JP4605718B2 - Pre-treatment method for vacuum carburizing furnace heating chamber - Google Patents

Pre-treatment method for vacuum carburizing furnace heating chamber Download PDF

Info

Publication number
JP4605718B2
JP4605718B2 JP2006248851A JP2006248851A JP4605718B2 JP 4605718 B2 JP4605718 B2 JP 4605718B2 JP 2006248851 A JP2006248851 A JP 2006248851A JP 2006248851 A JP2006248851 A JP 2006248851A JP 4605718 B2 JP4605718 B2 JP 4605718B2
Authority
JP
Japan
Prior art keywords
heating chamber
carburizing
oxygen
partial pressure
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006248851A
Other languages
Japanese (ja)
Other versions
JP2008069404A (en
Inventor
辰実 田中
力也 大城
昇 宮腰
哲 原井
哲司 町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nachi Fujikoshi Corp
Original Assignee
Honda Motor Co Ltd
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nachi Fujikoshi Corp filed Critical Honda Motor Co Ltd
Priority to JP2006248851A priority Critical patent/JP4605718B2/en
Publication of JP2008069404A publication Critical patent/JP2008069404A/en
Application granted granted Critical
Publication of JP4605718B2 publication Critical patent/JP4605718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、炭化水素系ガスを減圧高温下で分解させ鋼製品等の鉄系ワーク(部材)の表面を浸炭する真空浸炭炉加熱室の前処理方法に関する。   The present invention relates to a pretreatment method for a vacuum carburizing furnace heating chamber in which a hydrocarbon-based gas is decomposed at a high temperature under reduced pressure to carburize the surface of an iron-based work (member) such as a steel product.

従来、真空浸炭方法では、鉄と反応しなかった炭素が煤化し、また、炭化水素系ガスの重合物などが断熱材内部に蓄積し時間経過と共に断熱性が悪くなり、過剰なエネルギーや時間等を要したりするので、定期的に断熱材に蓄積した煤や炭化水素ガスの重合物に空気を導入し燃焼させる、いわゆるバーンアウト等が行われる(特許文献1等)。また、断熱材の劣化等により断熱材を新品のものに交換する。また修理や休暇による休止等が定期的あるいは不定期に行われる。このような場合に加熱室内の酸素量が変化する。また、操業運転状態においても、ワークや架台による空気の持ち込み、ワーク表面積や、ワークの表面の酸化の程度、炉内構造物の材質や状態により残留・吸着酸素量が変化している。   Conventionally, in the vacuum carburizing method, carbon that did not react with iron is hatched, and a polymer of hydrocarbon gas accumulates inside the heat insulating material, so that the heat insulating property deteriorates with time, excessive energy, time, etc. Therefore, so-called burnout or the like is performed in which air is periodically introduced into the soot and hydrocarbon gas polymer accumulated in the heat insulating material and burned (Patent Document 1 or the like). Also, the heat insulating material is replaced with a new one due to deterioration of the heat insulating material or the like. Also, repairs and suspensions due to vacations are performed regularly or irregularly. In such a case, the amount of oxygen in the heating chamber changes. Further, even in the operation state, the amount of residual / adsorbed oxygen varies depending on the amount of air brought in by the work and the base, the surface area of the work, the degree of oxidation of the work surface, and the material and state of the in-furnace structure.

ところが、これらの炉内の酸素量や、空気(酸素)のリーク量、炉内構造物から揮発する酸素量、さらには、ワークと共に持ち込まれた酸素量により、浸炭条件が変化し、安定した品質を確保できない。   However, carburizing conditions change depending on the amount of oxygen in these furnaces, the amount of air (oxygen) leaks, the amount of oxygen volatilized from the furnace structure, and the amount of oxygen brought in with the workpiece. Cannot be secured.

そこで、特許文献2では、例えば13〜4000Paの減圧下、炭素系含有化合物を含んだ雰囲気ガス中において、雰囲気ガス中の酸素の量と雰囲気ガスの熱伝導度とを測定しながら、酸素の量が浸炭処理を阻害しない量であることを確認しながら、かつ、炭素含有化合物の分解度合いが所定の値に維持されるよう雰囲気ガスの組成を調整しながら浸炭を行うようにしている。また、酸素濃度はジルコニア式酸素センサー、炭素化合物の分解度合いは雰囲気ガスの熱伝導度を測定している。また、このジルコニア式酸素センサーは酸素分圧1×10-20atm程度の極めて微量な濃度域における僅かな酸素濃度の差を精度よく測定できることが開示されている。 Therefore, in Patent Document 2, the amount of oxygen is measured while measuring the amount of oxygen in the atmosphere gas and the thermal conductivity of the atmosphere gas in an atmosphere gas containing a carbon-containing compound under a reduced pressure of 13 to 4000 Pa, for example. Carburizing is carried out while adjusting the composition of the atmospheric gas so that the degree of decomposition of the carbon-containing compound is maintained at a predetermined value. The oxygen concentration is measured by a zirconia oxygen sensor, and the degree of decomposition of the carbon compound is measured by the thermal conductivity of the atmospheric gas. Further, it is disclosed that this zirconia oxygen sensor can accurately measure a slight difference in oxygen concentration in a very small concentration range of oxygen partial pressure of about 1 × 10 −20 atm.

また、かかるジルコニア式酸素センサーを用いて、加熱室へのブタンガス投入時に、ジルコニア式酸素センサーの出力値が急に上昇し1〜2分間で1200mVに達するような場合は、浸炭室内の酸素の量が清浄な浸炭処理を阻害しないとし浸炭処理を続行する。逆にジルコニアセンサーの出力値が急速に上昇せず1150mV程度以下である場合は、ブタンガスを導入しても正常な浸炭処理を行えないので、浸炭処理を中止している。また、浸炭処理を中止することなく、ブタンガスの導入を中止して水素の導入に切り換えることにより浸炭室内の酸素量を低減しジルコニア式酸素センサーの出力値が1200mVに上昇すればブタンガスを再導入して浸炭処理を続行することが記載されている。このように各センサーの状況を把握し、浸炭状況を監視、制御している。
特開平2−115357号公報 特開2004−59959号公報
If the output value of the zirconia oxygen sensor suddenly increases and reaches 1200 mV in 1 to 2 minutes when butane gas is introduced into the heating chamber using such a zirconia oxygen sensor, the amount of oxygen in the carburizing chamber However, the carburizing process is continued, assuming that the carburizing process is not hindered. Conversely, when the output value of the zirconia sensor does not increase rapidly and is about 1150 mV or less, the carburizing process is stopped because normal carburizing process cannot be performed even if butane gas is introduced. Moreover, without stopping the carburizing process, the introduction of butane gas is stopped and the introduction of hydrogen is switched to reduce the amount of oxygen in the carburizing chamber. It is stated that the carburizing process will continue. In this way, the status of each sensor is grasped, and the carburization status is monitored and controlled.
JP-A-2-115357 JP 2004-59959 A

