JP7054433B2 - Material test equipment and material test method - Google Patents

Material test equipment and material test method Download PDF

Info

Publication number
JP7054433B2
JP7054433B2 JP2017189654A JP2017189654A JP7054433B2 JP 7054433 B2 JP7054433 B2 JP 7054433B2 JP 2017189654 A JP2017189654 A JP 2017189654A JP 2017189654 A JP2017189654 A JP 2017189654A JP 7054433 B2 JP7054433 B2 JP 7054433B2
Authority
JP
Japan
Prior art keywords
housing
test
test piece
heating
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017189654A
Other languages
Japanese (ja)
Other versions
JP2018063247A (en
Inventor
友徳 波戸
孝 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2018063247A publication Critical patent/JP2018063247A/en
Application granted granted Critical
Publication of JP7054433B2 publication Critical patent/JP7054433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス雰囲気中で試験片に荷重負荷を与えて材料の強度特性を評価するための材料試験装置及び材料試験方法に関する。 The present invention relates to a material test apparatus and a material test method for evaluating the strength characteristics of a material by applying a load to the test piece in a gas atmosphere.

新しい材料を開発する場合には、材料の有する機械的な強度特性を評価して材料が破壊に至るメカニズムを仮説、考察した上で組成や組織の最適化を図ることが不可欠である。材料の強度特性としては、疲労特性、引張特性、曲げ特性、ねじり特性、疲労亀裂進展特性、クリープ特性、破壊靭性特性、衝撃特性等が挙げられる。これらの強度特性は、例えば、単に材料自体の有する力学的な強度のみならず、材料が暴露される環境、即ち例えば酸化雰囲気や硫化雰囲気、高温高圧、極低温など様々な環境に起因した亀裂の生成や進展の影響を受けてその特性が決定づけられている。 When developing a new material, it is indispensable to evaluate the mechanical strength characteristics of the material, hypothesize and consider the mechanism by which the material leads to fracture, and then optimize the composition and structure. Examples of the strength property of the material include fatigue property, tensile property, bending property, torsional property, fatigue crack growth property, creep property, fracture toughness property, impact property and the like. These strength characteristics are not only the mechanical strength of the material itself, but also the environment in which the material is exposed, that is, cracks caused by various environments such as oxidizing atmosphere, sulfurization atmosphere, high temperature and high pressure, and extremely low temperature. Its characteristics are determined by the influence of generation and progress.

これらの環境影響のうち、特に金属材料の場合には、酸素を含む大気雰囲気による酸化の影響が大きく、さらに高温の環境下では酸化の影響が顕著となることが知られている。このため、材料開発にあたって材料の強度特性を正確に評価するためには、酸素による酸化の影響を排除して材料の強度特性を把握、評価することを求められることがある。 Among these environmental effects, it is known that particularly in the case of metal materials, the effect of oxidation due to the atmospheric atmosphere containing oxygen is large, and the effect of oxidation is remarkable in a high temperature environment. Therefore, in order to accurately evaluate the strength characteristics of a material in material development, it may be required to eliminate the influence of oxidation by oxygen and grasp and evaluate the strength characteristics of the material.

従来より材料試験において、大気による酸化の影響を排除して強度特性を評価するために、評価対象の材料からなる試験片を筐体やチャンバと呼ばれる容器(以下、筐体という)の中に収納設置して密閉状態に置き、この筐体内を真空にして又はアルゴンや窒素等の不活性ガスを供給して不活性の雰囲気として、試験片に荷重負荷を与えて試験することが行われている。例えば、高温雰囲気での材料試験として、特許文献1には、試験片を囲む筐体と、この筐体内を加熱する手段と、試験片の高温雰囲気における酸化を防止するために筐体内に不活性ガスを供給する手段とを備えた高温雰囲気材料試験機の記載がある。 Conventionally, in a material test, in order to eliminate the influence of oxidation by the atmosphere and evaluate the strength characteristics, a test piece made of the material to be evaluated is stored in a container called a housing or a chamber (hereinafter referred to as a housing). It is installed and placed in a sealed state, and the inside of this housing is evacuated or an inert gas such as argon or nitrogen is supplied to create an inert atmosphere, and a load is applied to the test piece for testing. .. For example, as a material test in a high temperature atmosphere, Patent Document 1 describes a housing surrounding the test piece, a means for heating the inside of the housing, and an inert state in the housing in order to prevent oxidation of the test piece in the high temperature atmosphere. There is a description of a high temperature atmosphere material testing machine equipped with a means for supplying gas.

特開平08-327519号公報Japanese Unexamined Patent Publication No. 08-327519

試験片がこれを取り巻く周囲の雰囲気によって酸化されることを抑制するためには、試験片と酸素を含む大気とを遮断するように試験片を筐体で囲んで密閉するとともに、前述したように筐体内を真空にするか、または特許文献1の試験機で示すように、筐体内に不活性ガスを供給することで筐体内の大気を排除する必要がある。筐体内を真空にして大気を排除する場合には、筐体内を真空吸引する際に筐体外から大気が侵入することを防止するために筐体の気密性を確保する必要がある。筐体の気密性確保のためには、筐体と試験装置との嵌合部や摺動部に、パッキン、Oリング、ベローズ等の簡易安価なシール手段を用いることが考えられる。しかし試験環境が高温であったり、試験時間が長時間に亘る試験の場合には、簡易安価なシール手段では、シール手段が熱による変形や劣化、摺動による摩耗などを起こしやすく、これにより筐体外からの大気の侵入が生ずるので気密性を確保することは容易ではない。一方、完全な気密性を確保するためには複雑特殊かつ高価な密閉構造が必要となる。筐体内を真空にする場合には真空ポンプなどの特殊装置の設置を要するが、これにくわえて複雑高価なシール手段を設置することは材料試験に要する費用が増大して経済的でない。 In order to prevent the test piece from being oxidized by the surrounding atmosphere, the test piece is enclosed in a housing and sealed so as to block the test piece from the atmosphere containing oxygen, and as described above. It is necessary to evacuate the inside of the housing or, as shown in the testing machine of Patent Document 1, to eliminate the atmosphere inside the housing by supplying an inert gas into the housing. When the inside of the housing is evacuated to eliminate the atmosphere, it is necessary to ensure the airtightness of the housing in order to prevent the air from entering from the outside of the housing when the inside of the housing is evacuated. In order to ensure the airtightness of the housing, it is conceivable to use simple and inexpensive sealing means such as packing, O-ring, and bellows for the fitting portion and the sliding portion between the housing and the test device. However, in the case of a test in which the test environment is high temperature or the test time is long, the simple and inexpensive sealing means tends to cause deformation and deterioration due to heat, wear due to sliding, and the like. It is not easy to ensure airtightness because the air invades from outside the body. On the other hand, in order to ensure complete airtightness, a complicated, special and expensive sealed structure is required. When the inside of the housing is evacuated, it is necessary to install a special device such as a vacuum pump, but it is not economical to install a complicated and expensive sealing means in addition to this because the cost required for the material test increases.

また、筐体内に不活性ガスを供給することで筐体内の大気を排除する場合には、筐体内を真空吸引して大気を排出後に不活性ガスを供給して雰囲気を置換するか、或いは特許文献1の試験機で示すように、筐体内の大気を排出しつつ不活性ガスを供給することとなる。何れの場合も筐体内を真空にする場合と同様に筐体の気密性を確保する必要があり、完全な気密性確保のためには、前述のとおり複雑特殊かつ高価な密閉構造が必要となる。くわえて、筐体内の大気を排出しつつ不活性ガスを供給する場合には、密閉構造のみならず大気を排出するための排気構造も必要となり試験装置は一層複雑な構造となる。 In addition, when the atmosphere inside the housing is eliminated by supplying the inert gas into the housing, the inside of the housing is vacuum-sucked to discharge the air, and then the inert gas is supplied to replace the atmosphere, or the patent As shown in the testing machine of Document 1, the inert gas is supplied while discharging the atmosphere inside the housing. In either case, it is necessary to ensure the airtightness of the housing in the same way as when the inside of the housing is evacuated, and in order to ensure complete airtightness, a complicated, special and expensive sealing structure is required as described above. .. In addition, when the inert gas is supplied while discharging the atmosphere inside the housing, not only the closed structure but also the exhaust structure for discharging the atmosphere is required, and the test device becomes a more complicated structure.

なお、特許文献1では、段落0007に「不活性ガスを加熱炉1内に導入すると、やがて加熱炉1内に不活性ガスが充満し、加熱炉1内の残留ガスがすべて加熱炉1と両ロッド4、8とのすきま等から排出され、加熱炉1内は不活性ガスだけの雰囲気となる。」との記載があるように、特定の排気構造を設けることなく、筐体と試験装置の構成部材との嵌合部にある隙間から筐体内の残留ガスである大気を排出する構造としている。この記載から特許文献1の密閉構造は完全な気密性を確保した完全密閉状態ではなく、略密閉状態の構造(以下、略密閉構造ということがある)と考えられる。略密閉構造の場合、シール手段は簡易安価となるものの、気密性が不十分で筐体内の酸素濃度が上昇して試験片の酸化を抑制できない虞があるばかりか、シール手段の経時劣化や大気圧の変化などにより筐体内の酸素濃度が変動して試験片の酸化の程度にバラツキを生じて正確な試験結果を得られない虞がある。 In addition, in Patent Document 1, "when the inert gas is introduced into the heating furnace 1, the inert gas is eventually filled in the heating furnace 1, and all the residual gas in the heating furnace 1 is the heating furnace 1 and both. As described in the statement, "It is discharged from the gap between the rods 4 and 8 and the atmosphere inside the heating furnace 1 is only an inert gas." The structure is such that the atmosphere, which is the residual gas in the housing, is discharged from the gap in the fitting portion with the constituent members. From this description, it is considered that the sealed structure of Patent Document 1 is not a completely sealed structure that ensures complete airtightness, but a substantially sealed structure (hereinafter, may be referred to as a substantially sealed structure). In the case of a substantially sealed structure, the sealing means is simple and inexpensive, but the airtightness is insufficient and the oxygen concentration in the housing may increase and the oxidation of the test piece may not be suppressed. There is a risk that the oxygen concentration in the housing will fluctuate due to changes in air pressure, etc., and the degree of oxidation of the test piece will vary, making it impossible to obtain accurate test results.

