求めておき、該関係に基づいて、前記汚染領域径を前記滴下溶液量で制御することが好ましい。このような方法であれば、より確実に汚染領域径を制御することができるため、ウェーハ面内の局所的な故意汚染をより安定して実施することができる。 From the above, before performing the dropping, the relationship between the amount of the dropping solution of the contaminated solution and the diameter of the contaminated area is obtained in advance according to the contaminated solution to be used and the method of the dropping, and the relationship is established. Based on this, it is preferable to control the diameter of the contaminated area by the amount of the dropped solution. With such a method, the diameter of the contaminated area can be controlled more reliably, so that local intentional contamination in the wafer surface can be carried out more stably.

このように、本発明の半導体ウェーハの故意汚染方法を用いれば、従来は、汚染溶液の揮発が遅いために、汚染領域径、汚染濃度の制御が困難であったが、本発明の半導体ウェーハの故意汚染方法であれば、汚染溶液が揮発性液体で調製されているため、溶媒が短時間で揮発し、ウェーハ面内の局所的な故意汚染を安定して実施することができる。また、溶媒が短時間で蒸発するため、従来よりも作業効率を向上させることができる。 As described above, when the method of intentionally contaminating the semiconductor wafer of the present invention is used, it has been difficult to control the contaminated area diameter and the contaminated concentration due to the slow volatilization of the contaminated solution. In the intentional contamination method, since the contamination solution is prepared as a volatile liquid, the solvent volatilizes in a short time, and local intentional contamination in the wafer surface can be stably carried out. Moreover, since the solvent evaporates in a short time, the work efficiency can be improved as compared with the conventional case.

さらに、このような方法であれば、同一ウェーハの半径方向に異なる故意汚染の領域(汚染濃度、金属元素の種類等が異なる領域)を形成することができる。例えば、拡散係数の小さな元素で、ウェーハ半径方向の拡散をほぼ無視できるような場合には、半径100mmのシリコンウェーハであれば、汚染領域12mm径を用いれば、最大8つの異なる濃度の汚染領域を形成できることになる。 Further, with such a method, it is possible to form different intentionally contaminated regions (regions having different contamination concentrations, types of metal elements, etc.) in the radial direction of the same wafer. For example, in the case of an element having a small diffusion coefficient and diffusion in the radial direction of the wafer can be almost ignored, if a silicon wafer having a radius of 100 mm is used, a contaminated region having a diameter of 12 mm can be used to obtain up to eight contaminated regions having different concentrations. It will be possible to form.

以下、本発明の実施例及び比較例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited thereto.

(実施例1)
CZ法で引き上げた直径8インチ(200mm)の半導体シリコン単結晶棒を加工してシリコンウェーハを作製した。一方、1000ppmの鉄標準液を高純度エタノールで希釈し、0.5ppbの鉄エタノール溶液を調製した。この鉄エタノール溶液2μL(2マイクロリットル)をマイクロピペットで、上記シリコンウェーハの端に形成されたノッチ部からウェーハ中央に向かって40mmの位置に滴下した。次に、ノッチ部から中央部に向かって80mm進んだ位置に、上記と同様に調製した5ppbの鉄エタノール溶液を2μL滴下した。続いて、ノッチ部から中央部に向かって120mm進んだ位置に、上記と同様に調製した50ppbの鉄エタノール溶液を2μL滴下した。最後に、ノッチ部から中央部に向かって160mm進んだ位置に、上記と同様に調製した500ppbの鉄エタノール溶液を2μL滴下した。その滴下点から、鉄エタノール溶液は、直径約10から15mmの範囲に広がり、その後、数十秒の室温保持で溶媒のエタノールは蒸発、乾燥し、直径約10から15mmの局所汚染が完了した。
(Example 1)
A silicon wafer was manufactured by processing a semiconductor silicon single crystal rod having a diameter of 8 inches (200 mm) pulled up by the CZ method. On the other hand, a 1000 ppm iron standard solution was diluted with high-purity ethanol to prepare a 0.5 ppb iron ethanol solution. 2 μL (2 microliters) of this iron ethanol solution was dropped with a micropipette at a position 40 mm from the notch formed at the end of the silicon wafer toward the center of the wafer. Next, 2 μL of a 5 ppb iron ethanol solution prepared in the same manner as above was added dropwise to a position 80 mm advanced from the notch portion toward the central portion. Subsequently, 2 μL of a 50 ppb iron ethanol solution prepared in the same manner as above was added dropwise to a position 120 mm ahead from the notch portion toward the central portion. Finally, 2 μL of a 500 ppb iron ethanol solution prepared in the same manner as above was added dropwise to a position 160 mm advanced from the notch portion toward the central portion. From the dropping point, the iron ethanol solution spread in the range of about 10 to 15 mm in diameter, and then the ethanol of the solvent evaporated and dried by holding at room temperature for several tens of seconds, and the local contamination of about 10 to 15 mm in diameter was completed.