しかし、かかる従来の方法では、浸炭処理しながら判定を行うので、万一酸素量が多く水素ガスに切り換えても酸素量が減少しない場合は、ワークを加熱室外へ戻し、原因を取り除いてから再度、ワークを搬入して酸素量を判定しながら浸炭するので、ワークへの熱負荷の影響が避けられない。また、炭化水素ガスや水素ガス等の消費が多くなり原料ガス、加熱エネルギー等が無駄になるという問題があった。さらに、断熱材の交換や、バーンアウト時には多量の酸素が炉内に持ち込まれるが、この場合にはダミーワークを入れて酸素量が所定の量以下になるまで、何回か、又は長時間の運転を行った後、本(通常操業)運転に入る等の無駄な操作を必要とするという問題があった。また、炉内残留酸素の原因にリーク、炉内構造物から揮発する酸素、さらには、ワークと共に持ち込まれた酸素等があげられているがその個々の影響については開示されていない。   However, in such a conventional method, since the determination is performed while carburizing, if the oxygen amount does not decrease even if the amount of oxygen is switched to hydrogen gas, the work is returned to the outside of the heating chamber, the cause is removed, and then again. Since the workpiece is loaded and carburized while judging the amount of oxygen, the influence of the heat load on the workpiece is inevitable. Further, there is a problem that consumption of hydrocarbon gas, hydrogen gas, etc. increases, and raw material gas, heating energy, etc. are wasted. Furthermore, a large amount of oxygen is brought into the furnace at the time of heat insulation replacement or burnout. In this case, several times or a long period of time are required until a dummy work is inserted and the oxygen amount falls below a predetermined amount. There has been a problem that a wasteful operation such as entering a regular (normal operation) operation is required after the operation. Further, the cause of residual oxygen in the furnace includes leakage, oxygen volatilized from the structure in the furnace, and oxygen brought in with the work, but the individual effects thereof are not disclosed.

さらに、ジルコニア式酸素センサーは長時間炭化水素系ガスにさらされると早期に劣化し、頻繁な交換を必要とし、また、高価であるという問題があった。なお、ジルコニア式酸素センサーの電圧出力値を判定に用いているが、ジルコニア式酸素センサーの感度が酸素分圧1×10-20atm程度の極めて微量な酸素濃度を測定できることは記載されているが、実際の酸素分圧までには具体的に言及していない。 Furthermore, the zirconia oxygen sensor has a problem that it deteriorates early when exposed to a hydrocarbon gas for a long time, requires frequent replacement, and is expensive. Although the voltage output value of the zirconia oxygen sensor is used for the determination, it is described that the sensitivity of the zirconia oxygen sensor can measure an extremely small amount of oxygen concentration with an oxygen partial pressure of about 1 × 10 −20 atm. The actual oxygen partial pressure is not specifically mentioned.

本発明の課題は、前述した問題点に鑑みて、炭化水素ガスや水素ガス等のガスの消費が少なく、エネルギー等の無駄のない。また、工程の無駄のない真空浸炭方法を提供するものである。さらに、ジルコニア式酸素センサーを長寿命化し、交換頻度を低下させることである。   In view of the above-described problems, the problem of the present invention is that consumption of gas such as hydrocarbon gas and hydrogen gas is small, and energy is not wasted. Further, the present invention provides a vacuum carburizing method without waste of processes. Furthermore, it is to extend the life of the zirconia oxygen sensor and reduce the replacement frequency.

本発明者等は、リーク等による機械的な原因の他に、加熱室内の酸素の量について種々研究をしたところ、ワークやジグ、搬送装置等と共に加熱室内に侵入する酸素や、中間扉の開閉に伴って侵入する不活性ガス中の酸素は普通の真空排気及び水素ガス、炭化水素ガスあるいは窒素ガス等の酸素置換ガスの導入により容易に、また、短時間に酸素量を減ずることができ、浸炭品質への影響も少ない。これに対し、修理や休みにより加熱室が長期間外気開放された後や、断熱材を交換した後、あるいは、酸素によりバーンアウトした後等に浸炭品質が非常に悪くなることを見いだした。また、小修理や浸炭条件等の変更時に、加熱室を停止して加熱室の温度を一度常温あるいは常温近くまで下げた場合にも品質にばらつきが発生する場合があることを見いだした。そして、この原因が炉内構造物、特に断熱材等に付着、吸収された酸素、即ち、吸着酸素が容易には排出されていないため、長時間酸素を排出しつづけるので安定した浸炭を阻害していることを知得した。   In addition to mechanical causes such as leaks, the present inventors have made various studies on the amount of oxygen in the heating chamber. As a result, oxygen entering the heating chamber along with workpieces, jigs, and transport devices, and opening / closing of the intermediate door Oxygen in the inert gas that intrudes can be easily reduced by introducing ordinary vacuum exhaust and oxygen replacement gas such as hydrogen gas, hydrocarbon gas or nitrogen gas, and the amount of oxygen can be reduced in a short time. Less impact on carburizing quality. On the other hand, after the heating chamber was opened to the outside for a long time due to repairs and holidays, the carburizing quality was found to be very poor after replacing the heat insulating material or after burning out with oxygen. In addition, when small repairs or changes in carburizing conditions, etc., we found that quality may vary even if the heating chamber is stopped and the temperature of the heating chamber is once lowered to or near room temperature. This is because the oxygen adhering to and absorbed in the furnace structure, especially the heat insulating material, that is, the adsorbed oxygen, is not easily exhausted. I knew that.

かかる知得により、本発明においては、ワークを搬入搬出可能とする炉扉を有する冷却室と、前記冷却室とは中間扉を介して接続された加熱室を有し、前記加熱室内に鉄系ワークを搬入し、炭化水素系ガスを減圧高温下で分解させ炭素を前記ワークの鉄表面で反応させ、前記ワーク表面の浸炭を行う真空浸炭炉において、前記加熱室内にワークを搬入することなく、前記加熱室の前記中間扉を閉塞密閉し、前記加熱室内を加熱及び真空引きし、前記加熱室内の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atm以下になるまで、前記加熱室内の炉内構造物の吸着酸素を排出する真空浸炭炉加熱室の真空浸炭の前処理方法を提供することにより前述した課題を解決した。 Based on this knowledge, in the present invention, the cooling chamber having a furnace door that enables loading and unloading of the workpiece, and the cooling chamber has a heating chamber connected via an intermediate door, and the heating chamber is iron-based. In a vacuum carburizing furnace that carries a workpiece, decomposes hydrocarbon-based gas under reduced pressure and high temperature, reacts carbon on the iron surface of the workpiece, and carburizes the workpiece surface, without bringing the workpiece into the heating chamber, The intermediate door of the heating chamber is closed and sealed, the heating chamber is heated and evacuated, and the oxygen partial pressure in the heating chamber becomes 1 × 10 −19.6 atm or less which becomes a carburizing quality stable region in carburizing treatment. The above-mentioned problems have been solved by providing a vacuum carburizing pretreatment method for a vacuum carburizing furnace heating chamber that discharges adsorbed oxygen of the furnace internal structure in the heating chamber.

