JP2010163686A - Surface treatment apparatus and surface treatment method - Google Patents

Surface treatment apparatus and surface treatment method Download PDF

Info

Publication number
JP2010163686A
JP2010163686A JP2009280657A JP2009280657A JP2010163686A JP 2010163686 A JP2010163686 A JP 2010163686A JP 2009280657 A JP2009280657 A JP 2009280657A JP 2009280657 A JP2009280657 A JP 2009280657A JP 2010163686 A JP2010163686 A JP 2010163686A
Authority
JP
Japan
Prior art keywords
surface treatment
processed
workpiece
projection material
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009280657A
Other languages
Japanese (ja)
Other versions
JP5645398B2 (en
Inventor
Tatsuya Ito
達也 伊藤
Taketaka Kameyama
雄高 亀山
Shoichi Kikuchi
将一 菊池
Jun Komodori
潤 小茂鳥
Kengo Fukazawa
剣吾 深沢
Yoshitaka Misaka
佳孝 三阪
Kazuhiro Kawasaki
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Keio University
Original Assignee
Neturen Co Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Keio University filed Critical Neturen Co Ltd
Priority to JP2009280657A priority Critical patent/JP5645398B2/en
Publication of JP2010163686A publication Critical patent/JP2010163686A/en
Application granted granted Critical
Publication of JP5645398B2 publication Critical patent/JP5645398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment apparatus which can enhance a transfer rate of a projection material and decrease surface roughness, when surface-treating an article to be treated by jetting the projection material thereto while induction-heating the article to be treated. <P>SOLUTION: This surface treatment apparatus includes: a chamber 110; a gas-supplying part 142 for introducing nitrogen gas into the chamber 110; a support 120 which is arranged in the chamber 110 and supports the article to be treated W; an induction heating coil 130 which is arranged around the support 12 and heats the article to be treated W; a high-frequency-wave-applying unit 200 which supplies a high-frequency electric current to the induction heating coil 130 and makes the induction heating coil 130 induction-heat the article to be treated W; and a jet nozzle 140 which jets the projection material together with an inert gas or jets an inert gas, toward the support 120. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被処理物を誘導加熱しつつ投射材を噴射して表面処理する表面処理装置及び表面処理方法に関し、特に投射材の移着率の向上と表面粗さの低減を同時に行える技術に関する。   The present invention relates to a surface treatment apparatus and a surface treatment method for performing surface treatment by injecting a projection material while inductively heating an object to be treated, and particularly relates to a technique capable of simultaneously improving the transfer rate of a projection material and reducing the surface roughness. .

従来、例えば鋼材に金属粒子等の投射材(微粒子)を噴射して表面処理する表面処理装置が知られている。   2. Description of the Related Art Conventionally, surface treatment apparatuses that perform surface treatment by spraying a projection material (fine particles) such as metal particles onto a steel material are known.

例えば、ショットピーニング後に真空雰囲気で加熱してMnを蒸発除去し、表面のCr富化層のCr濃度を高める技術が知られている(例えば、特許文献1参照)。すなわち、母材(被処理物)がステンレス鋼管内部に鋼球(投射材)を入れた状態で、母材に振動を加える等によって、鋼球を母材の内面に衝突させるショットピーニング処理を行ない、母材中のCrの表面拡散を促進させることによって、母材Pの内表面にCr富化層を発生させる。   For example, a technique is known in which Mn is evaporated and removed by heating in a vacuum atmosphere after shot peening to increase the Cr concentration of the Cr-enriched layer on the surface (see, for example, Patent Document 1). That is, in a state where the base material (object to be processed) has a steel ball (projection material) inside the stainless steel pipe, a shot peening process is performed in which the steel ball collides with the inner surface of the base material by applying vibration to the base material. The Cr-enriched layer is generated on the inner surface of the base material P by promoting the surface diffusion of Cr in the base material.

ショットピーニング処理後において、その処理後の母材を真空加熱炉に送り込んで、例えば、真空、温度900〜1200℃の雰囲気で30分程度加熱し、母材の内表面のCr富化層について、Mnを蒸発除去する。   After the shot peening treatment, the base material after the treatment is sent to a vacuum heating furnace and heated, for example, in an atmosphere at a temperature of 900 to 1200 ° C. for about 30 minutes, about the Cr-enriched layer on the inner surface of the base material, Mn is removed by evaporation.

つまり、上述の化学成分のうち、Mnの沸点が低いことを利用して、Mnのみを蒸発させてCr富化層から除去する。なお、Mn成分は、ステンレス鋼の製造時や溶接時に、応力割れの発生を防止するための有用な金属成分であるが、製品または部品の状態とした後に除去しても、ステンレス鋼としての基本的性質に及ぼす影響を無視できる。   That is, using the fact that the boiling point of Mn is low among the chemical components described above, only Mn is evaporated and removed from the Cr-enriched layer. Note that the Mn component is a useful metal component for preventing the occurrence of stress cracking during the production and welding of stainless steel. The influence on the physical properties can be ignored.

また、ショットピーニング後に酸化物の保護皮膜を形成する技術が知られている(例えば、特許文献2参照)。すなわち、投射材としては、耐酸化性に優れた保護皮膜を形成する金属なら何でも良く、Crの他にAlやSi等が考慮される。そして、これらの金属の粉末、またはこれらの金属を含む合金、またはこれらの混合体が投射材として使用される。この投射材の平均粒径は50〜300μmが好適である。母材としては、たとえば、高Crフェライト系耐熱鋼を含むフェライト系耐熱鋼、オーステナイト系耐熱鋼等の耐熱鋼や、ステンレス鋼等が例示される。そして、ショットピーニング処理装置は、一般に使用されているものが利用可能である。このショットピーニング処理の投射材の噴射圧力は6.0〜8.5kg/cmの範囲が考慮される。噴射時間は、対象となる母材の大きさによって異なるが、たとえば、寸法10×20×2mmの試験片の場合には、一試験片あたり5 秒以上が好適である。このように、母材上のCr付着層は、一般に使用されている装置で処理が可能で、投射材も、ショットピーニングに必要な量だけ使用されるため、非常に低コストで形成される。 In addition, a technique for forming an oxide protective film after shot peening is known (see, for example, Patent Document 2). That is, the projection material may be any metal that forms a protective film with excellent oxidation resistance, and Al, Si, etc. are considered in addition to Cr. And the powder of these metals, the alloy containing these metals, or these mixtures are used as a projection material. The average particle size of the projection material is preferably 50 to 300 μm. Examples of the base material include heat resistant steels such as ferritic heat resistant steels including high Cr ferritic heat resistant steels, austenitic heat resistant steels, and stainless steels. As the shot peening apparatus, a commonly used apparatus can be used. A range of 6.0 to 8.5 kg / cm 2 is considered for the spray pressure of the shot peening treatment. The spraying time varies depending on the size of the target base material. For example, in the case of a test piece having a size of 10 × 20 × 2 mm, 5 seconds or more per test piece is preferable. In this way, the Cr adhesion layer on the base material can be processed by a generally used apparatus, and the projection material is also used at an extremely low cost because only the amount necessary for shot peening is used.

次に、このCr付着層が形成された母材について、予備酸化処理を行う。この処理は、大気雰囲気中、あるいは、Ar,H,Nガスなどの低酸素雰囲気中において、600℃〜800℃で熱処理することで、母材上にCr酸化物の保護皮膜が形成される。熱処理時間は、大気雰囲気中では1時間程度、低酸素雰囲気中では20〜100時間程度が考慮される。これによって、母材表面に0.3μm以下の厚さの酸化物の保護皮膜が形成される。 Next, a preliminary oxidation treatment is performed on the base material on which the Cr adhesion layer is formed. In this treatment, a Cr oxide protective film is formed on the base material by heat treatment at 600 ° C. to 800 ° C. in an air atmosphere or in a low oxygen atmosphere such as Ar, H 2 , or N 2 gas. The The heat treatment time is considered to be about 1 hour in the air atmosphere and about 20 to 100 hours in the low oxygen atmosphere. As a result, an oxide protective film having a thickness of 0.3 μm or less is formed on the surface of the base material.

