JP3329902B2 - Surface treatment method and surface treatment device - Google Patents

Surface treatment method and surface treatment device

Info

Publication number
JP3329902B2
JP3329902B2 JP22758693A JP22758693A JP3329902B2 JP 3329902 B2 JP3329902 B2 JP 3329902B2 JP 22758693 A JP22758693 A JP 22758693A JP 22758693 A JP22758693 A JP 22758693A JP 3329902 B2 JP3329902 B2 JP 3329902B2
Authority
JP
Japan
Prior art keywords
surface treatment
aqueous solution
semiconductor substrate
potential
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22758693A
Other languages
Japanese (ja)
Other versions
JPH0786224A (en
Inventor
宰 多田
玲子 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16863244&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3329902(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22758693A priority Critical patent/JP3329902B2/en
Publication of JPH0786224A publication Critical patent/JPH0786224A/en
Application granted granted Critical
Publication of JP3329902B2 publication Critical patent/JP3329902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は表面処理方法及び表面処
理装置に関し、特に水溶液を用いた半導体基板の表面処
理方法及び表面処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method and a surface treatment apparatus, and more particularly, to a surface treatment method and a surface treatment apparatus for a semiconductor substrate using an aqueous solution.

【0002】[0002]

【従来の技術】近年、半導体素子に形成される電子回路
の高集積化に伴い、半導体素子の表面あるいは接合面の
欠陥密度を小さく抑える必要性がますます高まってきて
いる。この欠陥とは、一般に、半導体表面に存在する電
子やホールのトラップを生ぜしめる界面準位、及び結晶
の格子欠陥である。たとえば、従来のMOSトランジス
タの界面準位密度は109 〜1011個/cm2 のレベル
にあるが、より集積度の高い記憶素子或いは量子デバイ
ス等の高性能デバイスを実現するためには、界面準位密
度を109 個/cm2 ないしはそれ以下の水準に抑制す
る必要があるとされている。
2. Description of the Related Art In recent years, with the increasing integration of electronic circuits formed in semiconductor devices, there is an increasing need to keep the defect density on the surface or junction surface of the semiconductor device low. The defect is generally an interface state that causes trapping of electrons and holes existing on the semiconductor surface, and a lattice defect of a crystal. For example, the interface state density of a conventional MOS transistor is on the order of 10 9 to 10 11 / cm 2 , but in order to realize a highly integrated storage element or a high-performance device such as a quantum device, the interface state density is required. It is said that it is necessary to suppress the level density to 10 9 / cm 2 or less.

【0003】これらの界面準位や結晶の格子欠陥が発生
する原因の1つは、半導体基板に洗浄等の表面処理を加
える工程において半導体基板表面に生じる水酸化や表面
荒れ、またこれらに伴う水溶液中の金属イオンの吸着で
あると考えられる。
One of the causes of the generation of these interface states and lattice defects of crystals is that hydroxylation and surface roughening occurring on the surface of the semiconductor substrate in the step of applying a surface treatment such as cleaning to the semiconductor substrate, and the resulting aqueous solution It is considered to be the adsorption of metal ions therein.

【0004】すなわちSi半導体基板等の表面処理を水
溶液中で行う場合は、通常、酸性やアルカリ性や中性
の、広範囲のpH領域の水溶液が処理液として用いられ
る。しかし、たとえばアルカリ性の水溶液を用いて表面
処理を行う場合には、比較的安定な水素終端Si表面で
も表面荒れが生ずる。また、中性の水溶液を処理液とし
て用いる場合でも、水溶中にOH- イオンが存在するこ
とに起因し必ずSi表面が水酸化することが知られてい
る。
That is, when a surface treatment of a Si semiconductor substrate or the like is performed in an aqueous solution, an aqueous solution having a wide pH range, which is acidic, alkaline, or neutral, is generally used as the treatment liquid. However, when surface treatment is performed using, for example, an alkaline aqueous solution, surface roughness occurs even on a relatively stable hydrogen-terminated Si surface. It is also known that even when a neutral aqueous solution is used as the treatment liquid, the Si surface is always hydroxylated due to the presence of OH - ions in the aqueous solution.

【0005】このような水酸化や表面荒れは、水溶液中
に必ず存在する金属イオンの吸着を誘起し、特にアルカ
リ性のpH領域で表面処理する場合に、金属吸着が生じ
やすい。また、これらの表面荒れ、水酸化、金属吸着は
半導体表面に欠陥を発生させると同時に、吸着金属が半
導体結晶の内部に入り込み、結晶内部にも格子欠陥を発
生させる。つまり半導体基板内部にpn接合等の接合面
を形成するときには、接合面に必ず欠陥が発生すること
になる。
[0005] Such hydroxylation and surface roughening induce the adsorption of metal ions that are always present in an aqueous solution, and particularly when the surface is treated in an alkaline pH range, metal adsorption is likely to occur. In addition, these surface roughness, hydroxylation, and metal adsorption cause defects on the semiconductor surface, and at the same time, the adsorbed metal enters the inside of the semiconductor crystal and generates lattice defects inside the crystal. That is, when a bonding surface such as a pn junction is formed inside a semiconductor substrate, a defect always occurs in the bonding surface.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従
来、水溶液を処理液として用いて、半導体基板の表面処
理を行う場合には、半導体基板表面及び結晶内部におけ
る欠陥の発生は避けられなかった。この欠陥の発生を極
力抑制するためには、pH=7の純水中で処理するのが
好ましいが、半導体素子の製造工程中には、アルカリ性
及び酸性のpH領域で処理する工程が必ず含まれてい
る。そのため、たとえばアルカリ性の水溶液を用いた場
合は半導体基板の表面荒れ、水酸化、金属吸着が必ず発
生し、さらに強アルカリ性の水溶液では著しいエッチン
グ現象が生ずる。また含有金属イオンの濃度が検出限界
以下の水溶液を用いた場合でも、かなりの金属吸着が発
生して欠陥を誘起する。
As described above, conventionally, when surface treatment of a semiconductor substrate is performed using an aqueous solution as a treatment liquid, generation of defects on the surface of the semiconductor substrate and inside the crystal has been inevitable. . In order to minimize the generation of these defects, it is preferable to perform treatment in pure water at pH = 7. However, in the manufacturing process of a semiconductor element, a process of treating in an alkaline and acidic pH region is necessarily included. ing. Therefore, for example, when an alkaline aqueous solution is used, surface roughening of the semiconductor substrate, hydroxylation and metal adsorption necessarily occur, and a strong alkaline aqueous solution causes a remarkable etching phenomenon. Even when an aqueous solution having a concentration of contained metal ions lower than the detection limit is used, considerable metal adsorption occurs to induce defects.

