JP7056102B2 - Manufacturing method of power storage module and power storage module - Google Patents

Manufacturing method of power storage module and power storage module Download PDF

Info

Publication number
JP7056102B2
JP7056102B2 JP2017229024A JP2017229024A JP7056102B2 JP 7056102 B2 JP7056102 B2 JP 7056102B2 JP 2017229024 A JP2017229024 A JP 2017229024A JP 2017229024 A JP2017229024 A JP 2017229024A JP 7056102 B2 JP7056102 B2 JP 7056102B2
Authority
JP
Japan
Prior art keywords
primary
electrode
welded
sealed
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229024A
Other languages
Japanese (ja)
Other versions
JP2019102165A (en
JP2019102165A5 (en
Inventor
寛恭 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017229024A priority Critical patent/JP7056102B2/en
Publication of JP2019102165A publication Critical patent/JP2019102165A/en
Publication of JP2019102165A5 publication Critical patent/JP2019102165A5/ja
Application granted granted Critical
Publication of JP7056102B2 publication Critical patent/JP7056102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Description

本発明は、蓄電モジュールの製造方法及び蓄電モジュールに関する。 The present invention relates to a method for manufacturing a power storage module and a power storage module.

従来の蓄電モジュールとして、例えば特許文献1に記載の蓄電モジュールがある。この蓄電モジュールは、電極板の一方面に正極が形成され、他方面に負極が形成されたバイポーラ電極を備えた、いわゆるバイポーラ型の蓄電モジュールである。かかる蓄電モジュールは、セパレータを介して複数のバイポーラ電極を積層してなる電極積層体を備えている。電極積層体の側面には、積層方向に隣り合うバイポーラ電極間を封止する封止体が設けられている。 As a conventional power storage module, for example, there is a power storage module described in Patent Document 1. This power storage module is a so-called bipolar type power storage module provided with a bipolar electrode having a positive electrode formed on one surface of an electrode plate and a negative electrode formed on the other surface. Such a power storage module includes an electrode laminate formed by laminating a plurality of bipolar electrodes via a separator. On the side surface of the electrode laminate, a sealant is provided to seal between the bipolar electrodes adjacent to each other in the stacking direction.

特開2011-204386号公報Japanese Unexamined Patent Publication No. 2011-204386

上述した封止体の形成にあたっては、例えばバイポーラ電極を構成する電極板の縁部に一次封止体を配置し、当該一次封止体を有するバイポーラ電極を積層して電極積層体を形成する。その後、各バイポーラ電極の一次封止体同士を二次封止体によって結合することにより、封止体が形成される。 In forming the above-mentioned encapsulant, for example, a primary encapsulant is arranged at the edge of an electrode plate constituting the bipolar electrode, and bipolar electrodes having the primary encapsulant are laminated to form an electrode laminate. After that, the primary encapsulant of each bipolar electrode is bonded to each other by the secondary encapsulant to form the encapsulant.

しかしながら、上述の形成工程を経て封止体を形成する場合、電極板の寸法公差、電極板の縁部における一次封止体の配置精度、一次封止体付き電極板の積層精度などに起因して、電極積層体において積層方向に隣り合う一次封止体同士に位置ずれが生じることが考えられる。また、例えば二次封止体の形成の際に一次封止体に変形が生じることも考えられる。一次封止体の位置ずれや変形が生じると、二次封止体による一次封止体の結合不良に起因するバイポーラ電極間の封止不良が生じ、蓄電モジュールの製造歩留まりの低下を招くおそれがある。 However, when the sealed body is formed through the above-mentioned forming step, it is caused by the dimensional tolerance of the electrode plate, the placement accuracy of the primary sealed body at the edge of the electrode plate, the stacking accuracy of the electrode plate with the primary sealed body, and the like. Therefore, it is conceivable that the primary encapsulation bodies adjacent to each other in the stacking direction of the electrode laminated body are displaced from each other. Further, for example, it is conceivable that the primary encapsulant is deformed when the secondary encapsulant is formed. If the primary sealant is misaligned or deformed, the secondary sealant may cause poor coupling between the bipolar electrodes due to poor coupling of the primary sealant, which may lead to a decrease in the manufacturing yield of the power storage module. be.

本発明は、上記課題の解決のためになされたものであり、バイポーラ電極間の封止不良に起因する製造歩留まりの低下を抑制できる蓄電モジュールの製造方法及び蓄電モジュールを提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a power storage module and a power storage module capable of suppressing a decrease in manufacturing yield due to poor sealing between bipolar electrodes. ..

本発明の一側面に係る蓄電モジュールの製造方法は、バイポーラ電極を構成する電極板の縁部に一次封止体を配置してなる一次封止体付きバイポーラ電極を所定数積層して中間積層体を形成する中間積層体形成工程と、中間積層体における一次封止体付きバイポーラ電極の一次封止体同士を溶着し、中間積層体に一次封止溶着体を形成する一次封止工程と、中間積層体を含む電極積層体を形成する電極積層体形成工程と、電極積層体において一次封止溶着体を含む一次封止体同士を二次封止体によって封止する二次封止工程と、を備える。 The method for manufacturing a power storage module according to one aspect of the present invention is an intermediate laminated body in which a predetermined number of bipolar electrodes with a primary sealant are laminated by arranging a primary sealant on the edge of an electrode plate constituting the bipolar electrode. The intermediate laminate forming step of forming the primary sealant and the primary sealant step of welding the primary sealants of the bipolar electrode with the primary sealant in the intermediate laminate to form the primary sealant welded body in the intermediate laminate. An electrode laminate forming step of forming an electrode laminate including a laminate, and a secondary encapsulation step of sealing the primary encapsulation bodies including the primary encapsulation welded body in the electrode laminate with a secondary encapsulant. To prepare for.

この蓄電モジュールの製造方法では、二次封止工程で一次封止体同士を二次封止体で封止する前に、一次封止工程において電極積層体の一次封止体同士を溶着して一次封止溶着体を形成する。一次封止溶着体を予め形成しておくことで、電極積層体において積層方向に隣り合う一次封止体同士の位置ずれの影響が緩和される。また、一次封止溶着体では、個々の一次封止体に比べて強度を十分に確保できるため、二次封止体を形成する際の一次封止体の変形も抑制できる。したがって、この蓄電モジュールの製造方法では、二次封止体による一次封止体の結合不良に起因するバイポーラ電極間の封止不良を抑制でき、製造歩留まりの低下を抑えることが可能となる。 In this method of manufacturing a power storage module, before sealing the primary sealants with the secondary sealant in the secondary sealant step, the primary sealants of the electrode laminate are welded together in the primary sealant step. Form a primary sealed weld. By forming the primary sealing welded body in advance, the influence of the positional deviation between the primary sealing bodies adjacent to each other in the stacking direction in the electrode laminated body is alleviated. Further, since the primary sealed welded body can secure sufficient strength as compared with the individual primary sealed body, it is possible to suppress the deformation of the primary sealed body when forming the secondary sealed body. Therefore, in this method of manufacturing the power storage module, it is possible to suppress the sealing failure between the bipolar electrodes due to the poor coupling of the primary sealing body by the secondary sealing body, and it is possible to suppress the decrease in the manufacturing yield.