さらに、特許文献1の試験装置では、段落0020に「酸素等が加熱炉1内に混入することを防止するために、試験中も不活性ガスの供給は継続することが望ましい」との記載がある。しかし、試験中に不活性ガスの供給を継続することは、試験が長時間に亘る場合、不活性ガスを多量に消費することとなり試験費用が増大して不経済であるのみならず、不活性ガスの排出先が室内である場合は窒息の危険など安全上の問題がある。 Further, in the test apparatus of Patent Document 1, it is described in paragraph 0020 that "it is desirable to continue the supply of the inert gas even during the test in order to prevent oxygen and the like from being mixed into the heating furnace 1." be. However, continuing the supply of the inert gas during the test is not only uneconomical because it consumes a large amount of the inert gas over a long period of time, and the test cost increases, but it is also inert. If the gas is discharged indoors, there are safety issues such as the danger of choking.

本発明の目的は、上記した課題に鑑み、簡易な構造であっても試験雰囲気の酸素濃度の上昇や変動を抑制して、しかも安価かつ安全にガス雰囲気中での強度特性を評価できる材料試験装置及び材料試験方法を提供することにある。 In view of the above-mentioned problems, an object of the present invention is a material test capable of suppressing an increase or fluctuation in oxygen concentration in a test atmosphere even with a simple structure, and evaluating strength characteristics in a gas atmosphere inexpensively and safely. To provide equipment and material test methods.

上記目的を達成するために、本発明は以下のように構成されている。即ち、本発明の材料試験装置は、ガス雰囲気中で試験片に荷重負荷を与える材料試験装置であって、試験片を囲繞する筐体と、前記筐体内の大気を排出する排気手段と、前記筐体内に雰囲気ガスを供給する雰囲気ガス供給手段と、前記筐体内の雰囲気の酸素濃度を測定する酸素濃度測定手段と、前記酸素濃度測定手段で測定された酸素濃度に応じて、前記筐体内が所定の酸素濃度となるように前記雰囲気ガス供給手段を制御する制御手段とを有し、前記排気手段は、前記筐体に固定された大気排出口と、前記筐体の外側に配置された逆止弁と、前記大気排出口から延伸して前記逆止弁に連結し、さらに前記逆止弁から延伸して建屋外に連通して大気開放される配管からなることを特徴とする。
In order to achieve the above object, the present invention is configured as follows. That is, the material test apparatus of the present invention is a material test apparatus that applies a load to a test piece in a gas atmosphere, and includes a housing that surrounds the test piece, an exhaust means that exhausts the atmosphere inside the housing, and the above. According to the atmosphere gas supply means for supplying the atmosphere gas into the housing, the oxygen concentration measuring means for measuring the oxygen concentration of the atmosphere in the housing, and the oxygen concentration measured by the oxygen concentration measuring means, the inside of the housing is It has a control means for controlling the atmospheric gas supply means so as to have a predetermined oxygen concentration, and the exhaust means has an atmospheric discharge port fixed to the housing and an inverse arranged outside the housing. It is characterized by comprising a stop valve and a pipe extending from the air discharge port and connected to the check valve, and further extending from the check valve to communicate with the outside of the building and open to the atmosphere .

本発明の材料試験装置は、前記試験片を加熱する加熱手段をさらに備えることで、試験片の高温低サイクル疲労試験を行なう材料試験装置とすることができる。また、本発明の材料試験装置は、前記試験片を加熱冷却する加熱冷却手段をさらに備え、前記加熱冷却手段を構成する冷却手段には前記雰囲気ガスを冷媒として試験片に吹き付けるノズルを有することで、試験片の熱疲労試験を行なう材料試験装置とすることができる。
The material test apparatus of the present invention can be a material test apparatus for performing a high-temperature low-cycle fatigue test on a test piece by further providing a heating means for heating the test piece. Further, the material test apparatus of the present invention further includes a heating / cooling means for heating / cooling the test piece, and the cooling means constituting the heating / cooling means has a nozzle for blowing the atmospheric gas as a refrigerant onto the test piece. Therefore, it can be used as a material test device for performing a thermal fatigue test on a test piece.

本発明の材料試験方法は、試験片を囲繞した筐体内に雰囲気ガスを供給しつつ筐体内の大気を前記筐体の外部に排出して前記筐体内を前記雰囲気ガスで置換する工程と
前記置換する工程によって低下する前記筐体内の酸素濃度を随時測定しつつ、前記雰囲気ガスの供給を制御する工程と、を有し、前記筐体内を所定の酸素濃度に維持しながら前記試験片に荷重負荷を与えることを特徴とする。
The material test method of the present invention comprises a step of supplying atmospheric gas into a housing surrounding the test piece, discharging the air inside the housing to the outside of the housing, and replacing the inside of the housing with the atmospheric gas .
The test piece has a step of controlling the supply of the atmospheric gas while measuring the oxygen concentration in the housing , which is lowered by the replacement step, while maintaining the inside of the housing at a predetermined oxygen concentration. It is characterized by applying a load .

本発明の材料試験方法は、前記酸素濃度を大気中の酸素濃度以下の任意の濃度に設定して試験を行なうことができる。 In the material test method of the present invention, the test can be performed by setting the oxygen concentration to an arbitrary concentration equal to or lower than the oxygen concentration in the atmosphere.

本発明の材料試験方法は、前記試験片を加熱する工程をさらに有することで前記試験片を所定の試験温度に保持して前記試験片に引張・圧縮の荷重負荷を与える高温低サイクル疲労試験とすることができる。また、本発明の材料試験方法は、前記試験片を拘束して加熱冷却する工程をさらに有することで前記試験片に加熱と冷却による温度変化を繰り返し与えて熱疲労破壊を起こさせる熱疲労寿命試験とすることができる。 The material test method of the present invention further includes a step of heating the test piece, thereby holding the test piece at a predetermined test temperature and applying a tensile / compressive load to the test piece in a high-temperature low-cycle fatigue test. Can be. Further, the material test method of the present invention further includes a step of restraining the test piece and heating and cooling it, whereby the test piece is repeatedly subjected to temperature changes due to heating and cooling to cause thermal fatigue fracture. It can be a test .

本発明によれば、上述した構成を具備することで、簡易な構造であっても試験雰囲気の酸素濃度の上昇や変動を抑制して、しかも安価かつ安全にガス雰囲気中での強度特性を評価できる材料試験装置及び材料試験方法を提供することができる。 According to the present invention, by providing the above-mentioned configuration, it is possible to suppress an increase or fluctuation in the oxygen concentration in the test atmosphere even with a simple structure, and to evaluate the strength characteristics in a gas atmosphere inexpensively and safely. It is possible to provide a material test device and a material test method that can be used.

本発明の実施の形態1に係る材料試験装置の概略構成図である。It is a schematic block diagram of the material test apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る材料試験装置の加熱冷却コイルの断面図である。It is sectional drawing of the heating and cooling coil of the material test apparatus which concerns on Embodiment 2 of this invention.

以下、本発明の実施の形態について、図面を参照してさらに詳しく説明する。なお、本発明は以下の実施の形態により何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. The present invention is not limited to the following embodiments.

(実施の形態1)
実施の形態1では、本発明の材料試験装置及び材料試験方法のうち、試験片を加熱して行なう試験の一例として、ガス雰囲気中において、評価対象の金属材料からなる試験片を一定の温度に保持して、一定の歪み振幅で引張・圧縮の荷重負荷を与えることで、試験片に繰返し歪みを加除することで熱疲労破壊を起こさせる高温低サイクル疲労試験(LCF:Low-Cycle Fatigue)を行う試験装置及びその試験方法を例示するものである。
(Embodiment 1)
In the first embodiment, among the material test apparatus and the material test method of the present invention, as an example of a test performed by heating a test piece, a test piece made of a metal material to be evaluated is brought to a constant temperature in a gas atmosphere. A high-temperature low-cycle fatigue test (LCF) that causes thermal fatigue fracture by repeatedly applying and removing strain to a test piece by holding it and applying a tensile / compressive load with a constant strain amplitude. The test apparatus to be performed and the test method thereof are exemplified.

図1は、実施の形態1に係る材料試験装置の概略構成図を示す。図1で、材料試験装置1は、テーブル2と、テーブル2上に立設固定された複数のコラム4と、コラム4に昇降可能に支持固定されるクロスヘッド3と、テーブル2の下方に設置される図示しない電動又は油圧ポンプを駆動源として作動する荷重負荷手段と、を備えている。クロスヘッド3には固定ロッド5が固定され、固定ロッド5の先端に上側のチャック5aが装着され、また荷重負荷手段にはテーブル2を貫通して上方に延出する負荷ロッド6が連結され、負荷ロッド6の先端に下側のチャック6aが装着されている。試験片10は、その両端が上下一対のチャック5a、6aで把持固定されて材料試験機1に取り付け保持されている。 FIG. 1 shows a schematic configuration diagram of the material test apparatus according to the first embodiment. In FIG. 1, the material test apparatus 1 is installed below a table 2, a plurality of columns 4 erected and fixed on the table 2, a crosshead 3 supported and fixed so as to be able to move up and down on the column 4, and a table 2. It is provided with a load-bearing means that operates by using an electric or hydraulic pump (not shown) as a drive source. A fixed rod 5 is fixed to the crosshead 3, an upper chuck 5a is attached to the tip of the fixed rod 5, and a load rod 6 penetrating the table 2 and extending upward is connected to the load loading means. A lower chuck 6a is attached to the tip of the load rod 6. Both ends of the test piece 10 are gripped and fixed by a pair of upper and lower chucks 5a and 6a, and are attached and held to the material testing machine 1.

