JPH05302880A - Apparatus for fatigue test - Google Patents

Apparatus for fatigue test

Info

Publication number
JPH05302880A
JPH05302880A JP11047692A JP11047692A JPH05302880A JP H05302880 A JPH05302880 A JP H05302880A JP 11047692 A JP11047692 A JP 11047692A JP 11047692 A JP11047692 A JP 11047692A JP H05302880 A JPH05302880 A JP H05302880A
Authority
JP
Japan
Prior art keywords
test piece
laser beam
test
strain
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11047692A
Other languages
Japanese (ja)
Inventor
Kenji Wakashima
健司 若島
Masashi Nakadai
雅士 中代
Masaki Kitagawa
正樹 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11047692A priority Critical patent/JPH05302880A/en
Publication of JPH05302880A publication Critical patent/JPH05302880A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the strain of a test piece in a non-contact manner, to make an apparatus small in size and to improve the measuring precision of a test by keeping the surrounding part of the test piece in an inactive gas ambience or vacuum and by detecting the strain of the test piece in the non- contact manner by using a laser displacement meter. CONSTITUTION:A test piece 32 is fitted to the lower end of an upper rod 22 and the upper end of a lower rod 20 of a fitting device. Next, the surrounding part 34 of the test piece surrounded by a covering wall 24 is made vacuum by a vacuum pump and then an inactive gas is filled up in the part. Then, the test piece 32 is heated to a desired temperature by an infrared radiation heating furnace 26 and a repeated stress is applied to the test piece 32 by pulling or compressing it by operating a load cell 14 or an actuator 12. On the occasion, a laser beam is applied to the test piece 32 by a laser oscillator 28 and the beam is received by a laser beam receiver 30. The amount of the laser beam reaching the receiver 30 changes in accordance with the elongation and contraction of the test piece 32. The amount of the laser beam is measured and the amount of the strain of the test piece 32 is detected from a change with time of the measured amount of the beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラやジェットエンジ
ン等で用いられる機器の実機からの微小サンプル採取に
よる材料データの収集および実機の余寿命を予測するの
に使用する疲労試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fatigue test apparatus used for collecting material data from a real machine used in a boiler, jet engine or the like by collecting minute data and predicting the remaining life of the real machine. ..

【0002】[0002]

【従来の技術】火力発電設備、原子力発電設備等の大型
プラント、ジェットエンジンやロケットエンジン等の部
品の寿命延長を図るため、または各種新素材や複合材料
の評価をする為にかかる材料の強度を測定することは極
めて重要なことである。従来、測定物である材料の歪を
測定するには、例えばストレインゲージのような歪検出
材を貼り付けた伸び計治具を試験片の両端を引張る試験
装置に取り付け、該試験片を引張り、歪検出治具(スト
レインゲージ)により試験片の歪を測定する方法等が採
られていた。
2. Description of the Related Art The strength of materials used to extend the life of parts such as large plants such as thermal power generation facilities and nuclear power generation facilities, jet engines and rocket engines, or to evaluate various new materials and composite materials. Measuring is extremely important. Conventionally, in order to measure the strain of the material to be measured, for example, an extensometer jig attached with a strain detection material such as a strain gauge is attached to a test device for pulling both ends of the test piece, and the test piece is pulled, A method of measuring the strain of the test piece with a strain detection jig (strain gauge) has been adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記方
法では試験装置が複雑となり、かつ歪検出治具を装着す
るためのスペースが必要であり、微小試験片の測定の際
に取り付けることは困難であった。また、雰囲気を高温
状態にして各材料の評価をするには、従来は試験装置ご
と高温チャンバ内に設置して試験を行なっていた。しか
しながら、この方法においては高温チャンバを試験装置
の一部と解すれば、実質的に非常に大きな試験装置とな
り、非常に不便であった。また、高温を保つための消費
エネルギも大きく、さらには試験装置自体の耐久性およ
び精度を劣化させてしまうものであった。また、微小試
験片を大気中にさらして試験を行なうと、試験片が酸化
し易く、試験片が酸化すると正規の断面積が減少してし
まう。断面積が減少すると、通常寸法(例:直径1cm
以上)の場合はほとんど問題でなかったが、微小試験片
(例:直径5mm)の場合、真応力が相当に増加して破
断時間が短くなってしまい正確な試験ができないことに
なる。
However, in the above method, the test apparatus is complicated, and a space for mounting the strain detection jig is required, and it is difficult to mount the micro test piece during measurement. It was Further, in order to evaluate each material while keeping the atmosphere in a high temperature state, conventionally, a test apparatus was installed in a high temperature chamber and a test was conducted. However, in this method, if the high temperature chamber is regarded as a part of the test apparatus, it becomes a substantially very large test apparatus, which is very inconvenient. Further, energy consumption for keeping the high temperature is large, and further, the durability and accuracy of the test apparatus itself are deteriorated. Further, when the test is performed by exposing the micro test piece to the atmosphere, the test piece is easily oxidized, and when the test piece is oxidized, the regular cross-sectional area is reduced. If the cross-sectional area decreases, the normal dimensions (eg diameter 1 cm
In the above case, there was almost no problem, but in the case of a micro test piece (eg, diameter 5 mm), the true stress increases considerably and the breaking time becomes short, so that an accurate test cannot be performed.