【0007】したがって、半導体基板を広範囲のpH領
域の水溶液で表面処理する際、水酸化や表面荒れや金属
吸着等を、極めて低い水準に抑制する有効な手段がなか
った。これは、半導体素子の欠陥密度が非常に小さいこ
とが要求される高性能デバイスの開発をする際の大きな
障害となっていた。
Therefore, when a semiconductor substrate is subjected to surface treatment with an aqueous solution in a wide pH range, there is no effective means for suppressing hydroxylation, surface roughness, metal adsorption and the like to an extremely low level. This has been a major obstacle in developing a high-performance device that requires a very low defect density of a semiconductor element.

【0008】本発明は、上記課題に鑑みてなされたもの
で、半導体基板等の表面処理を水溶液を用いて行う際
の、水酸化、表面荒れ、及び金属吸着の発生を低減し、
半導体素子表面や内部の欠陥密度を極めて低く抑制する
ことのできる表面処理方法及び表面処理装置を提供する
ことを目的とする。
The present invention has been made in view of the above problems, and reduces the occurrence of hydroxylation, surface roughness, and metal adsorption when a surface treatment of a semiconductor substrate or the like is performed using an aqueous solution.
An object of the present invention is to provide a surface treatment method and a surface treatment apparatus capable of suppressing the defect density on the surface and inside of a semiconductor element to a very low level.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
なされた本願第1の発明は、水溶液を用いて、被処理部
材の表面処理を行う表面処理方法であって、表面処理を
行う際、前記被処理部材に、前記水溶液の電位に対して
負の電位を与えることを要旨とする。
Means for Solving the Problems The first invention of the present application made to achieve the above object is a surface treatment method for performing surface treatment of a member to be treated using an aqueous solution. The gist is to give a negative potential to the member to be processed with respect to the potential of the aqueous solution.

【0010】また、本願第2の発明は、水溶液中で被処
理体の表面処理を行うための表面処理装置であって、前
記水溶液を収容する収容体と、前記被処理体を前記水溶
液中で支持する支持手段と、表面処理を行う際に、水溶
液中の被処理体に前記水溶液の電位に対して負の電位を
与える電位付与手段とを具備することを要旨とする。
[0010] The second invention of the present application is a surface treatment apparatus for performing surface treatment of an object to be treated in an aqueous solution, wherein a container for accommodating the aqueous solution, and the object to be treated in the aqueous solution. The gist of the present invention is to provide a supporting means for supporting, and a potential applying means for applying a negative potential to the object to be processed in the aqueous solution when performing the surface treatment with respect to the potential of the aqueous solution.

【0011】なお、本発明は、水溶液による表面清浄化
処理及び純水による洗浄処理、または一般的な化学的表
面処理等水溶液を用いた被処理体の表面処理、水溶液中
での被処理体の表面処理の全てに適用され得る。さらに
前記被処理体としては特に限定されないが、たとえばS
i、GeまたはSi−Ge混晶等の半導体基板が例示さ
れる。また、本発明において水溶液とは、純水及び洗浄
用の任意の処理液等を含むものとする。
The present invention provides a surface treatment of an object to be treated using an aqueous solution such as a surface cleaning treatment with an aqueous solution and a cleaning treatment with pure water, or a general chemical surface treatment, and the treatment of an object to be treated in an aqueous solution. It can be applied to all surface treatments. Further, the object to be processed is not particularly limited.
A semiconductor substrate such as i, Ge, or a Si—Ge mixed crystal is exemplified. Further, in the present invention, the aqueous solution includes pure water, an optional processing solution for cleaning, and the like.

【0012】[0012]

【作用】上述の如く構成したことにより、本発明では、
被処理体表面や結晶内部に欠陥を誘起する被処理体表面
の水酸化、表面荒れ、金属吸着等を低減することができ
る。
According to the present invention, as described above,
It is possible to reduce hydroxylation, surface roughness, metal adsorption, and the like on the surface of the object which induces defects on the surface of the object or inside the crystal.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。まず、本
発明の原理について説明する。
Embodiments of the present invention will be described below. First, the principle of the present invention will be described.

【0014】一般に、半導体基板の表面処理に際して
は、酸性の処理液からアルカリ性の処理液に及ぶ広範囲
のpH領域のものが適宜用いられる。このような水溶液
を用いて、半導体基板の表面処理を行うと、半導体基板
の表面に化学変化が生じ、その化学変化が表面欠陥を誘
起して半導体素子の特性を劣化させる大きな原因となっ
ている。
Generally, in the surface treatment of a semiconductor substrate, those having a wide pH range from an acidic treatment solution to an alkaline treatment solution are appropriately used. When the surface treatment of a semiconductor substrate is performed using such an aqueous solution, a chemical change occurs on the surface of the semiconductor substrate, and the chemical change is a major cause of inducing surface defects and deteriorating the characteristics of the semiconductor element. .