即ち、ワークを搬入することなく、また、浸炭用のガス等を入れることなく、密閉された加熱室を真空引きして加熱室内の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atm以下になるまで、炉内構造物の吸着酸素を炉外に排出する。排出時間は、吸着酸素の量や状態に応じて、数分あるいは、30分〜数時間、時には12時間以上を要する。しかし、このように加熱室内を真空浸炭の前処理することにより、浸炭時に影響を与える吸着酸素を微量とできるので、即本(通常操業)運転に入っても酸素量の影響を受けず安定した浸炭品質を得ることができる。また、浸炭工程中での酸素の量の常時監視は不要である。 In other words, the workpiece is not carried in, and a carburizing gas or the like is not introduced, and the sealed heating chamber is evacuated so that the oxygen partial pressure in the heating chamber becomes a carburizing quality stable region in the carburizing process. The oxygen adsorbed in the furnace structure is discharged out of the furnace until 10 -19.6 atm or less . The discharge time takes several minutes or 30 minutes to several hours, sometimes 12 hours or more depending on the amount and state of adsorbed oxygen. However, pretreatment of vacuum carburizing in the heating chamber in this way makes it possible to reduce the amount of adsorbed oxygen that affects the carburizing process, so even if you enter the immediate operation (normal operation), it is stable without being affected by the amount of oxygen. Carburized quality can be obtained. Moreover, constant monitoring of the amount of oxygen during the carburizing process is not necessary.

真空浸炭炉の運転間隔が通常操業運転(連続稼働、あるいは毎日数時間の一定稼働)の場合は、炉内構造物に吸着酸素が貯まる量が少ない。これに対し、長時間停止したり、バーンアウトしたり、断熱材を交換したり、加熱室を停止する等した場合に、本前処理を行うことが有効である。そこで、請求項2に記載の発明においては、前記加熱室の前処理方法は、前記加熱室の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atmを超える場合、あるいは超えることが想定される場合、例えば、前記加熱室内の炉内構造物の吸着酸素が多くなった場合に行う真空浸炭炉加熱室の前処理方法を提供する。なお、炉内構造物の吸着酸素が多くなる場合の例としては、バーンアウト完了後、あるいは炉内構造物の交換後等の場合がある。又、定期点検や浸炭条件の変更、一時的な操業休止等での加熱室の冷却後や大気開放後でも生じる場合がある。この場合、加熱室の再起動後に加熱室内を加熱及び真空引きし、加熱室内の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atm以下とならない場合には、吸着酸素が多くなったものと考え、本発明の真空浸炭炉加熱室の前処理をおこなう。 When the operation interval of the vacuum carburizing furnace is a normal operation operation (continuous operation or constant operation for several hours every day), the amount of adsorbed oxygen stored in the furnace structure is small. On the other hand, it is effective to perform this pretreatment when the operation is stopped for a long time, burned out, the heat insulating material is replaced, the heating chamber is stopped, or the like. Therefore, in the invention according to claim 2, the pretreatment method for the heating chamber is performed when the oxygen partial pressure in the heating chamber exceeds 1 × 10 −19.6 atm, which is a carburizing quality stable region in the carburizing process , or When exceeding , for example, the pretreatment method of the vacuum carburizing furnace heating chamber performed when the adsorbed oxygen of the furnace internal structure in the heating chamber increases is provided. An example of the case where the amount of adsorbed oxygen in the furnace structure increases is after the completion of burnout or after replacement of the furnace structure. Moreover, it may occur even after the heating chamber has been cooled or released to the atmosphere during periodic inspections, changes in carburizing conditions, temporary suspension of operation, or the like. In this case, after restarting the heating chamber, the heating chamber is heated and evacuated, and if the oxygen partial pressure in the heating chamber does not become 1 × 10 −19.6 atm or less , which is the carburizing quality stable region in the carburizing process, the adsorbed oxygen Therefore, pretreatment of the vacuum carburizing furnace heating chamber of the present invention is performed.

このように、炉内構造物の吸着酸素が多くなったかどうかは、本発明により酸素量を測定すればよい。従って、通常操業運転の場合にも、加熱室を停止することなくワークの種類や浸炭条件を変更した際や短時間の休止や点検の際にも本発明の前処理方法により酸素量を測定することが好ましい。この場合は、短時間に酸素分圧が所定値になる場合が多いので、無駄な工程も少なく、簡単に確認できる。   Thus, the amount of oxygen adsorbed by the in-furnace structure may be determined by measuring the amount of oxygen according to the present invention. Therefore, even in the case of normal operation, the amount of oxygen is measured by the pretreatment method of the present invention even when changing the type of workpiece or carburizing conditions, or during a short pause or inspection without stopping the heating chamber. It is preferable. In this case, since the oxygen partial pressure often reaches a predetermined value in a short time, there are few useless processes and it can be easily confirmed.

酸素分圧の測定及び吸着酸素等の排気工程は、浸炭条件と合わせるのが好ましい。そこで、請求項3に記載の発明においては、前記酸素分圧は、前記加熱室の加熱後の真空浸炭処理温度下での酸素分圧である真空浸炭炉加熱室の真空浸炭の前処理方法とした。加熱室の温度を真空浸炭処理温度と同条件とすることにより、バラツキをより少なくできる。温度は例えば、一般的な真空浸炭処理温度である850℃以上1050℃以下が好ましい。酸素分圧の所定値を1×10-19.6atm以下としたのは、後述するように酸素分圧測定値と浸炭処理による製品浸炭品質との関係を調査した結果、酸素分圧1×10-19.6atmで品質のバラツキが少なく、浸炭品質も良好であからである。さらに、1×10-19.7atm〜1×10-20atm以下であればより確実である。なお、特許文献1においては、ジルコニア式酸素センサーの精度について1×10-20atmとの値は開示されているが、具体的な閾値としての値ではない。また、酸素分圧の測定はジルコニア式酸素センサーが望ましいが、これに限定されるものではない。 It is preferable that the measurement of the oxygen partial pressure and the evacuation process of adsorbed oxygen, etc. are matched with the carburizing conditions. Therefore, in the invention according to claim 3, the oxygen partial pressure is a pretreatment method for vacuum carburizing in a vacuum carburizing furnace heating chamber, which is an oxygen partial pressure at a vacuum carburizing temperature after heating in the heating chamber. did. By making the temperature of the heating chamber the same as the vacuum carburizing temperature, the variation can be reduced. The temperature is preferably 850 ° C. or higher and 1050 ° C. or lower, which is a general vacuum carburizing temperature. The reason why the predetermined value of the oxygen partial pressure is set to 1 × 10 −19.6 atm or less is that, as will be described later, as a result of investigating the relationship between the measured value of the oxygen partial pressure and the carburizing quality of the product by carburizing treatment, the oxygen partial pressure is 1 × 10 − This is because there is little variation in quality at 19.6 atm and carburization quality is good. Furthermore, it is more certain if it is 1 × 10 −19.7 atm to 1 × 10 −20 atm or less. In Patent Document 1, although the value of 1 × 10 −20 atm is disclosed for the accuracy of the zirconia oxygen sensor, it is not a specific threshold value. The measurement of the oxygen partial pressure is preferably a zirconia oxygen sensor, but is not limited thereto.