【0004】本発明は上記課題を解決するためになされ
たもので、試験片の歪を非接触的に測定すると共に、試
験装置および試験片の小型化さらには測定精度の向上を
容易に達成する疲労試験装置を提供するものである。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to measure the strain of a test piece in a non-contact manner and to easily achieve miniaturization of the test apparatus and the test piece and further improvement of the measurement accuracy. A fatigue test apparatus is provided.

【0005】[0005]

【課題を解決するための手段】本発明の疲労試験装置
は、 (1)微小な試験片が装着されて該試験片に繰返し応力
を付加する装着装置 (2)試験片周囲を不活性ガス雰囲気又は真空に保つ少
なくとも一部が透明な覆壁 (3)試験片の側方に設けられ、試験片およびその周
囲に向けてレーザビームを照射するレーザビーム発振
器、レーザビームを受光するレーザビーム受振器とか
らなるレーザ変位計 を具備することを特徴とするものである。
The fatigue testing apparatus of the present invention comprises (1) a mounting apparatus for mounting a microscopic test piece and applying repetitive stress to the test piece (2) an inert gas atmosphere around the test piece Alternatively, at least a part of which is kept in vacuum is a transparent cover wall (3) A laser beam oscillator that is provided on the side of the test piece and emits a laser beam toward the test piece and its periphery, and a laser beam geophone that receives the laser beam. And a laser displacement meter consisting of

【0006】請求項2記載の疲労試験装置は、請求項1
記載の疲労試験装置において、試験片の側方近傍に試験
片を加熱する赤外線放射加熱炉が設けられていることを
特徴とするものである。
The fatigue test apparatus according to claim 2 is the same as that according to claim 1.
The fatigue test apparatus described above is characterized in that an infrared radiation heating furnace for heating the test piece is provided in the vicinity of the lateral side of the test piece.

【0007】[0007]

