JP4614359B2 - Method for detecting oxygen partial pressure in heating chamber - Google Patents

Method for detecting oxygen partial pressure in heating chamber Download PDF

Info

Publication number
JP4614359B2
JP4614359B2 JP2006248855A JP2006248855A JP4614359B2 JP 4614359 B2 JP4614359 B2 JP 4614359B2 JP 2006248855 A JP2006248855 A JP 2006248855A JP 2006248855 A JP2006248855 A JP 2006248855A JP 4614359 B2 JP4614359 B2 JP 4614359B2
Authority
JP
Japan
Prior art keywords
heating chamber
oxygen
connection port
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006248855A
Other languages
Japanese (ja)
Other versions
JP2008069405A (en
Inventor
辰実 田中
力也 大城
昇 宮腰
哲 原井
哲司 町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nachi Fujikoshi Corp
Original Assignee
Honda Motor Co Ltd
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nachi Fujikoshi Corp filed Critical Honda Motor Co Ltd
Priority to JP2006248855A priority Critical patent/JP4614359B2/en
Publication of JP2008069405A publication Critical patent/JP2008069405A/en
Application granted granted Critical
Publication of JP4614359B2 publication Critical patent/JP4614359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、炭化水素系ガスを減圧高温下で分解させ鋼製品等の鉄系ワーク(部材)の表面を浸炭する真空浸炭炉の加熱室の酸素分圧の検出装置に関する。   The present invention relates to a device for detecting the partial pressure of oxygen in a heating chamber of a vacuum carburizing furnace that decomposes a hydrocarbon-based gas under reduced pressure and high temperature to carburize the surface of an iron-based work (member) such as a steel product.

従来、真空浸炭方法では、鉄と反応しなかった炭素が煤化し、また、炭化水素系ガスの重合物などが断熱材内部に蓄積し時間経過と共に断熱性が悪くなり、過剰なエネルギーや時間等を要したりするので、定期的に断熱材に蓄積した煤や炭化水素ガスの重合物に空気を導入し燃焼させる、いわゆるバーンアウト等が行われる(特許文献1等)。また、断熱材の劣化等により断熱材を新品のものに交換する。また修理や休暇による休止等が定期的あるいは不定期に行われる。このような場合に加熱室内の酸素量が変化する。また、操業運転状態においても、ワークや架台による空気の持ち込み、ワーク表面積や、ワークの表面の酸化の程度、炉内構造物の材質や状態により残留・吸着酸素量が変化している。   Conventionally, in the vacuum carburizing method, carbon that did not react with iron is hatched, and a polymer of hydrocarbon gas accumulates inside the heat insulating material, so that the heat insulating property deteriorates with time, excessive energy, time, etc. Therefore, so-called burnout or the like is performed in which air is periodically introduced into the soot and hydrocarbon gas polymer accumulated in the heat insulating material and burned (Patent Document 1 or the like). Also, the heat insulating material is replaced with a new one due to deterioration of the heat insulating material or the like. Also, repairs and suspensions due to vacations are performed regularly or irregularly. In such a case, the amount of oxygen in the heating chamber changes. Further, even in the operation state, the amount of residual / adsorbed oxygen varies depending on the amount of air brought in by the work and the base, the surface area of the work, the degree of oxidation of the work surface, and the material and state of the in-furnace structure.

ところが、これらの炉内の酸素量や、空気(酸素)のリーク量、炉内構造物から揮発する酸素量、さらには、ワークと共に持ち込まれた酸素量により、浸炭条件が変化し、安定した品質を確保できない。   However, carburizing conditions change depending on the amount of oxygen in these furnaces, the amount of air (oxygen) leaks, the amount of oxygen volatilized from the furnace structure, and the amount of oxygen brought in with the workpiece. Cannot be secured.

そこで、特許文献2では、例えば13〜4000Paの減圧下、炭素系含有化合物を含んだ雰囲気ガス中において、雰囲気ガス中の酸素の量と雰囲気ガスの熱伝導度とを測定しながら、酸素の量が浸炭処理を阻害しない量であることを確認しながら、かつ、炭素含有化合物の分解度合いが所定の値に維持されるよう雰囲気ガスの組成を調整しながら浸炭を行うようにしている。また、酸素濃度はジルコニア式酸素センサー、炭素化合物の分解度合いは雰囲気ガスの熱伝導度を測定している。また、このジルコニア式酸素センサーは酸素分圧1×10-20atm程度の極めて微量な濃度域における僅かな酸素濃度の差を精度よく測定できることが開示されている。 Therefore, in Patent Document 2, the amount of oxygen is measured while measuring the amount of oxygen in the atmosphere gas and the thermal conductivity of the atmosphere gas in an atmosphere gas containing a carbon-containing compound under a reduced pressure of 13 to 4000 Pa, for example. Carburizing is carried out while adjusting the composition of the atmospheric gas so that the degree of decomposition of the carbon-containing compound is maintained at a predetermined value. The oxygen concentration is measured by a zirconia oxygen sensor, and the degree of decomposition of the carbon compound is measured by the thermal conductivity of the atmospheric gas. Further, it is disclosed that this zirconia oxygen sensor can accurately measure a slight difference in oxygen concentration in a very small concentration range of oxygen partial pressure of about 1 × 10 −20 atm.