【0015】そこで本発明者らが研究を進めた結果、こ
の化学変化には水溶液中に存在する負電荷のある種のア
ニオン、たとえばOH- 、Cl- 、F- 等が大きく影響
していることが明らかになった。この種のアニオンは、
水溶液中に、電離した状態で必ず存在する。一方、特に
SiやGe系の半導体表面は、このアニオンと5配位の
反応中間体を容易に形成し、その反応中間体が半導体基
板表面の化学反応を促進すると考えられる。アニオンを
含むイオン種が最も少ない水溶液はpH=7の純水であ
るが、この純水においてもOH- イオンは存在する。し
たがって、たとえばSi半導体表面で最も安定と考えら
れる水素終端Si表面でも、純水中で水酸化が進行す
る。さらにアルカリ性のpH領域の水溶液では、OH-
イオンの数が大幅に増加するために化学変化の速度は急
激に上昇し、半導体基板の表面荒れが顕著となる。これ
らの水酸化や表面荒れは、水溶液に存在する金属イオン
の吸着点となり、金属吸着の原因になると考えられる。
As a result of the research conducted by the present inventors, it has been found that a certain kind of negatively charged anions, such as OH , Cl , F −, etc., existing in an aqueous solution have a great influence on this chemical change. Was revealed. This kind of anion is
It always exists in an aqueous solution in an ionized state. On the other hand, it is considered that a reaction intermediate of this anion and pentacoordination easily forms particularly on the surface of a semiconductor such as Si or Ge, and the reaction intermediate promotes a chemical reaction on the surface of the semiconductor substrate. An aqueous solution containing the least amount of ionic species containing anions is pure water having a pH of 7, and OH - ions also exist in this pure water. Therefore, for example, even in the hydrogen-terminated Si surface which is considered to be the most stable on the Si semiconductor surface, the hydroxylation proceeds in pure water. In yet alkaline aqueous solution of pH range, OH -
Since the number of ions is greatly increased, the speed of the chemical change is sharply increased, and the surface roughness of the semiconductor substrate becomes remarkable. These hydroxylation and surface roughening are considered to be the adsorption points of the metal ions present in the aqueous solution and cause metal adsorption.

【0016】つまり、半導体基板を水溶液で表面処理す
る際に、半導体基板表面の化学反応を抑制する有効な手
段は、水溶液中に存在するアニオンを半導体基板表面に
近付けないことである。そこで、本発明では、水溶液の
電位に対して半導体基板を負の電位にするためにカソー
ドバイアス(ネガティブバイアス)を印加し、クーロン
反発によって、負の電荷をもつアニオンが半導体基板表
面に近付かないようにした。
That is, when a semiconductor substrate is subjected to surface treatment with an aqueous solution, an effective means for suppressing a chemical reaction on the surface of the semiconductor substrate is to keep anions present in the aqueous solution from approaching the surface of the semiconductor substrate. Therefore, in the present invention, a cathode bias (negative bias) is applied to make the semiconductor substrate a negative potential with respect to the potential of the aqueous solution, so that Coulomb repulsion prevents negatively charged anions from approaching the semiconductor substrate surface. I made it.

【0017】図1は本発明の表面処理方法の原理を示す
概略図である。図示されるように本発明の表面処理方法
では、被処理体となる半導体基板1と標準電極3が、液
槽9に満たされた水溶液11中に浸されている。半導体
基板1はカセット5に収容されて支持され、さらに電源
7の負の電極に接続され、電源7の正の電極は標準電極
3に接続している。標準電極3は、半導体基板1にカソ
ードバイアスを印加するための一方の電極であり、また
水溶液11に浸される半導体基板1等のイオン化傾向の
差によって生じる起電力を補正して電位の標準を保つた
めのものである。したがって、カソードバイアスの電位
は開放電位(OCP)を基準にして値が決められる。ま
た、半導体基板1を水溶液11に浸す深さは、半導体基
板1を電源7に接続するための配線の接続部分が水溶液
11の中に入らない深さであることが好ましい。これ
は、半導体基板1に接続されている配線の金属イオン
が、水溶液11に溶解することを防止するためである。
FIG. 1 is a schematic diagram showing the principle of the surface treatment method of the present invention. As shown in the figure, in the surface treatment method of the present invention, the semiconductor substrate 1 and the standard electrode 3 to be processed are immersed in an aqueous solution 11 filled in a liquid tank 9. The semiconductor substrate 1 is accommodated and supported in a cassette 5, and further connected to a negative electrode of a power supply 7, and a positive electrode of the power supply 7 is connected to the standard electrode 3. The standard electrode 3 is one electrode for applying a cathode bias to the semiconductor substrate 1. The standard electrode 3 corrects an electromotive force generated by a difference in ionization tendency of the semiconductor substrate 1 or the like immersed in the aqueous solution 11 to set a standard of potential. It is for keeping. Therefore, the value of the potential of the cathode bias is determined based on the open potential (OCP). The depth of immersion of the semiconductor substrate 1 in the aqueous solution 11 is preferably a depth that does not allow the connection portion of the wiring for connecting the semiconductor substrate 1 to the power supply 7 to enter the aqueous solution 11. This is to prevent metal ions of the wiring connected to the semiconductor substrate 1 from being dissolved in the aqueous solution 11.