【作用】本発明では、微小試験片を装着装置に装着し、
試験片の周囲を覆壁にて気密に保持すると共に内部を真
空にし、またはさらに該内部に不活性ガスを注入して不
活性ガス雰囲気とし、真空中または不活性ガス雰囲気中
で上記試験片の疲労試験を行うものである。試験片の疲
労試験を、真空中または不活性ガス雰囲気中で行うこと
により、試験片の酸化のおそれがなく、酸化による減肉
の効果を受けずに疲労試験を行なうことが可能となり、
材料強度の正確な評価および、実機の余寿命を正確に予
測することができる。また、測定には、レーザビーム発
振器が発光したレーザビームの、変位する装着装置によ
って遮られることで変化するレーザビーム受振器への到
達量の変化を測定するレーザ変位計を使用するものであ
るから、試験片に対して非接触的に試験を行なうことが
でき、誤差要因を排除でき、容易に正確な測定をするこ
とができる。また、試験片の加熱には、試験片の側方部
に設けられた赤外線放射加熱炉を使用するものであるか
ら、試験片の周囲のみを効率的に加熱することができ
る。従って試験装置の小型化を実現することができる。
In the present invention, the micro test piece is mounted on the mounting device,
The surroundings of the test piece are kept airtight with a cover wall and the inside is evacuated, or an inert gas is further injected into the inside to make an inert gas atmosphere, and the test piece is placed in a vacuum or an inert gas atmosphere. A fatigue test is conducted. By performing the fatigue test of the test piece in a vacuum or an inert gas atmosphere, there is no risk of oxidation of the test piece, and it becomes possible to perform the fatigue test without being affected by the effect of thinning due to oxidation.
It is possible to accurately evaluate the material strength and accurately predict the remaining life of the actual machine. In addition, the measurement uses a laser displacement meter that measures the change in the amount of arrival of the laser beam emitted by the laser beam oscillator at the laser beam geophone that is changed by being blocked by the mounting device that is displaced. The test piece can be tested in a non-contact manner, error factors can be eliminated, and accurate measurement can be easily performed. Further, since the infrared radiation heating furnace provided on the side of the test piece is used for heating the test piece, only the periphery of the test piece can be efficiently heated. Therefore, miniaturization of the test apparatus can be realized.

【0008】[0008]

【実施例】本発明の一実施例である疲労試験装置を図1
に示す。図1に示す疲労試験装置10は、下端で試験片
32を掴持する上部ロッド22と、上部ロッド22に装
着したロードセル14と、上端で試験片32を掴持する
下部ロッド20と、下部ロッド20を介して試験片32
に繰返し応力を付加するアクチュエータ12とからなる
装着装置と、試験片32の側方に設けられた覆壁24
と、覆壁24の外側方に設けられた赤外線放射加熱炉2
6と、さらに赤外線放射加熱炉26の外側方に設けられ
たレーザビーム発振器28とレーザビーム受振器30と
からなるレーザ変位計とから概略構成される。尚、符号
16は下部ロッド20を往復運動自在に支持する円筒状
の下部ロッド支持体であり、符号18は上部ロッド22
を往復運動自在に支持する円筒状の上部ロッド支持体で
ある。アクチュエータ12及びロードセル14はそれぞ
れ下部ロッド20と上部ロッド22を作動させ、ロッド
20,22に掴持された試験片32を引張ったり、圧縮
したりして試験片32に繰り返し応力を付加する。
FIG. 1 shows a fatigue test apparatus which is an embodiment of the present invention.
Shown in. The fatigue test apparatus 10 shown in FIG. 1 includes an upper rod 22 that holds a test piece 32 at its lower end, a load cell 14 attached to the upper rod 22, a lower rod 20 that holds the test piece 32 at its upper end, and a lower rod. Test piece 32 through 20
A mounting device including an actuator 12 that repeatedly applies stress to the test piece 32, and a cover wall 24 provided on a side of the test piece 32.
And the infrared radiation heating furnace 2 provided outside the covering wall 24.
6 and a laser displacement meter including a laser beam oscillator 28 and a laser beam geophone 30 provided outside the infrared radiation heating furnace 26. Reference numeral 16 is a cylindrical lower rod support that supports the lower rod 20 so that it can reciprocate, and reference numeral 18 is an upper rod 22.
Is a cylindrical upper rod support that supports the reciprocating motion of the. The actuator 12 and the load cell 14 respectively actuate the lower rod 20 and the upper rod 22 to pull or compress the test piece 32 held by the rods 20 and 22, thereby repeatedly applying stress to the test piece 32.