また、かかるジルコニア式酸素センサーを用いて、加熱室へのブタンガス投入時に、ジルコニア式酸素センサーの出力値が急に上昇し1〜2分間で1200mVに達するような場合は、浸炭室内の酸素の量が清浄な浸炭処理を阻害しないとし浸炭処理を続行する。逆にジルコニアセンサーの出力値が急速に上昇せず1150mV程度以下である場合は、ブタンガスを導入しても正常な浸炭処理を行えないので、浸炭処理を中止している。また、浸炭処理を中止することなく、ブタンガスの導入を中止して水素の導入に切り換えることにより浸炭室内の酸素量を低減しジルコニア式酸素センサーの出力値が1200mVに上昇すればブタンガスを再導入して浸炭処理を続行することが記載されている。このように各センサーの状況を把握し、浸炭状況を監視、制御している。
特開平2−115357号公報 特開2004−59959号公報
If the output value of the zirconia oxygen sensor suddenly increases and reaches 1200 mV in 1 to 2 minutes when butane gas is introduced into the heating chamber using such a zirconia oxygen sensor, the amount of oxygen in the carburizing chamber However, the carburizing process is continued, assuming that the carburizing process is not hindered. Conversely, when the output value of the zirconia sensor does not increase rapidly and is about 1150 mV or less, the carburizing process is stopped because normal carburizing process cannot be performed even if butane gas is introduced. Moreover, without stopping the carburizing process, the introduction of butane gas is stopped and the introduction of hydrogen is switched to reduce the amount of oxygen in the carburizing chamber. It is stated that the carburizing process will continue. In this way, the status of each sensor is grasped, and the carburization status is monitored and controlled.
JP-A-2-115357 JP 2004-59959 A

しかし、かかる従来の方法では、浸炭処理しながら判定を行うので、万一酸素量が多く水素ガスに切り換えても酸素量が減少しない場合は、ワークを加熱室外へ戻し、原因を取り除いてから再度、ワークを搬入して酸素量を判定しながら浸炭するので、ワークへの熱負荷の影響が避けられない。また、炭化水素ガスや水素ガス等の消費が多くなり原料ガス、加熱エネルギー等が無駄になるという問題があった。さらに、断熱材の交換や、バーンアウト時には多量の酸素が炉内に持ち込まれるが、この場合にはダミーワークを入れて酸素量が所定の量以下になるまで、何回か、又は長時間の運転を行った後、本(通常操業)運転に入る等の無駄な操作を必要とするという問題があった。   However, in such a conventional method, since the determination is performed while carburizing, if the oxygen amount does not decrease even if the amount of oxygen is switched to hydrogen gas, the work is returned to the outside of the heating chamber, the cause is removed, and then again. Since the workpiece is loaded and carburized while judging the amount of oxygen, the influence of the heat load on the workpiece is inevitable. Further, there is a problem that consumption of hydrocarbon gas, hydrogen gas, etc. increases, and raw material gas, heating energy, etc. are wasted. Furthermore, a large amount of oxygen is brought into the furnace at the time of heat insulation replacement or burnout. In this case, several times or a long period of time are required until a dummy work is inserted and the oxygen amount falls below a predetermined amount. There has been a problem that a wasteful operation such as entering a regular (normal operation) operation is required after the operation.

特に、ジルコニア式酸素センサーは長時間炭化水素系ガスにさらされると早期に劣化し、頻繁な交換を必要とし、また、高価であるという問題があった。   In particular, the zirconia oxygen sensor has a problem that it deteriorates early when it is exposed to a hydrocarbon gas for a long time, requires frequent replacement, and is expensive.

本発明の課題は、前述した問題点に鑑みて、ジルコニア式酸素センサーを長寿命化し、交換頻度を低下させることである。   In view of the above-described problems, an object of the present invention is to extend the life of a zirconia oxygen sensor and reduce the replacement frequency.

本願発明者等は、リーク等による機械的な原因の他に、加熱室内の酸素の量について種々研究をしたところ、ワークやジグ、搬送装置等と共に加熱室内に侵入する酸素や、中間扉の開閉に伴って侵入する不活性ガス中の酸素は普通の真空排気及び水素ガス、炭化水素ガスあるいは窒素ガス等の酸素置換ガスの導入により容易に、また、短時間に酸素量を減ずることができ、浸炭品質への影響も少ない。これに対し、修理や休みにより加熱室が長期間外気開放された後や、断熱材を交換した後、あるいは、酸素によりバーンアウトした後等に浸炭品質が非常に悪くなることを見いだした。そして、この原因が炉内構造物、特に断熱材等に付着、吸収された酸素、即ち、吸着酸素が容易には排出されていないため、長時間酸素を排出しつづけるので安定した浸炭を阻害していることを知得した。   The inventors of the present application conducted various studies on the amount of oxygen in the heating chamber in addition to mechanical causes due to leaks, etc., and found that oxygen entering the heating chamber along with workpieces, jigs, transport devices, etc., and opening / closing of the intermediate door Oxygen in the inert gas that intrudes can be easily reduced by introducing ordinary vacuum exhaust and oxygen replacement gas such as hydrogen gas, hydrocarbon gas or nitrogen gas, and the amount of oxygen can be reduced in a short time. Less impact on carburizing quality. On the other hand, after the heating chamber was opened to the outside for a long time due to repairs and holidays, the carburizing quality was found to be very poor after replacing the heat insulating material or after burning out with oxygen. This is because the oxygen adhering to and absorbed in the furnace structure, especially the heat insulating material, that is, the adsorbed oxygen, is not easily exhausted. I knew that.