本発明により、浸炭処理中に酸素濃度を測定する必要がなくなるので、請求項4に記載の発明においては、前記酸素分圧は炭化水素系ガスの影響を受けやすいジルコニア式酸素センサーを用いて測定する真空浸炭炉加熱室の真空浸炭の前処理方法を提供できる。また、請求項5に記載の発明においては、少なくとも真空浸炭時には、前記ジルコニア式酸素センサーと前記加熱室の炭化水素系ガスとが接触反応しないようにする真空浸炭炉加熱室の真空浸炭の前処理方法とした。 According to the present invention, it is not necessary to measure the oxygen concentration during the carburizing process. Therefore, in the invention according to claim 4, the oxygen partial pressure is measured using a zirconia oxygen sensor that is easily affected by a hydrocarbon gas. pretreatment method for vacuum carburizing vacuum carburizing furnace heating chamber to be provided for. In addition, in the invention according to claim 5, vacuum carburizing pretreatment in a vacuum carburizing furnace heating chamber that prevents a contact reaction between the zirconia oxygen sensor and the hydrocarbon gas in the heating chamber at least during vacuum carburizing. It was a method.

本発明においては、密閉された加熱室を真空引きして加熱室内の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atm以下になるまで、炉内構造物の吸着酸素を炉外に排出し、吸着酸素を微量とした後に、本運転に入り直ぐに安定した浸炭品質を得ることができるので、浸炭時に酸素量が過大のため、浸炭をやり直す必要がなく、炭化水素ガスや水素ガス等のガスの消費が少なく、エネルギー等の無駄のない。また、工程の無駄のない真空浸炭方法を提供するものとなった。また、浸炭工程中での酸素の量の常時監視は不要であるので、ジルコニア式酸素センサーを炭素系水素ガス等にさらすことを少なくできるので、ジルコニア式酸素センサーを長寿命化し、交換頻度を低下できる。 In the present invention, the enclosed heating chamber is evacuated, and the adsorbed oxygen of the in-furnace structure until the oxygen partial pressure in the heating chamber becomes 1 × 10 −19.6 atm or less , which is a carburizing quality stable region in the carburizing process. Since the amount of adsorbed oxygen is reduced to a small amount and stable carburizing quality can be obtained immediately after the start of operation, the amount of oxygen during carburizing is excessive, so there is no need to re-carburize the hydrocarbon gas. There is little consumption of gas such as hydrogen gas, and there is no waste of energy. In addition, a vacuum carburizing method with no waste of processes has been provided. In addition, since constant monitoring of the amount of oxygen during the carburizing process is not required, exposure of the zirconia oxygen sensor to carbon-based hydrogen gas can be reduced, extending the life of the zirconia oxygen sensor and reducing the replacement frequency. it can.

また、請求項2に記載の発明においては、加熱室の再起動後に加熱室内を加熱及び真空引きし、加熱室内の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atm以下でない時、バーンアウト後、又は断熱材交換後等の炉内構造物の吸着酸素が多くなった場合に酸素分圧を浸炭処理での浸炭品質安定領域となる1×10 -19.6 atmまで下げるようにするので、無駄な時間を少なくでき、通常運転時での品質が安定し、作業者の負担も少なくなる。また、請求項3に記載の発明においては、加熱室を真空浸炭処理温度下とし、酸素分圧の所定値を1×10-19.6atm以下とするので、浸炭時の再現性もよく、バラツキの小さい安定した真空浸炭処理が可能となる。 In the second aspect of the present invention, the heating chamber is heated and evacuated after the heating chamber is restarted, and the oxygen partial pressure in the heating chamber becomes a carburizing quality stable region in the carburizing treatment, 1 × 10 −19.6 atm. When it is not below, the oxygen partial pressure is lowered to 1 × 10 -19.6 atm which becomes the carburizing quality stable region in the carburizing process when the adsorbed oxygen in the furnace structure increases after burnout or after heat insulation replacement. As a result, useless time can be reduced, the quality during normal operation is stabilized, and the burden on the operator is reduced. Further, in the invention described in claim 3, since the heating chamber is set at a vacuum carburizing temperature and the predetermined value of the oxygen partial pressure is 1 × 10 −19.6 atm or less, the reproducibility at the time of carburizing is good and the variation is small. A small and stable vacuum carburizing process is possible.

さらに、請求項4に記載の発明においては、ジルコニア式酸素センサーを用いるので精度の高い測定が可能となり、請求項5に記載の発明においては、真空浸炭時にジルコニア式酸素センサーと炭化水素系ガスとが接触反応しないようにしたので、ジルコニア式酸素センサーは長寿命となり、また、交換する手間も無くなり、メンテナンスも容易となった。   Furthermore, in the invention described in claim 4, since a zirconia oxygen sensor is used, high-precision measurement is possible. In the invention described in claim 5, the zirconia oxygen sensor and the hydrocarbon-based gas are used during vacuum carburization. As a result, the zirconia oxygen sensor has a long life, and there is no need to replace it, making maintenance easier.

本発明の実施の形態について図を参照して説明する。図1は本発明の実施の形態を示す真空浸炭炉の断面説明図である。真空浸炭炉1は、図示しないワークを搬入搬出可能にされた炉扉3を有する冷却室4と冷却室4とは中間扉5を介して接続された加熱室6、さらに、冷却室4の下方に配置された油槽7から構成される。冷却室4,加熱室6は中間扉5炉扉3を閉じることにより、それぞれ密閉構造となるようにされ、図示しない真空排出装置により冷却室内を真空とすることができる。加熱室6には、開閉弁10,12及び空気圧作動弁11、空気圧で作動する炉内圧力制御弁13を介して真空ポンプ15が接続され、加熱室内を真空引き可能にされている。開閉弁10,12はメンテナンス用であり、開閉弁10,11は常時開、12は常時閉とされ、加熱室6と真空ポンプ15とは空気圧作動弁11、炉内圧力制御弁13により開閉される。また、図示しないガス供給装置が設けられ、浸炭ガス、窒素ガス、空気等を加熱室内に、窒素ガス及び空気を冷却室内に供給可能にしている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional explanatory view of a vacuum carburizing furnace showing an embodiment of the present invention. The vacuum carburizing furnace 1 includes a cooling chamber 4 having a furnace door 3 in which a workpiece (not shown) can be carried in and out, a heating chamber 6 connected via an intermediate door 5, and a lower part of the cooling chamber 4. It is comprised from the oil tank 7 arrange | positioned. The cooling chamber 4 and the heating chamber 6 are each made to have a sealed structure by closing the intermediate door 5 and the furnace door 3, and the cooling chamber can be evacuated by a vacuum exhaust device (not shown). A vacuum pump 15 is connected to the heating chamber 6 through on-off valves 10 and 12, a pneumatic operation valve 11, and an in-furnace pressure control valve 13 operated by air pressure, so that the heating chamber can be evacuated. The on-off valves 10 and 12 are for maintenance, the on-off valves 10 and 11 are normally open, 12 is normally closed, and the heating chamber 6 and the vacuum pump 15 are opened and closed by a pneumatically operated valve 11 and a furnace pressure control valve 13. The In addition, a gas supply device (not shown) is provided so that carburizing gas, nitrogen gas, air, and the like can be supplied into the heating chamber, and nitrogen gas and air can be supplied into the cooling chamber.