【0009】試験片32の側方に設けられた筒状の覆壁
24は試験片32を外部から遮断し、試験片32の周囲
を気密にし、不活性ガス雰囲気または真空に保つ。従っ
て、図1では覆壁32は両ロッド支持体16,18に固
定されているが、例えばアクチュエータ12等の他の各
種部材に固定されていても構わない。また、覆壁24は
少なくとも赤外線とレーザビームが透過する材質でなけ
ればならず、透明石英ガラスが好適である。尚、レーザ
ビームの通過部分だけが、レーザビームを透過する材質
で構成されているのであっても良い。さらに、試験片3
2を加熱するにあたり、覆壁24も加熱されるので、該
加熱温度に耐えられる程度の耐熱性を有したものでなけ
ればならない。
A cylindrical cover wall 24 provided on the side of the test piece 32 shields the test piece 32 from the outside, hermetically seals the periphery of the test piece 32, and keeps it in an inert gas atmosphere or a vacuum. Therefore, although the cover wall 32 is fixed to both rod supports 16 and 18 in FIG. 1, it may be fixed to other various members such as the actuator 12, for example. In addition, the cover wall 24 must be made of a material that transmits at least infrared rays and a laser beam, and transparent quartz glass is suitable. It should be noted that only the portion through which the laser beam passes may be made of a material that transmits the laser beam. Furthermore, test piece 3
Since the cover wall 24 is also heated when heating 2, the heat resistance must be high enough to withstand the heating temperature.

【0010】さらに、覆壁24の外側部に設けられた赤
外線放射加熱炉26は試験片32を加熱するものであ
る。赤外線放射加熱炉26にはスリットが形成され、レ
ーザビーム発振器28からのレーザビームは該スリット
を通過して試験片32に照射するように構成されてい
る。
Further, the infrared radiation heating furnace 26 provided on the outer side of the cover wall 24 heats the test piece 32. A slit is formed in the infrared radiation heating furnace 26, and the laser beam from the laser beam oscillator 28 passes through the slit to irradiate the test piece 32.

【0011】さらに、赤外線放射加熱炉26の外側部に
設けられたレーザ変位計はレーザビーム発振器28とレ
ーザビーム受振器30とからなり、レーザビーム受振器
30はレーザビーム発振器28から発光されたレーザビ
ームを受光し、接続されているコンピュータ(図示略)
に電気信号として送信する。
Further, the laser displacement gauge provided outside the infrared radiation heating furnace 26 comprises a laser beam oscillator 28 and a laser beam geophone 30. The laser beam geophone 30 emits a laser beam emitted from the laser beam oscillator 28. Computer that receives the beam and is connected (not shown)
As an electric signal.

【0012】本実施例の疲労試験装置10において疲労
試験を行なう方法を以下に記す。まず、試験片32を装
着装置の上部ロッド22の下端と下部ロッド20の上端
に装着する。次に、覆壁24で囲まれた試験片周囲部3
4を気密状態にする。そして、真空ポンプ(図示略)に
て試験片周囲部34を真空にした後、ガスボンベ(図示
略)から試験片周囲部34に不活性ガスを充填する。不
活性ガスにはアルゴンガスが最適であるが、アルゴンガ
スの他にもネオンガスや、さらには加熱温度が超高温で
なければ窒素ガス等も使用できる。また、不活性ガスを
充填させず、真空中で試験を行なうこともできる。試験
を不活性ガス雰囲気中もしくは真空中で行なうことで、
微小の試験片32が酸化の影響を受けることなく高温疲
労試験を実施することができ、実機の余寿命を正確に予
測することができる。因に、微小の試験片32を大気中
で試験すると、微小の試験片32が酸化の影響を受ける
ことになる。試験片32が酸化の影響を受けると、酸化
減肉の効果を受けるので、実機の余寿命を正確に予測す
ることができないことになる。
A method of performing a fatigue test in the fatigue test apparatus 10 of this embodiment will be described below. First, the test piece 32 is mounted on the lower end of the upper rod 22 and the upper end of the lower rod 20 of the mounting device. Next, the test piece surrounding portion 3 surrounded by the covering wall 24
Make 4 airtight. Then, after vacuuming the test piece peripheral portion 34 with a vacuum pump (not shown), the test piece peripheral portion 34 is filled with an inert gas from a gas cylinder (not shown). Argon gas is most suitable as the inert gas, but neon gas other than argon gas, and nitrogen gas or the like can be used if the heating temperature is not extremely high. It is also possible to perform the test in a vacuum without filling the inert gas. By conducting the test in an inert gas atmosphere or in a vacuum,
The high temperature fatigue test can be carried out without the minute test piece 32 being affected by oxidation, and the remaining life of the actual machine can be accurately predicted. Incidentally, when the minute test piece 32 is tested in the atmosphere, the minute test piece 32 is affected by oxidation. When the test piece 32 is affected by oxidation, it is subjected to the effect of oxidation wall thinning, so that the remaining life of the actual machine cannot be accurately predicted.