高温での試験片10の疲労寿命を評価するため、試験片10は加熱手段71により加熱、保持されて試験に供される。加熱手段71は、図1に示すリング状の加熱コイル72、何れも図示しない高周波誘導加熱装置、温度調整装置及び温度センサから構成されている。 In order to evaluate the fatigue life of the test piece 10 at a high temperature, the test piece 10 is heated and held by the heating means 71 and subjected to the test. The heating means 71 includes a ring-shaped heating coil 72 shown in FIG. 1, a high-frequency induction heating device (not shown), a temperature control device, and a temperature sensor.

加熱コイル72は、試験片10の外周を囲むように設置されるとともに、高周波誘導加熱装置に接続され、高周波誘導加熱装置から加熱コイル72に高周波電流が流されて試験片10を誘導加熱する。高周波誘導加熱装置は、一端を加熱コイル72に、他端を図示しない温度調整装置に接続され、温度調整装置は、試験片10の表面に貼付けた図示しない温度センサに接続されている。温度調整装置は、温度調整装置に予め設定された所定温度と温度センサの計測温度とに基づいて、加熱コイル72に通電する高周波誘導加熱装置からの高周波電流を制御して、試験片10を所定の試験温度(例えば、900℃)に加熱、保持する。試験片10の加熱手段としては、誘導加熱に限定されず、それ以外の加熱手段として抵抗加熱や赤外線加熱を用いても良い。なお、上記した他に、材料試験装置1は、試験片10に作用する荷重を測定するロードセル、試験片10に生ずるひずみを測定する変位計等を付設されて強度特性を計測できるようにしている。 The heating coil 72 is installed so as to surround the outer periphery of the test piece 10, is connected to a high frequency induction heating device, and a high frequency current is passed from the high frequency induction heating device to the heating coil 72 to induce and heat the test piece 10. The high frequency induction heating device is connected to a heating coil 72 at one end and a temperature control device (not shown) at the other end, and the temperature control device is connected to a temperature sensor (not shown) attached to the surface of the test piece 10. The temperature control device controls the high frequency current from the high frequency induction heating device that energizes the heating coil 72 based on the predetermined temperature preset in the temperature control device and the measured temperature of the temperature sensor, and determines the test piece 10. Heat and maintain at the test temperature of (for example, 900 ° C.). The heating means of the test piece 10 is not limited to induction heating, and resistance heating or infrared heating may be used as other heating means. In addition to the above, the material test apparatus 1 is provided with a load cell for measuring the load acting on the test piece 10, a displacement meter for measuring the strain generated on the test piece 10, and the like so that the strength characteristics can be measured. ..

実施の形態1の材料試験装置1は、上述した荷重負荷手段及び加熱手段71等の従来知られた構成を備えた高温低サイクル疲労試験装置である。実施の形態1の材料試験装置1は、さらに、本発明の特徴となる構成として、試験片10等を囲繞して収納する筐体11、排気手段21、雰囲気ガス供給手段31、酸素濃度測定手段41及び制御手段51を備えることで、ガス雰囲気中での高温低サイクル疲労試験を可能としている。 The material test apparatus 1 of the first embodiment is a high-temperature low-cycle fatigue test apparatus having a conventionally known configuration such as the load-bearing means and the heating means 71 described above. Further, the material test apparatus 1 of the first embodiment has a housing 11, an exhaust means 21, an atmospheric gas supply means 31, an oxygen concentration measuring means, which surrounds and stores the test piece 10 and the like, as a configuration characterized by the present invention. By providing the 41 and the control means 51, a high temperature and low cycle fatigue test in a gas atmosphere is possible.

即ち、材料試験装置1は、試験片10を囲繞し収納する筐体11と、筐体11に連設され筐体11内の大気を排出する排気手段21と、筐体11に連設され筐体11内に雰囲気ガスを供給する雰囲気ガス供給手段31と、筐体11内に設置され筐体11内の雰囲気の酸素濃度を測定する酸素濃度計からなる酸素濃度測定手段41と、酸素濃度測定手段41で測定された酸素濃度に応じて、筐体11内が所定の酸素濃度となるように雰囲気ガス供給手段31を制御する制御手段51と、を有している。 That is, the material test apparatus 1 is connected to a housing 11 that surrounds and stores the test piece 10, an exhaust means 21 that is connected to the housing 11 and exhausts the air inside the housing 11, and a housing that is connected to the housing 11. An atmosphere gas supply means 31 that supplies an atmosphere gas into the body 11, an oxygen concentration measuring means 41 that consists of an oxygen concentration meter installed in the housing 11 and measuring the oxygen concentration of the atmosphere in the housing 11, and an oxygen concentration measurement. It has a control means 51 for controlling the atmosphere gas supply means 31 so that the inside of the housing 11 has a predetermined oxygen concentration according to the oxygen concentration measured by the means 41.

筐体11は、その外周壁を材料試験装置1を構成する複数のコラム4、固定ロッド5及び負荷ロッド6が貫通している。筐体11は、その外周壁と、それを貫通する複数のコラム4、固定ロッド5及び負荷ロッド6と、の嵌合部がパッキン等によりシールされて、後述する筐体11内に供給される雰囲気ガスを外部に漏らさないとともに、筐体11外から筐体11内に大気が侵入しないよう気密状態を保持した密閉構造としている。なお、筐体11は、完全な気密状態でなくともよく、筐体11内を雰囲気ガスで置換して弱陽圧に保つことのできる程度の雰囲気調整能力を有する略密閉構造のものであればよい。筐体11を簡易安価なシール手段からなる略密閉構造で構成することで、材料試験に要する費用を節約できる。なお、実施の形態1においては、筐体11を複数のコラム4、固定ロッド5及び負荷ロッド6が貫通した態様を示したが、これは一例に過ぎず、例えば筐体11の容積をより小さくして、筐体11を固定ロッド5及び負荷ロッド6のみが貫通した態様としてもよいし、筐体11の容積をさらに小さくして、筐体11をチャック5a、6aのみが貫通した態様としてもよい。 The outer peripheral wall of the housing 11 is penetrated by a plurality of columns 4, a fixing rod 5, and a load rod 6 constituting the material test device 1. The outer peripheral wall of the housing 11 and the fitting portions of the plurality of columns 4, the fixing rod 5, and the load rod 6 penetrating the outer wall thereof are sealed by packing or the like and supplied into the housing 11 described later. It has a sealed structure that does not leak atmospheric gas to the outside and maintains an airtight state so that the atmosphere does not enter the housing 11 from the outside of the housing 11. The housing 11 does not have to be in a completely airtight state, and is a substantially airtight structure having an atmosphere adjusting ability capable of replacing the inside of the housing 11 with an atmospheric gas to maintain a weak positive pressure. good. By configuring the housing 11 with a substantially sealed structure composed of simple and inexpensive sealing means, the cost required for the material test can be saved. In the first embodiment, a mode in which a plurality of columns 4, a fixing rod 5, and a load rod 6 penetrate the housing 11 is shown, but this is only an example, for example, the volume of the housing 11 is made smaller. Then, the housing 11 may be penetrated only by the fixed rod 5 and the load rod 6, or the housing 11 may be further reduced in volume so that only the chucks 5a and 6a penetrate the housing 11. good.

筐体11には、筐体11内をガス雰囲気とするために、大気排出口22を介して排気手段21及びガス供給口32を介して雰囲気ガス供給手段31がそれぞれ連設している。 In order to create a gas atmosphere inside the housing 11, the housing 11 is provided with an exhaust means 21 via the atmosphere discharge port 22 and an atmosphere gas supply means 31 via the gas supply port 32, respectively.

排気手段21は、筐体11に固定さた大気排出口22、大気排出口22の下流に配置された逆止弁23及び逆止弁23から下流へ延びる配管を有し、該配管は建屋外に連通している。雰囲気ガス供給手段31は、筐体11に固定されたガス供給口32、ガス供給口32の上流に配置された流量制御弁33及び流量制御弁33から上流へ延びる配管を有し、該配管は窒素を収容する不活性ガス源34に連通しており、流量制御弁33を開くことで筐体11内に不活性ガスを供給することができる。なお、不活性ガス源34としては窒素の他にアルゴン、炭酸ガス又はヘリウム等を用いることができる。また不活性ガス源34としては具体的には気体ガスボンベや液化ガスボンベを用いることができる。 The exhaust means 21 has an air discharge port 22 fixed to the housing 11, a check valve 23 arranged downstream of the air discharge port 22, and a pipe extending downstream from the check valve 23, and the pipe is outside the building. Communicate with. The atmosphere gas supply means 31 has a gas supply port 32 fixed to the housing 11, a flow rate control valve 33 arranged upstream of the gas supply port 32, and a pipe extending upstream from the flow rate control valve 33. It communicates with an inert gas source 34 accommodating nitrogen, and the inert gas can be supplied into the housing 11 by opening the flow rate control valve 33. As the inert gas source 34, argon, carbon dioxide gas, helium or the like can be used in addition to nitrogen. Specifically, as the inert gas source 34, a gas gas cylinder or a liquefied gas cylinder can be used.