このように、ウェーハ面内の4点に異なる濃度の故意汚染を実施した後、その4つの位置に対し、TXRF(全反射蛍光X線分析)法で鉄濃度を測定したところ、中央部に向かって順に、8×10、1.2×1011、9×1011、1.1×1013cm-2の濃度の鉄を検出した。これは、滴下した汚染溶液に含まれる鉄原子が全て、滴下したエタノールが覆った平均直径12mmの領域に残存したとして計算された濃度、9.5×10、9.5×1010、9.5×1011、9.5×1012cm-2とほぼ一致し、狙い通りの鉄濃度で、局所故意汚染をすることができた。 In this way, after intentionally contaminating four points on the wafer surface with different concentrations, the iron concentration was measured at the four positions by the TXRF (total reflection fluorescent X-ray analysis) method, and the iron concentration was measured toward the central part. In order, iron having a concentration of 8 × 10 9 , 1.2 × 10 11 , 9 × 10 11 , and 1.1 × 10 13 cm -2 was detected. This is the concentration calculated assuming that all the iron atoms contained in the dropped contaminated solution remained in the region with an average diameter of 12 mm covered by the dropped ethanol, 9.5 × 10 9 , 9.5 × 10 10 , 9 It was almost the same as .5 × 10 11 and 9.5 × 10 12 cm -2 , and local intentional contamination was possible with the iron concentration as intended.

(比較例1)
CZ法で引き上げた直径8インチ(200mm)の半導体シリコン単結晶棒を加工してシリコンウェーハを作製した。一方、1000ppmの鉄標準液をイオン交換水で希釈し、0.5ppbの鉄水溶液を調製した。この鉄水溶液2μLをマイクロピペットで上記シリコンウェーハの端にあるノッチ部からウェーハ中央に向かって40mmの位置に滴下した。次に、ノッチ部から中央部に向かって80mm進んだ位置に、上記と同様に調製した5ppbの鉄水溶液を2μL滴下した。続いて、ノッチ部から中央部に向かって120mm進んだ位置に、上記と同様に調製した50ppbの鉄水溶液を2μL滴下した。最後に、ノッチ部から中央部に向かって160mm進んだ位置に、上記と同様に調製した500ppbの鉄水溶液を2μL滴下した。その滴下点から、鉄水溶液は、直径約3mmの範囲に広がり、その後、10から15分室温で保持すると、溶媒の水は蒸発、乾燥し、直径約3mmの局所汚染が完了した。
(Comparative Example 1)
A silicon wafer was manufactured by processing a semiconductor silicon single crystal rod having a diameter of 8 inches (200 mm) pulled up by the CZ method. On the other hand, 1000 ppm of iron standard solution was diluted with ion-exchanged water to prepare a 0.5 ppb iron aqueous solution. 2 μL of this aqueous iron solution was dropped from the notch at the end of the silicon wafer to the center of the wafer at a position of 40 mm with a micropipette. Next, 2 μL of a 5 ppb iron aqueous solution prepared in the same manner as above was added dropwise to a position 80 mm advanced from the notch portion toward the central portion. Subsequently, 2 μL of a 50 ppb iron aqueous solution prepared in the same manner as above was added dropwise to a position 120 mm ahead from the notch portion toward the central portion. Finally, 2 μL of a 500 ppb iron aqueous solution prepared in the same manner as above was added dropwise to a position 160 mm advanced from the notch portion toward the central portion. From that drip point, the aqueous iron solution spread over a range of about 3 mm in diameter and then held at room temperature for 10 to 15 minutes to evaporate and dry the solvent water, completing local contamination with a diameter of about 3 mm.

このように、揮発性の低い水を溶媒に用いると、汚染領域径が小さい上に乾燥時間も大変長くなり、作業性が著しく悪いことがわかる。 As described above, when water having low volatility is used as a solvent, it can be seen that the diameter of the contaminated area is small and the drying time is very long, and the workability is remarkably poor.