【0013】次に赤外線放射加熱炉26にて試験片32
を加熱する。無論、常温時における試験データで十分な
場合には赤外線放射加熱炉26を作動させる必要、もし
くは赤外線放射加熱炉26を設ける必要は全くない。試
験片32が所望の温度に達したならば、ロードセル14
またはアクチュエータ12を作動させて、試験片32を
引張ったり、または圧縮し、試験片32に繰り返し応力
を付加する。この際、レーザ変位計は作動させておく。
レーザ変位計では、レーザ発振器28でレーザビームを
試験片32に向けて照射し、そしてレーザビーム受振器
30で該レーザビームを受光する。この際、試験片32
の両端は両ロッド20,22に装着されているが、試験
片32は微小であることからレーザビームは試験片32
のある範囲では試験片32の周部を通過してほとんどの
レーザビームがレーザビーム受振器30に到達するが、
両ロッド20,22に当たる範囲に照射するレーザビー
ムは該ロッド20,22の幅が広いためにこれらに遮ら
れ、受振器30に到達しない。従って、試験片32の伸
縮に応じて受振器30に到達するレーザビームの量が変
化する。即ち、図2に示すように、レーザビーム発振器
28から照射された一定幅W1のレーザビームは試験片
32の長さに応じて短くなった幅W2のレーザビームと
してレーザビーム受振器30に到達する。従って、レー
ザビーム受振器30でレーザビームの幅W2、即ちレー
ザビームの量を測定し、その経時変化から試験片32の
歪量を検出することのできるものである。
Next, a test piece 32 is placed in the infrared radiation heating furnace 26.
To heat. Of course, if the test data at room temperature is sufficient, there is no need to operate the infrared radiation heating furnace 26 or to provide the infrared radiation heating furnace 26 at all. When the test piece 32 reaches the desired temperature, the load cell 14
Alternatively, the actuator 12 is operated to pull or compress the test piece 32 to repeatedly apply stress to the test piece 32. At this time, the laser displacement meter is operated.
In the laser displacement meter, the laser beam is directed toward the test piece 32 by the laser oscillator 28, and the laser beam is received by the laser beam geophone 30. At this time, the test piece 32
Both ends of are attached to both rods 20 and 22, but since the test piece 32 is minute, the laser beam is
In a certain range, most of the laser beam passes through the peripheral portion of the test piece 32 and reaches the laser beam geophone 30.
The laser beam irradiating the range hitting both rods 20 and 22 is blocked by the rods 20 and 22 because of the wide width thereof, and does not reach the geophone 30. Therefore, the amount of the laser beam reaching the geophone 30 changes according to the expansion and contraction of the test piece 32. That is, as shown in FIG. 2, the laser beam having a constant width W1 emitted from the laser beam oscillator 28 reaches the laser beam geophone 30 as a laser beam having a width W2 which is shortened according to the length of the test piece 32. . Therefore, it is possible to measure the width W2 of the laser beam, that is, the amount of the laser beam by the laser beam geophone 30 and detect the strain amount of the test piece 32 from the change with time.