油槽7には焼入れ油が貯留され、加熱浸炭されたワークを没入させることにより油焼入れが可能にされている。加熱室内には断熱材16が配置され、炉温度を確保する。断熱材16は例えば、アルミナ・シリカ系セラミックス断熱材等が使用される。また、中間扉5にも同様の断熱材16が使用されている。加熱室6内には炉内圧力計8、炉内温度計9が設けられている。炉内構造物には、断熱材16の他、セラミックスチューブ、セラミックス炉床、セラミックスレール等の酸素吸着材があげられる。   Quenching oil is stored in the oil tank 7, and oil quenching is enabled by immersing the work that has been carburized by heating. A heat insulating material 16 is disposed in the heating chamber to ensure the furnace temperature. As the heat insulating material 16, for example, an alumina / silica ceramic heat insulating material or the like is used. The same heat insulating material 16 is also used for the intermediate door 5. A furnace pressure gauge 8 and a furnace thermometer 9 are provided in the heating chamber 6. In addition to the heat insulating material 16, the furnace internal structure includes an oxygen adsorbing material such as a ceramic tube, a ceramic hearth, and a ceramic rail.

浸炭焼入れにあたっては、ワークは炉扉3より、冷却室4に搬入される。炉扉3を閉じ、冷却室を真空排気する。冷却室4の所定の排気を行った後、中間扉5を開きワークを加熱室6内に搬入し中間扉を閉じる。その状態で、ワークを加熱し、均熱・浸炭・拡散・降温工程の後、中間扉5を開きワークを冷却室4へ搬出し、中間扉を閉じた後、ワークを油槽7に浸積し焼入れ後ワークを引き上げ、炉扉を開き炉外へワークを搬出する。かかる真空浸炭炉は公知であるので詳細な説明を省略する。   In carburizing and quenching, the work is carried into the cooling chamber 4 from the furnace door 3. The furnace door 3 is closed and the cooling chamber is evacuated. After the predetermined exhaust of the cooling chamber 4 is performed, the intermediate door 5 is opened, the work is carried into the heating chamber 6, and the intermediate door is closed. In this state, the workpiece is heated, and after the soaking, carburizing, diffusion, and temperature lowering steps, the intermediate door 5 is opened, the workpiece is transferred to the cooling chamber 4, the intermediate door is closed, and the workpiece is immersed in the oil tank 7. Pull up the workpiece after quenching, open the furnace door and carry the workpiece out of the furnace. Since such a vacuum carburizing furnace is known, a detailed description thereof will be omitted.

特に本発明においては、加熱室6内に検出用パイプ22を挿入し、開閉バルブ20、センサー取付管21、開閉バルブ23,24を順次介して真空ポンプ15に接続されている。センサ取付管21にはジルコニア式酸素センサー30の酸素分圧検出部31が取付管内21のガスと接触反応できるように挿入されている。ジルコニア式酸素センサー30には図示しない測定制御部が設けられ、酸素分圧が表示等される。また、酸素分圧が所定の値になった時に信号を出力するようにされる。ジルコニア式酸素センサーの働き、制御、測定方法等については公知であるので詳細説明は省略する。開閉バルブ23、24は長い配管の両側に配置され、真空ポンプの効率を向上させる。 In particular, in the present invention, the detection pipe 22 is inserted into the heating chamber 6 and connected to the vacuum pump 15 via the open / close valve 20, the sensor mounting pipe 21, and the open / close valves 23 and 24 in this order. An oxygen partial pressure detector 31 of the zirconia oxygen sensor 30 is inserted into the sensor attachment tube 21 so as to be able to contact and react with the gas in the attachment tube 21. The zirconia oxygen sensor 30 is provided with a measurement control unit (not shown) to display the oxygen partial pressure. A signal is output when the oxygen partial pressure reaches a predetermined value. Since the function, control, measurement method, and the like of the zirconia oxygen sensor are known, detailed description thereof will be omitted. The on-off valves 23 and 24 are arranged on both sides of a long pipe, and improve the efficiency of the vacuum pump.

かかる、真空浸炭装置1において、本発明の真空浸炭炉加熱室の前処理は次のように行われる。ワーク等を搬入せず加熱室6を空の状態としたままで、炉扉3、加熱室の中間扉5を閉塞密閉する。開閉バルブ20,23,24を開き、ジルコニア式酸素センサーに加熱室6の酸素分圧が働くようにする。図示しないラジアントチューブにより炉内温度計9で炉内温度を監視しながら、850℃〜1050℃の所定温度に加熱する。同時に、電磁開閉弁13を開き、真空ポンプ15を運転し、炉内圧力計8で炉内の圧力を監視しながら、加熱室内の酸素分圧が所定値、1×10-19.6atmになるまで、真空引きする。ジルコニア式酸素センサーをセンサ取付管21に取付け、加熱室6と真空ポンプ15間に配設したので、加熱室の酸素分圧を正確に測定できる。






In such a vacuum carburizing apparatus 1, the pretreatment of the vacuum carburizing furnace heating chamber of the present invention is performed as follows. The furnace door 3 and the intermediate door 5 of the heating chamber are closed and sealed while the work chamber is not carried in and the heating chamber 6 is left empty. The on-off valves 20, 23, 24 are opened so that the oxygen partial pressure of the heating chamber 6 acts on the zirconia oxygen sensor. While monitoring the furnace temperature with a furnace thermometer 9 using a radiant tube (not shown), the furnace is heated to a predetermined temperature of 850 ° C. to 1050 ° C. At the same time, the electromagnetic on-off valve 13 is opened, the vacuum pump 15 is operated, and the pressure inside the furnace is monitored by the furnace pressure gauge 8 until the oxygen partial pressure in the heating chamber reaches a predetermined value of 1 × 10 −19.6 atm. Evacuate. Since the zirconia oxygen sensor is attached to the sensor attachment tube 21 and disposed between the heating chamber 6 and the vacuum pump 15, the oxygen partial pressure in the heating chamber can be accurately measured.