酸素濃度測定手段41は、筐体11内に付設して筐体11内の酸素濃度を測定検出するとともに制御手段51にその測定結果を出力する。酸素濃度測定手段41としては、酸素濃度計や酸素センサなどの検出手段を採用できる。制御手段51は、雰囲気ガス供給手段31の流路上の流量制御弁33と酸素濃度測定手段41とに接続している。制御手段51は、材料試験に先立って筐体11内の酸素濃度を予め設定する酸素濃度設定機能と、酸素濃度測定手段41での計測酸素濃度とに基づいて、雰囲気ガス供給手段31の流量制御弁33に弁の開閉信号を出力する機能とを備える。そして制御手段51は、酸素濃度測定手段41で計測された酸素濃度に応じて、雰囲気ガス供給手段31を制御、即ち流量制御弁33の開閉を制御することで、所望の流量の雰囲気ガスを筐体11内に供給して筐体11内が所定の酸素濃度となるように維持する。 The oxygen concentration measuring means 41 is provided inside the housing 11 to measure and detect the oxygen concentration in the housing 11, and outputs the measurement result to the control means 51. As the oxygen concentration measuring means 41, a detecting means such as an oxygen concentration meter or an oxygen sensor can be adopted. The control means 51 is connected to the flow rate control valve 33 on the flow path of the atmospheric gas supply means 31 and the oxygen concentration measuring means 41. The control means 51 controls the flow rate of the atmospheric gas supply means 31 based on the oxygen concentration setting function for presetting the oxygen concentration in the housing 11 prior to the material test and the oxygen concentration measured by the oxygen concentration measuring means 41. The valve 33 is provided with a function of outputting a valve open / close signal. Then, the control means 51 controls the atmospheric gas supply means 31 according to the oxygen concentration measured by the oxygen concentration measuring means 41, that is, controls the opening and closing of the flow rate control valve 33, thereby charging the atmospheric gas at a desired flow rate. It is supplied into the body 11 and maintained so that the inside of the housing 11 has a predetermined oxygen concentration.

次に実施の形態1の材料試験装置1を用いた材料試験方法について説明する。上述のように構成した材料試験装置1に、チャック5a、6aにより試験片10を固定した後、試験片10を筐体11で囲繞する。次いで、加熱手段71を作動して加熱コイル72により試験片10を所定の試験温度に加熱、保持する。一方、雰囲気ガス供給手段31により筐体11内に雰囲気ガスとなる窒素を供給しつつ、排気手段21により筐体11内の大気を外部に排出する。この際、筐体11内の大気及び雰囲気ガス供給手段31から供給される余剰な窒素は、排気手段21の大気排出口22から排出されて、筐体11内は酸素を含んだ大気から窒素からなる不活性ガス主体の雰囲気に置換される。即ち、実施の形態1の材料試験方法では、試験片10を囲繞した筐体11内に雰囲気ガスを供給しつつ大気を排出して筐体11内の雰囲気を置換する。 Next, a material test method using the material test apparatus 1 of the first embodiment will be described. After fixing the test piece 10 to the material test device 1 configured as described above by the chucks 5a and 6a, the test piece 10 is surrounded by the housing 11. Next, the heating means 71 is operated to heat and hold the test piece 10 to a predetermined test temperature by the heating coil 72. On the other hand, while the atmospheric gas supply means 31 supplies nitrogen as an atmospheric gas into the housing 11, the exhaust means 21 discharges the atmosphere inside the housing 11 to the outside. At this time, the excess nitrogen supplied from the atmospheric and atmospheric gas supply means 31 in the housing 11 is discharged from the atmospheric discharge port 22 of the exhaust means 21, and the inside of the housing 11 is from nitrogen from the atmosphere containing oxygen. It is replaced with an atmosphere mainly composed of inert gas. That is, in the material test method of the first embodiment, the atmosphere in the housing 11 is replaced by discharging the atmosphere while supplying the atmosphere gas into the housing 11 surrounding the test piece 10.

筐体11内の雰囲気の置換についてより具体的に説明すると、雰囲気ガス供給手段31の流量制御弁33を開き、不活性ガス源34から吐出した窒素をガス供給口32から筐体11内に送る。窒素の供給にともなって、筐体11内の大気は、大気排出口22とその下流に配置した逆止弁23を経由して建屋外に排出されて筐体11内の酸素濃度は低下していく。ここで、筐体11から建屋外に排出される大気は、逆止弁23により再び筐体11内に逆流することはない。酸素濃度測定手段41は、筐体11内の酸素濃度を随時、測定して、その測定結果を制御手段51に出力する。制御手段51は、酸素濃度測定手段41で測定した酸素濃度が予め設定した所定の酸素濃度に達した時点で流量制御弁33に弁を閉じる信号を出力し、流量制御弁33は弁を閉じて窒素の供給を停止する。 More specifically, the replacement of the atmosphere in the housing 11 is described by opening the flow control valve 33 of the atmosphere gas supply means 31 and sending the nitrogen discharged from the inert gas source 34 into the housing 11 from the gas supply port 32. .. With the supply of nitrogen, the atmosphere inside the housing 11 is discharged to the outside of the building via the atmosphere discharge port 22 and the check valve 23 arranged downstream thereof, and the oxygen concentration in the housing 11 decreases. go. Here, the air discharged from the housing 11 to the outside of the building does not flow back into the housing 11 by the check valve 23. The oxygen concentration measuring means 41 measures the oxygen concentration in the housing 11 at any time, and outputs the measurement result to the control means 51. The control means 51 outputs a signal to close the valve to the flow control valve 33 when the oxygen concentration measured by the oxygen concentration measuring means 41 reaches a predetermined oxygen concentration set in advance, and the flow control valve 33 closes the valve. Stop the supply of oxygen.

なお、加熱コイル72による試験片10の加熱と、筐体11内の雰囲気の置換と、の順番は順不同であって、両者を同時に行ってもよく、何れか一方を先行して行ってもよい。試験の開始初期の試験片10の僅かな酸化を抑制する観点からは、筐体11内の雰囲気の置換を先行して行った後、加熱コイル72による試験片10の加熱を行うことが好ましい。 The order of heating the test piece 10 by the heating coil 72 and replacing the atmosphere in the housing 11 is in no particular order, and both may be performed at the same time, or either one may be performed in advance. .. From the viewpoint of suppressing slight oxidation of the test piece 10 at the initial stage of the start of the test, it is preferable to heat the test piece 10 by the heating coil 72 after replacing the atmosphere in the housing 11 in advance.

上記のとおり、筐体11内を大気から窒素に置換することで、試験片10が所定の酸素濃度のガス雰囲気で取り囲まれることとなり、試験片10を高温にする材料試験であっても試験片10の酸化が抑制されるので、酸化の影響を排除した材料試験が可能となる。 As described above, by substituting the inside of the housing 11 with nitrogen from the atmosphere, the test piece 10 is surrounded by a gas atmosphere having a predetermined oxygen concentration, and even in a material test in which the test piece 10 is heated to a high temperature, the test piece 10 is used. Since the oxidation of 10 is suppressed, a material test excluding the influence of oxidation becomes possible.

次に、所定の酸素濃度からなるガス雰囲気中におかれ、所定の試験温度に加熱、保持された状態にある試験片10に対して、図示しない荷重負荷手段を作動し、荷重負荷手段に連結した負荷ロッド6を介して、試験片10に所要の引張・圧縮の荷重を繰返し作用させて負荷を与えることによって高温低サイクル疲労試験を行なう。 Next, a load-bearing means (not shown) is operated on the test piece 10 which is placed in a gas atmosphere having a predetermined oxygen concentration and is heated and held at a predetermined test temperature, and is connected to the load-bearing means. A high-temperature low-cycle fatigue test is performed by repeatedly applying a required tensile / compressive load to the test piece 10 via the loaded load rod 6.

ここで、試験中の材料試験装置1の動作と作用について説明する。実施の形態1の材料試験方法では、筐体11内の酸素濃度を随時測定しつつ雰囲気ガスの供給を制御することで、筐体11内を所定の酸素濃度に維持しながら試験を行なう。材料試験装置1の筐体11は、略密閉構造であるため、試験中に筐体11の外周壁と、負荷ロッド6等の材料試験装置1の構成部材との嵌合部に存在する僅かな隙間を通して、筐体11内の雰囲気ガスが漏洩する一方で、筐体11外から大気が侵入して酸素濃度が上昇、変動することがある。しかしながら、実施の形態1の材料試験方法によれば、試験中の筐体11内の酸素濃度の上昇や変動を抑制することが可能となる。 Here, the operation and operation of the material test apparatus 1 under test will be described. In the material test method of the first embodiment, the test is performed while maintaining the inside of the housing 11 at a predetermined oxygen concentration by controlling the supply of atmospheric gas while measuring the oxygen concentration in the housing 11 at any time. Since the housing 11 of the material test device 1 has a substantially sealed structure, a small amount of the housing 11 present in the fitting portion between the outer peripheral wall of the housing 11 and the constituent members of the material test device 1 such as the load rod 6 during the test. While the atmospheric gas inside the housing 11 leaks through the gap, the atmosphere may enter from the outside of the housing 11 and the oxygen concentration may increase or fluctuate. However, according to the material test method of the first embodiment, it is possible to suppress an increase or fluctuation in the oxygen concentration in the housing 11 during the test.

即ち、酸素濃度測定手段41は、試験中随時、筐体11内の酸素濃度を測定検出している。筐体11外から侵入した大気によって筐体11内の酸素濃度が、制御手段51で設定した所定の酸素濃度を超えると、制御手段51は、流量制御弁33を開ける信号を出力し、流量制御弁33は、弁を開けて不活性ガス源34から筐体11内に窒素を供給する。窒素の供給により余剰となった筐体11内の雰囲気ガスは、排気手段21の大気排出口22から排出されて逆止弁23を通過し、排気手段21の配管を経由して建屋外に大気開放される。そして雰囲気ガス供給手段31からの窒素の供給により、筐体11内の酸素濃度が所定の酸素濃度以下となると流量制御弁33が閉じて窒素の供給を停止する。 That is, the oxygen concentration measuring means 41 measures and detects the oxygen concentration in the housing 11 at any time during the test. When the oxygen concentration in the housing 11 exceeds the predetermined oxygen concentration set by the control means 51 due to the atmosphere invading from the outside of the housing 11, the control means 51 outputs a signal for opening the flow rate control valve 33 to control the flow rate. The valve 33 opens the valve and supplies nitrogen from the inert gas source 34 into the housing 11. Atmospheric gas in the housing 11 that is surplus due to the supply of nitrogen is discharged from the atmospheric exhaust port 22 of the exhaust means 21, passes through the check valve 23, and passes through the piping of the exhaust means 21 to the atmosphere outside the building. Be released. Then, when the oxygen concentration in the housing 11 becomes equal to or lower than the predetermined oxygen concentration due to the supply of nitrogen from the atmosphere gas supply means 31, the flow rate control valve 33 closes and the supply of nitrogen is stopped.