【0018】以上のような構成で半導体基板1にカソー
ドバイアスを印加することによって、水溶液11中の負
電荷のアニオンは、負にバイアスされた半導体基板1と
反発して、半導体基板1表面に近付く確率が著しく低減
される。したがって、半導体基板1表面の化学反応の媒
体となる反応中間体がアニオンとの間で形成されにくく
なり、水酸化や表面荒れ及び金属吸着の発生が抑制さ
れ、半導体基板表面や内部の欠陥密度を小さくすること
ができると考えられる。
By applying a cathode bias to the semiconductor substrate 1 in the above-described configuration, the negatively charged anions in the aqueous solution 11 repel the negatively biased semiconductor substrate 1 and approach the surface of the semiconductor substrate 1. The probability is significantly reduced. Therefore, a reaction intermediate serving as a medium for the chemical reaction on the surface of the semiconductor substrate 1 is less likely to be formed between the anion and the anion, and the occurrence of hydroxylation, surface roughening and metal adsorption is suppressed, and the defect density on the semiconductor substrate surface and inside is reduced. It is thought that it can be made smaller.

【0019】カソードバイアスは、必ずしもバイアス電
圧を時間的に一定にさせる必要はないが、水溶液11中
のアニオンを半導体基板1の表面から連続的に遠ざける
ためには、定電圧の方が好ましい。電圧値としては水溶
液11のpHの値にもよるが、開放電位に対してカソー
ドバイアスの絶対値を、0.3V以上とすることが好ま
しく、通常は1.0V程度とすればよい。しかしながら
カソードバイアスの絶対値を10V以上にすると、半導
体基板1表面の絶縁破壊により格子欠陥が生じる可能性
が高くなるので好ましくない。なお、表面処理の目的に
よって半導体基板1に高電位を印加できない場合は、開
放電位に対して−100mV程度(最低でも−20mV
〜−30mV)のカソードバイアスでもかなりの効果が
認められる。
The cathode bias is not necessarily required to keep the bias voltage constant with time, but is preferably a constant voltage in order to continuously keep the anions in the aqueous solution 11 away from the surface of the semiconductor substrate 1. Although the voltage value depends on the pH value of the aqueous solution 11, the absolute value of the cathode bias with respect to the open potential is preferably 0.3 V or more, and usually about 1.0 V. However, it is not preferable to set the absolute value of the cathode bias to 10 V or more, since the possibility of lattice defects due to dielectric breakdown on the surface of the semiconductor substrate 1 increases. When a high potential cannot be applied to the semiconductor substrate 1 due to the purpose of the surface treatment, the open potential is about -100 mV (at least -20 mV).
A considerable effect can be observed even at a cathode bias of (.about.-30 mV).

【0020】水溶液11としては、pH=7の純水(超
純水を含む)の他、酸性からアルカリ性まで広範囲のp
H領域の処理液が用いられる。ここで、水溶液11中に
含有されるアルカリ性成分としては、たとえばNH4
H、KOH及びC5 15NO2 等の有機コリンや有機ア
ミン、酸性成分としては、たとえばHF、HCl、HN
3 、H2 SO4 が用いられる。また場合によっては、
酸性成分とアルカリ性成分との混合物も用いられる。さ
らに表面処理が有機物や粒状不純物の除去を目的とする
場合には、前記成分を含む水溶液に、さらにH2 2
加えられる。
The aqueous solution 11 includes pure water having a pH of 7 (including ultrapure water) as well as a wide range of p from acidic to alkaline.
The treatment liquid in the H region is used. Here, as the alkaline component contained in the aqueous solution 11, for example, NH 4 O
Organic cholines and organic amines such as H, KOH and C 5 H 15 NO 2 , and acidic components such as HF, HCl, HN
O 3 and H 2 SO 4 are used. In some cases,
Mixtures of acidic and alkaline components are also used. Further, when the surface treatment is intended to remove the organic materials and particulate impurities, the aqueous solution containing the components, further H 2 0 2 is added.

【0021】これらの水溶液系を例示すると、NH4
H/H2 O、NH4 0H/H2 2/H2 O、HCl/
2 O、HCl/H2 2 /H2 O、HF/H2 O、H
F/H2 2 /H2 O、H2 SO4 /H2 O、H2 SO
4 /H2 2 /H2 O、HCl/HNO3 /H2 O、H
F/NH4 OH/H2 O、HF/NH4 OH/H2 2
/H2 O、KOH/HF/H2 O、コリン/H2 O、コ
リン/H2 2 /H2O、コリン/NH4 OH/H
2 O、HF/HNO3 /H2 O、KOH/H2 O等であ
る。
Examples of these aqueous systems include NH 4 O
H / H 2 O, NH 4 0H / H 2 O 2 / H 2 O, HCl /
H 2 O, HCl / H 2 O 2 / H 2 O, HF / H 2 O, H
F / H 2 O 2 / H 2 O, H 2 SO 4 / H 2 O, H 2 SO
4 / H 2 O 2 / H 2 O, HCl / HNO 3 / H 2 O, H
F / NH 4 OH / H 2 O, HF / NH 4 OH / H 2 O 2
/ H 2 O, KOH / HF / H 2 O, choline / H 2 O, choline / H 2 O 2 / H 2 O, choline / NH 4 OH / H
2 O, HF / HNO 3 / H 2 O, KOH / H 2 O and the like.

【0022】また、これらの水溶液系に、有機キレート
剤を含む以下の添加剤を加える場合もある。すなわち、
クエン酸、酒石酸、ジンコン、カテコール、レゾルシ
ン、ピロガロール、チロン、2オキシシトロポン、アセ
チルアセトン、トリエタノールアミン、メチレンホフフ
ィン酸、ジエチレントリアミンペンタホスフィン酸、ト
リエチレンテトラヘキサホスフィン酸、エチレンジアミ
ンテトラ酢酸クロラニル、シアヌール酸等の添加物であ
る。
Further, the following additives containing an organic chelating agent may be added to these aqueous solutions. That is,
Citric acid, tartaric acid, zincon, catechol, resorcinol, pyrogallol, tiron, 2oxycitropone, acetylacetone, triethanolamine, methylenephosphinic acid, diethylenetriaminepentaphosphinic acid, triethylenetetrahexaphosphinic acid, ethylenediaminetetraacetate chloranil, cyanuric acid And the like.