また、一次封止体付きバイポーラ電極において、電極板の縁部から張り出す張出部分を一次封止体に設け、一次封止工程では、中間積層体における一次封止体の張出部分同士を溶着してもよい。これにより、一次封止体同士の溶着を簡便かつ確実に実施できる。 Further, in the bipolar electrode with a primary encapsulation body, an overhanging portion protruding from the edge of the electrode plate is provided on the primary encapsulating body, and in the primary encapsulation step, the overhanging portions of the primary encapsulating body in the intermediate laminate are separated from each other. It may be welded. This makes it possible to easily and reliably weld the primary seals to each other.

また、電極積層体形成工程では、中間積層体を複数積層して電極積層体を形成してもよい。この場合、電極積層体において積層方向に隣り合う一次封止体同士の位置ずれの影響の緩和、及び二次封止体を形成する際の一次封止体の変形の抑制をより確実に実現できる。 Further, in the electrode laminate forming step, a plurality of intermediate laminates may be laminated to form an electrode laminate. In this case, it is possible to more reliably suppress the influence of the positional deviation between the primary encapsulating bodies adjacent to each other in the laminating direction in the electrode laminated body and the deformation of the primary encapsulating body when forming the secondary encapsulating body. ..

また、電極積層体形成工程では、一次封止体付きバイポーラ電極の積層数が互いに異なる中間積層体を含めて電極積層体を形成してもよい。この場合、積層数が互いに異なる中間積層体の組み合わせにより、蓄電モジュールの容量を容易に調整することができる。 Further, in the electrode laminate forming step, the electrode laminate may be formed by including an intermediate laminate in which the number of laminates of the bipolar electrodes with the primary sealant is different from each other. In this case, the capacity of the power storage module can be easily adjusted by combining intermediate laminated bodies having different numbers of layers.

また、一次封止工程では、一次封止体同士の溶着と、一次封止体と電極板との間の溶着とを同時に実施してもよい。これにより、蓄電モジュールの製造工程の一層の簡単化が図られる。 Further, in the primary sealing step, welding between the primary sealing bodies and welding between the primary sealing bodies and the electrode plate may be carried out at the same time. This further simplifies the manufacturing process of the power storage module.

また、本発明の一側面に係る蓄電モジュールは、複数のバイポーラ電極が積層された電極積層体と、電極積層体において積層方向に隣り合うバイポーラ電極間を封止する封止体と、を備え、封止体は、バイポーラ電極を構成する電極板の縁部に設けられた一次封止体と、一次封止体同士を結合する二次封止体と、を有し、電極積層体には、積層方向に隣り合う一次封止体同士が溶着されてなる一次封止溶着体が設けられ、一次封止溶着体を含む一次封止体同士が二次封止体によって封止されている。 Further, the power storage module according to one aspect of the present invention includes an electrode laminate in which a plurality of bipolar electrodes are laminated, and a sealing body that seals between bipolar electrodes adjacent to each other in the stacking direction in the electrode laminate. The encapsulant has a primary encapsulant provided at the edge of the electrode plate constituting the bipolar electrode and a secondary encapsulant for binding the primary encapsulants to each other. A primary sealing welded body is provided in which primary sealing bodies adjacent to each other in the stacking direction are welded to each other, and the primary sealing bodies including the primary sealing welding body are sealed to each other by the secondary sealing body.

この蓄電モジュールでは、一次封止溶着体により、電極積層体において積層方向に隣り合う一次封止体同士の位置ずれの影響が緩和される。また、一次封止溶着体では、個々の一次封止体に比べて強度を十分に確保できるため、二次封止体を形成する際の一次封止体の変形も抑制できる。したがって、この蓄電モジュールでは、二次封止体による一次封止体の結合不良に起因するバイポーラ電極間の封止不良を抑制でき、製造歩留まりの低下を抑えることが可能となる。 In this power storage module, the primary sealing welded body alleviates the influence of the positional deviation between the primary sealing bodies adjacent to each other in the stacking direction in the electrode laminated body. Further, since the primary sealed welded body can secure sufficient strength as compared with the individual primary sealed body, it is possible to suppress the deformation of the primary sealed body when forming the secondary sealed body. Therefore, in this power storage module, it is possible to suppress the sealing failure between the bipolar electrodes due to the poor coupling of the primary sealing body by the secondary sealing body, and it is possible to suppress the decrease in the manufacturing yield.

本発明によれば、バイポーラ電極間の封止不良に起因する製造歩留まりの低下を抑制できる。 According to the present invention, it is possible to suppress a decrease in manufacturing yield due to poor sealing between bipolar electrodes.

蓄電装置の一実施形態を示す概略図である。It is a schematic diagram which shows one Embodiment of a power storage device. 蓄電装置を構成する蓄電モジュールの一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the power storage module which constitutes the power storage device. 封止体の構成の一例を示す要部拡大概略図である。It is an enlarged schematic diagram of a main part which shows an example of the structure of a sealed body. 蓄電モジュールの製造方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing method of a power storage module. 中間積層体形成工程及び一次封止工程の一例を示す概略図である。It is a schematic diagram which shows an example of the intermediate laminate formation process and the primary sealing process. 電極積層体形成工程の一例を示す概略図である。It is a schematic diagram which shows an example of the electrode laminated body formation process. 電極積層体形成工程の別例を示す概略図である。It is a schematic diagram which shows another example of the electrode laminate formation process. 一次封止工程の別例を示す概略図である。It is a schematic diagram which shows another example of the primary sealing process.

以下、図面を参照しながら、本発明の一側面に係る蓄電モジュールの製造方法及び蓄電モジュールの好適な実施形態について詳細に説明する。 Hereinafter, a method for manufacturing a power storage module and a preferred embodiment of the power storage module according to one aspect of the present invention will be described in detail with reference to the drawings.

図1は、蓄電装置の一実施形態を示す概略断面図である。同図に示される蓄電装置1は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる装置である。蓄電装置1は、複数の蓄電モジュール4を積層してなる蓄電モジュール積層体2と、蓄電モジュール積層体2に対して積層方向に拘束荷重を付加する拘束部材3とを備えて構成されている。 FIG. 1 is a schematic cross-sectional view showing an embodiment of a power storage device. The power storage device 1 shown in the figure is a device used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles. The power storage device 1 includes a power storage module stack 2 in which a plurality of power storage modules 4 are laminated, and a restraint member 3 that applies a restraint load to the power storage module stack 2 in the stacking direction.

蓄電モジュール積層体2は、複数(本実施形態では3体)の蓄電モジュール4と、複数(本実施形態では4枚)の導電板5とによって構成されている。蓄電モジュール4は、例えば後述するバイポーラ電極14を備えたバイポーラ電池であり、積層方向から見て矩形状をなしている。蓄電モジュール4は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池、又は電気二重層キャパシタである。以下の説明では、ニッケル水素二次電池を例示する。 The power storage module stack 2 is composed of a plurality of (three in this embodiment) power storage modules 4 and a plurality of (four in this embodiment) conductive plates 5. The power storage module 4 is, for example, a bipolar battery provided with a bipolar electrode 14 described later, and has a rectangular shape when viewed from the stacking direction. The power storage module 4 is, for example, a secondary battery such as a nickel hydrogen secondary battery or a lithium ion secondary battery, or an electric double layer capacitor. In the following description, a nickel-metal hydride secondary battery will be illustrated.