このように、酸素濃度測定手段41、制御手段51及び流量制御弁33の連動により、筐体11内の酸素濃度を随時測定しつつ窒素の供給を制御することで、筐体11の外周壁と材料試験装置1の構成部材との嵌合部の隙間に起因して又は材料試験装置1のシール手段の経時劣化や大気圧の変化により、筐体11内に大気が侵入して試験中に筐体11内の酸素濃度が上昇したり変動したりすることを抑制する。これにより、酸素による酸化の影響を排除して材料の強度特性を把握、評価することが可能となる。 In this way, by interlocking the oxygen concentration measuring means 41, the control means 51, and the flow rate control valve 33, the supply of nitrogen is controlled while measuring the oxygen concentration in the housing 11 at any time, so that the outer wall of the housing 11 can be contacted. Atmosphere invades into the housing 11 due to the gap between the fitting portion of the material test device 1 and the fitting portion, or due to the deterioration of the sealing means of the material test device 1 over time or the change in atmospheric pressure, and the housing during the test. It suppresses the rise and fluctuation of the oxygen concentration in the body 11. This makes it possible to eliminate the influence of oxidation by oxygen and grasp and evaluate the strength characteristics of the material.

また、実施の形態1の材料試験装置1によれば、材料試験に必要な費用を抑制できる。材料試験装置1は、真空ポンプなどの特殊装置や複雑高価なシール手段の設置が不要なので装置自体の設備コストを抑制できる。さらに上記したとおり、実施の形態1の材料試験方法によれば、筐体11内の酸素濃度に応じて窒素の供給を制御しているので高価な不活性ガスの使用量を節約できる。即ち、従来知られた特許文献1の試験装置を用いた試験方法のように試験雰囲気に酸素が侵入することを防止するために試験中も不活性ガスの供給を継続する試験方法では、疲労試験のように試験時間が長時間に亘る場合に多量の不活性ガスを消費することとなる。これに対して実施の形態1の材料試験方法によれば、試験中に継続して不活性ガスを供給するのではなく、筐体11に侵入する大気による酸素濃度の上昇を抑制するに必要な窒素のみを筐体11内に供給する。このため、疲労試験のように試験時間が長時間であっても筐体11内に供給する窒素は少量で済むのでランニングコストを抑制できる。このように実施の形態1の材料試験装置1及び材料試験方法では、設備コストとランニングコストの両方を抑制できるので、試験費用を安価にできる。 Further, according to the material test apparatus 1 of the first embodiment, the cost required for the material test can be suppressed. Since the material test device 1 does not require the installation of a special device such as a vacuum pump or complicated and expensive sealing means, the equipment cost of the device itself can be suppressed. Further, as described above, according to the material test method of the first embodiment, since the supply of nitrogen is controlled according to the oxygen concentration in the housing 11, the amount of expensive inert gas used can be saved. That is, the fatigue test is a test method in which the supply of the inert gas is continued even during the test in order to prevent oxygen from entering the test atmosphere, as in the test method using the test device of Patent Document 1 which has been known conventionally. When the test time is long, a large amount of inert gas is consumed. On the other hand, according to the material test method of the first embodiment, it is necessary to suppress the increase in oxygen concentration due to the atmosphere invading the housing 11 instead of continuously supplying the inert gas during the test. Only nitrogen is supplied into the housing 11. Therefore, even if the test time is long as in the fatigue test, a small amount of nitrogen is supplied to the housing 11, so that the running cost can be suppressed. As described above, in the material test apparatus 1 and the material test method of the first embodiment, both the equipment cost and the running cost can be suppressed, so that the test cost can be reduced.

さらに、実施の形態1の材料試験装置1によれば、排気手段21の配管が建屋外に連通しているので安全である。即ち、所定の酸素濃度を維持するために筐体11内に供給される窒素の供給量に応じて、筐体11からは余剰な雰囲気ガスが筐体11外に排出される。その際、排出される雰囲気ガスは、筐体11の外周壁と材料試験装置1の構成部材との嵌合部の隙間ではなく、そのほとんどが排気手段21を経由して筐体11外に排出される。これは、前記隙間の流路抵抗と排気手段21の配管の流路抵抗を比較すると、前者よりも後者が遙かに小さいため、雰囲気ガスはより流れやすい排気手段21を経由して排出されるためである。実施の形態1の材料試験装置1おいては、建屋外に連通する配管を含む排気手段21を設けたことで、筐体11内から前記隙間を介して漏洩する窒素は極微量であって、材料試験装置1の設置された室内など建屋の内部に充満しないので窒息の危険性が低く、安全上の問題を回避できる。 Further, according to the material test apparatus 1 of the first embodiment, it is safe because the piping of the exhaust means 21 communicates with the outside of the building. That is, excess atmospheric gas is discharged from the housing 11 to the outside of the housing 11 according to the amount of nitrogen supplied into the housing 11 in order to maintain a predetermined oxygen concentration. At that time, most of the exhausted atmospheric gas is discharged to the outside of the housing 11 via the exhaust means 21, not the gap between the outer peripheral wall of the housing 11 and the fitting portion of the component of the material test device 1. Will be done. This is because when comparing the flow path resistance of the gap with the flow path resistance of the piping of the exhaust means 21, the latter is much smaller than the former, so that the atmospheric gas is discharged via the exhaust means 21 which is easier to flow. Because. In the material test apparatus 1 of the first embodiment, since the exhaust means 21 including the pipe communicating with the outside of the building is provided, the amount of nitrogen leaking from the inside of the housing 11 through the gap is extremely small. Since the inside of the building such as the room where the material test apparatus 1 is installed is not filled, the risk of suffocation is low and safety problems can be avoided.

くわえて、実施の形態1の材料試験方法によれば、酸素を含む大気雰囲気による酸化の影響を排除した材料試験を可能ならしめる一方で、酸素濃度設定機能を有する制御手段51によって筐体11内の酸素濃度を任意に設定することで、所望の酸化性のガス雰囲気中で材料試験を実施することができる。これによって、大気中の酸素濃度(約21%)以下であって、かつ特定の酸素濃度を有するガス雰囲気中で使用される材料の強度特性を評価できるという効果を奏する。 In addition, according to the material test method of the first embodiment, it is possible to perform a material test excluding the influence of oxidation due to an atmospheric atmosphere containing oxygen, while the inside of the housing 11 is provided with a control means 51 having an oxygen concentration setting function. By arbitrarily setting the oxygen concentration of, the material test can be carried out in a desired oxidizing gas atmosphere. This has the effect of being able to evaluate the strength characteristics of the material used in a gas atmosphere having an oxygen concentration (about 21%) or less in the atmosphere and having a specific oxygen concentration.

例えば自動車のエンジンに付設されるターボチャージャー(過給機)のタービンハウジング等の排気系部品は、高温で酸化性の排気ガスに曝される。自動車のエンジンは、ガソリンエンジンやディーゼルエンジンなどエンジンの種別や、エンジン毎の固有の燃焼特性によって、その燃焼室から排出される排気ガスの温度や成分が相違し、これらの相違が排気系部品の耐熱性、耐久性等に大きな影響を及ぼしている。排気ガスの酸化性の程度は、排気ガスの温度と排気ガス中の酸素濃度とによりほぼ決定づけられる。排気ガス中の酸素濃度(酸素含有量の容量比)は、例えばガソリンエンジンでは0.01~5%程度、ディーゼルエンジンでは5~21%程度となる。 For example, exhaust system parts such as a turbine housing of a turbocharger (supercharger) attached to an automobile engine are exposed to oxidative exhaust gas at a high temperature. The temperature and composition of the exhaust gas emitted from the combustion chamber of an automobile engine differ depending on the type of engine such as a gasoline engine or diesel engine and the unique combustion characteristics of each engine, and these differences are the differences in the exhaust system parts. It has a great influence on heat resistance, durability, etc. The degree of oxidation of the exhaust gas is largely determined by the temperature of the exhaust gas and the oxygen concentration in the exhaust gas. The oxygen concentration (capacity ratio of oxygen content) in the exhaust gas is, for example, about 0.01 to 5% for a gasoline engine and about 5 to 21% for a diesel engine.

排気系部品を構成する材料の強度特性は、実際のエンジンから排出される排気ガスの温度や酸素濃度と同等の条件となるように試験雰囲気を設定して評価する必要がある。実施の形態1の材料試験方法によれば、筐体11内のガス雰囲気を、任意かつ所定の酸素濃度に設定して、しかもその上昇や変動を抑制して安定に維持しながら材料試験することが可能である。即ち、実施の形態1の材料試験方法では、酸素濃度を大気中の酸素濃度以下の任意の濃度に設定して試験を行なうことができる。 It is necessary to evaluate the strength characteristics of the materials constituting the exhaust system parts by setting the test atmosphere so that the conditions are the same as the temperature and oxygen concentration of the exhaust gas discharged from the actual engine. According to the material test method of the first embodiment, the gas atmosphere in the housing 11 is set to an arbitrary and predetermined oxygen concentration, and the material test is performed while suppressing the rise and fluctuation of the gas atmosphere and maintaining the stability. Is possible. That is, in the material test method of the first embodiment, the test can be performed by setting the oxygen concentration to an arbitrary concentration equal to or lower than the oxygen concentration in the atmosphere.