【0023】また半導体基板1としては、Si、Geの
単結晶や多結晶あるいはアモルファスを使用することが
でき、またはSi−Geの混晶からなる半導体でもよ
い。さらに、GaAsやGaAlAs等の化合物半導体
を使用することもできる。
As the semiconductor substrate 1, a single crystal, polycrystal or amorphous of Si or Ge can be used, or a semiconductor made of a mixed crystal of Si-Ge may be used. Further, a compound semiconductor such as GaAs or GaAlAs can be used.

【0024】なお、液槽9は、水溶液11中への金属イ
オンの混入を極力避けるために、合成樹脂等金属以外の
材料からなることが好ましい。
The liquid tank 9 is preferably made of a material other than metal, such as a synthetic resin, in order to minimize mixing of metal ions into the aqueous solution 11.

【0025】次に、本発明の表面処理装置を図面を参照
して説明する。図2は、本発明の表面処理装置の構成図
である。ここで全体は、被処理体である半導体基板21
にカソードバイアスを印加しながらその電位を制御する
電位付与手段としての電圧制御系30と、水溶液31の
温度を制御しながら半導体基板21の表面処理を行う温
度制御系40とに大きく分けられる。
Next, the surface treatment apparatus of the present invention will be described with reference to the drawings. FIG. 2 is a configuration diagram of the surface treatment apparatus of the present invention. Here, the entirety of the semiconductor substrate 21 to be processed is
A voltage control system 30 as a potential applying means for controlling the potential of a semiconductor substrate 21 while controlling the temperature of the aqueous solution 31 is broadly divided into a temperature control system 40 for performing a surface treatment of the semiconductor substrate 21 while controlling the temperature of the aqueous solution 31.

【0026】電圧制御系30は、水溶液31に浸された
半導体基板21と標準甘汞電極23と制御用電極27に
接続して半導体基板21に印加されるカソードバイアス
を制御するポテンショスタット33と電源35及び電圧
−電流表示装置37等から構成される。半導体基板21
は支持手段としてのカセット25に収容されて、水溶液
31に浸されて支持される。水溶液31中には、標準甘
汞電極23と制御用電極27も浸されている。この制御
用電極27は、半導体基板21に印加されるカソードバ
イアスの電位をポテンショスタット33で制御する際の
基準となるベース電圧を与えるものである。制御用電極
27の材料としては、金属イオンの発生しない高純度炭
素を用いることもできるが、より好ましくは白金であ
る。標準甘汞電極23は標準電極の1つで、水溶液31
の電位に対する半導体基板21のカソードバイアス電位
を、標準水素電極の標準的な値に換算するために用いら
れる。
The voltage control system 30 is connected to a semiconductor substrate 21 immersed in an aqueous solution 31, a standard calomel electrode 23, and a control electrode 27 to control a cathode bias applied to the semiconductor substrate 21 and a power supply. 35 and a voltage-current display device 37 and the like. Semiconductor substrate 21
Are accommodated in a cassette 25 as a supporting means, and are immersed in an aqueous solution 31 and supported. The standard calomel electrode 23 and the control electrode 27 are also immersed in the aqueous solution 31. The control electrode 27 is for applying a base voltage as a reference when the potential of the cathode bias applied to the semiconductor substrate 21 is controlled by the potentiostat 33. As a material of the control electrode 27, high-purity carbon that does not generate metal ions can be used, but platinum is more preferable. The standard calomel electrode 23 is one of the standard electrodes.
Is used to convert the cathode bias potential of the semiconductor substrate 21 to the potential of the standard hydrogen electrode into a standard value of the standard hydrogen electrode.

【0027】これらの半導体基板21と標準甘汞電極2
3と制御用電極27はポテンショスタット33と接続し
ている。ポテンショスタット33は、電源35の電圧を
カソードバイアスの設定電位に変換して、表面処理中半
導体基板21と標準甘汞電極23に一定の電圧を印加
し、カソードバイアス電位を安定させる。カソードバイ
アスの電流と電圧の値は、電圧−電流表示装置37で確
認される。
The semiconductor substrate 21 and the standard calomel electrode 2
3 and the control electrode 27 are connected to a potentiostat 33. The potentiostat 33 converts the voltage of the power supply 35 to a set potential of the cathode bias, applies a constant voltage to the semiconductor substrate 21 and the standard calomel electrode 23 during the surface treatment, and stabilizes the cathode bias potential. The values of the cathode bias current and voltage are confirmed by the voltage-current display device 37.

【0028】温度制御系40は、水溶液31を収容する
収容体としての液槽29を温度制御媒体である水41を
介して収容する恒温槽43と、その水41の温度を制御
して循環させる温度制御媒体循環装置45からなる。こ
こでは、温度が一定にされた水41を、温度制御媒体循
環装置45で恒温槽43の中に循環させることにより、
水41の温度が液槽29を介して水溶液31に伝達し、
水溶液31の温度は設定された一定の温度に保たれる。
水溶液31の温度は、表面処理の進行速度等に影響す
る。様々な表面処理に対応するために、この水溶液31
の温度は、0.1℃オーダーの精度で制御できることが
好ましい。
The temperature control system 40 controls the temperature of the water 41 and the temperature of the water 41 as a container for storing the aqueous solution 31 via a water 41 as a temperature control medium. It comprises a temperature control medium circulation device 45. Here, by circulating the water 41 having a constant temperature into the constant temperature bath 43 by the temperature control medium circulating device 45,
The temperature of the water 41 is transmitted to the aqueous solution 31 via the liquid tank 29,
The temperature of the aqueous solution 31 is kept at a set constant temperature.
The temperature of the aqueous solution 31 affects the progress speed of the surface treatment and the like. In order to cope with various surface treatments, this aqueous solution 31
Is preferably controlled with an accuracy of the order of 0.1 ° C.