蓄電モジュール積層体2において、積層方向に隣り合う蓄電モジュール4,4同士は、導電板5を介して電気的に接続されている。導電板5は、積層方向に隣り合う蓄電モジュール4,4間と、積層端に位置する蓄電モジュール4の外側とにそれぞれ配置されている。積層端に位置する蓄電モジュール4の外側に配置された一方の導電板5には、正極端子6が接続されている。積層端に位置する蓄電モジュール4の外側に配置された他方の導電板5には、負極端子7が接続されている。正極端子6及び負極端子7は、例えば導電板5の縁部から積層方向に交差する方向に引き出されている。正極端子6及び負極端子7により、蓄電装置1の充放電が実施される。 In the power storage module stack 2, the power storage modules 4 and 4 adjacent to each other in the stacking direction are electrically connected to each other via the conductive plate 5. The conductive plates 5 are arranged between the storage modules 4 and 4 adjacent to each other in the stacking direction and outside the power storage modules 4 located at the stacking ends. A positive electrode terminal 6 is connected to one of the conductive plates 5 arranged outside the power storage module 4 located at the laminated end. The negative electrode terminal 7 is connected to the other conductive plate 5 arranged outside the power storage module 4 located at the laminated end. The positive electrode terminal 6 and the negative electrode terminal 7 are drawn out from the edge of the conductive plate 5, for example, in a direction intersecting with each other in the stacking direction. The positive electrode terminal 6 and the negative electrode terminal 7 charge and discharge the power storage device 1.

各導電板5の内部には、空気等の冷媒を流通させる複数の流路5aが設けられている。各流路5aは、例えば積層方向と、正極端子6及び負極端子7の引き出し方向とにそれぞれ直交する方向に互いに平行に延在している。これらの流路5aに冷媒を流通させることで、導電板5は、蓄電モジュール4,4同士を電気的に接続する接続部材としての機能のほか、蓄電モジュール4で発生した熱を放熱する放熱板としての機能を併せ持つ。なお、図1の例では、積層方向から見た導電板5の面積は、蓄電モジュール4の面積よりも小さくなっているが、放熱性の向上の観点から、導電板5の面積は、蓄電モジュール4の面積と同じであってもよく、蓄電モジュール4の面積よりも大きくなっていてもよい。 Inside each conductive plate 5, a plurality of flow paths 5a through which a refrigerant such as air flows are provided. Each flow path 5a extends in parallel with each other, for example, in a direction orthogonal to the stacking direction and the drawing direction of the positive electrode terminal 6 and the negative electrode terminal 7. By circulating the refrigerant through these flow paths 5a, the conductive plate 5 functions as a connecting member for electrically connecting the power storage modules 4 and 4 to each other, and also dissipates heat generated by the power storage module 4. It also has the function of. In the example of FIG. 1, the area of the conductive plate 5 seen from the stacking direction is smaller than the area of the power storage module 4, but from the viewpoint of improving heat dissipation, the area of the conductive plate 5 is the power storage module. It may be the same as the area of 4 and may be larger than the area of the power storage module 4.

拘束部材3は、蓄電モジュール積層体2を積層方向に挟む一対のエンドプレート8,8と、エンドプレート8,8同士を締結する締結ボルト9及びナット10とによって構成されている。エンドプレート8は、積層方向から見た蓄電モジュール4及び導電板5の面積よりも一回り大きい面積を有する矩形の金属板である。エンドプレート8の内側面(蓄電モジュール積層体2側の面)には、電気絶縁性を有するフィルムFが設けられている。このフィルムFにより、エンドプレート8と導電板5との間が電気的に絶縁されている。 The restraint member 3 is composed of a pair of end plates 8 and 8 that sandwich the power storage module laminate 2 in the stacking direction, and a fastening bolt 9 and a nut 10 that fasten the end plates 8 and 8 to each other. The end plate 8 is a rectangular metal plate having an area one size larger than the area of the power storage module 4 and the conductive plate 5 when viewed from the stacking direction. A film F having electrical insulation is provided on the inner side surface of the end plate 8 (the surface on the side of the storage module laminate 2). The film F electrically insulates between the end plate 8 and the conductive plate 5.

エンドプレート8の縁部には、蓄電モジュール積層体2よりも外側となる位置に挿通孔8aが設けられている。締結ボルト9は、一方のエンドプレート8の挿通孔8aから他方のエンドプレート8の挿通孔8aに向かって通され、他方のエンドプレート8の挿通孔8aから突出した締結ボルト9の先端部分には、ナット10が螺合されている。これにより、蓄電モジュール4及び導電板5がエンドプレート8,8によって挟持されて蓄電モジュール積層体2としてユニット化されると共に、蓄電モジュール積層体2に対して積層方向に拘束荷重が付加される。 An insertion hole 8a is provided at the edge of the end plate 8 at a position outside the storage module stack 2. The fastening bolt 9 is passed from the insertion hole 8a of one end plate 8 toward the insertion hole 8a of the other end plate 8, and is attached to the tip portion of the fastening bolt 9 protruding from the insertion hole 8a of the other end plate 8. , The nut 10 is screwed. As a result, the power storage module 4 and the conductive plate 5 are sandwiched by the end plates 8 and 8 to be unitized as the power storage module stack 2, and a restraining load is applied to the power storage module stack 2 in the stacking direction.

次に、蓄電モジュール4の構成について説明する。図2は、蓄電モジュールの一実施形態を示す概略断面図である。同図に示すように、蓄電モジュール4は、電極積層体11と、電極積層体11を封止する樹脂製の封止体12とを備えている。 Next, the configuration of the power storage module 4 will be described. FIG. 2 is a schematic cross-sectional view showing an embodiment of the power storage module. As shown in the figure, the power storage module 4 includes an electrode laminated body 11 and a resin-made sealing body 12 that seals the electrode laminated body 11.

電極積層体11は、セパレータ13を介して複数のバイポーラ電極14が積層されることによって構成されている。本実施形態では、電極積層体11の積層方向と蓄電モジュール積層体2の積層方向とが一致している。電極積層体11は、積層方向に延びる側面11aを有している。バイポーラ電極14は、電極板15、電極板15の一方面15aに設けられた正極16、電極板15の他方面15bに設けられた負極17を含んでいる。 The electrode laminate 11 is configured by laminating a plurality of bipolar electrodes 14 via a separator 13. In the present embodiment, the stacking direction of the electrode laminated body 11 and the stacking direction of the power storage module laminated body 2 are the same. The electrode laminate 11 has a side surface 11a extending in the stacking direction. The bipolar electrode 14 includes an electrode plate 15, a positive electrode 16 provided on one surface 15a of the electrode plate 15, and a negative electrode 17 provided on the other surface 15b of the electrode plate 15.