そこで、本願発明者等は、加熱室内に鉄系ワークを搬入し、炭化水素系ガスを減圧高温下で分解させ炭素をワークの鉄表面で反応させ、ワーク表面の浸炭を行う真空浸炭炉において、加熱室内にワークを搬入することなく、加熱室の中間扉を閉塞密閉し、加熱室内を加熱及び真空引きし、加熱室内の酸素分圧が所定値以下になるまで、加熱室内の炉内構造物の吸着酸素を排出する真空浸炭炉の加熱室の前処理方法を提案した。これにより、浸炭時に影響を与える吸着酸素を微量とし、即通常操業運転に入っても酸素量の影響を受けず安定した浸炭品質を得ることができ、また、浸炭工程中での酸素の量の常時監視は不要となった。   Therefore, the inventors of the present application bring an iron-based workpiece into the heating chamber, decompose the hydrocarbon gas under reduced pressure and high temperature, cause carbon to react on the iron surface of the workpiece, and carburize the workpiece surface, Without bringing the workpiece into the heating chamber, the intermediate door of the heating chamber is closed and sealed, the heating chamber is heated and evacuated, and the furnace structure in the heating chamber is kept until the oxygen partial pressure in the heating chamber becomes a predetermined value or less. A pretreatment method for the heating chamber of the vacuum carburizing furnace is proposed. This makes it possible to obtain a small amount of adsorbed oxygen that affects carburization and to obtain a stable carburizing quality without being affected by the amount of oxygen even immediately after entering normal operation, and the amount of oxygen in the carburizing process can be reduced. Constant monitoring is no longer necessary.

かかる知見に基づけば、浸炭処理中に酸素濃度を測定する必要がなくなる。そこで、本発明においては、加熱室内に鉄系ワークを搬入し、炭化水素系ガスを減圧高温下で分解させ炭素を前記ワークの鉄表面で反応させ、前記ワーク表面の浸炭を行う真空浸炭炉において、前記加熱室内に一端が開口する検出用パイプと、前記加熱室外で前記検出用パイプの他端開口と一方の接続口で接続された第一の開閉バルブと、前記第一の開閉バルブの他方の接続口に先端が接続されたセンサー取付管と、前記センサー取付管の反先端側の側部に開口する開口部と一方の接続口で接続された第二の開閉バルブと、前記第二の開閉バルブの他方の接続口と配管を介して一方の接続口で接続された第三の開閉バルブと、前記第三の開閉バルブの他方の接続口に吸気口で接続された真空ポンプと、前記センサー取付管の内部に検出部が位置するように前記センサー取付管の反先端側に取り付けられたジルコニア式酸素センサーとを設け、前記第一、第二、第三の開閉バルブを開いて酸素分圧を測定し、加熱室内の炉内構造物の吸着酸素の排出が完了したと判定すること、及び、少なくとも真空浸炭時には、前記第一の開閉バルブを閉とし、かつ、前記第二又は第三のいずれか又は両方を閉とし、ジルコニア式酸素センサーと、炭化水素ガスとが触れないようにすることを有する加熱室の真空浸炭の酸素分圧検出方法を提供することにより、前述した課題を解決した。 Based on this knowledge, it is not necessary to measure the oxygen concentration during the carburizing process. Therefore, in the present invention, in a vacuum carburizing furnace in which an iron-based work is carried into a heating chamber, hydrocarbon gas is decomposed under reduced pressure and high temperature, carbon is reacted on the iron surface of the work, and the work surface is carburized. A detection pipe having one end opened in the heating chamber, a first opening / closing valve connected to the other end opening of the detection pipe and one connection port outside the heating chamber, and the other of the first opening / closing valve A sensor attachment tube having a tip connected to the connection port, an opening opening on a side opposite to the tip of the sensor attachment tube, a second opening / closing valve connected at one connection port, and the second A third on-off valve connected to the other connection port of the on-off valve via one pipe, a vacuum pump connected to the other connection port of the third on-off valve at the intake port, and The detector is positioned inside the sensor mounting tube. And said zirconia oxygen sensor attached to the anti-tip side of the sensor mounting tube to provided, the first, second, open the third switching valve to measure the oxygen partial pressure, the heating chamber of the furnace It is determined that the discharge of the adsorbed oxygen of the structure is completed, and at least during vacuum carburization, the first on-off valve is closed, and either the second or third or both are closed, and zirconia The above-described problems have been solved by providing a method for detecting the partial pressure of oxygen in vacuum carburization of a heating chamber, which has an oxygen oxygen sensor and a hydrocarbon gas that do not come into contact with each other.