さらに、コイルに高周波電流を流して処理対象物の表面を所定の温度に誘導加熱し、処理対象物とコイルとを相対的に移動させて加熱した処理対象物の表面に粒子を噴射し、処理対象物の表面と粒子の熱化学反応により化合物層を形成させて粒子を結合させる(例えば、特許文献3参照)。なお、当該文献には、処理対象物を不活性ガスなどのシールドガスなどによって覆うような高価な装置が不用になって表面処理装置が簡単で安価な構造になる旨が明記されている。   Further, a high-frequency current is passed through the coil to inductively heat the surface of the processing object to a predetermined temperature, and particles are injected onto the surface of the heated processing object by moving the processing object and the coil relative to each other. A compound layer is formed by a thermochemical reaction between the surface of the object and the particles to bond the particles (for example, see Patent Document 3). Note that this document clearly states that an expensive apparatus that covers an object to be treated with a shielding gas such as an inert gas is unnecessary, and the surface treatment apparatus has a simple and inexpensive structure.

一方、被処理物の表面温度を調節することで、金属粒子の移着率を向上させたものが知られている(例えば、特許文献4参照)。
特開平5−331670号公報 特開2005−298878号公報 特開2006−70320号公報 特開2008−127647号公報
On the other hand, what improved the transfer rate of the metal particle by adjusting the surface temperature of a to-be-processed object is known (for example, refer patent document 4).
JP-A-5-331670 JP 2005-298878 A JP 2006-70320 A JP 2008-127647 A

上述した表面処理装置では、次のような問題があった。すなわち、投射材の皮膜厚さが十分に得られないという問題があった。また、被処理物の表面温度を調整するものにあっては、噴射する粒子と被処理物との結合は十分に得られるものの、温度が高くなるにつれて酸化物の生成量も多くなり、表面粗さが増大するという問題があった。さらに、被処理物の炭素分が雰囲気中の酸素と化合し(脱炭)、機械的特性が低下するという問題があった。   The surface treatment apparatus described above has the following problems. That is, there is a problem that the film thickness of the projection material cannot be obtained sufficiently. In addition, in the case of adjusting the surface temperature of the object to be processed, although the bond between the particles to be processed and the object to be processed is sufficiently obtained, the amount of oxide generated increases as the temperature increases, and the surface roughness increases. There was a problem of increasing the length. Furthermore, there has been a problem that the carbon content of the object to be treated combines with oxygen in the atmosphere (decarburization), and the mechanical properties deteriorate.

そこで本発明は、被処理物を誘導加熱しつつ投射材を噴射して表面処理する際に、投射材の移着率の向上と表面粗さの低減・機械的特性の維持を図ることができる表面処理装置及び表面処理方法を提供することを目的としている。   Therefore, the present invention can improve the transfer rate of the projection material, reduce the surface roughness, and maintain the mechanical properties when the surface treatment is performed by injecting the projection material while inductively heating the workpiece. An object of the present invention is to provide a surface treatment apparatus and a surface treatment method.

前記課題を解決し目的を達成するために、本発明の表面処理装置及び表面処理方法は次のように構成されている。   In order to solve the problems and achieve the object, the surface treatment apparatus and the surface treatment method of the present invention are configured as follows.

被処理物に投射材を噴射して表面処理する表面処理装置において、チャンバと、このチャンバ内に不活性ガスを導入する不活性ガス導入部と、前記チャンバ内に配置され、前記被処理物を支持する支持部と、この支持部の周囲に配置され、前記被処理物を加熱する誘導加熱コイルと、この誘導加熱コイルに高周波電流を供給して前記被処理物を誘導加熱する高周波印加部と、前記支持部に向けて前記不活性ガスと共に前記投射材を噴射させる投射材噴射部と、前記被処理物を冷却する冷却部と、前記不活性ガス導入部から不活性ガスを導入して前記チャンバ内を前記不活性ガスに置換させ、前記高周波印加部から前記誘導加熱コイルに高周波電流を供給させて前記被処理物を所定の温度まで加熱させ、前記被処理物が所定の温度に加熱された後に前記投射材噴射部から前記投射材及び前記不活性ガスを噴射させるとともに前記被処理物が前記所定の温度に維持される状態に前記誘導加熱コイルに高周波電流を供給させ、前記冷却部により前記被処理物を冷却させる制御部を具備したことを特徴とする。   In a surface treatment apparatus for performing surface treatment by spraying a projection material onto an object to be processed, a chamber, an inert gas introduction unit that introduces an inert gas into the chamber, and the chamber are disposed in the chamber. A supporting unit for supporting, an induction heating coil disposed around the supporting unit for heating the workpiece, and a high-frequency applying unit for induction heating the workpiece by supplying a high-frequency current to the induction heating coil. , A projection material injection unit for injecting the projection material together with the inert gas toward the support unit, a cooling unit for cooling the object to be processed, and an inert gas introduced from the inert gas introduction unit, The inside of the chamber is replaced with the inert gas, a high-frequency current is supplied from the high-frequency applying unit to the induction heating coil to heat the object to be processed to a predetermined temperature, and the object to be processed is heated to a predetermined temperature. The Injecting the projection material and the inert gas from the projection material injection unit to supply a high-frequency current to the induction heating coil in a state where the object to be processed is maintained at the predetermined temperature, and the cooling unit to A control unit for cooling the object to be processed is provided.

チャンバ内に収容された被処理物に投射材を噴射して表面処理する表面処理方法において、前記チャンバ内を不活性ガスに置換する置換工程と、前記被処理物を所定の処理温度まで加熱する加熱工程と、前記所定温度範囲において前記被処理物に向けて前記投射材を投射し、前記被処理物の表面に移着させる移着工程と、前記被処理物に不活性ガスを吹き付けて急速冷却する冷却工程とを備えていることを特徴とする。   In a surface treatment method in which a projection material is sprayed onto an object to be processed contained in a chamber to perform surface treatment, a replacement step of replacing the inside of the chamber with an inert gas and heating the object to a predetermined processing temperature A heating step, a transfer step of projecting the projection material toward the object to be processed in the predetermined temperature range, and transferring the projection material to the surface of the object to be processed, and an inert gas being sprayed onto the object to be processed And a cooling step for cooling.

被処理物に投射材を噴射して表面処理する表面処理装置において、チャンバと、このチャンバ内に中性ガスを導入する中性ガス導入部と、前記チャンバ内に配置され、前記被処理物を支持する支持部と、この支持部の周囲に配置され、前記被処理物を加熱する誘導加熱コイルと、この誘導加熱コイルに高周波電流を供給して前記被処理物を誘導加熱する高周波印加部と、前記支持部に向けて前記中性ガスと共に前記投射材を噴射させる投射材噴射部と、前記被処理物を冷却する冷却部と、前記中性ガス導入部から中性ガスを導入して前記チャンバ内を前記中性ガスに置換させ、前記高周波印加部から前記誘導加熱コイルに高周波電流を供給させて前記被処理物を所定の温度まで加熱させ、前記被処理物が所定の温度に加熱された後に前記投射材噴射部から前記投射材及び前記中性ガスを噴射させるとともに前記被処理物が前記所定の温度に維持される状態に前記誘導加熱コイルに高周波電流を供給させ、前記冷却部により前記被処理物を冷却させる制御部を具備したことを特徴とする。   In a surface treatment apparatus for injecting a projection material onto a workpiece to perform surface treatment, the chamber, a neutral gas introduction unit for introducing a neutral gas into the chamber, and the chamber are disposed in the chamber. A supporting unit for supporting, an induction heating coil disposed around the supporting unit for heating the workpiece, and a high-frequency applying unit for induction heating the workpiece by supplying a high-frequency current to the induction heating coil. , A projection material injection unit that injects the projection material together with the neutral gas toward the support unit, a cooling unit that cools the object to be processed, and a neutral gas introduced from the neutral gas introduction unit. The inside of the chamber is replaced with the neutral gas, a high-frequency current is supplied from the high-frequency applying unit to the induction heating coil to heat the object to be processed to a predetermined temperature, and the object to be processed is heated to the predetermined temperature. After the projection Injecting the projection material and the neutral gas from the injection unit and supplying the induction heating coil with a high-frequency current in a state in which the object to be processed is maintained at the predetermined temperature, and the object to be processed by the cooling unit A control unit for cooling is provided.