(比較例2)
CZ法で引き上げた直径8インチ(200mm)の半導体シリコン単結晶棒を加工してシリコンウェーハを作製した。一方、1000ppmの鉄標準液をイオン交換水で希釈し、0.5ppbの鉄水溶液を調製した。この鉄水溶液100μLをマイクロピペットで上記シリコンウェーハの端にあるノッチ部からウェーハ中央に向かって40mmの位置に滴下した。次に、ノッチ部から中央部に向かって80mm進んだ位置に、上記と同様に調製した5ppbの鉄水溶液を100μL滴下した。続いて、ノッチ部から中央部に向かって120mm進んだ位置に、上記と同様に調製した50ppbの鉄水溶液を100μL滴下した。最後に、ノッチ部から中央部に向かって160mm進んだ位置に、上記と同様に調製した500ppbの鉄水溶液を100μL滴下した。その滴下点から、鉄水溶液は、直径10から20mmの範囲に広がったが、その後、1時間以上放置してようやく、溶媒の水は蒸発、乾燥し、直径10から20mmの局所汚染が完了した。
(Comparative Example 2)
A silicon wafer was manufactured by processing a semiconductor silicon single crystal rod having a diameter of 8 inches (200 mm) pulled up by the CZ method. On the other hand, 1000 ppm of iron standard solution was diluted with ion-exchanged water to prepare a 0.5 ppb iron aqueous solution. 100 μL of this aqueous iron solution was dropped from the notch at the end of the silicon wafer to the center of the wafer at a position of 40 mm with a micropipette. Next, 100 μL of a 5 ppb iron aqueous solution prepared in the same manner as above was added dropwise to a position 80 mm advanced from the notch portion toward the central portion. Subsequently, 100 μL of a 50 ppb iron aqueous solution prepared in the same manner as above was added dropwise to a position 120 mm ahead from the notch portion toward the central portion. Finally, 100 μL of a 500 ppb iron aqueous solution prepared in the same manner as above was added dropwise to a position 160 mm advanced from the notch portion toward the central portion. From the dropping point, the iron aqueous solution spread in the range of 10 to 20 mm in diameter, but after that, the solvent water evaporated and dried only after being left for 1 hour or more, and the local contamination of 10 to 20 mm in diameter was completed.

このように、アルコール溶媒と同汚染面積にするために滴下液量を増やすと、さらに乾燥時間が延長され、著しく作業性が悪化するとわかる。また、汚染領域径は直径10から20mmとばらつきが大きくなってしまい、汚染領域径、汚染濃度を制御することが困難であった。 As described above, it can be seen that if the amount of the dropping liquid is increased so as to have the same contaminated area as the alcohol solvent, the drying time is further extended and the workability is significantly deteriorated. Further, the diameter of the contaminated area has a large variation of 10 to 20 mm in diameter, and it is difficult to control the diameter of the contaminated area and the contaminated concentration.

(実施例2)
1000ppmの鉄標準液を高純度エタノールで希釈し、0.5ppbの鉄エタノール溶液を調製した。この鉄エタノール溶液の2μL、4μL、6μL、8μL、10μLをマイクロピペットでそれぞれシリコンウェーハの表面に滴下し、ウェーハ表面に広がった溶液の直径(汚染領域径)を測定し、滴下体積と汚染領域径との関係を求め、図1にプロットした。なお、図1のプロットは、体積毎に3回ずつ測定を行った平均値を示している。
(Example 2)
A 1000 ppm iron standard solution was diluted with high-purity ethanol to prepare a 0.5 ppb iron ethanol solution. 2 μL, 4 μL, 6 μL, 8 μL, and 10 μL of this iron ethanol solution are dropped on the surface of the silicon wafer with a micropipette, and the diameter of the solution spread on the wafer surface (contaminated area diameter) is measured, and the dropped volume and the contaminated area diameter are measured. The relationship with was obtained and plotted in FIG. The plot in FIG. 1 shows the average value obtained by measuring three times for each volume.