正極16は、正極活物質が塗工されてなる正極活物質層である。負極17は、負極活物質が塗工されてなる負極活物質層である。電極積層体11において、一のバイポーラ電極14の正極16は、セパレータ13を挟んで積層方向に隣り合う一方のバイポーラ電極14の負極17と対向している。電極積層体11において、一のバイポーラ電極14の負極17は、セパレータ13を挟んで積層方向に隣り合う他方のバイポーラ電極14の正極16と対向している。 The positive electrode 16 is a positive electrode active material layer coated with a positive electrode active material. The negative electrode 17 is a negative electrode active material layer coated with a negative electrode active material. In the electrode laminate 11, the positive electrode 16 of one bipolar electrode 14 faces the negative electrode 17 of one of the bipolar electrodes 14 adjacent to each other in the stacking direction with the separator 13 interposed therebetween. In the electrode laminate 11, the negative electrode 17 of one bipolar electrode 14 faces the positive electrode 16 of the other bipolar electrode 14 adjacent to each other in the stacking direction with the separator 13 interposed therebetween.

電極積層体11において、積層方向の一端には、負極終端電極18が配置されている。また、積層方向の他端には、正極終端電極19が配置されている。負極終端電極18は、電極板15と、電極板15の他方面15bに設けられた負極17とを含んでいる。負極終端電極18の負極17は、セパレータ13を介して積層方向の一端のバイポーラ電極14の正極16と対向している。負極終端電極18の電極板15の一方面15aには、蓄電モジュール4に隣接する一方の導電板5が接触している。正極終端電極19は、電極板15と、電極板15の一方面15aに設けられた正極16とを含んでいる。正極終端電極19の電極板15の他方面15bには、蓄電モジュール4に隣接する他方の導電板5が接触している。正極終端電極19の正極16は、セパレータ13を介して積層方向の他端のバイポーラ電極14の負極17と対向している。 In the electrode laminate 11, the negative electrode termination electrode 18 is arranged at one end in the stacking direction. Further, a positive electrode termination electrode 19 is arranged at the other end in the stacking direction. The negative electrode terminal electrode 18 includes an electrode plate 15 and a negative electrode 17 provided on the other surface 15b of the electrode plate 15. The negative electrode 17 of the negative electrode terminal electrode 18 faces the positive electrode 16 of the bipolar electrode 14 at one end in the stacking direction via the separator 13. One conductive plate 5 adjacent to the power storage module 4 is in contact with one surface 15a of the electrode plate 15 of the negative electrode terminal electrode 18. The positive electrode terminal electrode 19 includes an electrode plate 15 and a positive electrode 16 provided on one surface 15a of the electrode plate 15. The other conductive plate 5 adjacent to the power storage module 4 is in contact with the other surface 15b of the electrode plate 15 of the positive electrode terminal electrode 19. The positive electrode 16 of the positive electrode terminal electrode 19 faces the negative electrode 17 of the bipolar electrode 14 at the other end in the stacking direction via the separator 13.

電極板15は、例えばニッケルからなる金属箔、或いはニッケルメッキ鋼板からなり、矩形状をなしている。電極板15の縁部15cは、正極活物質及び負極活物質が塗工されない未塗工領域となっている。正極16を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極17を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。本実施形態では、電極板15の他方面15bにおける負極17の形成領域は、電極板15の一方面15aにおける正極16の形成領域に対して一回り大きくなっている。 The electrode plate 15 is made of, for example, a metal foil made of nickel or a nickel-plated steel plate, and has a rectangular shape. The edge portion 15c of the electrode plate 15 is an uncoated region in which the positive electrode active material and the negative electrode active material are not coated. Examples of the positive electrode active material constituting the positive electrode 16 include nickel hydroxide. Examples of the negative electrode active material constituting the negative electrode 17 include a hydrogen storage alloy. In the present embodiment, the formation region of the negative electrode 17 on the other surface 15b of the electrode plate 15 is slightly larger than the formation region of the positive electrode 16 on the one surface 15a of the electrode plate 15.

セパレータ13は、例えばシート状に形成されている。セパレータ13としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。セパレータ13は、フッ化ビニリデン樹脂化合物で補強されたものであってもよい。なお、セパレータ13は、シート状に限られず、袋状のものを用いてもよい。 The separator 13 is formed, for example, in the form of a sheet. Examples of the separator 13 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric made of polypropylene, polyethylene terephthalate (PET), methyl cellulose and the like, or a non-woven fabric. The separator 13 may be reinforced with a vinylidene fluoride resin compound. The separator 13 is not limited to a sheet shape, and a bag shape may be used.

封止体12は、例えば絶縁性の樹脂によって矩形の筒状に形成されている。封止体12は、積層方向に延びる電極積層体11の側面11aにおいて電極板15の縁部15cを保持すると共に、側面11aを取り囲むように構成されている。封止体12は、各バイポーラ電極14の電極板15の縁部15cに沿ってそれぞれ設けられた一次封止体21と、一次封止体21の全体を外側から包囲するように設けられた二次封止体22とによって構成されている。 The sealing body 12 is formed in a rectangular tubular shape, for example, by an insulating resin. The sealing body 12 is configured to hold the edge portion 15c of the electrode plate 15 on the side surface 11a of the electrode laminated body 11 extending in the stacking direction and to surround the side surface 11a. The sealing body 12 includes a primary sealing body 21 provided along the edge portion 15c of the electrode plate 15 of each bipolar electrode 14, and two provided so as to surround the entire primary sealing body 21 from the outside. It is composed of a subsealing body 22 and the like.

一次封止体21は、例えば樹脂の射出成形によって形成され、電極板15の一方面15a側の縁部15c(未塗工領域)において、電極板15の全ての辺にわたって連続的に設けられている。一次封止体21は、積層方向に隣り合うバイポーラ電極14,14の電極板15,15間のスペーサとしての機能を有している。電極板15,15間には、積層方向の一次封止体21,21の間隔によって規定される内部空間Vが形成されている。当該内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液Eが収容されている。 The primary sealant 21 is formed, for example, by injection molding of a resin, and is continuously provided over all sides of the electrode plate 15 at the edge portion 15c (uncoated region) on the one side 15a side of the electrode plate 15. There is. The primary sealant 21 has a function as a spacer between the electrode plates 15 and 15 of the bipolar electrodes 14 and 14 adjacent to each other in the stacking direction. An internal space V defined by the spacing between the primary sealants 21 and 21 in the stacking direction is formed between the electrode plates 15 and 15. The internal space V contains an electrolytic solution E made of an alkaline solution such as an aqueous potassium hydroxide solution.