チャンバ内に収容された被処理物に投射材を噴射して表面処理する表面処理方法において、前記チャンバ内を中性ガスに置換する置換工程と、前記被処理物を所定の処理温度まで加熱する加熱工程と、前記所定温度範囲において前記被処理物に向けて前記投射材を投射し、前記被処理物の表面に移着させる移着工程と、前記被処理物に中性ガスを吹き付けて急速冷却する冷却工程とを備えていることを特徴とする。   In a surface treatment method in which a projection material is sprayed onto an object to be processed contained in a chamber to perform a surface treatment, a replacement step of replacing the inside of the chamber with a neutral gas, and the object to be processed are heated to a predetermined processing temperature. A heating step, a transfer step of projecting the projection material toward the object to be processed in the predetermined temperature range, and transferring the projection material to the surface of the object to be processed; And a cooling step for cooling.

チャンバ内に収容された被処理物に投射材を噴射して表面処理する表面処理方法において、前記チャンバ内を不活性ガス又は中性ガスに置換する置換工程と、前記被処理物を所定の処理温度まで加熱する加熱工程と、前記所定温度範囲において前記被処理物に向けて前記投射材を投射し、前記被処理物の表面に移着させる移着工程と、前記被処理物に冷却液を吹き付けて急速冷却する冷却工程とを備えていることを特徴とする。   In a surface treatment method for spraying a projection material onto a workpiece to be treated in a chamber to perform a surface treatment, a replacement step of replacing the inside of the chamber with an inert gas or a neutral gas, and a predetermined treatment of the workpiece. A heating step of heating to a temperature, a transfer step of projecting the projection material toward the object to be processed in the predetermined temperature range, and transferring the projection material to the surface of the object to be processed; and a cooling liquid on the object to be processed And a cooling step for rapid cooling by spraying.

本発明によれば、被処理物を誘導加熱しつつ投射材を噴射して表面処理する際に、投射材の移着率の向上と表面粗さの低減・機械的特性の維持を図ることが可能となる。   According to the present invention, it is possible to improve the transfer rate of the projection material, reduce the surface roughness, and maintain the mechanical characteristics when the surface treatment is performed by injecting the projection material while inductively heating the workpiece. It becomes possible.

図1は本発明の一実施の形態に係る表面処理装置100の概略構成を示す断面図である。表面処理装置100は、被処理物Wを誘導加熱しつつ投射材を噴射して表面処理する装置である。ここで、被処理物Wとしては、例えば磁性材料である鋼材を対象とすることができる。特に、鉄を主成分する鋼材が好適である。一方、投射材としては、例えば鉄、クロム、アルミニウム等の金属、あるいはクロム−ニッケルや炭化タングステン−コバルト等の合金、アルミナやシリカ、ジルコニア等のセラミックスである金属酸化物、炭化珪素や窒化珪素等のセラミックスである金属を含有する金属化合物等が例示できる。また、投射材としては、例えば平均粒径が数μm〜数百μmに調整されたものが利用される。   FIG. 1 is a sectional view showing a schematic configuration of a surface treatment apparatus 100 according to an embodiment of the present invention. The surface treatment apparatus 100 is an apparatus that performs surface treatment by spraying a projection material while induction-heating the workpiece W. Here, as the workpiece W, for example, a steel material that is a magnetic material can be targeted. In particular, a steel material mainly composed of iron is suitable. On the other hand, examples of the projecting material include metals such as iron, chromium and aluminum, alloys such as chromium-nickel and tungsten carbide-cobalt, metal oxides such as ceramics such as alumina, silica and zirconia, silicon carbide and silicon nitride. Examples thereof include metal compounds containing metals that are ceramics. Moreover, as a projection material, the thing by which the average particle diameter was adjusted to several micrometers-several hundred micrometers, for example is utilized.

図1に示すように、表面処理装置100は、気密に形成されたチャンバ110を備えている。チャンバ110内には、被処理物Wを載置する支持台120と、この支持台120の周囲に設けられた誘導加熱コイル130と、支持台120に向けて投射材又は不活性ガスを噴射する噴射ノズル(投射材噴射部/不活性ガス噴射部)140と、冷却水CLを噴射する水冷機構(水冷部)170とが設けられている。   As shown in FIG. 1, the surface treatment apparatus 100 includes a chamber 110 formed in an airtight manner. Into the chamber 110, a support base 120 on which the workpiece W is placed, an induction heating coil 130 provided around the support base 120, and a projection material or an inert gas are injected toward the support base 120. An injection nozzle (projection material injection unit / inert gas injection unit) 140 and a water cooling mechanism (water cooling unit) 170 for injecting cooling water CL are provided.

チャンバ110には、チャンバ110内のガスを排気する排気口111、チャンバ110内のガスの酸素濃度を測定する酸素濃度計112が設けられている。酸素濃度計112の出力は後述する制御部300に接続されている。さらにチャンバ110には、外部から内部を操作するためにグローブ113が設けられている。   The chamber 110 is provided with an exhaust port 111 for exhausting the gas in the chamber 110 and an oxygen concentration meter 112 for measuring the oxygen concentration of the gas in the chamber 110. The output of the oxygen concentration meter 112 is connected to the control unit 300 described later. Furthermore, the chamber 110 is provided with a globe 113 for operating the inside from the outside.

支持台120には、被処理物Wの表面温度を測定する温度センサ121が設けられて居る。温度センサ121の出力は制御部300に接続されている。   A temperature sensor 121 that measures the surface temperature of the workpiece W is provided on the support stand 120. The output of the temperature sensor 121 is connected to the control unit 300.

誘導加熱コイル130は、チャンバ110外に設けられた高周波印加装置200に接続され、所定の周波数の高周波電流が印加される。   The induction heating coil 130 is connected to a high frequency application device 200 provided outside the chamber 110, and a high frequency current having a predetermined frequency is applied thereto.

チャンバ110内には、噴射ノズル140が設けられ、支持台120に向けられたノズル141を備えている。噴射ノズル140には、電磁弁142を介してアルゴンガス等の不活性ガスを供給するガスボンベ160及び流量弁・圧力調整弁161に接続されている。流量弁・圧力調整弁161では、不活性ガスの噴射速度として例えば数十m/秒から数千m/秒で噴射される。なお、噴射速度ではなく、噴射圧(例えば、0.5MPa)として制御してもよい。   An injection nozzle 140 is provided in the chamber 110 and includes a nozzle 141 directed toward the support base 120. The injection nozzle 140 is connected to a gas cylinder 160 for supplying an inert gas such as argon gas and a flow rate / pressure regulating valve 161 via an electromagnetic valve 142. In the flow rate valve / pressure regulating valve 161, the inert gas is injected at an injection speed of, for example, several tens of m / sec to several thousand m / sec. In addition, you may control not as an injection speed but as an injection pressure (for example, 0.5 MPa).

流量弁・圧力調整弁161は、さらに粒子フィーダ150に接続されたフィーダライン151に接続されている。フィーダライン151には粒子フィーダ調整弁152〜154が設けられ、噴射ノズル140に投射材Pが供給されている。   The flow valve / pressure regulating valve 161 is further connected to a feeder line 151 connected to the particle feeder 150. The feeder line 151 is provided with particle feeder adjusting valves 152 to 154, and the projection material P is supplied to the injection nozzle 140.