図1のように、滴下溶液体積と汚染領域径の関係は、使用溶液の表面張力や滴下操作の精度などに起因して必ずしも直線関係になるとは限らならないが、使用溶液や滴下操作方法に応じて、あらかじめその滴下溶液体積と汚染領域径の関係を求めておけば、滴下体積を制御することによって、目的とする汚染領域(面積)を故意汚染することが可能となることが示された。 As shown in FIG. 1, the relationship between the volume of the dropped solution and the diameter of the contaminated area is not always linear due to the surface tension of the solution used and the accuracy of the dropping operation, but it depends on the solution used and the dropping operation method. It was shown that if the relationship between the volume of the dropped solution and the diameter of the contaminated area is obtained in advance, it is possible to intentionally contaminate the target contaminated area (area) by controlling the volume of the dropped solution.

次に、CZ法で引き上げた直径8インチ(200mm)の半導体シリコン単結晶棒を加工して得たシリコンウェーハに対して、図1の作成に用いた0.5ppbの鉄エタノール溶液2μLを、マイクロピペットでシリコンウェーハの端にあるノッチ部からウェーハ中央に向かって40mmの位置に滴下した。次に、ノッチ部から中央部に向かって80mm進んだ位置に、上記と同様の0.5ppbの鉄エタノール溶液を6μL滴下した。続いて、ノッチ部から中央部に向かって120mm進んだ位置に、上記と同様の0.5ppbの鉄エタノール溶液を10μL滴下した。 Next, 2 μL of the 0.5 ppb iron ethanol solution used for the preparation of FIG. 1 was added to a silicon wafer obtained by processing a semiconductor silicon single crystal rod having a diameter of 8 inches (200 mm) pulled up by the CZ method. A pipette was used to drop the silicon wafer from the notch at the end of the silicon wafer toward the center of the wafer at a position of 40 mm. Next, 6 μL of the same 0.5 ppb iron ethanol solution as described above was added dropwise to a position 80 mm ahead from the notch portion toward the central portion. Subsequently, 10 μL of the same 0.5 ppb iron ethanol solution as described above was added dropwise to a position 120 mm ahead from the notch portion toward the central portion.

滴下した鉄エタノール溶液は、それぞれ直径約12mm、24mm、25mmの範囲に広がり、その後、数十秒の室温保持で溶媒のエタノールは蒸発、乾燥し、所望の範囲の局所汚染が完了した。 The dropped iron ethanol solution spread over a range of about 12 mm, 24 mm, and 25 mm in diameter, respectively, and then the ethanol of the solvent evaporated and dried at room temperature for several tens of seconds, and the desired range of local contamination was completed.

このように、ウェーハ面内の3点に汚染領域の異なる故意汚染を実施した後、その3つの位置に対し、TXRF法で鉄濃度を測定したところ、同一濃度の溶液を用いているため、いずれも、狙い通りの8×10cm-2の濃度の鉄が検出された。すなわち、滴下体積を制御することによって、目的とする汚染領域(面積)を、狙い通りの濃度で故意汚染することができた。 In this way, after intentionally contaminating three points on the wafer surface with different contaminated areas, the iron concentration was measured at the three positions by the TXRF method. However, iron with a concentration of 8 × 10 9 cm -2 was detected as intended. That is, by controlling the dropping volume, the target contaminated area (area) could be intentionally contaminated at the target concentration.

なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、かつ同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an example, and any object having substantially the same structure as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. It is included in the technical scope of the invention.

Claims (3)

半導体ウェーハの性能を評価するために、半導体ウェーハ表面の所定の領域に、所望の金属元素を故意に導入する半導体ウェーハの故意汚染方法であって、
前記金属元素を含む標準液を揮発性液体からなる溶媒で希釈した溶液を汚染溶液として用い、所定の位置に滴下することによって前記半導体ウェーハ表面の所定の位置に汚染領域を形成させ
前記滴下を行う前に、使用する前記汚染溶液及び前記滴下の方法に応じて、予め、前記汚染溶液の滴下溶液量と汚染領域径との関係を求めておき、該関係に基づいて、前記汚染領域径を前記滴下溶液量で制御することを特徴とする半導体ウェーハの故意汚染方法。
A method for intentionally contaminating a semiconductor wafer, in which a desired metal element is intentionally introduced into a predetermined region on the surface of the semiconductor wafer in order to evaluate the performance of the semiconductor wafer.
A solution obtained by diluting a standard solution containing a metal element with a solvent consisting of a volatile liquid is used as a contaminating solution, and a contaminated region is formed at a predetermined position on the surface of the semiconductor wafer by dropping it at a predetermined position .
Before performing the dropping, the relationship between the amount of the dropped solution of the contaminated solution and the diameter of the contaminated area is obtained in advance according to the contaminated solution to be used and the method of dropping, and the contamination is based on the relationship. A method for intentionally contaminating a semiconductor wafer , wherein the region diameter is controlled by the amount of the dropped solution .
前記溶媒をアルコール類とすることを特徴とする請求項1に記載の半導体ウェーハの故意汚染方法。 The method for intentionally contaminating a semiconductor wafer according to claim 1, wherein the solvent is alcohols. 前記アルコール類をエタノールとすることを特徴とする請求項2に記載の半導体ウェーハの故意汚染方法。 The method for intentionally contaminating a semiconductor wafer according to claim 2, wherein the alcohols are ethanol.
JP2019033329A 2019-02-26 2019-02-26 Intentional contamination method for semiconductor wafers Active JP7056610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033329A JP7056610B2 (en) 2019-02-26 2019-02-26 Intentional contamination method for semiconductor wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033329A JP7056610B2 (en) 2019-02-26 2019-02-26 Intentional contamination method for semiconductor wafers