上述のとおり、実施の形態1に示した構成を具備することで、本発明の材料試験装置及び材料試験方法は、その装置が略密閉構造を含む簡易な構造であっても、試験片を取り巻く試験雰囲気の酸素濃度の上昇や変動を抑制して、所定の酸素濃度を安定に維持した状態で、しかも安価かつ安全にガス雰囲気中での高温低サイクル疲労試験を行うことができる。 As described above, by providing the configuration shown in the first embodiment, the material test apparatus and the material test method of the present invention surround the test piece even if the apparatus has a simple structure including a substantially sealed structure. It is possible to perform a high-temperature low-cycle fatigue test in a gas atmosphere inexpensively and safely while suppressing an increase or fluctuation in the oxygen concentration in the test atmosphere and maintaining a predetermined oxygen concentration in a stable manner.

(実施の形態2)
実施の形態1では、一定の高温下での疲労試験について例示したが、実施の形態2では温度変動試験、即ち熱疲労寿命試験について例示する。実施の形態2では、本発明の材料試験装置及び材料試験方法のうち、試験片を加熱冷却して行なう試験の一例として、ガス雰囲気中において、評価対象の金属材料からなる試験片を拘束して加熱と冷却による温度振幅(温度変化)を繰返し与えることで、加熱冷却にともなう膨張収縮を機械的に拘束して試験片に熱応力(熱歪み)を生じさせて熱疲労破壊を起こさせる熱疲労寿命試験(TMF:Thermo-Mechanical Fatigue)を行う試験装置及びその試験方法を例示するものである。
(Embodiment 2)
In the first embodiment, the fatigue test under a constant high temperature is exemplified, but in the second embodiment, the temperature fluctuation test, that is, the thermal fatigue life test is exemplified. In the second embodiment, among the material test apparatus and the material test method of the present invention, as an example of a test performed by heating and cooling the test piece, the test piece made of the metal material to be evaluated is restrained in a gas atmosphere. By repeatedly applying the temperature amplitude (temperature change) due to heating and cooling, the expansion and contraction associated with heating and cooling are mechanically restrained, causing thermal stress (thermal strain) in the test piece and causing thermal fatigue fracture. It exemplifies a test apparatus for performing a life test (TMF: Thermo-Mechanical Fatigue) and a test method thereof.

実施の形態2の材料試験装置は、後述する加熱冷却手段において、試験片の冷却のための冷媒として雰囲気ガスを用いる点を除き、それ以外は、実施の形態1と同様のテーブル、コラム、クロスヘッド及び試験片を把持固定するチャックと、試験片に対して繰返し熱応力(熱歪み)を付与することのできる加熱冷却手段等の従来知られた構成を備えた熱疲労試験装置である。実施の形態2で試験片に与える荷重負荷は、実施の形態1での荷重負荷手段に替わって、後述する加熱冷却手段によって生じさせる熱応力によって与えられる。実施の形態2の材料試験装置は、さらに実施の形態1と同様に、本発明の特徴となる構成として、試験片等を囲繞して収納する筐体、排気手段、雰囲気ガス供給手段、酸素濃度測定手段及び制御手段とを備えることで、ガス雰囲気中での熱疲労寿命試験を可能としている。 The material test apparatus of the second embodiment has the same table, column, and cloth as the first embodiment except that the atmospheric gas is used as a refrigerant for cooling the test piece in the heating and cooling means described later. It is a thermal fatigue test apparatus equipped with a conventionally known configuration such as a chuck for gripping and fixing a head and a test piece, and a heating / cooling means capable of repeatedly applying thermal stress (heat strain) to the test piece. The load applied to the test piece in the second embodiment is given by the thermal stress generated by the heating / cooling means described later instead of the load-loading means in the first embodiment. Similar to the first embodiment, the material test apparatus according to the second embodiment has a characteristic structure of the present invention, such as a housing for surrounding and storing a test piece and the like, an exhaust means, an atmospheric gas supply means, and an oxygen concentration. By providing a measuring means and a controlling means, it is possible to perform a thermal fatigue life test in a gas atmosphere.

図2は、実施の形態2に係る材料試験装置の加熱冷却手段81を構成する加熱冷却コイル82の断面図を示す。図2で、試験片10は、その両端が図示しない上下一対のチャックで把持固定されて材料試験機に取り付け保持されるとともに、その外周を囲むように設置されたリング状の加熱冷却コイル82で包囲されている。 FIG. 2 shows a cross-sectional view of a heating / cooling coil 82 constituting the heating / cooling means 81 of the material test apparatus according to the second embodiment. In FIG. 2, the test piece 10 is held and held by a pair of upper and lower chucks (not shown) at both ends thereof, attached to and held by a material tester, and is supported by a ring-shaped heating / cooling coil 82 installed so as to surround the outer periphery thereof. Besieged.

試験片10の熱疲労寿命を評価するため、試験片10は加熱冷却コイル82を含む加熱手段と冷却手段とからなる加熱冷却手段81により、加熱と冷却の冷熱サイクルが付与されて試験に供される。 In order to evaluate the thermal fatigue life of the test piece 10, the test piece 10 is subjected to a heating and cooling cooling cycle by a heating and cooling means 81 including a heating and cooling means including a heating and cooling coil 82 and subjected to a test. To.

加熱冷却コイル82は、図2に示すように2つの角パイプを内外に配置した二重のパイプ構造となっており、外周側の角パイプには、加熱冷却コイル82自体を冷却するための冷却水を流通させる水通路83が形成され、内周側の角パイプには試験片10を冷却するための冷媒である冷却ガスを流通させるガス通路84が形成されている。加熱冷却コイル82の内周面には周方向に多数のノズル84aが形成されており、この各ノズル84aから試験片10の表面に向けて冷却ガスを吹き付けることによって加熱された試験片10を冷却することができる。 As shown in FIG. 2, the heating / cooling coil 82 has a double pipe structure in which two square pipes are arranged inside and outside, and the square pipe on the outer peripheral side has a cooling for cooling the heating / cooling coil 82 itself. A water passage 83 for circulating water is formed, and a gas passage 84 for circulating a cooling gas, which is a refrigerant for cooling the test piece 10, is formed in the square pipe on the inner peripheral side. A large number of nozzles 84a are formed on the inner peripheral surface of the heating / cooling coil 82 in the circumferential direction, and the test piece 10 heated by blowing cooling gas from each of the nozzles 84a toward the surface of the test piece 10 is cooled. can do.

加熱手段は、加熱冷却コイル82と、何れも図示しない従来知られた高周波誘導加熱装置、温度調整装置、温度センサ及び冷水供給装置とから構成され、高周波誘導加熱装置から加熱冷却コイル82に高周波電流を通電して、試験片10を所定の試験温度(例えば、1000℃)に加熱、保持するとともに、冷水供給装置から加熱冷却コイル82の水通路83に冷却水を流して加熱冷却コイル82自体の溶損を防止する。 The heating means is composed of a heating / cooling coil 82, a conventionally known high-frequency induction heating device, a temperature control device, a temperature sensor, and a cold water supply device (which are not shown), and a high-frequency current is applied from the high-frequency induction heating device to the heating / cooling coil 82. The test piece 10 is heated and held at a predetermined test temperature (for example, 1000 ° C.), and cooling water is flowed from the cold water supply device to the water passage 83 of the heating / cooling coil 82 to allow the heating / cooling coil 82 itself. Prevents melting damage.

冷却手段は、加熱冷却コイル82、何れも図示しない従来知られた冷風供給装置、温度調整装置及び温度センサから構成され、加熱冷却コイル82のガス通路84に冷媒である冷却ガスを流しノズル84aからこれを噴出して、試験片10を所定の試験温度(例えば、150℃)に冷却(必要に応じてさらに当該試験温度に保持)する。ここで温度調整装置及び温度センサは加熱手段と冷却手段で各々個別に具備する必要はなく共有してもよい。 The cooling means is composed of a heating / cooling coil 82, a conventionally known cold air supply device (not shown), a temperature adjusting device, and a temperature sensor, and a cooling gas as a refrigerant is flowed through a gas passage 84 of the heating / cooling coil 82 from a nozzle 84a. This is ejected to cool the test piece 10 to a predetermined test temperature (for example, 150 ° C.) (and further maintain the test temperature as necessary). Here, the temperature adjusting device and the temperature sensor do not need to be individually provided in the heating means and the cooling means, and may be shared.

冷風供給装置は、加熱冷却コイル82のガス通路84の上流に図示しない流量制御弁を介して窒素を収容する不活性ガス源に連通しており、流量制御弁を開閉して冷却ガスとなる窒素の噴出と停止を制御する。 The cold air supply device communicates with an inert gas source accommodating nitrogen via a flow rate control valve (not shown) upstream of the gas passage 84 of the heating / cooling coil 82, and opens and closes the flow rate control valve to serve as cooling gas. Controls the ejection and stopping of the gas.

実施の形態2の材料試験装置においては、実施の形態1と同様に構成して筐体内に雰囲気ガスを供給して雰囲気を置換するとともに所定の酸素濃度となるように維持することにくわえて、筐体内に供給する雰囲気ガスを、加熱された試験片を冷却するための冷却ガスとして用いる。なお、不活性ガス源は、筐体内の雰囲気を置換するための雰囲気ガス供給手段と試験片を冷却する冷却手段とで、各々個別に具備してもよいし共有してもよい。 In the material test apparatus of the second embodiment, in addition to the same configuration as that of the first embodiment, the atmosphere gas is supplied into the housing to replace the atmosphere and maintain the oxygen concentration to a predetermined value. The atmospheric gas supplied into the housing is used as a cooling gas for cooling the heated test piece. The inert gas source may be individually provided or shared by the atmosphere gas supply means for replacing the atmosphere in the housing and the cooling means for cooling the test piece.