水冷機構170は、チャンバ110内に設けられた噴射ノズル171と、この噴射ノズル171に冷却水CLを供給する冷却水供給装置172が設けられている。   The water cooling mechanism 170 is provided with an injection nozzle 171 provided in the chamber 110 and a cooling water supply device 172 that supplies the cooling water CL to the injection nozzle 171.

高周波印加装置200は、単一、あるいは複数の周波数の高周波電流を誘導加熱コイル130に印加し、被処理物Wを誘導加熱する。   The high frequency applying device 200 applies high frequency currents having a single frequency or a plurality of frequencies to the induction heating coil 130 to inductively heat the workpiece W.

図1中300は、表面処理装置100の各部を制御する制御部を示している。制御部300は、作業者の設定、予め設定されたプログラム、センサ出力等の情報に基づいて、高周波印加装置200、電磁弁142、粒子フィーダ調整弁152〜154、冷却水供給装置172の制御を行い、被処理物Wの加熱、投射材Pの噴射速度・噴射量、不活性ガスの噴射量、冷却水CLの噴射量・噴射タイミング等を調整する。   In FIG. 1, reference numeral 300 denotes a control unit that controls each part of the surface treatment apparatus 100. The control unit 300 controls the high-frequency application device 200, the electromagnetic valve 142, the particle feeder adjustment valves 152 to 154, and the cooling water supply device 172 based on information such as operator settings, preset programs, and sensor outputs. And adjusting the heating of the workpiece W, the injection speed / injection amount of the projection material P, the injection amount of the inert gas, the injection amount / injection timing of the cooling water CL, and the like.

制御部300による制御の一例として、ノズル141から不活性ガスのみを噴射させてチャンバ110内を不活性ガスに置換させ、高周波印加装置200から誘導加熱コイル130に高周波電流を供給させて被処理物Wを所定の温度まで加熱させ、被処理物Wが所定の温度に加熱された後にノズル141から投射材及び不活性ガスを噴射させるとともに被処理物Wが所定の温度に維持される状態に誘導加熱コイル130に高周波電流を供給させ、ノズル141から不活性ガスのみを噴射させて被処理物Wを冷却させるように制御を行う。   As an example of the control by the control unit 300, only the inert gas is injected from the nozzle 141 to replace the inside of the chamber 110 with the inert gas, and the high frequency current is supplied from the high frequency applying device 200 to the induction heating coil 130 to be processed. W is heated to a predetermined temperature, and after the workpiece W is heated to a predetermined temperature, the projection material and the inert gas are ejected from the nozzle 141 and the workpiece W is maintained in a predetermined temperature. Control is performed such that a high-frequency current is supplied to the heating coil 130 and only the inert gas is injected from the nozzle 141 to cool the workpiece W.

このように構成された表面処理装置100は、次のようにして動作する。すなわち、ノズル141から不活性ガスのみを噴射し、チャンバ110内の空気を排気口111から排出し、不活性ガスに置換する。酸素濃度計112によるチャンバ110内の酸素濃度が所定値以下(例えば、0.3%以下)となった時点で、図2〜4に示すように、高周波印加装置200から誘導加熱コイル130に高周波電流を供給させて被処理物Wを所定の温度まで加熱させる。   The surface treatment apparatus 100 configured as described above operates as follows. That is, only the inert gas is ejected from the nozzle 141, the air in the chamber 110 is discharged from the exhaust port 111, and is replaced with the inert gas. When the oxygen concentration in the chamber 110 by the oximeter 112 becomes a predetermined value or less (for example, 0.3% or less), a high frequency is applied from the high frequency application device 200 to the induction heating coil 130 as shown in FIGS. An electric current is supplied to heat the workpiece W to a predetermined temperature.

次に、ノズル141から投射材P及び不活性ガスを噴射させてショットピーニング処理を行う。このとき、温度センサ121の出力が900℃に保持されるように、誘導加熱コイル130に高周波電流を供給させる。投射材Pの噴射(FPP)により、投射材Pが被処理物Wの表面に衝突する。   Next, the shot peening process is performed by injecting the projection material P and the inert gas from the nozzle 141. At this time, high frequency current is supplied to the induction heating coil 130 so that the output of the temperature sensor 121 is maintained at 900 ° C. The projection material P collides with the surface of the workpiece W by the injection (FPP) of the projection material P.

次に、放冷或いはノズル141から不活性ガスのみを被処理物Wに噴射して冷却を行う。   Next, the cooling is performed by cooling or spraying only the inert gas from the nozzle 141 onto the workpiece W.

一方、被処理物Wとして、磁性材料である鉄鋼材料等を用い、耐蝕性や耐摩耗性の付与等の所望する特性を得るために鉄鋼材料との結合・複合化が得られる材料であるクロム等の金属を主成分とする金属粒子や金属化合物、あるいは金属酸化物粒子等を投射材Pとして噴射させることで、耐食性が向上することとなる。   On the other hand, chromium, which is a material that can be combined and combined with a steel material in order to obtain desired properties such as imparting corrosion resistance and wear resistance, etc., is used as the workpiece W, such as a steel material that is a magnetic material. Corrosion resistance is improved by injecting metal particles, metal compounds, metal oxide particles, or the like mainly containing a metal such as the projection material P.

なお、表面処理装置100では、ショットピーニング処理と加熱処理とを同時に行うため、投射材の表面拡散が促進される。また加熱も同じ装置内で行うため、短時間で処理できる。   In addition, since the surface treatment apparatus 100 performs the shot peening process and the heating process at the same time, the surface diffusion of the projection material is promoted. In addition, since heating is performed in the same apparatus, it can be processed in a short time.

なお、冷却工程においては、冷却水供給装置172を用いて噴射ノズル171から冷却水CLを噴射し、被処理物Wを冷却してもよい。この場合、後述するように被処理物Wの各部の硬度を放冷又はガス冷却(空冷)した場合に比べ、制御することができる。   In the cooling process, the workpiece W may be cooled by spraying the coolant CL from the spray nozzle 171 using the coolant supply device 172. In this case, as will be described later, the hardness of each part of the workpiece W can be controlled as compared with the case where the hardness is allowed to cool or gas cool (air cool).

次に、表面処理装置100を用いた最適な表面処理条件を検討する。処理条件としては、置換ガスを変えたもの、温度パターンを変えたものについてそれぞれ行う。また、被処理材WとしてS45Cを用いた。   Next, the optimum surface treatment conditions using the surface treatment apparatus 100 are examined. As processing conditions, those for which the replacement gas is changed and those for which the temperature pattern is changed are performed. Further, S45C was used as the material W to be processed.

置換ガスについては、不活性ガスとしてアルゴンガスと窒素ガスを用いた。また、比較例として大気について調べた。図2に示すように、アルゴンを用いた場合は、表面に投射材Pが十分な厚さで移着している。窒素ガスを用いた場合についても、図3に示すように表面に投射材Pが十分な厚さで移着している。なお、チャンバ110内には酸素ガスが極めて少ない状態であるため、移着を阻害する酸化スケールはほとんど生成されない。したがって、不活性ガスを用いた場合は、投射材Pの移着率の向上と表面粗さの低減・機械的特性の維持を図ることができる。   For the replacement gas, argon gas and nitrogen gas were used as the inert gas. In addition, air was examined as a comparative example. As shown in FIG. 2, when argon is used, the projection material P is transferred to the surface with a sufficient thickness. Also in the case where nitrogen gas is used, the projection material P is transferred to the surface with a sufficient thickness as shown in FIG. Note that since there is very little oxygen gas in the chamber 110, almost no oxide scale that inhibits transfer is generated. Therefore, when an inert gas is used, it is possible to improve the transfer rate of the projection material P, reduce the surface roughness, and maintain the mechanical characteristics.