即ち、ジルコニア式酸素センサーの両端に開閉バルブを配置し、加熱室の酸素分圧を測定するときは、開閉バルブを開き、加熱室に浸炭ガスを供給するような浸炭期には、開閉バルブを閉塞し、ジルコニア式酸素センサーへの炭化水素系ガスの影響を無くす。また、真空ポンプにより、排気できるようにしているので、加熱室内の酸素分圧を正確に測定することができる。また、ジルコニア式酸素センサーと真空ポンプ間の両側に開閉バルブを設けているので、バルブ間の配管内を真空の状態に保ち、加熱室側での真空破壊や炭化水素系ガス、窒素ガス等の排気時の影響が少ない。また、メンテナンス時の真空度の確保もできる。   In other words, open / close valves are arranged at both ends of the zirconia oxygen sensor, and when the oxygen partial pressure in the heating chamber is measured, the open / close valve is opened and the open / close valve is opened during the carburizing period in which carburizing gas is supplied to the heating chamber. It obstructs and eliminates the influence of hydrocarbon gases on the zirconia oxygen sensor. Further, since the exhaust can be performed by the vacuum pump, the oxygen partial pressure in the heating chamber can be accurately measured. In addition, since open / close valves are provided on both sides between the zirconia oxygen sensor and the vacuum pump, the piping between the valves is kept in a vacuum state, such as vacuum breakage on the heating chamber side, hydrocarbon gas, nitrogen gas, etc. There is little influence at the time of exhaust. In addition, the degree of vacuum during maintenance can be secured.

また、少なくとも真空浸炭時には、前記第一の開閉バルブを閉とし、前記第二又は第三のいずれか又は両方を閉とした加熱室の酸素分圧検出方法としたので、ジルコニア式酸素センサーと炭化水素系ガスとの接触を防止する。 Also, at least during vacuum carburization, the first open / close valve is closed, and the second or third or both are closed, and the oxygen partial pressure is detected in the heating chamber. Prevent contact with hydrogen gas.

本発明においては、ジルコニア式酸素センサーの両端に開閉バルブを配置し、ジルコニア式酸素センサーへの炭化水素系ガスの影響を無くし、加熱室内の酸素分圧を正確に測定でき、メンテナンス時の真空度の確保もできるので、ジルコニア式酸素センサーは長寿命となり、また、交換する手間も無くなり、メンテナンスも容易となった。   In the present invention, opening and closing valves are arranged at both ends of the zirconia oxygen sensor, the influence of hydrocarbon gas on the zirconia oxygen sensor is eliminated, the oxygen partial pressure in the heating chamber can be accurately measured, and the degree of vacuum during maintenance Therefore, the zirconia oxygen sensor has a long service life, and there is no need to replace it, making maintenance easier.

また、ジルコニア式酸素センサーと炭化水素系ガスとの接触を防止するようにしたので、ジルコニア式酸素センサーの劣化も少なく、長寿命を確保できる。 Further, since the contact between the zirconia oxygen sensor and the hydrocarbon gas is prevented, the zirconia oxygen sensor is hardly deteriorated and a long life can be secured.

本発明の実施の形態について図を参照して説明する。図1は本発明の実施の形態を示す真空浸炭炉の断面説明図、図2はジルコニア式酸素センサーを加熱室へ取り付けた状態を示す部分断面図である。真空浸炭炉1は、図示しないワークを搬入搬出可能にされた炉扉3を有する冷却室4と冷却室4とは中間扉5を介して接続された加熱室6、さらに、冷却室4の下方に配置された油槽7から構成される。冷却室4,加熱室6は中間扉5炉扉3を閉じることにより、それぞれ密閉構造となるようにされ、図示しない真空排出装置により冷却室内を真空とすることができる。加熱室6には、開閉弁10,12及び空気圧作動弁11、空気圧で作動する炉内圧力制御弁13を介して真空ポンプ15が接続され、加熱室内を真空引き可能にされている。開閉弁10,12はメンテナンス用であり、開閉弁10,11は常時開、12は常時閉とされ、加熱室6と真空ポンプ15とは空気圧作動弁11、炉内圧力制御弁13により開閉される。また、図示しないガス供給装置が設けられ、浸炭ガス、窒素ガス、空気等を加熱室内に、窒素ガス及び空気を冷却室内に供給可能にしている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional explanatory view of a vacuum carburizing furnace showing an embodiment of the present invention, and FIG. 2 is a partial cross-sectional view showing a state in which a zirconia oxygen sensor is attached to a heating chamber. The vacuum carburizing furnace 1 includes a cooling chamber 4 having a furnace door 3 in which a workpiece (not shown) can be carried in and out, a heating chamber 6 connected via an intermediate door 5, and a lower part of the cooling chamber 4. It is comprised from the oil tank 7 arrange | positioned. The cooling chamber 4 and the heating chamber 6 are each made to have a sealed structure by closing the intermediate door 5 and the furnace door 3, and the cooling chamber can be evacuated by a vacuum exhaust device (not shown). A vacuum pump 15 is connected to the heating chamber 6 through on-off valves 10 and 12, a pneumatic operation valve 11, and an in-furnace pressure control valve 13 operated by air pressure, so that the heating chamber can be evacuated. The on-off valves 10 and 12 are for maintenance, the on-off valves 10 and 11 are normally open, 12 is normally closed, and the heating chamber 6 and the vacuum pump 15 are opened and closed by a pneumatically operated valve 11 and a furnace pressure control valve 13. The In addition, a gas supply device (not shown) is provided so that carburizing gas, nitrogen gas, air, and the like can be supplied into the heating chamber, and nitrogen gas and air can be supplied into the cooling chamber.