一次封止体21は、電極板15の縁部15cに重なる重なり部分21aと、電極板15の縁よりも外側に張り出す張出部分21bとを有している。重なり部分21aの少なくとも一部は、例えば超音波又は熱を用いた溶着により、縁部15cに対して強固に結合している。一次封止体21と電極板15との結合にあたって、電極板15における一次封止体21との結合面は、複数の微細突起が設けられた粗化メッキ面となっている。本実施形態では、正極16が設けられている電極板15の一方面15aの全面が粗化メッキ面となっている。微細突起は、例えば電極板15に対する電解メッキによって形成された突起状の析出金属(付与物を含む)である。粗化メッキ面においては、一次封止体21を構成する樹脂材料が微細突起間の隙間に入り込むことでアンカー効果が生じ、電極板15と一次封止体21との間の結合強度及び液密性の向上が図られる。 The primary sealing body 21 has an overlapping portion 21a that overlaps the edge portion 15c of the electrode plate 15, and an overhanging portion 21b that projects outward from the edge of the electrode plate 15. At least a part of the overlapping portion 21a is firmly bonded to the edge portion 15c by welding using, for example, ultrasonic waves or heat. In connecting the primary sealing body 21 and the electrode plate 15, the bonding surface of the electrode plate 15 with the primary sealing body 21 is a roughened plated surface provided with a plurality of fine protrusions. In the present embodiment, the entire surface of one surface 15a of the electrode plate 15 provided with the positive electrode 16 is a roughened plated surface. The fine protrusions are, for example, protrusion-shaped precipitated metal (including an impart) formed by electrolytic plating on the electrode plate 15. On the roughened plated surface, the resin material constituting the primary encapsulant 21 enters the gaps between the fine protrusions to produce an anchor effect, and the bond strength and liquid tightness between the electrode plate 15 and the primary encapsulant 21 are formed. The sex is improved.

電極積層体11には、図3に示すように、積層方向に隣り合う一次封止体21,21同士が溶着されてなる一次封止溶着体31が設けられている。一次封止溶着体31は、例えば超音波又は熱を用いた溶着によって積層方向に隣り合う複数層の一次封止体21の張出部分21bが互いに結合してなる結合体である。図3の例では、電極積層体11において、3層の一次封止体21の張出部分21bが互いに溶着されてなる一次封止溶着体31が電極積層体11の積層方向に配列されている。 As shown in FIG. 3, the electrode laminated body 11 is provided with a primary sealed welded body 31 in which the primary sealed bodies 21 and 21 adjacent to each other in the laminated direction are welded to each other. The primary sealing welded body 31 is a bonded body in which overhanging portions 21b of a plurality of layers of primary sealed bodies 21 adjacent to each other in the stacking direction are bonded to each other by welding using, for example, ultrasonic waves or heat. In the example of FIG. 3, in the electrode laminated body 11, the primary sealed welded body 31 formed by welding the overhanging portions 21b of the three-layer primary sealed body 21 to each other is arranged in the stacking direction of the electrode laminated body 11. ..

二次封止体22は、例えば樹脂の射出成形によって形成され、電極積層体11における積層方向の全長にわたって延在している。二次封止体22は、例えば射出成型時の熱により、一次封止溶着体31の外表面に溶着されている。また、二次封止体22は、積層方向に隣り合う一次封止溶着体31,31の間にも進入し、一次封止溶着体31に対して強固に結合している。このような構成により、内部空間Vに収容された電解液Eは、積層方向に隣り合う一次封止溶着体31,31間を通り得るが、一次封止溶着体31と二次封止体22との溶着部分で封止されている。 The secondary sealing body 22 is formed, for example, by injection molding of a resin, and extends over the entire length of the electrode laminated body 11 in the stacking direction. The secondary encapsulant 22 is welded to the outer surface of the primary encapsulant welded body 31 by heat during injection molding, for example. Further, the secondary sealing body 22 also penetrates between the primary sealing welding bodies 31 and 31 adjacent to each other in the stacking direction, and is firmly bonded to the primary sealing welding body 31. With such a configuration, the electrolytic solution E housed in the internal space V can pass between the primary sealing welded bodies 31 and 31 adjacent to each other in the stacking direction, but the primary sealed welded body 31 and the secondary sealed body 22 It is sealed at the welded part with.

一次封止体21を構成する樹脂材料としては、例えば酸変性ポリプロピレン、変性ポリフェニレンエーテル、ポリプロピレン、ゴム成分とポリプロピレンとを混合した熱可塑性エラストマーなどが挙げられる。また、二次封止体22を構成する材料としては、例えば変性ポリフェニレンエーテルが挙げられる。 Examples of the resin material constituting the primary sealant 21 include acid-modified polypropylene, modified polyphenylene ether, polypropylene, and a thermoplastic elastomer in which a rubber component and polypropylene are mixed. In addition, examples of the material constituting the secondary encapsulant 22 include modified polyphenylene ether.

続いて、蓄電モジュール4の製造方法について説明する。図4は、上述した蓄電モジュールの製造方法の一実施形態を示すフローチャートである。同図に示すように、この蓄電モジュールの製造方法は、中間積層体形成工程(ステップS01)と、一次封止工程(ステップS02)と、電極積層体形成工程(ステップS03)と、二次封止工程(ステップS04)とを含んで構成されている。 Subsequently, a method of manufacturing the power storage module 4 will be described. FIG. 4 is a flowchart showing an embodiment of the above-mentioned method for manufacturing a power storage module. As shown in the figure, the method for manufacturing the power storage module includes an intermediate laminate forming step (step S01), a primary sealing step (step S02), an electrode laminate forming step (step S03), and a secondary sealing. It is configured to include a stopping step (step S04).

中間積層体形成工程では、図5(a)に示すように、バイポーラ電極14を構成する電極板15の縁部15cに一次封止体21を予め配置してなる一次封止体付きバイポーラ電極32を用いる。一次封止体付きバイポーラ電極32では、一次封止体21の重なり部分21aの少なくとも一部が予め電極板15の一方面15aの縁部15cに溶着されている。図5(a)の例では、セパレータ13を介して3層の一次封止体付きバイポーラ電極32を積層する。一次封止体付きバイポーラ電極32の積層により、中間積層体Kが形成される。 In the intermediate laminate forming step, as shown in FIG. 5A, the bipolar electrode 32 with a primary sealing body is formed by arranging the primary sealing body 21 in advance on the edge portion 15c of the electrode plate 15 constituting the bipolar electrode 14. Is used. In the bipolar electrode 32 with a primary sealing body, at least a part of the overlapping portion 21a of the primary sealing body 21 is previously welded to the edge portion 15c of one surface 15a of the electrode plate 15. In the example of FIG. 5A, the bipolar electrode 32 with the primary sealant having three layers is laminated via the separator 13. The intermediate laminated body K is formed by laminating the bipolar electrodes 32 with the primary sealant.

一次封止工程では、図5(a)に示すように、一対のヒータ33を用いて3層の一次封止体付きバイポーラ電極32における一次封止体21の張出部分21bを挟持し、張出部分21b同士を溶着する。これにより、図5(b)に示すように、一次封止体21の張出部分21b同士が結合し、中間積層体Kにおいて一次封止溶着体31が形成される。中間積層体形成工程及び一次封止工程を繰り返し実施することで、一次封止溶着体31を有する中間積層体Kを必要数に応じて形成する。 In the primary sealing step, as shown in FIG. 5A, a pair of heaters 33 are used to sandwich and stretch the overhanging portion 21b of the primary sealing body 21 in the bipolar electrode 32 with the primary sealing body having three layers. The protruding portions 21b are welded together. As a result, as shown in FIG. 5B, the overhanging portions 21b of the primary sealing body 21 are bonded to each other, and the primary sealing welded body 31 is formed in the intermediate laminated body K. By repeatedly carrying out the intermediate laminate forming step and the primary sealing step, the intermediate laminate K having the primary sealed welded body 31 is formed according to the required number.