これに対し、図4に示すように大気中に投射を行った場合は酸化スケール中に投射材Pが散在しており、投射材Pの移着率が低く、表面粗さの低減・機械的特性の維持を図ることができない。   On the other hand, as shown in FIG. 4, when the projection is performed in the atmosphere, the projection material P is scattered in the oxide scale, the transfer rate of the projection material P is low, and the surface roughness is reduced / mechanical. The characteristic cannot be maintained.

なお、図2はアルゴン−Cr900−FPP10秒−放冷、図3は窒素−Cr900−FPP10秒−放冷、図4は大気−Cr900−FPP10秒−放冷という条件下で処理されたものである。   2 is treated under the conditions of argon-Cr900-FPP 10 seconds-cooling, FIG. 3 is treated with nitrogen-Cr900-FPP 10 seconds-cooling, and FIG. 4 is treated with air-Cr900-FPP 10 seconds-cooling. .

図5〜図8は表面処理後の表面における元素分析を行ったものであって、図5,6はCrマッピング、図7,8は酸素マッピングを示している。図5に示すようにアルゴンガスで置換した場合は十分なCr層が形成され、図6に示すように大気のままの場合はほとんどCr層が見られない。図7に示すようにアルゴンガスで置換した場合は酸化層が薄く、図8に示すように大気のままの場合は厚い酸化層が見られる。   5 to 8 show the element analysis on the surface after the surface treatment. FIGS. 5 and 6 show Cr mapping, and FIGS. 7 and 8 show oxygen mapping. As shown in FIG. 5, a sufficient Cr layer is formed when substituted with argon gas, and almost no Cr layer is seen when the atmosphere is kept as shown in FIG. As shown in FIG. 7, when the argon gas is substituted, the oxide layer is thin, and as shown in FIG. 8, a thick oxide layer is seen in the atmosphere.

なお、図5はアルゴン−Cr900、図6は大気−Cr900、図7はアルゴン−Cr900、図8は大気−Cr900という条件下で処理されたものである。   5 is processed under the conditions of argon-Cr900, FIG. 6 is the atmosphere-Cr900, FIG. 7 is the argon-Cr900, and FIG. 8 is the atmosphere-Cr900.

なお、移着とは、投射された粒子と被処理材が衝突(接触)した際に、投射材の一部が被処理材に付着する現象、すなわち、投射材主元素が被処理材に移ることを意味する。   The transfer is a phenomenon in which a part of the projection material adheres to the processing material when the projected particles and the processing material collide (contact), that is, the projection material main element moves to the processing material. Means that.

具体的には、アルゴン雰囲気下では、図9Aに示すように、加熱時に表面に酸化物が形成されない状態で投射が行われた後、冷却されると表面から一定の厚さに粒子移着層(Cr及びCr)となる。 Specifically, in an argon atmosphere, as shown in FIG. 9A, after the projection is performed in a state where no oxide is formed on the surface during heating, the particle transfer layer is formed to a certain thickness from the surface when cooled. (Cr and Cr 2 O 3 ).

一方、大気雰囲気下では、図9Bに示すように、加熱時に表面に酸化物が形成され、投射が行われた後、冷却されると酸化層の上に薄く粒子移着層(Cr)が形成されることとなる。 On the other hand, in the air atmosphere, as shown in FIG. 9B, an oxide is formed on the surface at the time of heating, and after projection is performed, when cooled, the particle transfer layer (Cr 2 O 3) is thinly formed on the oxide layer. ) Will be formed.

また、図10A〜図10Cは、温度条件について変えた場合を示している。すなわち、加熱温度としては図10Aに示す500℃以上で本現象が認められるが、量産するにあたり、装置等の効率を考慮すれば図10Bに示す700℃以上が好ましく、それ以上の図10Cに示す900℃であればさらに好ましい。したがって、条件等により適宜選択することができる。   Moreover, FIG. 10A-FIG. 10C have shown the case where it changed about temperature conditions. That is, this phenomenon is observed when the heating temperature is 500 ° C. or higher shown in FIG. 10A. However, in view of the efficiency of the apparatus and the like in mass production, 700 ° C. or higher shown in FIG. 900 ° C. is more preferable. Therefore, it can be appropriately selected depending on conditions and the like.

さらに図11に示すように、条件を中性ガスである窒素雰囲気下で行った場合のビッカース硬度について比較すると、窒素ガス、大気のいずれも未処理の場合に比べて硬度は増しているが、窒素ガスによる表面処理を行ったものは脱炭により硬度が低下する。なお、後述するように水冷処理を施せば、焼入れ効果が生じ、脱炭による表面硬さの低下を抑制することができる(図33〜35参照)。したがって、不活性ガスや中性ガスでも大気中と同程度まで硬度は上昇させることは可能である。   Furthermore, as shown in FIG. 11, when comparing the Vickers hardness when the conditions are performed in a nitrogen atmosphere, which is a neutral gas, the hardness is increased compared to the case where both nitrogen gas and air are untreated, Those subjected to surface treatment with nitrogen gas are reduced in hardness by decarburization. In addition, if a water cooling process is given so that it may mention later, the quenching effect will arise and the fall of the surface hardness by decarburization can be suppressed (refer FIGS. 33-35). Therefore, even with an inert gas or a neutral gas, the hardness can be increased to the same extent as in the atmosphere.

さらにまた図12Aは結晶構造解析を行った場合を示している。大気中では、被処理物Wの酸化物(Fe,FeO)、及び、投射材Pと被処理物Wの複酸化物(FeCr)が形成され、アルゴンガス雰囲気中では、投射材Pの酸化物(Cr,FeCr)が形成される。なお、室温下での投射も比較のために示している。図12Aからも判るように、投射材PのCr化合物の比率が不活性ガス(アルゴン)が大きいことは明らかである。また、図12Bは図12Aを成分ごとに集約したものである。 Furthermore, FIG. 12A shows a case where a crystal structure analysis is performed. In the atmosphere, an oxide of the workpiece W (Fe 2 O 3 , FeO) and a double oxide (FeCr 2 O 4 ) of the projection material P and the workpiece W are formed, and in an argon gas atmosphere, An oxide (Cr 2 O 3 , FeCr 2 O 4 ) of the projection material P is formed. The projection at room temperature is also shown for comparison. As can be seen from FIG. 12A, it is clear that the ratio of the Cr compound in the projection material P is large in the inert gas (argon). FIG. 12B is a summary of FIG. 12A for each component.

したがって、以上のことから、表面処理を不活性ガス雰囲気下で投射を行うことが表面性状及び機械的性質の両面から良いことが判る。なお、不活性ガスとしてアルゴンガス、窒素ガスはいずれも同様の結果が得られる。   Therefore, it can be seen from the above that it is good to perform the surface treatment in an inert gas atmosphere in terms of both surface properties and mechanical properties. In addition, the same result is obtained for both argon gas and nitrogen gas as the inert gas.

一方、温度パターンを変えたものは、図13〜図15は昇温、FPP(ショットピーニング処理)、冷却について、時間パターンを変えた例を示している。図13は、昇温10秒、FPP10秒の後、放冷を行うパターン、図14は、昇温10秒、FPP5秒の後、放冷を行うパターン、図15は、昇温10秒、FPP10秒の後、不活性ガスの噴射で急冷を行うパターンを示している。   On the other hand, what changed the temperature pattern, FIGS. 13-15 has shown the example which changed the time pattern about temperature rising, FPP (shot peening process), and cooling. FIG. 13 shows a pattern for cooling after 10 seconds of temperature rise and 10 seconds of FPP, FIG. 14 shows a pattern for cooling after 10 seconds of temperature rise and 5 seconds of FPP, and FIG. The pattern which performs rapid cooling by injection of an inert gas after 2 seconds is shown.