油槽7には焼入れ油が貯留され、加熱浸炭されたワークを没入させることにより油焼入れが可能にされている。加熱室6は、加熱室の外壁を形成する炉壁17内に断熱材16を貼り付け、さらに、空間37を設けて、断熱枠33を配置し、さらに断熱材16を設けて真空加熱が可能にされ、炉温度及び真空度を確保する。断熱材16は例えば、アルミナ・シリカ系セラミックス断熱材等が使用される。また、中間扉5にも同様の断熱材16が使用されている。加熱室6内には炉内圧力計8、炉内温度計9が設けられている。炉内構造物には、断熱材16の他、セラミックスチューブ、セラミックス炉床、セラミックスレール等の酸素吸着材があげられる。   Quenching oil is stored in the oil tank 7, and oil quenching is enabled by immersing the work that has been carburized by heating. In the heating chamber 6, the heat insulating material 16 is pasted in the furnace wall 17 that forms the outer wall of the heating chamber, a space 37 is provided, the heat insulating frame 33 is disposed, and the heat insulating material 16 is further provided for vacuum heating. To ensure furnace temperature and vacuum. As the heat insulating material 16, for example, an alumina / silica ceramic heat insulating material or the like is used. The same heat insulating material 16 is also used for the intermediate door 5. A furnace pressure gauge 8 and a furnace thermometer 9 are provided in the heating chamber 6. In addition to the heat insulating material 16, the furnace internal structure includes an oxygen adsorbing material such as a ceramic tube, a ceramic hearth, and a ceramic rail.

浸炭焼入れにあたっては、ワークは炉扉3より、冷却室4に搬入される。炉扉3を閉じ、冷却室を真空排気する。冷却室4の所定の排気を行った後、中間扉5を開きワークを加熱室6内に搬入し中間扉を閉じる。その状態で、ワークを加熱し、均熱・浸炭・拡散・降温工程の後、中間扉5を開きワークを冷却室4へ搬出し、中間扉を閉じた後、ワークを油槽7に浸積し焼入れ後ワークを引き上げ、炉扉を開き炉外へワークを搬出する。かかる真空浸炭炉は公知であるので詳細な説明を省略する。   In carburizing and quenching, the work is carried into the cooling chamber 4 from the furnace door 3. The furnace door 3 is closed and the cooling chamber is evacuated. After the predetermined exhaust of the cooling chamber 4 is performed, the intermediate door 5 is opened, the work is carried into the heating chamber 6, and the intermediate door is closed. In this state, the workpiece is heated, and after the soaking, carburizing, diffusion, and temperature lowering steps, the intermediate door 5 is opened, the workpiece is transferred to the cooling chamber 4, the intermediate door is closed, and the workpiece is immersed in the oil tank 7. Pull up the workpiece after quenching, open the furnace door and carry the workpiece out of the furnace. Since such a vacuum carburizing furnace is known, a detailed description thereof will be omitted.

特に本発明においては、図1,2に示すように、加熱室6の炉壁17、断熱材16,16を貫通して検出用パイプ22を挿入し、第一の開閉バルブ20、センサー取付管21、第二、第三開閉バルブ23,24を順次介して真空ポンプ15に接続されている。即ち、加熱室6内に炉壁17、断熱材16,16を貫通して、一端22aが開口する検出用パイプ22、加熱室外で検出用パイプの他端開口22bと一方の接続口20aで第一の開閉バルブ20が径違いフランジ継手35を介して接続されている。径違いフランジ継手35は台座34を介して炉壁17に固定され、検出パイプを支持する。検出用パイプ22は外径15mm内径10mmのセラミックスチューブであり、第二の開閉バルブ20は口径1インチのアングル型開閉バルブである。 In particular, in the present invention, as shown in FIGS. 1 and 2, the detection pipe 22 is inserted through the furnace wall 17 and the heat insulating materials 16 and 16 of the heating chamber 6, and the first on-off valve 20 and the sensor mounting pipe. 21, second and third on-off valves 23, 24 are connected to the vacuum pump 15 via the order. That is, the detection pipe 22 having one end 22a opened through the furnace wall 17 and the heat insulating materials 16 and 16 in the heating chamber 6, and the other end opening 22b of the detection pipe and one connection port 20a outside the heating chamber One open / close valve 20 is connected via a flange joint 35 having a different diameter. The different-diameter flange joint 35 is fixed to the furnace wall 17 via a pedestal 34 and supports the detection pipe. The detection pipe 22 is a ceramic tube having an outer diameter of 15 mm and an inner diameter of 10 mm, and the second opening / closing valve 20 is an angle type opening / closing valve having a diameter of 1 inch.