【0029】なお、本発明の表面処理装置の構成は、装
置を使用する目的及び状況に応じ適宜変更が可能であ
る。たとえば、表面処理をクリーンルームのように周囲
の温度が一定に保たれた環境で行う場合、また表面処理
の際の化学的変化が温度にあまり影響されないような場
合等には、恒温槽を含む温度制御系は特に設ける必要が
ない。
The configuration of the surface treatment apparatus of the present invention can be appropriately changed according to the purpose and the situation of using the apparatus. For example, if the surface treatment is performed in an environment where the ambient temperature is kept constant, such as in a clean room, or if the chemical change during the surface treatment is not significantly affected by the temperature, etc. There is no need to provide a control system.

【0030】次に、本発明に係る第1の実施例について
説明する。まず、抵抗率4Ωcmのn型Si半導体基板
の(100)表面について、48%のHF水溶液で1分
間、pH=5.5のHF/NH4 F水溶液で1分間、p
H=7.0で純水で2分間、順次表面処理を行った。次
いでこのSi半導体基板を、図2に示した表面処理装置
において、温度25℃でpH=7.0の純水に浸し、開
放電位(OCP)に対して−0.5Vの一定のカソード
バイアスをSi半導体基板に印加しながら表面を洗浄し
た(試料A)。
Next, a first embodiment according to the present invention will be described. First, the (100) surface of an n-type Si semiconductor substrate having a resistivity of 4 Ωcm was exposed to a 48% aqueous HF solution for 1 minute and a pH = 5.5 aqueous HF / NH 4 F solution for 1 minute.
Surface treatment was performed sequentially with pure water at H = 7.0 for 2 minutes. Next, this Si semiconductor substrate is immersed in pure water having a pH of 7.0 at a temperature of 25 ° C. in a surface treatment apparatus shown in FIG. 2, and a constant cathode bias of −0.5 V with respect to an open potential (OCP) is applied. The surface was cleaned while applying a voltage to the Si semiconductor substrate (Sample A).

【0031】また、比較例として、あらかじめ同様の表
面処理を行った同様の抵抗率4Ωcmのn型Si半導体
基板を、図4に示す表面処理装置において、25℃でp
H=7.0の純水中に放置して表面を洗浄した(試料
B)。ここで図4は、従来の表面処理装置の構成図であ
り、被処理体である半導体基板1がカセット5に収容さ
れて、液相9に満たされた水溶液11としての純水に浸
される。さらに液槽9は温度制御媒体としての水51で
満たされた恒温槽53に収容されて温度制御される。
As a comparative example, an n-type Si semiconductor substrate having a similar resistivity of 4 Ωcm, which was previously subjected to the same surface treatment, was placed at 25 ° C. in a surface treatment apparatus shown in FIG.
The surface was washed by leaving it in pure water of H = 7.0 (sample B). Here, FIG. 4 is a configuration diagram of a conventional surface treatment apparatus, in which a semiconductor substrate 1 to be processed is accommodated in a cassette 5 and immersed in pure water as an aqueous solution 11 filled with a liquid phase 9. . Further, the liquid tank 9 is accommodated in a constant temperature tank 53 filled with water 51 as a temperature control medium, and is temperature-controlled.

【0032】上記の純水による表面処理の過程で、単位
時間ごとに両方の試料A,Bを取り出して、Si半導体
基板表面の水酸化の時間的変化を調べた。具体的には、
試料表面に発生するSi−OH結合の伸縮振動(37
4.0cm-1)の強度変化を、高分解能電子損失スペク
トロスコピーによって測定した。その測定結果を図3に
示す。
In the course of the above surface treatment with pure water, both samples A and B were taken out every unit time, and the temporal change of hydroxylation on the surface of the Si semiconductor substrate was examined. In particular,
The stretching vibration of the Si-OH bond generated on the sample surface (37
A 4.0 cm -1 ) intensity change was measured by high resolution electron loss spectroscopy. FIG. 3 shows the measurement results.

【0033】図3中、横軸は純水中での表面処理時間、
縦軸はSi−OH結合の伸縮振動の吸収スペクトル強度
比率である。図3から明らかなように、カソードバイア
スを印加しない従来の表面処理装置で表面処理を行った
試料Bは、最初の数分間で急激に被処理体表面の水酸化
が進行し、その後さらにゆっくりと水酸化が進んでい
る。これに対し、半導体基板にカソードバイアスを印加
して表面処理を行った試料Aは、表面のSi−OH結合
の吸収スペクトル強度が漸増してはいるが検出限界に近
く、試料Bに比べて1桁以上も低いことがわかる。すな
わち、Si半導体基板表面の水酸化の進行は、試料Aの
方が試料Bよりもはるかに低く、被処理体にカソードバ
イアスを印加することにより、安定な水素終端Si表面
が比較的よく保たれたまま表面処理が行われることが確
認された。
In FIG. 3, the horizontal axis represents the surface treatment time in pure water,
The vertical axis is the absorption spectrum intensity ratio of the stretching vibration of the Si—OH bond. As is clear from FIG. 3, in sample B, which had been subjected to surface treatment using a conventional surface treatment apparatus to which no cathode bias was applied, hydroxylation of the surface of the object to be treated rapidly progressed in the first few minutes, and then more slowly. Hydroxidation is progressing. On the other hand, the sample A in which the surface treatment was performed by applying a cathode bias to the semiconductor substrate, although the absorption spectrum intensity of the Si-OH bond on the surface was gradually increased, was close to the detection limit, and was 1 compared with the sample B. It turns out that it is lower than an order of magnitude. That is, the progress of hydroxylation on the surface of the Si semiconductor substrate is much lower in sample A than in sample B, and by applying a cathode bias to the object to be processed, the stable hydrogen-terminated Si surface is relatively well maintained. It was confirmed that the surface treatment was performed as it was.