電極積層体形成工程では、図6に示すように、一次封止溶着体31を有する中間積層体Kを必要数に応じて複数積層し、電極積層体11を形成する。二次封止工程では、電極積層体11を射出成型用の金型内に配置する。そして、金型内に溶融樹脂を射出し、電極積層体11の一次封止溶着体31を覆うように二次封止体22を形成する。これにより、一次封止溶着体31,31同士が二次封止体22によって結合し、電極積層体11の側面11aに封止体12が形成される。 In the electrode laminate forming step, as shown in FIG. 6, a plurality of intermediate laminates K having the primary sealed welded body 31 are laminated as needed to form the electrode laminate 11. In the secondary sealing step, the electrode laminate 11 is placed in a mold for injection molding. Then, the molten resin is injected into the mold to form the secondary sealing body 22 so as to cover the primary sealing welding body 31 of the electrode laminate 11. As a result, the primary sealing welded bodies 31, 31 are bonded to each other by the secondary sealing body 22, and the sealing body 12 is formed on the side surface 11a of the electrode laminated body 11.

以上説明したように、この蓄電モジュールの製造方法では、二次封止工程で一次封止体21,21同士を二次封止体22で封止する前に、一次封止工程において電極積層体11の一次封止体21,21同士を溶着して一次封止溶着体31を形成する。一次封止溶着体31を予め形成しておくことで、電極積層体11において積層方向に隣り合う一次封止体21,21同士の位置ずれの影響が緩和される。また、一次封止溶着体31では、個々の一次封止体21に比べて強度を十分に確保できるため、射出成形時に金型内に射出される溶融樹脂に対する耐圧が高まり、二次封止体22を形成する際の一次封止体21の変形も抑制できる。したがって、この蓄電モジュールの製造方法では、二次封止体22による一次封止体21の結合不良に起因するバイポーラ電極14,14間の封止不良を抑制でき、製造歩留まりの低下を抑えることが可能となる。 As described above, in this method of manufacturing the power storage module, the electrode laminate is formed in the primary sealing step before the primary sealing bodies 21 and 21 are sealed by the secondary sealing body 22 in the secondary sealing step. The primary sealing welders 21 and 21 of 11 are welded together to form the primary sealing welded body 31. By forming the primary sealing welded body 31 in advance, the influence of the positional deviation between the primary sealed bodies 21 and 21 adjacent to each other in the stacking direction in the electrode laminated body 11 is alleviated. Further, since the primary sealing welded body 31 can secure sufficient strength as compared with the individual primary sealed body 21, the pressure resistance against the molten resin injected into the mold during injection molding is increased, and the secondary sealed body is increased. Deformation of the primary sealant 21 when forming 22 can also be suppressed. Therefore, in this method of manufacturing the power storage module, it is possible to suppress the sealing failure between the bipolar electrodes 14 and 14 due to the poor coupling of the primary sealing body 21 by the secondary sealing body 22, and it is possible to suppress the decrease in the manufacturing yield. It will be possible.

また、本実施形態では、一次封止体付きバイポーラ電極32において、電極板15の縁部15cから張り出す張出部分21bを一次封止体21に設け、一次封止工程では、中間積層体Kにおける一次封止体21の張出部分21b,21b同士を溶着している。これにより、一次封止体21,21同士の溶着を簡便かつ確実に実施できる。 Further, in the present embodiment, in the bipolar electrode 32 with the primary encapsulation body, the overhanging portion 21b protruding from the edge portion 15c of the electrode plate 15 is provided on the primary encapsulation body 21, and in the primary encapsulation step, the intermediate laminate K is provided. The overhanging portions 21b and 21b of the primary sealing body 21 in the above are welded to each other. As a result, welding of the primary encapsulants 21 and 21 can be carried out easily and reliably.

なお、図3等では、一次封止溶着体31の外側面を模式的に平坦に描いているが、中間積層体Kにおける一次封止体21の位置ずれの程度によっては、溶着後の一次封止溶着体31の外側面に凹凸が生じることも考えられる。しかしながら、かかる一次封止溶着体31の外側面の凹凸は、二次封止体22による一次封止溶着体31の結合には影響せず、製造歩留まりの低下につながることはない。また、一次封止溶着体31においては、一次封止体21の張出部分21bの少なくとも一部同士が溶着していればよく、必ずしも張出部分21bの全体同士が溶着している必要はない。例えば張出部分21bの内縁側同士のみが溶着され、張出部分21bの外縁側が溶着されていない状態であってもよい。 In FIG. 3 and the like, the outer surface of the primary sealed welded body 31 is schematically drawn flat, but depending on the degree of misalignment of the primary sealed body 21 in the intermediate laminate K, the primary sealed after welding. It is also possible that the outer surface of the welded body 31 has irregularities. However, the unevenness on the outer surface of the primary sealed welded body 31 does not affect the bonding of the primary sealed welded body 31 by the secondary sealed body 22, and does not lead to a decrease in the manufacturing yield. Further, in the primary sealing welded body 31, it is sufficient that at least a part of the overhanging portion 21b of the primary sealing body 21 is welded to each other, and it is not always necessary that the entire overhanging portion 21b is welded to each other. .. For example, only the inner edge sides of the overhanging portion 21b may be welded to each other, and the outer edge side of the overhanging portion 21b may not be welded.

また、本実施形態では、電極積層体形成工程において中間積層体Kを複数積層して電極積層体11を形成している。この場合、電極積層体11において積層方向に隣り合う一次封止体21,21同士の位置ずれの影響の緩和、及び二次封止体22を形成する際の一次封止体21の変形の抑制をより確実に実現できる。本実施形態では、一次封止体付きバイポーラ電極32の積層数が同一の中間積層体Kを積層して電極積層体11を形成している。したがって、蓄電モジュール4の部品点数の増加も回避できる。 Further, in the present embodiment, a plurality of intermediate laminated bodies K are laminated to form the electrode laminated body 11 in the electrode laminated body forming step. In this case, in the electrode laminated body 11, the influence of the positional deviation between the primary sealing bodies 21 and 21 adjacent to each other in the stacking direction is alleviated, and the deformation of the primary sealing body 21 when forming the secondary sealing body 22 is suppressed. Can be realized more reliably. In the present embodiment, the intermediate laminated body K having the same number of laminated bipolar electrodes 32 with the primary sealant is laminated to form the electrode laminated body 11. Therefore, it is possible to avoid an increase in the number of parts of the power storage module 4.