第一の開閉バルブ20の他方の接続口20bに、先端21aが接続されたセンサー取付管21がフランジ接続されている。センサー取付管21の反先端側21bの側部21cに開口する開口部21dに第二の開閉バルブ23が一方の接続口23aで接続されている。第二の開閉バルブ23の他方の接続口23bと配管36を介して第三の開閉バルブ24が一方の接続口24aで接続されている。第二、第三の開閉バルブ23,24は口径3/8インチのボールバルブである。第三の開閉バルブ24の他方の接続口24bは真空ポンプ10の吸気口10aに、他の配管と共に、接続されている。   A sensor attachment tube 21 having a tip 21a connected to the other connection port 20b of the first opening / closing valve 20 is flange-connected. A second opening / closing valve 23 is connected to an opening 21d that opens to a side 21c on the side opposite to the tip 21b of the sensor mounting tube 21 through one connection port 23a. The third opening / closing valve 24 is connected to the other connection port 23b of the second opening / closing valve 23 via the pipe 36 by the one connection port 24a. The second and third on-off valves 23 and 24 are ball valves having a diameter of 3/8 inch. The other connection port 24b of the third on-off valve 24 is connected to the intake port 10a of the vacuum pump 10 together with other piping.

センサー取付管21の反先端側21bにはジルコニア式酸素センサー30が取り付けられ、センサー取付管21の内部に酸素分圧を検出する検出部31が位置するようにされ取付管21内のガスと接触反応できるようにされている。検出部31はセンサー取付管21内に真空排気により形成される排気通路に一致させるのが好ましい。ジルコニア式酸素センサー30には図示しない測定制御部が設けられ、酸素分圧が表示等される。また、酸素分圧が所定の値になった時に信号を出力するようにされる。ジルコニア式酸素センサーの働き、制御、測定方法等については公知であるので詳細説明は省略する   A zirconia oxygen sensor 30 is attached to the opposite end 21 b of the sensor attachment tube 21, and a detection unit 31 for detecting the oxygen partial pressure is positioned inside the sensor attachment tube 21 so as to contact the gas in the attachment tube 21. It is made to be able to react. The detection unit 31 is preferably matched with an exhaust passage formed in the sensor attachment tube 21 by vacuum exhaust. The zirconia oxygen sensor 30 is provided with a measurement control unit (not shown) to display the oxygen partial pressure. A signal is output when the oxygen partial pressure reaches a predetermined value. Since the function, control, measurement method, and the like of the zirconia oxygen sensor are known, detailed description thereof is omitted.

かかる、真空浸炭装置1において、本発明の真空浸炭炉の加熱室の前処理は次のように行われる。ワーク等を搬入せず加熱室6を空の状態としたままで、炉扉3、加熱室の中間扉5を閉塞密閉する。開閉バルブ20,23,24を開き、ジルコニア式酸素センサーに加熱室6の酸素分圧が働くようにする。図示しないラジアントチューブにより炉内温度計9で炉内温度を監視しながら、850℃〜1050℃の所定温度に加熱する。同時に、電磁開閉弁13を開き、真空ポンプ15を運転し、炉内圧力計8で炉内の圧力を監視しながら、加熱室内の酸素分圧が所定値、1×10-19.6〜1×10-20atmになるまで、真空引きする。ジルコニア式酸素センサーをセンサ取付管21に取付け、加熱室6と真空ポンプ15間に配設したので、加熱室の酸素分圧を正確に測定できる。 In such a vacuum carburizing apparatus 1, the pretreatment of the heating chamber of the vacuum carburizing furnace of the present invention is performed as follows. The furnace door 3 and the intermediate door 5 of the heating chamber are closed and sealed while the work chamber is not carried in and the heating chamber 6 is left empty. The on-off valves 20, 23, 24 are opened so that the oxygen partial pressure of the heating chamber 6 acts on the zirconia oxygen sensor. While monitoring the furnace temperature with a furnace thermometer 9 using a radiant tube (not shown), the furnace is heated to a predetermined temperature of 850 ° C. to 1050 ° C. At the same time, the electromagnetic on-off valve 13 is opened, the vacuum pump 15 is operated, and the pressure in the furnace is monitored by the furnace pressure gauge 8, while the oxygen partial pressure in the heating chamber is a predetermined value, 1 × 10 −19.6 to 1 × 10 Apply vacuum until -20 atm. Since the zirconia oxygen sensor is attached to the sensor attachment tube 21 and disposed between the heating chamber 6 and the vacuum pump 15, the oxygen partial pressure in the heating chamber can be accurately measured.

加熱室内の酸素分圧が所定値、1×10-19.6〜1×10-20atm以下となった時に、加熱室内の炉内構造物の吸着酸素の排出が完了したと判定し、開閉バルブ20を閉じて前準備を終了する。真空ポンプを停止する場合には真空ポンプ油の逆流防止のため、開閉バルブ23,24を閉じる。その後、従来と同様にワークを炉扉から冷却室に搬入し、所定の作業により浸炭焼入れ処理を行う。なお、酸素分圧の減少がほとんど見られない場合は、リーク等の機械的な問題が考えられるので、その場合は前処理を停止し原因を取り除く必要があることは言うまでもない。 When the oxygen partial pressure in the heating chamber becomes a predetermined value, 1 × 10 −19.6 to 1 × 10 −20 atm or less, it is determined that the adsorption of adsorbed oxygen in the furnace structure in the heating chamber is completed, and the on-off valve 20 To finish the preparation. When the vacuum pump is stopped, the on-off valves 23 and 24 are closed to prevent the backflow of the vacuum pump oil. Thereafter, the work is carried into the cooling chamber from the furnace door as in the conventional case, and carburizing and quenching is performed by a predetermined operation. Note that when there is almost no decrease in oxygen partial pressure, a mechanical problem such as a leak may be considered. In this case, needless to say, it is necessary to stop the pretreatment and remove the cause.