次に実施の形態2の材料試験装置を用いた材料試験方法について説明する。実施の形態2においても実施の形態1と同様に構成した材料試験装置に、チャックにより試験片10を固定、拘束した後、試験片10を筐体で囲繞する。次いで雰囲気ガス供給手段、排気手段、酸素濃度測定手段及び制御手段により筐体内に雰囲気ガスとなる窒素を供給しつつ、筐体内の大気を排出して、筐体内を所定の酸素濃度の雰囲気に置換する。 Next, a material test method using the material test apparatus of the second embodiment will be described. Also in the second embodiment, the test piece 10 is fixed and restrained by the chuck to the material test apparatus configured in the same manner as the first embodiment, and then the test piece 10 is surrounded by the housing. Next, while supplying nitrogen as an atmospheric gas into the housing by means of an atmospheric gas supply means, an exhaust means, an oxygen concentration measuring means, and a control means, the air inside the housing is discharged and the inside of the housing is replaced with an atmosphere having a predetermined oxygen concentration. do.

次に、加熱冷却手段81により加熱工程と冷却工程を繰り返すことで、拘束状態の試験片10に対して冷熱サイクルを付与する。加熱工程では、加熱手段を作動して高周波誘導加熱装置から加熱冷却コイル82に高周波電流を通電して試験片10を所定の試験温度に加熱、保持する。なお、加熱冷却コイル82の溶損を防止するため、試験中は常時、冷水供給装置から加熱冷却コイル82内の水通路83に冷却水を流通させる。 Next, by repeating the heating step and the cooling step by the heating / cooling means 81, a cooling / heating cycle is applied to the test piece 10 in the restrained state. In the heating step, a heating means is operated to apply a high-frequency current from the high-frequency induction heating device to the heating / cooling coil 82 to heat and hold the test piece 10 to a predetermined test temperature. In order to prevent the heating / cooling coil 82 from being melted, the cooling water is always circulated from the cold water supply device to the water passage 83 in the heating / cooling coil 82 during the test.

冷却工程では、加熱冷却コイル82への高周波電流の通電を停止するとともに、冷却手段を作動して冷風供給装置の不活性ガス源から加熱冷却コイル82内のガス通路84に冷却ガスとなる窒素を流通させるとともにノズル84aから試験片10の表面に向けて窒素を吹き付けて試験片10を所定の試験温度に冷却する。 In the cooling step, the energization of the high frequency current to the heating / cooling coil 82 is stopped, and the cooling means is operated to transfer nitrogen as a cooling gas from the inert gas source of the cold air supply device to the gas passage 84 in the heating / cooling coil 82. While circulating, nitrogen is blown from the nozzle 84a toward the surface of the test piece 10 to cool the test piece 10 to a predetermined test temperature.

加熱工程と冷却工程での試験片10の加熱冷却の温度制御は、温度調整装置に予め設定した加熱冷却の温度パターンと、試験片10の表面に貼付けた温度センサの計測温度とに基づいて、加熱冷却コイル82に通電する高周波誘導加熱装置からの高周波電流を制御することで加熱時の温度を制御し、一方、冷風供給装置の流量制御弁の開度を制御して加熱冷却コイル82のノズル84aからの冷却ガスの吹き付け量を調節することで冷却時の温度を制御することにより行う。このような加熱冷却の温度制御により、試験片10に対して、任意の温度振幅(例えば、150℃から1000℃)での冷熱サイクルを与えることができる。 The temperature control of heating and cooling of the test piece 10 in the heating step and the cooling step is based on the temperature pattern of heating and cooling preset in the temperature control device and the measured temperature of the temperature sensor attached to the surface of the test piece 10. The temperature during heating is controlled by controlling the high-frequency current from the high-frequency induction heating device that energizes the heating / cooling coil 82, while the opening degree of the flow control valve of the cold air supply device is controlled to control the nozzle of the heating / cooling coil 82. This is done by controlling the cooling temperature by adjusting the amount of cooling gas sprayed from 84a. By such temperature control of heating and cooling, the test piece 10 can be subjected to a cooling / heating cycle with an arbitrary temperature amplitude (for example, 150 ° C. to 1000 ° C.).

実施の形態2の材料試験方法において、試験片10の冷却のために冷却ガスとして供給される窒素は、筐体内のガス雰囲気を一定に保つには余剰な場合があり筐体内の酸素濃度を低下させるように作用することがある。酸素濃度が低下すると、酸素濃度を任意の濃度に設定して試験を行なう場合には所望の試験ができないため筐体内に酸素を供給することが考えられる。酸素の供給手段としては、雰囲気ガス供給手段又は試験片を冷却する冷却手段の流路上に、流量制御弁を介して酸素又は大気を収容する酸素供給源を連通させてもよいし、これらの手段とは別個に、筐体に酸素供給口を設けて、酸素供給口、流量制御弁及び酸素供給源を配管で連通させてもよい。酸素の供給手段の流路上の流量制御弁を制御手段に接続し、筐体内の酸素濃度に応じて酸素の供給手段の流量制御弁を制御して、所望の流量の酸素又は大気を筐体内に供給する。これによって試験片10の冷却のために窒素を供給しても、筐体内は所定の酸素濃度に維持される。 In the material test method of the second embodiment, the nitrogen supplied as a cooling gas for cooling the test piece 10 may be excessive to keep the gas atmosphere in the housing constant, and lowers the oxygen concentration in the housing. May act to cause. When the oxygen concentration decreases, it is conceivable to supply oxygen into the housing because the desired test cannot be performed when the test is performed by setting the oxygen concentration to an arbitrary concentration. As the oxygen supply means, an oxygen supply source for accommodating oxygen or the atmosphere may be communicated through a flow control valve on the flow path of the atmosphere gas supply means or the cooling means for cooling the test piece, or these means. Separately, an oxygen supply port may be provided in the housing, and the oxygen supply port, the flow control valve, and the oxygen supply source may be communicated with each other by a pipe. The flow rate control valve on the flow path of the oxygen supply means is connected to the control means, and the flow rate control valve of the oxygen supply means is controlled according to the oxygen concentration in the housing to bring oxygen or the atmosphere of a desired flow rate into the housing. Supply. As a result, even if nitrogen is supplied for cooling the test piece 10, the inside of the housing is maintained at a predetermined oxygen concentration.

上記のとおり、筐体内を大気から窒素に置換することで、試験片10が所定の酸素濃度のガス雰囲気で取り囲まれるとともに、加熱された試験片10を冷却する際に、酸素を含んだ大気を冷媒とするのではなく、雰囲気ガスと同様の窒素を冷媒として試験片10に吹き付けるようにしたので、試験片10を加熱冷却する材料試験であっても試験片10の酸化が抑制されるので、酸化の影響を排除した材料試験が可能となる。 As described above, by substituting the inside of the housing with nitrogen from the atmosphere, the test piece 10 is surrounded by a gas atmosphere having a predetermined oxygen concentration, and when the heated test piece 10 is cooled, the atmosphere containing oxygen is removed. Since nitrogen similar to that of atmospheric gas is sprayed onto the test piece 10 as a refrigerant instead of using it as a refrigerant, oxidation of the test piece 10 is suppressed even in a material test in which the test piece 10 is heated and cooled. Material testing that eliminates the effects of oxidation is possible.

次に、所定の酸素濃度からなるガス雰囲気中におかれ、拘束された状態にある試験片10に対して、加熱冷却手段81を作動し、加熱冷却コイル82による加熱とノズル84aからの冷却ガスの吹きつけによる冷却とによる冷熱サイクルを繰返し与える。この冷熱サイクルによって試験片10に温度振幅にともなう熱応力を繰返し作用させて負荷を与えることで熱疲労試験を行なう。 Next, the heating / cooling means 81 is operated on the test piece 10 which is placed in a gas atmosphere having a predetermined oxygen concentration and is in a restrained state, and is heated by the heating / cooling coil 82 and the cooling gas from the nozzle 84a. The cooling and heating cycle by spraying is repeated. A thermal fatigue test is performed by repeatedly applying a thermal stress associated with the temperature amplitude to the test piece 10 by this thermal cycle to apply a load.

上述のとおり、実施の形態2に示した構成を具備することで、本発明の材料試験装置及び材料試験方法は、その装置が略密閉構造を含む簡易な構造であっても、試験片を取り巻く試験雰囲気の酸素濃度の上昇や変動を抑制して、所定の酸素濃度を安定に維持した状態で、しかも安価かつ安全にガス雰囲気中での熱疲労試験を行うことができる。 As described above, by providing the configuration shown in the second embodiment, the material test apparatus and the material test method of the present invention surround the test piece even if the apparatus has a simple structure including a substantially sealed structure. It is possible to perform a thermal fatigue test in a gas atmosphere inexpensively and safely while suppressing an increase or fluctuation in the oxygen concentration in the test atmosphere and maintaining a predetermined oxygen concentration in a stable manner.

上記の実施の形態1及び2では、疲労試験として試験片を加熱する高温低サイクル疲労試験(実施の形態1)及び試験片を加熱冷却する熱疲労試験(実施の形態2)について説明したが、本発明による材料試験装置及び材料試験方法はこれらに限定されず、荷重負荷手段や試験片の取り付け治具等の構成、或いは高温、常温及び氷点下など試験環境の温度などを適宜変更することにより、引張試験、圧縮試験、曲げ試験、捩り試験、衝撃試験、クリープ試験等の材料試験に適用できることは言うまでもない。例えば、荷重負荷手段を、試験片に長時間連続的に荷重を加え続けることができる構成とすれば、高温でのクリープ試験を行うことができる。このように本発明の材料試験装置及び材料試験方法によれば、種々の材料試験に適用可能であり、酸化の影響を排除したガス雰囲気下における強度特性を測定することができる。 In the above-described first and second embodiments, the high-temperature low-cycle fatigue test in which the test piece is heated (the first embodiment) and the thermal fatigue test in which the test piece is heated and cooled (the second embodiment) have been described as fatigue tests. The material test apparatus and material test method according to the present invention are not limited to these, and by appropriately changing the configuration of the load-bearing means, the mounting jig for the test piece, etc., or the temperature of the test environment such as high temperature, normal temperature, and below freezing point, etc. Needless to say, it can be applied to material tests such as tensile test, compression test, bending test, torsion test, impact test, and creep test. For example, if the load-bearing means is configured to be able to continuously apply a load to the test piece for a long time, a creep test at a high temperature can be performed. As described above, according to the material test apparatus and the material test method of the present invention, it can be applied to various material tests, and the strength characteristics in a gas atmosphere excluding the influence of oxidation can be measured.