本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、電極積層体形成工程において中間積層体Kを複数積層して電極積層体11を形成しているが、中間積層体Kの積層数は任意であってよい。例えば一又は複数の中間積層体Kと一又は複数の一次封止体付きバイポーラ電極32とを組み合わせて電極積層体11を形成してもよい。また、図7に示すように、一次封止体付きバイポーラ電極32の積層数が互いに異なる中間積層体Kを含めて電極積層体11を形成してもよい。これらの構成によれば、蓄電モジュール4の容量を容易に調整することができる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, a plurality of intermediate laminated bodies K are laminated to form the electrode laminated body 11 in the electrode laminated body forming step, but the number of laminated intermediate laminated bodies K may be arbitrary. For example, the electrode laminate 11 may be formed by combining one or a plurality of intermediate laminates K and one or a plurality of bipolar electrodes 32 with a primary sealant. Further, as shown in FIG. 7, the electrode laminated body 11 may be formed by including the intermediate laminated body K in which the number of laminated bipolar electrodes 32 with the primary sealant is different from each other. According to these configurations, the capacity of the power storage module 4 can be easily adjusted.

また、例えば上記実施形態では、一次封止工程において一次封止体21が予め電極板15に溶着された一次封止体付きバイポーラ電極32を用い、一次封止体21の張出部分21b,21b同士の溶着を実施しているが、例えば図8に示すように、ヒータ33,33による一次封止体21の挟持範囲をより一次封止体21の内縁側に拡張し、一次封止体21の張出部分21b,21b同士の溶着と、一次封止体21の重なり部分21aと電極板15の一方面15aの縁部15cとの間の溶着とを同時に実施してもよい。これにより、蓄電モジュール4の製造工程の一層の簡単化が図られる。 Further, for example, in the above embodiment, in the primary sealing step, the bipolar electrode 32 with the primary sealing body in which the primary sealing body 21 is previously welded to the electrode plate 15 is used, and the overhanging portions 21b, 21b of the primary sealing body 21 are used. Welding of each other is carried out. For example, as shown in FIG. 8, the holding range of the primary sealing body 21 by the heaters 33 and 33 is further extended to the inner edge side of the primary sealing body 21, and the primary sealing body 21 is carried out. Welding of the overhanging portions 21b and 21b of the above and welding of the overlapping portion 21a of the primary sealing body 21 and the edge portion 15c of the one surface 15a of the electrode plate 15 may be carried out at the same time. As a result, the manufacturing process of the power storage module 4 can be further simplified.

4…蓄電モジュール、11…電極積層体、14…バイポーラ電極、15…電極板、15c…縁部、21…一次封止体、21b…張出部分、22…二次封止体、31…一次封止溶着体、32…一次封止体付きバイポーラ電極、K…中間積層体。 4 ... Energy storage module, 11 ... Electrode laminate, 14 ... Bipolar electrode, 15 ... Electrode plate, 15c ... Edge, 21 ... Primary encapsulation, 21b ... Overhang, 22 ... Secondary encapsulation, 31 ... Primary Sealed welded body, 32 ... Bipolar electrode with primary sealed body, K ... Intermediate laminate.

Claims (5)

電極板の一方面に正極を有すると共に他方面に負極を有するバイポーラ電極の前記電極板の縁部に樹脂によって形成された一次封止体を配置してなる一次封止体付きバイポーラ電極と、セパレータとを交互に所定数積層して中間積層体を形成する中間積層体形成工程と、
前記中間積層体における前記一次封止体付きバイポーラ電極において前記電極板の縁部から張り出す前記一次封止体の張出部分同士を溶着し、前記中間積層体に一次封止溶着体を形成する一次封止工程と、
前記一次封止溶着体が形成された前記中間積層体に、前記一次封止溶着体が形成された他の中間積層体を積層し、積層方向に隣り合う前記一次封止溶着体間に前記一次封止体同士の溶着部を設けずに電極積層体を形成する電極積層体形成工程と、
前記電極積層体を配置した金型内に溶融樹脂を射出することにより前記電極積層体の側面に二次封止体を形成し、前記中間積層体の前記一次封止溶着体同士が結合されるように前記各一次封止溶着体に前記二次封止体を溶着する二次封止工程と、を備えた蓄電モジュールの製造方法。
A bipolar electrode with a primary sealant having a positive electrode on one side of the electrode plate and a negative electrode on the other side, and a primary sealant formed of a resin arranged on the edge of the electrode plate, and a separator. An intermediate laminate forming step of alternately laminating a predetermined number of and to form an intermediate laminate,
In the bipolar electrode with a primary sealant in the intermediate laminate, the overhanging portions of the primary sealant overhanging from the edge of the electrode plate are welded to each other to form a primary sealant welded body in the intermediate laminate. Primary sealing process and
Another intermediate laminate on which the primary sealed weld is formed is laminated on the intermediate laminate on which the primary sealed weld is formed, and the primary is laminated between the primary sealed welds adjacent to each other in the stacking direction. An electrode laminate forming step of forming an electrode laminate without providing a welded portion between sealed bodies, and
A secondary sealed body is formed on the side surface of the electrode laminated body by injecting a molten resin into a mold in which the electrode laminated body is arranged, and the primary sealed welded bodies of the intermediate laminated body are bonded to each other. A method for manufacturing a power storage module, comprising a secondary sealing step of welding the secondary sealing body to each of the primary sealing welding bodies.
前記中間積層体形成工程において、前記電極板の縁部に配置された前記一次封止体は、当該電極板の縁部に予め溶着されている請求項1記載の蓄電モジュールの製造方法。 The method for manufacturing a power storage module according to claim 1, wherein in the intermediate laminate forming step, the primary encapsulation body arranged at the edge portion of the electrode plate is previously welded to the edge portion of the electrode plate. 前記電極積層体形成工程では、前記一次封止体付きバイポーラ電極の積層数が互いに異なる前記中間積層体を含めて前記電極積層体を形成する請求項1又は2記載の蓄電モジュールの製造方法。 The method for manufacturing a power storage module according to claim 1 or 2, wherein in the electrode laminate forming step, the electrode laminate is formed by including the intermediate laminate in which the number of laminates of the bipolar electrodes with the primary sealant is different from each other. 前記一次封止工程では、前記一次封止体の張出部分同士の溶着と、前記一次封止体と前記電極板との間の溶着とを同時に実施する請求項記載の蓄電モジュールの製造方法。 The method for manufacturing a power storage module according to claim 1 , wherein in the primary sealing step, welding between overhanging portions of the primary sealing body and welding between the primary sealing body and the electrode plate are simultaneously performed. .. 電極板の一方面に正極を有する共に他方面に負極を有する複数のバイポーラ電極と、セパレータとが交互に積層された電極積層体と、
前記電極積層体において積層方向に隣り合う前記バイポーラ電極間を封止する封止体と、を備え、
前記封止体は、樹脂によって形成され、前記バイポーラ電極を構成する電極板の縁部に設けられた一次封止体と、溶融樹脂の射出成形体によって前記電極積層体の側面に形成され、前記積層方向に隣り合う前記一次封止体に結合された二次封止体と、を有し、
前記一次封止体は、前記電極板の縁部から張り出す張出部分を有し、
前記電極積層体には、前記積層方向に隣り合う前記一次封止体の張出部分同士が溶着されてなる複数の一次封止溶着体が設けられ、
前記二次封止体は、前記一次封止溶着体同士が結合されるように前記各一次封止溶着体に溶着され、前記積層方向に隣り合う前記一次封止溶着体間には、前記一次封止体同士の溶着部が設けられていない蓄電モジュール。
A plurality of bipolar electrodes having a positive electrode on one surface of the electrode plate and a negative electrode on the other surface, and an electrode laminate in which separators are alternately laminated.
In the electrode laminated body, a sealing body for sealing between the bipolar electrodes adjacent to each other in the stacking direction is provided.
The encapsulant is formed of a resin, and is formed on the side surface of the electrode laminate by a primary encapsulant provided at the edge of an electrode plate constituting the bipolar electrode and an injection molded body of molten resin. It has a secondary sealant bonded to the primary sealant adjacent to each other in the stacking direction, and has.
The primary sealant has an overhanging portion overhanging from the edge of the electrode plate.
The electrode laminated body is provided with a plurality of primary sealed welded bodies in which overhanging portions of the primary sealed bodies adjacent to each other in the laminated direction are welded to each other.
The secondary sealed body is welded to each of the primary sealed welded bodies so that the primary sealed welded bodies are bonded to each other, and the primary sealed body is between the primary sealed welded bodies adjacent to each other in the stacking direction. A power storage module that is not provided with welded parts between sealed bodies.
JP2017229024A 2017-11-29 2017-11-29 Manufacturing method of power storage module and power storage module Active JP7056102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229024A JP7056102B2 (en) 2017-11-29 2017-11-29 Manufacturing method of power storage module and power storage module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229024A JP7056102B2 (en) 2017-11-29 2017-11-29 Manufacturing method of power storage module and power storage module