かかる前処理を行うことにより、加熱室を2日以上不使用であったり、バーンアウト後、又は炉内構造物の交換後等であっても、速やかに通常操業運転に入ることができ、浸炭品質も安定したものとなる。また、真空浸炭時には、少なくとも開閉バルブ20,23を閉とするのでジルコニア式酸素センサーと加熱室の炭化水素系ガスとは接触反応しない。なお、開閉バルブ20,23,24は手動弁としたが、これは酸素分圧の測定はバーンアウト等の後に行われるので使用頻度が少ない為であり、空圧作動弁、電磁弁等に代え自動測定することも可能である。   By performing such pretreatment, even if the heating chamber is not used for two days or more, after burnout, or after replacement of the internal structure of the furnace, the normal operation operation can be promptly started, and carburization is performed. Quality is also stable. Further, at the time of vacuum carburizing, at least the on-off valves 20 and 23 are closed, so that the zirconia oxygen sensor and the hydrocarbon gas in the heating chamber do not react with each other. The open / close valves 20, 23, and 24 are manual valves. This is because the oxygen partial pressure is measured after burnout or the like, and thus is used less frequently. Instead of pneumatic valves, solenoid valves, and the like. Automatic measurement is also possible.

本発明の実施の形態を示す真空浸炭炉の断面説明図である。It is a section explanatory view of a vacuum carburizing furnace showing an embodiment of the invention. 本発明の実施の形態を示すジルコニア式酸素センサーを加熱室へ取り付けた状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which attached the zirconia type oxygen sensor which shows embodiment of this invention to the heating chamber.

符号の説明Explanation of symbols

1 真空浸炭炉
5 中間扉
6 加熱室
15 真空ポンプ
10a 真空ポンプの吸気口
16 炉内構造物(断熱材、セラミックスヒータ、セラミックスレール)
20 第一の開閉バルブ
20a 第一の開閉バルブの一方の接続口
20b 第一の開閉バルブの他方の接続口
21 センサー取付管
21a センサー取付管の先端
21b センサー取付管の反先端側
21c 側部
21d 側部の開口部
22 検出用パイプ
22a 検出用パイプの一端
22b 検出用パイプの他端開口
23 第二の開閉バルブ
23a 第二の開閉バルブの一方の接続口
23b 第二の開閉バルブの他方の接続口
24 第三の開閉バルブ
24a 第三の開閉バルブの一方の接続口
24b 第三の開閉バルブの他方の接続口
30 ジルコニア式酸素センサー
31 検出部
36 配管
1 Vacuum carburizing furnace 5 Intermediate door 6 Heating chamber
15 Vacuum pump 10a Vacuum pump inlet 16 Structure in furnace (heat insulating material, ceramic heater, ceramic rail)
20 First open / close valve 20a One connection port 20b of the first open / close valve The other connection port 21 of the first open / close valve 21 Sensor mounting tube 21a Tip 21b of sensor mounting tube Anti-tip side 21c of sensor mounting tube Side 21d Side opening 22 Detection pipe 22a Detection pipe one end 22b Detection pipe other end opening 23 Second open / close valve 23a Second open / close valve one connection port 23b Second open / close valve other connection Port 24 Third open / close valve 24a One connection port 24b of the third open / close valve Other connection port 30 of the third open / close valve 30 Zirconia-type oxygen sensor 31 Detector 36 Piping

Claims (1)