図13のパターンと図14のパターンによって、表面の様子をFPPの時間を長短について比較する。図2はアルゴンガス雰囲気下でFPP10秒、図16はアルゴンガス雰囲気下でFPP5秒としたものである。図4は大気雰囲気下でFPP10秒、図17は大気雰囲気下でFPP5秒としたものである。   The pattern of FIG. 13 and the pattern of FIG. 14 compare the state of the surface with respect to FPP time. FIG. 2 shows FPP for 10 seconds under an argon gas atmosphere, and FIG. 16 shows FPP for 5 seconds under an argon gas atmosphere. 4 shows FPP for 10 seconds in an air atmosphere, and FIG. 17 shows FPP for 5 seconds in an air atmosphere.

なお、図16はアルゴン−Cr900−FPP5秒−放冷、図17は大気−Cr900−FPP5秒−放冷、図18はアルゴン−Cr900−FPP10秒−急冷、図19は大気−Cr900−FPP10秒−急冷という条件下で処理されたものである。   16 is argon-Cr900-FPP for 5 seconds-cooling, FIG. 17 is air-Cr900-FPP for 5 seconds-cooling, FIG. 18 is argon-Cr900-FPP for 10 seconds-rapid cooling, and FIG. 19 is air-Cr900-FPP for 10 seconds- It was processed under the condition of rapid cooling.

図2と図16とは、いずれも表面側からCr移着層とフェライト層が観察され、不活性雰囲気で加熱した場合、大気中のように酸化スケールは形成しないため、図2に示すように長時間投射した場合の方が粒子移着層が厚くなるから良い。Cr移着層は上述したように機械的性能が向上するが、フェライト層は硬度が低く、再度焼き入れする必要があることを考えると、薄いほうが望ましい。このため、フェライト層が薄い図16、すなわちFPP5秒が望ましいことが判る。   2 and 16, both Cr transfer layer and ferrite layer are observed from the surface side, and when heated in an inert atmosphere, no oxide scale is formed as in the atmosphere. When the projection is performed for a long time, the particle transfer layer becomes thicker. As described above, the Cr transfer layer has improved mechanical performance. However, considering that the ferrite layer has low hardness and needs to be re-quenched, it is preferable that the Cr transfer layer be thin. Therefore, it can be seen that FIG. 16 where the ferrite layer is thin, that is, FPP of 5 seconds is desirable.

図4と図17とは、いずれも表面側から酸化スケール層が観察され、図4の方が酸化スケール層が厚い。酸化スケール層は上述したように表面性状が悪く、かつ、Crの移着を阻害するため、酸化スケール層は薄いほうが望ましい。このため、酸化スケール層が薄い図17、すなわちFPP5秒が望ましいことが判る。   In both FIG. 4 and FIG. 17, an oxide scale layer is observed from the surface side, and the oxide scale layer is thicker in FIG. As described above, the oxide scale layer has poor surface properties and inhibits the transfer of Cr, so that the oxide scale layer is preferably thin. Therefore, it can be seen that FIG. 17 in which the oxide scale layer is thin, that is, FPP of 5 seconds is desirable.

次に、図13のパターンと図15のパターンによって、表面の様子を放冷と急冷について比較する。図2はアルゴンガス雰囲気下で放冷、図18はアルゴンガス雰囲気下で急冷としたものである。図4は大気雰囲気下で放冷、図17は大気雰囲気下で急冷としたものである。   Next, according to the pattern of FIG. 13 and the pattern of FIG. FIG. 2 shows cooling in an argon gas atmosphere, and FIG. 18 shows rapid cooling in an argon gas atmosphere. FIG. 4 shows cooling in an air atmosphere, and FIG. 17 shows quenching in an air atmosphere.

図2と図18とは、いずれも表面側からCr層が観察される。一方、図4は酸化スケール層が観察されるが、図17は酸化スケール層が観察されない。これは急冷の際に、表面の酸化スケール層が吹き飛ばされたためと考えられる。   In both FIG. 2 and FIG. 18, the Cr layer is observed from the surface side. On the other hand, FIG. 4 shows an oxide scale layer, but FIG. 17 shows no oxide scale layer. This is presumably because the surface oxide scale layer was blown off during the rapid cooling.

これらの関係を示したものが、図20である。表面処理装置100は、被処理物Wの機械的性質を向上させ、表面性状を向上させることから、処理雰囲気はアルゴン又は窒素等の不活性ガス・中性ガスで行い、FPPは短時間、冷却はガス噴射による急冷が望ましいことが判る。   FIG. 20 shows these relationships. Since the surface treatment apparatus 100 improves the mechanical properties of the workpiece W and improves the surface properties, the treatment atmosphere is an inert gas / neutral gas such as argon or nitrogen, and FPP is cooled for a short time. Shows that quenching by gas injection is desirable.

次に、図21に示すように処理温度Tを変えたものについて説明する。大気中及びアルゴンガス雰囲気のそれぞれで、T=500℃,700℃,900℃で表面処理を行った場合において、図22は光学顕微鏡での観察結果、図23は電子顕微鏡での観察結果である。   Next, what changed process temperature T as shown in FIG. 21 is demonstrated. When surface treatment is performed at T = 500 ° C., 700 ° C., and 900 ° C. in the air and an argon gas atmosphere, FIG. 22 shows an observation result with an optical microscope, and FIG. 23 shows an observation result with an electron microscope. .

図22から判るように、大気中では、処理温度の増加に伴い,酸化スケール厚さが増加する。一方、アルゴンガス雰囲気中では処理温度の増加に伴い,脱炭層厚さが増加(硬さ低下)する。図23から判るように、大気中では、処理温度によらず,Crの移着はほぼ認められず、アルゴンガス雰囲気中では処理温度の増加に伴い,Cr移着層の厚さが増加している。   As can be seen from FIG. 22, in the atmosphere, the oxide scale thickness increases as the processing temperature increases. On the other hand, in the argon gas atmosphere, the decarburized layer thickness increases (hardness decreases) as the processing temperature increases. As can be seen from FIG. 23, in the air, almost no Cr transfer was observed regardless of the processing temperature, and in the argon gas atmosphere, as the processing temperature increased, the thickness of the Cr transfer layer increased. Yes.

図24は、アルゴンガス雰囲気、処理温度900℃、投射時間10秒で表面処理を行った場合における深さ方向の分析(XPS分析)を行ったものである。なお、深さ方向はエッチングに要した時間で示してある。すなわち、0〜2000秒ではCrが形成、3000〜6000秒ではCrとFeの混合層が形成されている。すなわち、投射材Pは被処理物Wとは化学的に結合することなく存在している。 FIG. 24 shows the analysis in the depth direction (XPS analysis) when the surface treatment is performed in an argon gas atmosphere, a treatment temperature of 900 ° C., and a projection time of 10 seconds. The depth direction is shown by the time required for etching. That is, Cr 2 O 3 is formed in 0 to 2000 seconds, and a mixed layer of Cr and Fe is formed in 3000 to 6000 seconds. That is, the projection material P exists without chemically bonding to the workpiece W.

次に、図25に示すようにショットピーニング時間tを変えたものについて説明する。大気中及びアルゴンガス雰囲気のそれぞれで、t=10秒、30秒、100秒、300秒で表面処理を行った場合において、図26は光学顕微鏡での観察結果、図27は電子顕微鏡での観察結果である。   Next, the case where the shot peening time t is changed as shown in FIG. 25 will be described. When surface treatment was performed at t = 10 seconds, 30 seconds, 100 seconds, and 300 seconds in air and argon gas atmosphere, FIG. 26 shows an observation result with an optical microscope, and FIG. 27 shows an observation with an electron microscope. It is a result.