Publications (3)

Publication Number Publication Date
JP2019102165A JP2019102165A (en) 2019-06-24
JP2019102165A5 JP2019102165A5 (en) 2020-05-28
JP7056102B2 true JP7056102B2 (en) 2022-04-19

Family

ID=66973936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229024A Active JP7056102B2 (en) 2017-11-29 2017-11-29 Manufacturing method of power storage module and power storage module

Country Status (1)

Country Link
JP (1) JP7056102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204142A1 (en) * 2022-04-22 2023-10-26 株式会社豊田自動織機 Electrode manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900643A (en) 1988-04-08 1990-02-13 Globe-Union Inc. Lead acid bipolar battery plate and method of making the same
US5326656A (en) 1993-06-21 1994-07-05 General Motors Corporation Bipolar battery electrode
US5508131A (en) 1994-04-07 1996-04-16 Globe-Union Inc. Injection molded battery containment for bipolar batteries
US5770331A (en) 1994-04-20 1998-06-23 Valence Technology, Inc. Radiation curable frame for stacked cell construction and for edge sealing of electrolytic cells to retard dendritic short-circuits
US5912090A (en) 1996-03-08 1999-06-15 Hitachi Maxell, Ltd. Nickel-hydrogen stacked battery pack
JP2005190713A (en) 2003-12-24 2005-07-14 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
JP2006054119A (en) 2004-08-12 2006-02-23 Nissan Motor Co Ltd Bipolar battery and battery pack
JP2007122977A (en) 2005-10-26 2007-05-17 Nissan Motor Co Ltd Battery module and battery pack
JP2007242593A (en) 2006-02-13 2007-09-20 Nissan Motor Co Ltd Battery module, battery pack, and vehicle with such batteries mounted thereon
JP2012524980A (en) 2009-04-24 2012-10-18 ジー4 シナジェティクス, インコーポレイテッド Energy storage device with unipolar and bipolar cells electrically coupled in series and parallel
JP2016146269A (en) 2015-02-06 2016-08-12 日産自動車株式会社 Secondary battery and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2118866A1 (en) * 1993-06-21 1994-12-22 Clarence A. Meadows Bipolar battery housing and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900643A (en) 1988-04-08 1990-02-13 Globe-Union Inc. Lead acid bipolar battery plate and method of making the same
US5326656A (en) 1993-06-21 1994-07-05 General Motors Corporation Bipolar battery electrode
US5508131A (en) 1994-04-07 1996-04-16 Globe-Union Inc. Injection molded battery containment for bipolar batteries
US5770331A (en) 1994-04-20 1998-06-23 Valence Technology, Inc. Radiation curable frame for stacked cell construction and for edge sealing of electrolytic cells to retard dendritic short-circuits
US5912090A (en) 1996-03-08 1999-06-15 Hitachi Maxell, Ltd. Nickel-hydrogen stacked battery pack
JP2005190713A (en) 2003-12-24 2005-07-14 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
JP2006054119A (en) 2004-08-12 2006-02-23 Nissan Motor Co Ltd Bipolar battery and battery pack
JP2007122977A (en) 2005-10-26 2007-05-17 Nissan Motor Co Ltd Battery module and battery pack
JP2007242593A (en) 2006-02-13 2007-09-20 Nissan Motor Co Ltd Battery module, battery pack, and vehicle with such batteries mounted thereon
JP2012524980A (en) 2009-04-24 2012-10-18 ジー4 シナジェティクス, インコーポレイテッド Energy storage device with unipolar and bipolar cells electrically coupled in series and parallel
JP2016146269A (en) 2015-02-06 2016-08-12 日産自動車株式会社 Secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP2019102165A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US11276903B2 (en) Electricity storage device and method for manufacturing electricity storage device
JP6899347B2 (en) Power storage device
JP7088410B2 (en) Power storage module
JP6959514B2 (en) Power storage module, manufacturing method of power storage module, and manufacturing method of power storage device
JP2018106967A (en) Power storage device and manufacturing method thereof
JP7056102B2 (en) Manufacturing method of power storage module and power storage module
JP7063762B2 (en) Power storage module and manufacturing method of power storage module
JP6959523B2 (en) Power storage module and manufacturing method of power storage module
JP7103272B2 (en) Power storage module and its manufacturing method
JP6840065B2 (en) Power storage module
JP7074614B2 (en) Power storage module
JP6924673B2 (en) Power storage module
JP6926509B2 (en) Power storage device
JP7079681B2 (en) Power storage module
JP7056167B2 (en) Power storage module and manufacturing method of power storage module
JP2021118073A (en) Power storage device
JP2021044079A (en) Power storage module, and manufacturing method of power storage module
JP2020087870A (en) Manufacturing method of power storage module
JP6962170B2 (en) Power storage module and manufacturing method of power storage module
JP2020102412A (en) Power storage device
JP2020119669A (en) Manufacturing method of power storage module
JP2020107418A (en) Manufacturing method for power storage module and power storage module
JP6858165B2 (en) Power storage module and manufacturing method of power storage module
JP2020095909A (en) Manufacturing method of power storage module and power storage module
JP7087955B2 (en) Manufacturing method of power storage module and power storage module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R151 Written notification of patent or utility model registration

Ref document number: 7056102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151