【0014】本実施例の疲労試験装置10を使用するな
らば、試験片32になんら検出治具を装着するものでは
なく、非接触的に試験片の歪を検出することができるの
で、微小な試験片を小型で簡易な試験装置で測定するこ
とができ、容易に正確なデータを得ることができる。ま
た、試験片の極周囲のみを加熱するものであるので、試
験装置の小型化を図ることができ、また加熱するために
消費するエネルギも小さくて済むものである。しかも、
高温にさらされる試験装置の部分も小さくて済み、耐久
性および精度が向上する。また、試験片周囲部34を不
活性ガス又は真空に置換して行なえるので、試験片32
が酸化することもなく、正確な試験データを得ることが
できる。
If the fatigue test apparatus 10 of the present embodiment is used, the test piece 32 is not attached with any detection jig, and the strain of the test piece can be detected in a non-contact manner. The test piece can be measured with a small and simple test device, and accurate data can be easily obtained. Further, since only the extreme periphery of the test piece is heated, the test apparatus can be downsized and the energy consumed for heating can be small. Moreover,
Smaller parts of the test equipment are exposed to high temperatures, which improves durability and accuracy. Further, since the test piece peripheral portion 34 can be replaced by an inert gas or vacuum, the test piece 32 can be replaced.
Accurate test data can be obtained without oxidization.

【0015】[0015]

【発明の効果】本発明の疲労試験装置によれば、試験片
になんら検出治具を装着するものではなく、レーザ変位
計を使用することで非接触的に試験片の歪を検出するこ
とができるので、微小な試験片を小型で簡易な試験装置
にて測定することができ、容易に正確なデータを得るこ
とができる。また、試験片周囲部は覆壁にて気密が保た
れ試験片周囲部を不活性ガス又は真空に置換して試験を
行なえるので、試験片が酸化することもなく、正確な試
験データを得ることができる。また、試験片の側方部に
設けた赤外線放射加熱炉を使用することで試験片の極周
囲のみを加熱することができ、試験装置の小型化を図る
ことができ、また加熱するために消費するエネルギも小
さくて済むものである。しかも、高温にさらされる試験
装置の部分も小さくて済み、耐久性および精度が向上す
る。
According to the fatigue testing apparatus of the present invention, the strain of the test piece can be detected in a non-contact manner by using a laser displacement meter instead of mounting a detection jig on the test piece. Therefore, a minute test piece can be measured by a small and simple test device, and accurate data can be easily obtained. In addition, the surrounding area of the test piece is kept airtight by the covering wall, and the surrounding area of the test piece can be replaced with an inert gas or vacuum to perform the test, so that the test piece is not oxidized and accurate test data is obtained. be able to. In addition, by using the infrared radiation heating furnace installed on the side of the test piece, only the extreme periphery of the test piece can be heated, which can reduce the size of the test equipment and consume it for heating. The energy to do is also small. In addition, the portion of the test apparatus that is exposed to high temperatures can be small, and durability and accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の疲労試験装置の側面図である。FIG. 1 is a side view of a fatigue test apparatus of an example.

【図2】レーザビームの幅の変化を示す側面図である。FIG. 2 is a side view showing a change in width of a laser beam.