図26から判るように、大気中では、粒子投射時間によらず、酸化スケールが形成されている。なお、写真では、断面切断の際にはく離したため、厚さにばらつきがある。一方、アルゴンガス雰囲気中では、粒子投射時間の増加に伴い、脱炭層厚さが増加する。図27から判るように、大気中では、30秒以下ではCrの移着はほぼ認められず、100秒以上の粒子投射でCr移着層が形成される。一方、アルゴンガス雰囲気中では、粒子投射時間の増加に伴い,Cr移着層の厚さが増加する。なお、300秒では表面凹凸が顕著となり,厚さが不均一となる。   As can be seen from FIG. 26, an oxide scale is formed in the atmosphere regardless of the particle projection time. It should be noted that in the photograph, the thickness varies due to separation at the time of cutting the cross section. On the other hand, in the argon gas atmosphere, the decarburized layer thickness increases as the particle projection time increases. As can be seen from FIG. 27, in the atmosphere, the transfer of Cr is hardly observed in 30 seconds or less, and a Cr transfer layer is formed by particle projection of 100 seconds or more. On the other hand, in the argon gas atmosphere, as the particle projection time increases, the thickness of the Cr transfer layer increases. In 300 seconds, the surface unevenness becomes remarkable and the thickness becomes non-uniform.

図28Aは、被処理物Wの表面組織を分析したものである。大気中では、30秒以下では表面にCr元素はほぼ認められず、100秒以上の粒子投射でCr濃度が増加している。一方、アルゴンガス雰囲気中では、30秒でCr濃度は飽和している。   FIG. 28A is an analysis of the surface texture of the workpiece W. In the atmosphere, almost no Cr element is observed on the surface for 30 seconds or less, and the Cr concentration increases by particle projection for 100 seconds or more. On the other hand, in the argon gas atmosphere, the Cr concentration is saturated in 30 seconds.

以上の各種観察から、表面処理において、アルゴンガス雰囲気下では、短時間でのCr移着層形成に有効であることが判る。   From the above various observations, it can be seen that surface treatment is effective for forming a Cr transfer layer in a short time under an argon gas atmosphere.

図28Bは、動電位分極測定を行い、電流密度値が10mA/cmを示した際の電位値Eと被処理面におけるクロム濃度との関係を示している。クロム移着量の増加に伴い電位値Eは増加する傾向が認められ、被処理面に存在するクロムが耐食性の改善に寄与することがわかった。 FIG. 28B shows the relationship between the potential value E and the chromium concentration on the surface to be processed when dynamic potential polarization measurement is performed and the current density value is 10 mA / cm 2 . The potential value E tended to increase as the chromium transfer amount increased, and it was found that chromium present on the surface to be treated contributed to the improvement of corrosion resistance.

次に、FPP後の冷却方式を変えた場合の表面硬度の違いについて説明する。すなわち、図29は、FPP後に放冷(−0.5℃/秒)した場合の温度変化について示している。図30は、処理後の光学顕微鏡写真を示している。図31は、FPP後にガス噴射による空冷(−7.6℃/秒)した場合の温度変化について示している。図32は、処理後の光学顕微鏡写真を示している。図33は、FPP後に水冷(−100℃/秒)した場合の温度変化について示している。図34は、処理後の光学顕微鏡写真を示している。   Next, the difference in surface hardness when the cooling method after FPP is changed will be described. That is, FIG. 29 shows the temperature change when the product is allowed to cool after FPP (−0.5 ° C./second). FIG. 30 shows an optical micrograph after processing. FIG. 31 shows a temperature change in the case of air cooling (−7.6 ° C./second) by gas injection after FPP. FIG. 32 shows an optical micrograph after processing. FIG. 33 shows the temperature change in the case of water cooling (−100 ° C./second) after FPP. FIG. 34 shows an optical micrograph after processing.

このように冷却方式を変えた場合、図35に示すように、各部の硬度に違いが生じる。すなわち、水冷とした場合に表面硬度が高く、その他の冷却方式では未処理の場合と差異が無いことがわかる。これは、水冷により脱炭が抑制されたためであると考えられる。   When the cooling method is changed in this way, as shown in FIG. 35, a difference occurs in the hardness of each part. That is, it can be seen that the surface hardness is high when water-cooled, and that there is no difference from the case of untreated in other cooling methods. This is probably because decarburization was suppressed by water cooling.

上述したように、表面処理装置100によれば、不活性ガス・中性ガスで空気を置換し、加熱した状態を維持したまま、投射材Pを被処理物Wに吹き付けることで、投射材Pの移着率を高めることで機械的性能を高めることができるとともに、酸化スケールの生成を抑制することができる。また、移着後は不活性ガス・中性ガスを被処理物Wに吹き付けることで、表面の付着物を除去し、表面性状を高めることができる。   As described above, according to the surface treatment apparatus 100, the air is replaced with an inert gas / neutral gas, and the projection material P is sprayed onto the workpiece W while the heated state is maintained. By increasing the transfer rate, the mechanical performance can be improved and the generation of oxide scale can be suppressed. Further, after the transfer, by spraying an inert gas / neutral gas onto the workpiece W, the surface deposits can be removed and the surface properties can be enhanced.

なお、上述した説明では、被処理材WとしてS45C、投射材PとしてCrを用いたが、その他の材質を用いてもよいことはもちろんである。   In the above description, S45C is used as the material to be processed W and Cr is used as the projection material P, but other materials may be used.

なお、本発明は前記実施の形態に限定されるものではない。例えば、上述した例では、被処理物としては、表面に複数の凹凸を有する複雑な形状の例えば歯車やねじ、ボルト、ナット等の他、シャフトのような筒状の部材、異なる材料が積層する複合材料等にも適用できるのは勿論である。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。   The present invention is not limited to the above embodiment. For example, in the above-described example, the object to be processed has a complicated shape having a plurality of irregularities on the surface, such as gears, screws, bolts, nuts, etc., a cylindrical member such as a shaft, and different materials are laminated. Of course, it can also be applied to composite materials and the like. Of course, various modifications can be made without departing from the scope of the present invention.