Publications (2)

Publication Number Publication Date
JP2020140988A JP2020140988A (en) 2020-09-03
JP7056610B2 true JP7056610B2 (en) 2022-04-19

Family

ID=72265137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033329A Active JP7056610B2 (en) 2019-02-26 2019-02-26 Intentional contamination method for semiconductor wafers

Country Status (1)

Country Link
JP (1) JP7056610B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237292A (en) 2000-02-23 2001-08-31 Komatsu Electronic Metals Co Ltd Method for manufacturing contamination wafer manufacturing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606120B2 (en) * 1993-12-15 1997-04-30 日本電気株式会社 Quantitative contamination standard sample, its preparation method and preparation device
JP3097622B2 (en) * 1997-10-20 2000-10-10 日本電気株式会社 How to make a quantitative contamination sample
JPH11344424A (en) * 1998-06-01 1999-12-14 Rigaku Industrial Co Method for preparing standard sample and standard sample

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237292A (en) 2000-02-23 2001-08-31 Komatsu Electronic Metals Co Ltd Method for manufacturing contamination wafer manufacturing device

Also Published As

Publication number Publication date
JP2020140988A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US6762132B1 (en) Compositions for dissolution of low-K dielectric films, and methods of use
EP3704547B1 (en) Use of compositions comprising a siloxane-type additive for avoiding pattern collapse when treating patterned materials with line-space dimensions of 50 nm or below
US8894774B2 (en) Composition and method to remove excess material during manufacturing of semiconductor devices
WO2013173738A1 (en) Composition and process for stripping photoresist from a surface including titanium nitride
KR20110104106A (en) Etching liquid
US20100175715A1 (en) Combinatorial Approach to the Development of Cleaning Formulations For Wet Removal of High Dose Implant Photoresist
JP7056610B2 (en) Intentional contamination method for semiconductor wafers
US11239093B2 (en) Method for treating substrate, method for manufacturing semiconductor device, and kit for treating substrate
US7745236B2 (en) Floating gate process methodology
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
JP7039706B2 (en) Treatment liquid and treatment method
Parks et al. Quantifying the impact of homogeneous metal contamination using test structure metrology and device modeling
KR20010071617A (en) Process for mapping metal contaminant concentration on a silicon wafer surface
JP2863563B2 (en) Method for evaluating heavy metal contamination on compound semiconductor substrate surface
JP3109083B2 (en) Etching solution for silicon oxide film and method for etching silicon oxide film
WO2016034498A1 (en) Doping organic semiconductors
Wang et al. Characterization and Modeling of Out‐Diffusion of Manganese and Zinc Impurities from Deep Ultraviolet Photoresist
Garnier et al. Airborne Molecular Contamination: Mechanism and Consequences on Devices
KR102000034B1 (en) Patterning method using selective wetting properties
JP3097622B2 (en) How to make a quantitative contamination sample
JP3329902B2 (en) Surface treatment method and surface treatment device
US20230317468A1 (en) Reworking process for fabricating semiconductor device
US8728941B2 (en) Semiconductor apparatus and manufacturing method of same
US20230317512A1 (en) Method for fabricating semiconductor device and reworking process
CN106896126B (en) Junction contour detection sample, preparation method and junction contour detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7056610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150