【0034】次に本発明に係る第2の実施例を説明す
る。まず、第1の実施例と全く同様にn型Si半導体基
板(100)表面について、48%のHF水溶液で1分
間、pH=5.5のHF/NH4 F水溶液で1分間、p
H=7.0の純水で2分間、順次表面処理を行った。そ
の後、NH4 OH水溶液(30%)、H2 2 水溶液
(35%)及びH2 Oが1:1:5の容積比で混合され
てなる洗浄液を用いて、上記Si半導体基板表面を70
℃で10分間洗浄した。なお、この洗浄液は、AlとF
eとZeの各金属イオンにより、1ppbの濃度で強制
汚染されたものである。
Next, a second embodiment according to the present invention will be described. First, on the surface of the n-type Si semiconductor substrate (100) in exactly the same manner as in the first embodiment, p was applied for 1 minute with a 48% aqueous HF solution and 1 minute with an aqueous HF / NH 4 F solution having a pH of 5.5.
Surface treatment was sequentially performed with pure water of H = 7.0 for 2 minutes. After that, the surface of the Si semiconductor substrate was reduced to 70 using a cleaning solution in which an aqueous solution of NH 4 OH (30%), an aqueous solution of H 2 O 2 (35%) and H 2 O were mixed at a volume ratio of 1: 1: 5.
Washed at 10 ° C. for 10 minutes. In addition, this cleaning liquid contains Al and F
e and Ze were forcibly contaminated at a concentration of 1 ppb by each metal ion.

【0035】次いで、図2に示した表面処理装置におい
て、水溶液としてpH=7.0の純水を用いSi半導体
基板表面を10分間洗浄した。このときカソードバイア
スは、開放電位に対して−0.5Vの定電圧で印加した
(試料A)。また比較のため、図4に示した従来の表面
処理装置において、金属イオンで汚染された同様のSi
半導体基板をpH=7.0の純水で10分間洗浄した
(試料B)。
Next, in the surface treatment apparatus shown in FIG. 2, pure water having a pH of 7.0 was used as an aqueous solution, and the surface of the Si semiconductor substrate was washed for 10 minutes. At this time, the cathode bias was applied at a constant voltage of -0.5 V with respect to the open potential (sample A). Further, for comparison, in the conventional surface treatment apparatus shown in FIG.
The semiconductor substrate was washed with pure water having a pH of 7.0 for 10 minutes (sample B).

【0036】上記の純水による表面処理の後、試料A、
Bを取り出し、それぞれのSi半導体基板の鏡面仕上げ
面に弗化水素酸液を滴下して、表面に吸着しているAl
とFeとZeの汚染金属を液滴中に溶解した。この液滴
を、フレームレス原子吸光法で分析し、純水による表面
処理後にSi半導体基板表面に吸着している汚染金属の
濃度を測定した。その測定結果を表1に示す。
After the above surface treatment with pure water, samples A,
B is taken out, a hydrofluoric acid solution is dropped on the mirror-finished surface of each Si semiconductor substrate, and Al adsorbed on the surface is removed.
And the contaminating metals of Fe and Ze were dissolved in the droplets. The droplets were analyzed by a flameless atomic absorption method to measure the concentration of the contaminant metal adsorbed on the surface of the Si semiconductor substrate after the surface treatment with pure water. Table 1 shows the measurement results.

【0037】[0037]

【表1】 表1に示されるように、カソードバイアスを印加しない
従来の表面処理装置で表面処理を行った試料Bと比較す
ると、本発明の表面処理装置で半導体基板にカソードバ
イアスを印加して表面処理を行った試料Aでは、半導体
基板表面のそれぞれの汚染金属の濃度が、5分の1程度
に抑制されていることが確認された。
[Table 1] As shown in Table 1, the surface treatment was performed by applying a cathode bias to the semiconductor substrate using the surface treatment apparatus of the present invention, as compared with the sample B subjected to the surface treatment by the conventional surface treatment apparatus to which no cathode bias was applied. In Sample A, it was confirmed that the concentration of each contaminant metal on the surface of the semiconductor substrate was suppressed to about 1/5.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
水溶液を使用して被処理体の表面処理を行う際の被処理
体の表面の水酸化や表面荒れ及び金属吸着等を大幅に低
減して、被処理体の表面及び内部の欠陥密度を極めて低
いレベルに抑制することができる。
As described above, according to the present invention,
Hydroxylation, surface roughness, metal adsorption, etc. of the surface of the object when performing the surface treatment of the object using an aqueous solution are greatly reduced, and the defect density on the surface and inside of the object is extremely low. Can be suppressed to the level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面処理方法の原理を概略的に示す説
明図である。
FIG. 1 is an explanatory view schematically showing the principle of a surface treatment method of the present invention.

【図2】本発明の表面処理装置を示す構成図である。FIG. 2 is a configuration diagram showing a surface treatment apparatus of the present invention.

【図3】表面処理の過程でのSi半導体基板表面の水酸
化の時間的変化を示す特性図である。
FIG. 3 is a characteristic diagram showing a temporal change of hydroxylation on the surface of a Si semiconductor substrate during a surface treatment.