加熱室内に鉄系ワークを搬入し、炭化水素系ガスを減圧高温下で分解させ炭素を前記ワークの鉄表面で反応させ、前記ワーク表面の浸炭を行う真空浸炭炉において、
前記加熱室内に一端が開口する検出用パイプと、
前記加熱室外で前記検出用パイプの他端開口と一方の接続口で接続された第一の開閉バルブと、
前記第一の開閉バルブの他方の接続口に先端が接続されたセンサー取付管と、
前記センサー取付管の反先端側の側部に開口する開口部と一方の接続口で接続された第二の開閉バルブと、
前記第二の開閉バルブの他方の接続口と配管を介して一方の接続口で接続された第三の開閉バルブと、
前記第三の開閉バルブの他方の接続口に吸気口で接続された真空ポンプと、前記センサー取付管の内部に検出部が位置するように前記センサー取付管の反先端側に取り付けられたジルコニア式酸素センサーとを設け、
前記第一、第二、第三の開閉バルブを開いて酸素分圧を測定し、加熱室内の炉内構造物の吸着酸素の排出が完了したと判定すること、及び、
少なくとも真空浸炭時には、前記第一の開閉バルブを閉とし、かつ、前記第二又は第三のいずれか又は両方を閉とし、ジルコニア式酸素センサーと、炭化水素ガスとが触れないようにすることを特徴とする加熱室の真空浸炭の酸素分圧検出方法。
In a vacuum carburizing furnace that carries an iron-based workpiece into a heating chamber, decomposes hydrocarbon-based gas under reduced pressure and high temperature, reacts carbon on the iron surface of the workpiece, and carburizes the workpiece surface.
A detection pipe having one end opened in the heating chamber;
A first on-off valve connected to the other end opening of the detection pipe and one connection port outside the heating chamber;
A sensor mounting pipe having a tip connected to the other connection port of the first on-off valve;
A second opening / closing valve connected at one connection port with an opening that opens on the side opposite to the tip of the sensor mounting tube;
A third on-off valve connected at one connection port via a pipe with the other connection port of the second on-off valve;
A vacuum pump connected to the other connection port of the third on-off valve via an intake port, and a zirconia type attached to the opposite end side of the sensor mounting tube so that a detection portion is located inside the sensor mounting tube An oxygen sensor ,
Measuring the oxygen partial pressure by opening the first, second and third on-off valves, and determining that the adsorption of the adsorbed oxygen in the furnace structure in the heating chamber is complete; and
At least during vacuum carburization, the first opening / closing valve is closed and either the second or third or both are closed so that the zirconia oxygen sensor and the hydrocarbon gas do not come into contact with each other. A method for detecting oxygen partial pressure of vacuum carburizing in a heating chamber.
JP2006248855A 2006-09-14 2006-09-14 Method for detecting oxygen partial pressure in heating chamber Active JP4614359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248855A JP4614359B2 (en) 2006-09-14 2006-09-14 Method for detecting oxygen partial pressure in heating chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248855A JP4614359B2 (en) 2006-09-14 2006-09-14 Method for detecting oxygen partial pressure in heating chamber

Publications (2)

Publication Number Publication Date
JP2008069405A JP2008069405A (en) 2008-03-27
JP4614359B2 true JP4614359B2 (en) 2011-01-19

Family

ID=39291250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248855A Active JP4614359B2 (en) 2006-09-14 2006-09-14 Method for detecting oxygen partial pressure in heating chamber

Country Status (1)

Country Link
JP (1) JP4614359B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145781A (en) * 1992-11-02 1994-05-27 Nippon Techno:Kk Atmosphere heat treatment furnace
JPH10219417A (en) * 1997-02-12 1998-08-18 Mazda Motor Corp Automatic device for cleaning sampling tube for analysis of carburizing furnace gas
JP2001257197A (en) * 2000-03-10 2001-09-21 Hitachi Ltd Manufacturing method and manufacturing device for semiconductor device
JP2004059959A (en) * 2002-07-25 2004-02-26 Oriental Engineering Co Ltd Vacuum carburizing method and vacuum carburizing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145781A (en) * 1992-11-02 1994-05-27 Nippon Techno:Kk Atmosphere heat treatment furnace
JPH10219417A (en) * 1997-02-12 1998-08-18 Mazda Motor Corp Automatic device for cleaning sampling tube for analysis of carburizing furnace gas
JP2001257197A (en) * 2000-03-10 2001-09-21 Hitachi Ltd Manufacturing method and manufacturing device for semiconductor device
JP2004059959A (en) * 2002-07-25 2004-02-26 Oriental Engineering Co Ltd Vacuum carburizing method and vacuum carburizing apparatus

Also Published As

Publication number Publication date
JP2008069405A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US6846366B2 (en) Carburizing method and carburizing apparatus
JP5202810B2 (en) Graphite heating furnace and optical fiber manufacturing method
TWI400756B (en) Substrate processing apparatus and substrate processing method and a method for manufacturing semiconductor device
US5385337A (en) Control system for a soft vacuum furnace
KR100591723B1 (en) Oxidation treatment method and oxidation treatment device
JP7054433B2 (en) Material test equipment and material test method
EP1271636A1 (en) Thermal oxidation process control by controlling oxidation agent partial pressure
US20080073002A1 (en) Carburization treatment method and carburization treatment apparatus
JP4605718B2 (en) Pre-treatment method for vacuum carburizing furnace heating chamber
US8157561B2 (en) System for controlling atmosphere gas inside furnace
JP4614359B2 (en) Method for detecting oxygen partial pressure in heating chamber
JP2007131936A (en) Burnout method for vacuum carburizing furnace
JP2004059959A (en) Vacuum carburizing method and vacuum carburizing apparatus
US9109277B2 (en) Method and apparatus for heat treating a metal
KR19980071378A (en) Atmosphere control method and apparatus in heat treatment furnace
US7276204B2 (en) Carburization treatment method and carburization treatment apparatus
KR20010104356A (en) Method and apparatus for sealing the bottom of a furnace for drawing optical fiber from a preform
JP2007285821A (en) Thermogravimetric measuring device
US8124916B2 (en) Thermal processing of silicon wafers
KR19980071377A (en) Atmosphere control method and apparatus in heat treatment furnace
JP2020105541A (en) Carburizing facility, and burn-out completion determination method of carburizing facility
JP2008064387A (en) Heating furnace and heating method for heating object
JP2024061385A (en) How to determine when to implement burnout
JP2022015386A (en) Carburization apparatus and carburization method
CN118090498A (en) High-temperature friction and wear testing device and method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

R150 Certificate of patent or registration of utility model

Ref document number: 4614359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250