【符号の説明】 10 疲労試験装置 12 アクチュエータ 20 下部ロッド 22 上部ロッド 24 覆壁 26 赤外線放射加熱炉 28 レーザビーム発振器 30 レーザビーム受振器 32 微小試験片 34 試験片周囲部[Explanation of reference numerals] 10 Fatigue test apparatus 12 Actuator 20 Lower rod 22 Upper rod 24 Covering wall 26 Infrared radiation heating furnace 28 Laser beam oscillator 30 Laser beam geophone 32 Micro test piece 34 Peripheral part of test piece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微小な試験片が装着されて該試験片に繰
り返し応力を付加する装着装置と、試験片周囲を不活性
ガス雰囲気又は真空に保つ少なくとも一部が透明な覆壁
と、試験片の側方に設けられ、該試験片およびその周囲
に向けてレーザビームを照射するレーザビーム発振器と
該レーザビームを受光するレーザビーム受振器とからな
るレーザ変位計とを具備することを特徴とする疲労試験
装置。
1. A mounting device in which a minute test piece is mounted and which repeatedly applies stress to the test piece, a cover wall at least a part of which is transparent to keep the periphery of the test piece in an inert gas atmosphere or vacuum, and the test piece. And a laser displacement meter that is provided on the side of the laser beam oscillator for irradiating the test piece and its periphery with a laser beam and a laser beam geophone for receiving the laser beam. Fatigue test equipment.
【請求項2】 請求項1記載の疲労試験装置において、
試験片の側方近傍に試験片を加熱する赤外線放射加熱炉
が設けられていることを特徴とする疲労試験装置。
2. The fatigue test apparatus according to claim 1, wherein
A fatigue test apparatus characterized in that an infrared radiation heating furnace for heating the test piece is provided near the side of the test piece.
JP11047692A 1992-04-28 1992-04-28 Apparatus for fatigue test Pending JPH05302880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11047692A JPH05302880A (en) 1992-04-28 1992-04-28 Apparatus for fatigue test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11047692A JPH05302880A (en) 1992-04-28 1992-04-28 Apparatus for fatigue test

Publications (1)

Publication Number Publication Date
JPH05302880A true JPH05302880A (en) 1993-11-16

Family

ID=14536684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11047692A Pending JPH05302880A (en) 1992-04-28 1992-04-28 Apparatus for fatigue test

Country Status (1)

Country Link
JP (1) JPH05302880A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327519A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Material testing machine for high temperature atmosphere
EP0862053A2 (en) * 1997-02-27 1998-09-02 Rainer Prof. Dr. Renz Method and device for investigating the mechanical properties of work-pieces
EP0921369A2 (en) * 1997-12-05 1999-06-09 Forschungszentrum Karlsruhe GmbH Measuring device to determine the change in contour of a specimen for tensile test by various temperatures
KR20030004666A (en) * 2001-07-06 2003-01-15 현대자동차주식회사 Apparatus for estimating formability of semi-solid materials
JP2008500524A (en) * 2004-05-25 2008-01-10 アンシディス Surface strain measuring device
JP2011117965A (en) * 2009-12-04 2011-06-16 Qinghua Univ Strain measurement device and method of strain measurement using the same
US9046350B2 (en) 2012-09-20 2015-06-02 Hyundai Motor Company Method and apparatus of measuring precise high speed displacement
DE202015105319U1 (en) 2015-10-07 2017-02-10 Zwick Gmbh & Co. Kg Energetically advantageous tempering chamber
DE102015117134B3 (en) 2015-10-07 2017-03-30 Zwick Gmbh & Co. Kg Temperature chamber of a loading device such as a column material testing machine and method for operating such a temperature chamber with a backlight element
EP3153839A1 (en) 2015-10-07 2017-04-12 Zwick GmbH&Co. Kg Temperature chamber of a load device as a pillar material testing machine and method for operating such a temperature chamber with an element for a backlight
JP2018063247A (en) * 2016-10-07 2018-04-19 日立金属株式会社 Material tester and material testing method
JP2018096890A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Sulphide stress corrosion crack testing method of steel material
JP2020510837A (en) * 2017-03-16 2020-04-09 東北大学Northeastern University Method and apparatus for fiber reinforced composite parameter identification by non-destructive laser scanning
JP2022040006A (en) * 2020-08-28 2022-03-10 チーリン ユニバーシティー Complicated atmosphere environment load device of high temperature and low temperature