【図4】従来の表面処理装置を示す構成図である。FIG. 4 is a configuration diagram showing a conventional surface treatment apparatus.

【符号の説明】[Explanation of symbols]

1,21 半導体基板 3 標準電極 5,25 カセット 7,35 電源 9,29 液槽 11,31 水溶液 23 標準甘汞電極 27 制御用電極 30 電圧制御系 33 ポテンショスタット 37 電圧−電流表示装置 40 温度制御系 41 水 43 恒温槽 45 温度制御媒体循環装置 1,21 semiconductor substrate 3 standard electrode 5,25 cassette 7,35 power supply 9,29 liquid tank 11,31 aqueous solution 23 standard calomel electrode 27 control electrode 30 voltage control system 33 potentiostat 37 voltage-current display device 40 temperature control System 41 water 43 constant temperature bath 45 temperature control medium circulation device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−342131(JP,A) 特開 平5−190521(JP,A) 特開 平5−138142(JP,A) 特開 平6−97144(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-4-342131 (JP, A) JP-A-5-190521 (JP, A) JP-A-5-138142 (JP, A) JP-A-6-138 97144 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/304

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水溶液を用いて被処理体の表面処理を行
う表面処理方法であって、前記 表面処理を行う際に、前記水溶液の電位に対して負
の電位を前記被処理体に与え、前記被処理体に陽イオン
に配位する陰イオンとの反発力を誘起させることを特徴
とする表面処理方法。
1. A surface processing method for performing surface treatment of the object to be processed with an aqueous solution, when performing the surface treatment, have a negative potential to the object to be processed with respect to the potential of the aqueous solution, Positive ions on the object
A surface treatment method characterized by inducing repulsion with anions that are coordinated with the surface.
【請求項2】 水溶液中で被処理体の表面処理を行うた
めの表面処理装置であって、 前記水溶液を収容する収容体と、 前記被処理体を前記水溶液中で支持する支持手段と、前記 表面処理を行う際に、前記水溶液中の被処理体に前
記水溶液の電位に対して負の電位を与え、前記被処理体
に陽イオンに配位する陰イオンとの反発力を誘起させる
電位付与手段とを備えることを特徴とする表面処理装
置。
2. A surface treatment apparatus for performing a surface treatment of the object to be processed in an aqueous solution, a container for accommodating the aqueous solution, and support means for supporting the object to be processed in said aqueous solution, said when performing the surface treatment, have a negative potential relative to the potential of the aqueous solution to be treated in the aqueous solution, the object to be processed
Surface treatment apparatus according to claim Rukoto a <br/> potential applying means for inducing a repulsive force between the coordinated anions cations.
JP22758693A 1993-09-13 1993-09-13 Surface treatment method and surface treatment device Expired - Lifetime JP3329902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22758693A JP3329902B2 (en) 1993-09-13 1993-09-13 Surface treatment method and surface treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22758693A JP3329902B2 (en) 1993-09-13 1993-09-13 Surface treatment method and surface treatment device

Publications (2)

Publication Number Publication Date
JPH0786224A JPH0786224A (en) 1995-03-31
JP3329902B2 true JP3329902B2 (en) 2002-09-30

Family

ID=16863244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22758693A Expired - Lifetime JP3329902B2 (en) 1993-09-13 1993-09-13 Surface treatment method and surface treatment device

Country Status (1)

Country Link
JP (1) JP3329902B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198899B2 (en) * 1995-11-30 2001-08-13 アルプス電気株式会社 Wet treatment method
US8030182B2 (en) 2005-09-20 2011-10-04 Tadahiro Ohmi Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP5671962B2 (en) * 2010-11-15 2015-02-18 栗田工業株式会社 Method for preparing rinse solution for silicon wafer cleaning

Also Published As

Publication number Publication date
JPH0786224A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
JP2581268B2 (en) Semiconductor substrate processing method
TWI404134B (en) Method of producing a semiconductor device and method of reducing microroughness on a semiconductor surface
US6513538B2 (en) Method of removing contaminants from integrated circuit substrates using cleaning solutions
JP3154814B2 (en) Semiconductor wafer cleaning method and cleaning apparatus
Hattori et al. Contamination Removal by Single‐Wafer Spin Cleaning with Repetitive Use of Ozonized Water and Dilute HF
US7731801B2 (en) Semiconductor wafer treatment method and apparatus therefor
Yabune et al. Scientific wet process technology for innovative LSI/FPD manufacturing
KR20050065312A (en) Cleansing method of semiconductor wafer
EP0718872B1 (en) Semiconductor substrate cleaning method
EP0784336A2 (en) Improvements in or relating to the fabrication and processing of semiconductor devices
US6375752B1 (en) Method of wet-cleaning sintered silicon carbide
JP4579619B2 (en) Silicon wafer reclamation method
JPH03219000A (en) Etching method and washing method for silicon wafer
JP2000228380A (en) Cleaning method
JP3325739B2 (en) Silicon wafer cleaning method
JP3329902B2 (en) Surface treatment method and surface treatment device
JP3957268B2 (en) Semiconductor substrate cleaning method
KR20120092589A (en) Cleaning water for wafer and method for cleaning wafer
JP2003173998A (en) Method for cleaning semiconductor substrate
JP3255103B2 (en) Storage water for silicon wafers and method of storage
JP3384879B2 (en) Silicon etching method
JPH0750281A (en) Cleaning method for silicon wafer
KR100235944B1 (en) Cleaning method for semiconductor device
JPH07321080A (en) Method for cleaning silicon wafer
JP2005210075A (en) Cleaning method of semiconductor wafer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8