1:材料試験装置
2:テーブル
3:クロスヘッド
4:コラム
5:固定ロッド
6:負荷ロッド
5a、6a:チャック
10:試験片
11:筐体
21:排気手段
22:大気排出口
23:逆止弁
31:雰囲気ガス供給手段
32:ガス供給口
33:流量制御弁
34:不活性ガス源
41:酸素濃度測定手段
51:制御手段
71:加熱手段
72:加熱コイル
81:加熱冷却手段
82:加熱冷却コイル
83:水通路
84:ガス通路
84a:ノズル
1: Material test equipment 2: Table 3: Crosshead 4: Column 5: Fixed rod 6: Load rod 5a, 6a: Chuck 10: Test piece 11: Housing 21: Exhaust means 22: Atmospheric discharge port 23: Check valve 31: Atmospheric gas supply means 32: Gas supply port 33: Flow control valve 34: Inert gas source 41: Oxygen concentration measuring means 51: Control means 71: Heating means 72: Heating coil 81: Heating and cooling means 82: Heating and cooling coil 83: Water passage 84: Gas passage 84a: Nozzle

Claims (6)

ガス雰囲気中で試験片に荷重負荷を与える材料試験装置であって、
試験片を囲繞する筐体と、
前記筐体内の大気を排出する排気手段と、
前記筐体内に雰囲気ガスを供給する雰囲気ガス供給手段と、
前記筐体内の雰囲気の酸素濃度を測定する酸素濃度測定手段と、
前記酸素濃度測定手段で測定された酸素濃度に応じて、前記筐体内が所定の酸素濃度となるように前記雰囲気ガス供給手段を制御する制御手段とを有し、
前記排気手段は、
前記筐体に固定された大気排出口と、
前記筐体の外側に配置された逆止弁と、
前記大気排出口から延伸して前記逆止弁に連結し、さらに前記逆止弁から延伸して建屋外に連通して大気開放される配管からなる
ことを特徴とする材料試験装置。
A material tester that applies a load to a test piece in a gas atmosphere.
The housing that surrounds the test piece and
Exhaust means for exhausting the atmosphere inside the housing and
Atmospheric gas supply means for supplying atmospheric gas into the housing and
An oxygen concentration measuring means for measuring the oxygen concentration of the atmosphere in the housing,
It has a control means for controlling the atmospheric gas supply means so that the inside of the housing has a predetermined oxygen concentration according to the oxygen concentration measured by the oxygen concentration measuring means.
The exhaust means is
The atmospheric exhaust port fixed to the housing and
A check valve located on the outside of the housing and
It consists of a pipe that extends from the air discharge port and connects to the check valve, and further extends from the check valve to communicate with the outside of the building and open to the atmosphere.
A material testing device characterized by that.
前記材料試験装置は、前記試験片を加熱する加熱手段をさらに備える請求項1に記載の材料試験装置。 The material test apparatus according to claim 1, further comprising a heating means for heating the test piece. 前記材料試験装置は、前記試験片を加熱冷却する加熱冷却手段をさらに備え、前記加熱冷却手段を構成する冷却手段は前記雰囲気ガスを冷媒として前記試験片に吹き付けるノズルを有する請求項1に記載の材料試験装置。 The material test apparatus further includes a heating / cooling means for heating / cooling the test piece, and the cooling means constituting the heating / cooling means has a nozzle for blowing the atmospheric gas as a refrigerant onto the test piece. The material test equipment described in. 験片を囲繞した筐体内に雰囲気ガスを供給しつつ前記筐体内の大気を前記筐体の外部に排出して前記筐体内を前記雰囲気ガスで置換する工程と
前記置換する工程によって低下する前記筐体内の酸素濃度を随時測定しつつ、前記雰囲気ガスの供給を制御する工程と、を有し
前記筐体内を所定の酸素濃度に維持しながら前記試験片に荷重負荷を与えることを特徴とする材料試験方法。
A step of supplying atmospheric gas into the housing surrounding the test piece, discharging the air inside the housing to the outside of the housing, and replacing the inside of the housing with the atmospheric gas .
It has a step of controlling the supply of the atmospheric gas while measuring the oxygen concentration in the housing , which is lowered by the replacement step, at any time.
A material test method comprising applying a load to the test piece while maintaining the inside of the housing at a predetermined oxygen concentration.
前記材料試験方法は、前記試験片を加熱する工程をさらに有し前記試験片を所定の試験温度に保持して前記試験片に引張・圧縮の荷重負荷を与える高温低サイクル疲労試験である請求項4に記載の材料試験方法。 The material test method further comprises a step of heating the test piece, and is a high-temperature low-cycle fatigue test in which the test piece is held at a predetermined test temperature and a tensile / compressive load is applied to the test piece. Item 4. The material test method according to Item 4. 前記材料試験方法は、前記試験片を拘束して加熱冷却する工程をさらに有し前記試験片に加熱と冷却による温度変化を繰り返し与えて熱疲労破壊を起こさせる熱疲労寿命試験である請求項4に記載の材料試験方法。 The material test method further includes a step of restraining the test piece and heating and cooling it, and is a thermal fatigue life test in which the test piece is repeatedly subjected to temperature changes due to heating and cooling to cause thermal fatigue failure. The material test method according to 4 .
JP2017189654A 2016-10-07 2017-09-29 Material test equipment and material test method Active JP7054433B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199416 2016-10-07
JP2016199416 2016-10-07

Publications (2)

Publication Number Publication Date
JP2018063247A JP2018063247A (en) 2018-04-19
JP7054433B2 true JP7054433B2 (en) 2022-04-14

Family

ID=61967688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017189654A Active JP7054433B2 (en) 2016-10-07 2017-09-29 Material test equipment and material test method

Country Status (1)

Country Link
JP (1) JP7054433B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189696A1 (en) 2018-03-28 2019-10-03 日東電工株式会社 Undercoat layer-forming composition, undercoat layer, and coating film
CN110411883B (en) * 2018-04-28 2022-07-12 上海交通大学 Thermal fatigue test device
CN112051167B (en) * 2020-08-28 2021-11-19 吉林大学 High/low temperature complex atmosphere environment loading device
CN112326472B (en) * 2020-09-25 2024-04-12 华东理工大学 High-temperature environment fatigue test device
CN114487257A (en) * 2022-01-17 2022-05-13 中国工程物理研究院总体工程研究所 Atmosphere-controllable solid combustion characteristic research experimental device and experimental method
CN114608979A (en) * 2022-03-22 2022-06-10 西南交通大学 Bending-torsion composite high-temperature fretting fatigue test device
WO2023209865A1 (en) * 2022-04-27 2023-11-02 三菱電機株式会社 Thermal shock testing device and thermal shock testing method
CN115356228B (en) * 2022-10-19 2023-01-24 常州艾博格电器有限公司 Abrasion resistance and sealing property detection equipment for wire harness production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058017A (en) 2006-08-29 2008-03-13 Shimadzu Corp Metal thermal fatigue testing machine
JP2010163686A (en) 2008-12-18 2010-07-29 Keio Gijuku Surface treatment apparatus and surface treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119379A (en) * 1976-03-31 1977-10-06 Sumitomo Metal Ind Construction of sample grip section of low cycle fatigue tester by tension and compression
JPH05302880A (en) * 1992-04-28 1993-11-16 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for fatigue test
JPH08327519A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Material testing machine for high temperature atmosphere
US7409869B1 (en) * 2005-05-18 2008-08-12 Lincol Global, Inc. Resistance test method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058017A (en) 2006-08-29 2008-03-13 Shimadzu Corp Metal thermal fatigue testing machine
JP2010163686A (en) 2008-12-18 2010-07-29 Keio Gijuku Surface treatment apparatus and surface treatment method

Also Published As

Publication number Publication date
JP2018063247A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP7054433B2 (en) Material test equipment and material test method
CN109520857B (en) High-flux small sample creep and creep crack propagation test device and using method thereof
JP6143714B2 (en) Test device and thermostatic device
US8978421B2 (en) Muffle tube inspection method and manufacturing method of silica glass-based optical fiber preform
KR102309369B1 (en) Test device for metallic materials resistant to hydrogen embrittlement
JP2008058017A (en) Metal thermal fatigue testing machine
CN108758325B (en) Vacuumizing degassing process
KR20140083207A (en) Ultra high temprature shock and oxidation test equipment using laser beam
CN109655276B (en) Test device for pollution-free rapid heating of inert gas
TWI689715B (en) Pressure resistance inspection method for pressure equipment such as valves, pressure resistance inspection device and pressure equipment
CN112284877A (en) Inert gas protection additional assembly for endurance test
US4570051A (en) Enclosing a gas in a nuclear reactor fuel rod
KR101003276B1 (en) Apparatus for cooling the test material
CN107741452B (en) method for testing volume fraction of martensite in austenitic stainless steel
US7409869B1 (en) Resistance test method
CN113790976B (en) Low-temperature environment construction and protection system of fatigue testing machine
KR102034451B1 (en) Test device for durability of higt-pressure parts and test method thereof
JP4605718B2 (en) Pre-treatment method for vacuum carburizing furnace heating chamber
KR20150112095A (en) Heating furnace for experimenting skid rail
CN110411883B (en) Thermal fatigue test device
JP2017203635A (en) Characteristics testing device
CN107741449B (en) testing device for martensite volume fraction in austenitic stainless steel
KR101207753B1 (en) Crack arrest toughness measuring apparatus and method for welding part
KR102368562B1 (en) Gas testing apparatus and method thereof
JP5463789B2 (en) Leak inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7054433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350