加熱室内の酸素分圧が所定値、1×10-19.6atm以下となった時に、加熱室内の炉内構造物の吸着酸素の排出が完了したと判定し、開閉バルブ20を閉じて前準備を終了する。真空ポンプを停止する場合には真空ポンプ油の逆流防止のため、開閉バルブ23,24を閉じる。その後、従来と同様にワークを炉扉から冷却室に搬入し、所定の作業により浸炭焼入れ処理を行う。なお、酸素分圧の減少がほとんど見られない場合は、リーク等の機械的な問題が考えられるので、その場合は前処理を停止し原因を取り除く必要があることは言うまでもない。 When the oxygen partial pressure in the heating chamber reaches a predetermined value of 1 × 10 −19.6 atm or less, it is determined that the discharge of adsorbed oxygen in the furnace structure in the heating chamber is complete, and the on-off valve 20 is closed to prepare. finish. When the vacuum pump is stopped, the on-off valves 23 and 24 are closed to prevent the backflow of the vacuum pump oil. Thereafter, the work is carried into the cooling chamber from the furnace door as in the conventional case, and carburizing and quenching is performed by a predetermined operation. Note that when there is almost no decrease in oxygen partial pressure, a mechanical problem such as a leak may be considered. In this case, needless to say, it is necessary to stop the pretreatment and remove the cause.

かかる前処理を行うことにより、浸炭条件の変更、修理、あるいは長期間停止後の加熱室の再起動後に加熱室内を加熱及び真空引きし、加熱室内の酸素分圧が所定値以下でない場合や、バーンアウト後、又は炉内構造物の交換後等であっても、速やかに通常操業運転に入ることができ、浸炭品質も安定したものとなる。また、真空浸炭時には、少なくとも開閉バルブ20,23を閉とするのでジルコニア式酸素センサーと加熱室の炭化水素系ガスとは接触反応しない。なお、開閉バルブ20,23,24は手動弁としたが、これは酸素分圧の測定はバーンアウト等の後に行われるので使用頻度が少ない為であり、空圧作動弁、電磁弁等に代え自動測定することも可能である。   By performing such pretreatment, the heating chamber is heated and evacuated after the carburizing conditions are changed, repaired, or restarted after a long-term shutdown, and the oxygen partial pressure in the heating chamber is not less than a predetermined value, Even after burnout or after replacement of the furnace internal structure, the normal operation operation can be promptly started, and the carburization quality becomes stable. Further, at the time of vacuum carburizing, at least the on-off valves 20 and 23 are closed, so that the zirconia oxygen sensor and the hydrocarbon gas in the heating chamber do not react with each other. The open / close valves 20, 23, and 24 are manual valves. This is because the oxygen partial pressure is measured after burnout or the like, and thus is used less frequently. Instead of pneumatic valves, solenoid valves, and the like. Automatic measurement is also possible.

本発明の前処理の実施例について説明する。図2(a)、(b)はバーンアウト終了後、本発明の前処理を行った場合の時間経過に対する酸素分圧と炉内温度の変化を示すグラフであり、横軸が時間軸であり、(a)の横軸時間幅は3時間、(b)の横軸時間幅は1時間である。加熱室の大きさ、能力等は同じ仕様である。しかし、図2(a)のものでは、加熱室内温度が20分位で924℃となり、酸素分圧は徐々に低下するが3時間後でも酸素分圧は1×10-19atm程度である。なお、6時間後に酸素分圧は1×10-20atmに達した。また、図2(b)のものでは、加熱室内温度が40分位で955℃となり、酸素分圧は速やかに低下し、10分もしないうちに酸素分圧は1×10-20atmに達しm、1×10-21atm〜1×10-22atm間で平衡状態になった。このように、同じバーンアウトの後でも、バーンアウト後の状況や、炉内構造物の吸着酸素の量、状態により酸素分圧の低下の度合いが非常に大きく異なることがわかる。なお、図2(b)の初期の変化は加熱室の点検窓からのリークがあったためである。 An embodiment of the pretreatment according to the present invention will be described. 2 (a) and 2 (b) are graphs showing changes in oxygen partial pressure and furnace temperature over time when pretreatment of the present invention is performed after burnout, and the horizontal axis is the time axis. The horizontal axis time width of (a) is 3 hours, and the horizontal axis time width of (b) is 1 hour. The size and capacity of the heating chamber are the same specifications. However, in the case of FIG. 2A, the temperature in the heating chamber becomes 924 ° C. in about 20 minutes and the oxygen partial pressure gradually decreases, but even after 3 hours, the oxygen partial pressure is about 1 × 10 −19 atm. The oxygen partial pressure reached 1 × 10 −20 atm after 6 hours. In the case of FIG. 2B, the temperature in the heating chamber becomes 955 ° C. in about 40 minutes, the oxygen partial pressure quickly decreases, and the oxygen partial pressure reaches 1 × 10 −20 atm within 10 minutes. m, 1 × 10 −21 atm to 1 × 10 −22 atm. Thus, it can be seen that even after the same burnout, the degree of decrease in oxygen partial pressure varies greatly depending on the situation after burnout, the amount of adsorbed oxygen in the furnace structure, and the state. In addition, the initial change of FIG.2 (b) is because there was a leak from the inspection window of a heating chamber.

このように、加熱室内の酸素分圧が安定するまでの時間は大きくばらつくので、特許文献2のように、炉内酸素濃度等を測定しながら真空浸炭するようにしても、ワーク搬入初期にはかなりの時間的にも、成分的にもバラツキが多い。従って、安定した操業に入るまでに、時間がかかる場合は、多くの無駄な作業とエネルギー及びガスを消費することになる。これに対して、本発明の前処理にあっては、加熱工程はあるものの炭化水素系ガス等の浸炭ガスを供給せずに行うので無駄なエネルギーやガスの消費を抑えることができ、また、品質をより一層安定させることができる。   As described above, since the time until the oxygen partial pressure in the heating chamber is stabilized varies widely, as in Patent Document 2, even if the vacuum carburization is performed while measuring the oxygen concentration in the furnace or the like, There are many variations in time and components. Therefore, if it takes time to enter a stable operation, a lot of useless work and energy and gas are consumed. On the other hand, in the pretreatment of the present invention, although there is a heating step, it is performed without supplying a carburizing gas such as a hydrocarbon-based gas, so that wasteful energy and gas consumption can be suppressed, Quality can be further stabilized.