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327519A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Material testing machine for high temperature atmosphere
EP0862053A2 (en) * 1997-02-27 1998-09-02 Rainer Prof. Dr. Renz Method and device for investigating the mechanical properties of work-pieces
EP0862053A3 (en) * 1997-02-27 1999-12-22 Rainer Prof. Dr. Renz Method and device for investigating the mechanical properties of work-pieces
EP0921369A2 (en) * 1997-12-05 1999-06-09 Forschungszentrum Karlsruhe GmbH Measuring device to determine the change in contour of a specimen for tensile test by various temperatures
EP0921369A3 (en) * 1997-12-05 2001-05-16 Forschungszentrum Karlsruhe GmbH Measuring device to determine the change in contour of a specimen for tensile test by various temperatures
KR20030004666A (en) * 2001-07-06 2003-01-15 현대자동차주식회사 Apparatus for estimating formability of semi-solid materials
JP4739330B2 (en) * 2004-05-25 2011-08-03 アンシディス Surface strain measuring device
JP2008500524A (en) * 2004-05-25 2008-01-10 アンシディス Surface strain measuring device
JP2011117965A (en) * 2009-12-04 2011-06-16 Qinghua Univ Strain measurement device and method of strain measurement using the same
US9046350B2 (en) 2012-09-20 2015-06-02 Hyundai Motor Company Method and apparatus of measuring precise high speed displacement
DE202015105319U1 (en) 2015-10-07 2017-02-10 Zwick Gmbh & Co. Kg Energetically advantageous tempering chamber
DE102015117134B3 (en) 2015-10-07 2017-03-30 Zwick Gmbh & Co. Kg Temperature chamber of a loading device such as a column material testing machine and method for operating such a temperature chamber with a backlight element
EP3153839A1 (en) 2015-10-07 2017-04-12 Zwick GmbH&Co. Kg Temperature chamber of a load device as a pillar material testing machine and method for operating such a temperature chamber with an element for a backlight
JP2018063247A (en) * 2016-10-07 2018-04-19 日立金属株式会社 Material tester and material testing method
JP2018096890A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Sulphide stress corrosion crack testing method of steel material
JP2020510837A (en) * 2017-03-16 2020-04-09 東北大学Northeastern University Method and apparatus for fiber reinforced composite parameter identification by non-destructive laser scanning
JP2022040006A (en) * 2020-08-28 2022-03-10 チーリン ユニバーシティー Complicated atmosphere environment load device of high temperature and low temperature

Similar Documents

Publication Publication Date Title
JPH05302880A (en) Apparatus for fatigue test
US10809213B2 (en) Sensors for measuring thermal conductivity and related methods
KR20170000638A (en) Apparatus and method for deformation by the contact-measurement at high temperature
EP3364168B1 (en) Load frame and grippers for tensile tests
Balat et al. Ceramics catalysis evaluation at high temperature using thermal and chemical approaches
CN111060406A (en) High-precision creep fatigue crack propagation testing machine
US3803365A (en) Creep cell,in particular for nuclear reactors
JPH03144343A (en) Measuring system for hot displacement-load
KR100424330B1 (en) In-pile creep test system
JPH05302878A (en) Creep tester
JP2966333B2 (en) Internal pressure creep rupture detector
Gotoh et al. Temperature stability and reproducibility of pressure-controlled sodium-filled heat pipe furnaces
JPH0684929B2 (en) Inpile creep test equipment
CN111830794A (en) Immersion liquid thermal effect evaluation device, calibration device and evaluation method of lithography machine
Jagielski et al. D-Mag—a laboratory for studying plasma physics and diagnostics in strong magnetic fields
JP2002181679A (en) Elevated temperature hardness meter
CN220894096U (en) In-situ corrosion fatigue test device
Glawe et al. Long term drift of some noble and refractory metal thermocouples at 1600 K in air, argon, and vacuum
CN117214072A (en) In-situ corrosion fatigue test device
Cartier Creep cell, in particular for nuclear reactors
RU2300746C2 (en) Method for measuring gas pressure in gas collector of nuclear-reactor fuel element
RU2308016C2 (en) Device for measuring elasticity modulus of construction materials at high temperatures
Shu et al. Experience in Design, Construction and Application of A Rotating T-R Mapping System in Superfluid He for TESLA 9-Cell Cavities
Bachheimer Apparatus for continuous expansion measurement and uniaxial stress application during neutron diffraction experiments
KR100272253B1 (en) Apparatus adopting non-distruction method for testing quartz tube

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000912