次に、前処理の状況に対する製品の浸炭品質について述べる。図3は、炉内酸素分圧と製品品質の関係を示すグラフである。横軸にバーンアウト後の経過時間を示し、その時の酸素分圧を示した図に、所定の酸素分圧でワーク(歯車)を搬入して浸炭を行いその浸炭深さの上限値及び下限値をバーンアウト後の酸素分圧曲線に合わせて、プロットしたものである。左側縦軸が酸素分圧、右側縦軸が浸炭深さ(mm)を示す。なお、加熱室は同じ加熱室を用い、加熱室を950℃に加熱し、真空ポンプで所定の酸素分圧まで真空引きする。なお、前述したように、この酸素分圧は加熱室内に遊離している酸素でなく、加熱室内の構造物の吸着酸素から放出される酸素であり、比較的長時間かけて真空引きして得られる値である。所定の酸素分圧に達した後速やかにワーク(歯車)を並べたトレーを加熱室に搬入し、全て同条件で浸炭を行い、トレー内のワークの浸炭深さを測定し、その上限値と下限値を測定した。なお、浸炭深さは0.8mmを上限、0.5mmを下限とした範囲であることが製品品質として要求される。図3においては、ねらい上限値、ねらい下限値として記載している。   Next, the carburizing quality of the product for the pretreatment situation will be described. FIG. 3 is a graph showing the relationship between the oxygen partial pressure in the furnace and the product quality. The horizontal axis shows the elapsed time after burnout, and the figure showing the oxygen partial pressure at that time shows the upper and lower limits of the carburization depth when a workpiece (gear) is loaded and carburized at a predetermined oxygen partial pressure. Is plotted according to the oxygen partial pressure curve after burnout. The left vertical axis represents the oxygen partial pressure, and the right vertical axis represents the carburization depth (mm). Note that the same heating chamber is used as the heating chamber, the heating chamber is heated to 950 ° C., and evacuated to a predetermined oxygen partial pressure with a vacuum pump. As described above, this oxygen partial pressure is not oxygen released in the heating chamber but oxygen released from the adsorbed oxygen of the structure in the heating chamber, and is obtained by evacuation over a relatively long time. Value. Immediately after reaching the specified oxygen partial pressure, the tray on which the workpieces (gears) are arranged is brought into the heating chamber, all carburized under the same conditions, and the carburized depth of the workpiece in the tray is measured. The lower limit was measured. It should be noted that the carburization depth is required to be in the range of 0.8 mm as the upper limit and 0.5 mm as the lower limit as product quality. In FIG. 3, the upper limit value and the lower limit value are shown.

図3に示すように前処理時の酸素分圧が、1×10-19.3atmでは、浸炭深さの下限値が0.3mm、上限値が0.65、1×10-19.5atmでは、下限値が0.35mm、上限値が0.6と浸炭深さが大きくばらつき、また、浸炭深さの下限値は、ねらい下限値0.5を下回り、品質も劣る。さらに酸素分圧が大きくなり、1×10-19.5atm〜1×10-19.6atmでは、浸炭深さの下限値が0.6mm、上限値が0.65となり、ばらつきも非常に少なくなる。さらに、酸素分圧が1×10-19.8atmでは、浸炭深さの下限値が0.65、上限値が0.7とより深い浸炭深さを確保できるものとなる。このように、酸素分圧が1×10-19.5atm前後が品質の遷移領域といえ、これより高い酸素分圧は不安定領域となり、これより低い酸素分圧では安定領域となる。このように、前処理段階での酸素分圧の熱処理品質に対する影響が大きいことが確認された。また、かかる結果から少なくとも前処理時の酸素分圧が1×10-19.6atm以下であれば浸炭品質に影響を及ぼさないものと言えることが確認できた。より、好ましくは1×10-19.6atm未満であればより好ましい。なお、酸素分圧及び測定誤差等の影響もあるため、実機にあたっては、適宜好ましい値を選択することはいうまでもない。 As shown in FIG. 3, when the oxygen partial pressure during the pretreatment is 1 × 10 −19.3 atm, the lower limit value of the carburization depth is 0.3 mm, the upper limit value is 0.65, and the lower limit value is 1 × 10 −19.5 atm. The value is 0.35 mm and the upper limit value is 0.6, and the carburization depth varies greatly. The lower limit value of the carburization depth is less than the target lower limit value 0.5, and the quality is inferior. Further, the oxygen partial pressure is increased, and when 1 × 10 −19.5 atm to 1 × 10 −19.6 atm, the lower limit value of the carburization depth is 0.6 mm, the upper limit value is 0.65, and the variation is very small. Furthermore, when the oxygen partial pressure is 1 × 10 −19.8 atm, a lower carburization depth lower limit value of 0.65 and an upper limit value of 0.7 can ensure a deeper carburization depth. Thus, it can be said that the oxygen partial pressure is around 1 × 10 −19.5 atm as the quality transition region, an oxygen partial pressure higher than this becomes an unstable region, and a lower oxygen partial pressure becomes a stable region. Thus, it was confirmed that the oxygen partial pressure in the pretreatment stage has a great influence on the heat treatment quality. In addition, from these results, it was confirmed that it can be said that the carburizing quality is not affected if at least the oxygen partial pressure during the pretreatment is 1 × 10 -19.6 atm or less. More preferably, it is more preferably less than 1 × 10 −19.6 atm. In addition, since there are influences, such as an oxygen partial pressure and a measurement error, it cannot be overemphasized that a suitable value is selected suitably in an actual machine.

本発明の実施の形態を示す真空浸炭炉の断面説明図である。It is a section explanatory view of a vacuum carburizing furnace showing an embodiment of the invention. バーンアウト終了後、本発明の前処理を行った場合の時間経過に対する酸素分圧と炉内温度の変化を示すグラフであり、横軸が時間軸であり、(a)の横軸時間幅は3時間、(b)の横軸時間幅は1時間である。It is a graph which shows the change of the oxygen partial pressure with respect to the time passage at the time of the time of the pretreatment of the present invention after the burnout is completed, and the temperature in the furnace, the horizontal axis is the time axis, the horizontal axis time width of (a) is 3 hours, the horizontal time width of (b) is 1 hour. 炉内酸素分圧と浸炭処理による製品品質の関係を示すグラフである。It is a graph which shows the relationship between the oxygen partial pressure in a furnace, and the product quality by a carburizing process.

符号の説明Explanation of symbols

1 真空浸炭炉
5 中間扉
6 加熱室
16 炉内構造物(断熱材、セラミックスヒータ、セラミックスレール)
30 ジルコニア式酸素センサー
1 Vacuum carburizing furnace 5 Intermediate door 6 Heating chamber 16 Furnace structure (heat insulation, ceramic heater, ceramic rail)
30 Zirconia oxygen sensor

Claims (5)

ワークを搬入搬出可能とする炉扉を有する冷却室と、前記冷却室とは中間扉を介して接続された加熱室を有し、前記加熱室内に鉄系ワークを搬入し、炭化水素系ガスを減圧高温下で分解させ炭素を前記ワークの鉄表面で反応させ、前記ワーク表面の浸炭を行う真空浸炭炉において、前記加熱室内にワークを搬入することなく、前記加熱室の前記中間扉を閉塞密閉し、前記加熱室内を加熱及び真空引きし、前記加熱室内の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atm以下になるまで、前記加熱室内の炉内構造物の吸着酸素を排出することを特徴とする真空浸炭炉加熱室の真空浸炭の前処理方法。 A cooling chamber having a furnace door that allows loading and unloading of workpieces, and a heating chamber connected to the cooling chamber via an intermediate door , carrying iron-based workpieces into the heating chamber, In a vacuum carburizing furnace that decomposes under reduced pressure and high temperature to cause carbon to react on the iron surface of the workpiece and carburizes the workpiece surface, the intermediate door of the heating chamber is closed and sealed without bringing the workpiece into the heating chamber. The heating chamber is heated and evacuated until the oxygen partial pressure in the heating chamber becomes 1 × 10 −19.6 atm or less which is a carburizing quality stable region in the carburizing process . A pre-treatment method for vacuum carburizing in a vacuum carburizing furnace heating chamber, wherein adsorbed oxygen is discharged. 前記加熱室の前処理方法は、前記加熱室の酸素分圧が浸炭処理での浸炭品質安定領域となる1×10 -19.6 atmを超える場合、あるいは超えることが想定される場合に行うことを特徴とする請求項1に記載の真空浸炭炉加熱室の真空浸炭の前処理方法。 The pretreatment method for the heating chamber is performed when the oxygen partial pressure in the heating chamber exceeds or is assumed to exceed 1 × 10 −19.6 atm, which is a carburizing quality stable region in the carburizing process. pretreatment method of vacuum carburizing of vacuum carburizing furnace heating chamber according to claim 1,. 前記酸素分圧は、前記加熱室の加熱後の真空浸炭処理温度下での酸素分圧であることを特徴とする請求項1又は2記載の真空浸炭炉加熱室の真空浸炭の前処理方法。 3. The pretreatment method for vacuum carburizing in a vacuum carburizing furnace heating chamber according to claim 1 , wherein the oxygen partial pressure is an oxygen partial pressure at a vacuum carburizing temperature after heating in the heating chamber. 前記酸素分圧はジルコニア式酸素センサーを用いて測定することを特徴とする請求項1又は2又は3記載の真空浸炭炉加熱室の真空浸炭の前処理方法。 4. The pretreatment method for vacuum carburizing in a vacuum carburizing furnace heating chamber according to claim 1, wherein the oxygen partial pressure is measured using a zirconia oxygen sensor. 少なくとも真空浸炭時には、前記ジルコニア式酸素センサーと前記加熱室の炭化水素系ガスとが接触反応しないようにすることを特徴とする請求項4記載の真空浸炭炉加熱室の真空浸炭の前処理方法。 5. The pretreatment method for vacuum carburizing in a vacuum carburizing furnace heating chamber according to claim 4, wherein the zirconia oxygen sensor and the hydrocarbon gas in the heating chamber are prevented from contacting and reacting at least during vacuum carburizing.
JP2006248851A 2006-09-14 2006-09-14 Pre-treatment method for vacuum carburizing furnace heating chamber Active JP4605718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248851A JP4605718B2 (en) 2006-09-14 2006-09-14 Pre-treatment method for vacuum carburizing furnace heating chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248851A JP4605718B2 (en) 2006-09-14 2006-09-14 Pre-treatment method for vacuum carburizing furnace heating chamber

Publications (2)

Publication Number Publication Date
JP2008069404A JP2008069404A (en) 2008-03-27
JP4605718B2 true JP4605718B2 (en) 2011-01-05

Family

ID=39291249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248851A Active JP4605718B2 (en) 2006-09-14 2006-09-14 Pre-treatment method for vacuum carburizing furnace heating chamber

Country Status (1)

Country Link
JP (1) JP4605718B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10323315B2 (en) 2014-07-23 2019-06-18 Ihi Corporation Carburizing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103786B (en) * 2014-04-23 2019-01-11 株式会社Ihi Cementing plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257197A (en) * 2000-03-10 2001-09-21 Hitachi Ltd Manufacturing method and manufacturing device for semiconductor device
JP2004059959A (en) * 2002-07-25 2004-02-26 Oriental Engineering Co Ltd Vacuum carburizing method and vacuum carburizing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202071A (en) * 1986-02-28 1987-09-05 Toyota Central Res & Dev Lab Inc Ionic nitriding method for aluminum material
JPH02115357A (en) * 1988-10-24 1990-04-27 Honda Motor Co Ltd Action for stoppage of patch carburization furnace
JPH06145781A (en) * 1992-11-02 1994-05-27 Nippon Techno:Kk Atmosphere heat treatment furnace
EP0632144B1 (en) * 1993-06-30 1999-09-08 Applied Materials, Inc. Method of purging and pumping vacuum chamber to ultra-high vacuum
JPH10219417A (en) * 1997-02-12 1998-08-18 Mazda Motor Corp Automatic device for cleaning sampling tube for analysis of carburizing furnace gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257197A (en) * 2000-03-10 2001-09-21 Hitachi Ltd Manufacturing method and manufacturing device for semiconductor device
JP2004059959A (en) * 2002-07-25 2004-02-26 Oriental Engineering Co Ltd Vacuum carburizing method and vacuum carburizing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10323315B2 (en) 2014-07-23 2019-06-18 Ihi Corporation Carburizing device

Also Published As

Publication number Publication date
JP2008069404A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP3531736B2 (en) Carburizing method and carburizing device
JP4605718B2 (en) Pre-treatment method for vacuum carburizing furnace heating chamber
KR101035635B1 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
KR100591723B1 (en) Oxidation treatment method and oxidation treatment device
USRE29881E (en) Method of vacuum carburizing
US20080073002A1 (en) Carburization treatment method and carburization treatment apparatus
WO2004029320A1 (en) Method of nitriding metal ring and apparatus therefor
JP6552209B2 (en) Method and apparatus for manufacturing metal spring
JPH06172960A (en) Vacuum carburization method
JP2007131936A (en) Burnout method for vacuum carburizing furnace
JP2004059959A (en) Vacuum carburizing method and vacuum carburizing apparatus
KR100512187B1 (en) Control method of and Apparatus for atmosphere in heat treatment furnace
US9109277B2 (en) Method and apparatus for heat treating a metal
JP4614359B2 (en) Method for detecting oxygen partial pressure in heating chamber
US7276204B2 (en) Carburization treatment method and carburization treatment apparatus
KR100684544B1 (en) Apparatus for measuring stress of wafer in high temperature process of high speed temperature variation
EP0859067B1 (en) Method and apparatus for controlling the atmosphere in a heat treatment furnace
JP2005325371A (en) Vacuum carburizing furnace
US8124916B2 (en) Thermal processing of silicon wafers
JP4255815B2 (en) Gas carburizing method
JP2020105541A (en) Carburizing facility, and burn-out completion determination method of carburizing facility
JPS63759Y2 (en)
JP2022015386A (en) Carburization apparatus and carburization method
WO2024042744A1 (en) Method for manufacturing carburized sintered body and apparatus for manufacturing carburized sintered body

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

R150 Certificate of patent or registration of utility model

Ref document number: 4605718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250