本発明の一実施の形態に係る表面処理装置の構成を示す説明図。Explanatory drawing which shows the structure of the surface treatment apparatus which concerns on one embodiment of this invention. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を電子顕微鏡(Cr)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the surface treatment apparatus with the electron microscope (Cr). 同表面処理装置における被処理物の表面付近の断面を電子顕微鏡(Cr)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the surface treatment apparatus with the electron microscope (Cr). 同表面処理装置における被処理物の表面付近の断面を電子顕微鏡(酸素)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the electron microscope (oxygen). 同表面処理装置における被処理物の表面付近の断面を電子顕微鏡(酸素)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the electron microscope (oxygen). 同表面処理装置における移着のメカニズム(アルゴン雰囲気)を示す説明図。Explanatory drawing which shows the mechanism (argon atmosphere) of the transfer in the same surface treatment apparatus. 同表面処理装置における移着のメカニズム(大気)を示す説明図。Explanatory drawing which shows the mechanism (atmosphere) of the transfer in the same surface treatment apparatus. 同表面処理装置における温度条件を変えた場合の被処理物の表面付近の断面を電子顕微鏡(Cr)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object at the time of changing the temperature conditions in the surface treatment apparatus with the electron microscope (Cr). 同表面処理装置における温度条件を変えた場合の被処理物の表面付近の断面を電子顕微鏡(Cr)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object at the time of changing the temperature conditions in the surface treatment apparatus with the electron microscope (Cr). 同表面処理装置における温度条件を変えた場合の被処理物の表面付近の断面を電子顕微鏡(Cr)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object at the time of changing the temperature conditions in the surface treatment apparatus with the electron microscope (Cr). 同表面処理装置における被処理物の表面付近の硬度を示すグラフ。The graph which shows the hardness of the surface vicinity of the to-be-processed object in the surface treatment apparatus. 同表面処理装置における被処理物の表面付近の成分を示すグラフ。The graph which shows the component of the surface vicinity of the to-be-processed object in the same surface treatment apparatus. 同表面処理装置における被処理物の表面付近の成分を示すグラフ。The graph which shows the component of the surface vicinity of the to-be-processed object in the same surface treatment apparatus. 同表面処理装置における温度パターンの一例を示すグラフ。The graph which shows an example of the temperature pattern in the same surface treatment apparatus. 同表面処理装置における温度パターンの別の例を示すグラフ。The graph which shows another example of the temperature pattern in the same surface treatment apparatus. 同表面処理装置における温度パターンのさらに別の例を示すグラフ。The graph which shows another example of the temperature pattern in the same surface treatment apparatus. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における置換ガス及び温度パターンによる表面性状の違いを比較する説明図。Explanatory drawing which compares the difference in the surface property by the substitution gas and temperature pattern in the same surface treatment apparatus. 同表面処理装置における温度パターンの変更条件を示すグラフ。The graph which shows the change conditions of the temperature pattern in the same surface treatment apparatus. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を電子顕微鏡(Cr)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the surface treatment apparatus with the electron microscope (Cr). 同表面処理装置における被処理物の深さ方向の結合エネルギーを示す説明図。Explanatory drawing which shows the bond energy of the depth direction of the to-be-processed object in the same surface treatment apparatus. 同表面処理装置における温度パターンの変更条件を示すグラフ。The graph which shows the change conditions of the temperature pattern in the same surface treatment apparatus. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における被処理物の表面付近の断面を電子顕微鏡(Cr)で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the surface treatment apparatus with the electron microscope (Cr). 同表面処理装置における噴射時間とクロム濃度との関係を示す説明図。Explanatory drawing which shows the relationship between the injection time in the surface treatment apparatus, and chromium density | concentration. 同表面処理装置における電位値とクロム濃度との関係を示す説明図。Explanatory drawing which shows the relationship between the electric potential value and chromium concentration in the same surface treatment apparatus. 同表面処理装置における冷却条件を示すグラフ。The graph which shows the cooling conditions in the same surface treatment apparatus. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における冷却条件を示すグラフ。The graph which shows the cooling conditions in the same surface treatment apparatus. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における冷却条件を示すグラフ。The graph which shows the cooling conditions in the same surface treatment apparatus. 同表面処理装置における被処理物の表面付近の断面を光学顕微鏡で見た説明図。Explanatory drawing which looked at the cross section of the surface vicinity of the to-be-processed object in the same surface treatment apparatus with the optical microscope. 同表面処理装置における冷却方式の違いによる被処理物の各部の硬度を示す説明図。Explanatory drawing which shows the hardness of each part of the to-be-processed object by the difference in the cooling system in the same surface treatment apparatus.

100…表面処理装置、110…チャンバ、111…排気口、112…酸素濃度計、120…支持台、121…温度センサ、130…誘導加熱コイル、140…噴射ノズル、142…電磁弁、150…粒子フィーダ、151…フィーダライン、152〜154…粒子フィーダ調整弁、160…ガスボンベ、161…流量弁・圧力調整弁、170…水冷機構(冷却部)、200…高周波印加装置、300…制御部、W…被処理物、P…投射材。   DESCRIPTION OF SYMBOLS 100 ... Surface treatment apparatus, 110 ... Chamber, 111 ... Exhaust port, 112 ... Oxygen meter, 120 ... Support stand, 121 ... Temperature sensor, 130 ... Induction heating coil, 140 ... Injection nozzle, 142 ... Electromagnetic valve, 150 ... Particle Feeder, 151 ... Feeder line, 152-154 ... Particle feeder adjustment valve, 160 ... Gas cylinder, 161 ... Flow valve / pressure adjustment valve, 170 ... Water cooling mechanism (cooling unit), 200 ... High frequency application device, 300 ... Control unit, W ... Subject, P ... Projection material.

Claims (8)

被処理物に投射材を噴射して表面処理する表面処理装置において、
チャンバと、
このチャンバ内に不活性ガスを導入する不活性ガス導入部と、
前記チャンバ内に配置され、前記被処理物を支持する支持部と、
この支持部の周囲に配置され、前記被処理物を加熱する誘導加熱コイルと、
この誘導加熱コイルに高周波電流を供給して前記被処理物を誘導加熱する高周波印加部と、
前記支持部に向けて前記不活性ガスと共に前記投射材を噴射させる投射材噴射部と、
前記被処理物を冷却する冷却部と、
前記不活性ガス導入部から不活性ガスを導入して前記チャンバ内を前記不活性ガスに置換させ、前記高周波印加部から前記誘導加熱コイルに高周波電流を供給させて前記被処理物を所定の温度まで加熱させ、前記被処理物が所定の温度に加熱された後に前記投射材噴射部から前記投射材及び前記不活性ガスを噴射させるとともに前記被処理物が前記所定の温度に維持される状態に前記誘導加熱コイルに高周波電流を供給させ、前記冷却部により前記被処理物を冷却させる制御部を具備したことを特徴とした表面処理装置。
In a surface treatment apparatus that performs surface treatment by spraying a projection material onto a workpiece,
A chamber;
An inert gas introduction section for introducing an inert gas into the chamber;
A support part disposed in the chamber and supporting the object to be processed;
An induction heating coil that is disposed around the support and heats the workpiece;
A high-frequency application unit for induction-heating the workpiece by supplying a high-frequency current to the induction heating coil;
A projection material injection unit that injects the projection material together with the inert gas toward the support unit;
A cooling unit for cooling the object to be processed;
An inert gas is introduced from the inert gas introduction unit to replace the inside of the chamber with the inert gas, and a high-frequency current is supplied from the high-frequency application unit to the induction heating coil so that the object to be processed has a predetermined temperature. After the object to be processed is heated to a predetermined temperature, the projection material and the inert gas are injected from the projection material injection unit, and the object to be processed is maintained at the predetermined temperature. A surface treatment apparatus comprising: a control unit that supplies a high-frequency current to the induction heating coil and cools the workpiece by the cooling unit.
前記冷却部は、前記支持部に向けて前記不活性ガスを噴射させて冷却する不活性ガス噴射部を備え、
前記制御部は、さらに前記不活性ガス噴射部から不活性ガスのみを噴射させて前記被処理物を冷却させることを特徴とする請求項1に記載の表面処理装置。
The cooling unit includes an inert gas injection unit configured to inject and cool the inert gas toward the support unit,
The surface treatment apparatus according to claim 1, wherein the control unit further cools the object to be treated by injecting only an inert gas from the inert gas injection unit.
前記冷却部は、前記支持部に向けて冷却液を噴射するものであることを特徴とする請求項1に記載の表面処理装置。   The surface treatment apparatus according to claim 1, wherein the cooling unit is configured to inject a cooling liquid toward the support unit. チャンバ内に収容された被処理物に投射材を噴射して表面処理する表面処理方法において、
前記チャンバ内を不活性ガスに置換する置換工程と、
前記被処理物を所定の処理温度まで加熱する加熱工程と、
前記所定温度範囲において前記被処理物に向けて前記投射材を投射し、前記被処理物の表面に移着させる移着工程と、
前記被処理物に不活性ガスを吹き付けて急速冷却する冷却工程とを備えていることを特徴とする表面処理方法。
In the surface treatment method of spraying a projection material onto a workpiece to be treated contained in a chamber and performing a surface treatment,
A replacement step of replacing the inside of the chamber with an inert gas;
A heating step of heating the workpiece to a predetermined processing temperature;
Projecting the projection material toward the object to be processed in the predetermined temperature range, and transferring to the surface of the object to be processed; and
And a cooling step of rapidly cooling the object to be treated by spraying an inert gas.
被処理物に投射材を噴射して表面処理する表面処理装置において、
チャンバと、
このチャンバ内に中性ガスを導入する中性ガス導入部と、
前記チャンバ内に配置され、前記被処理物を支持する支持部と、
この支持部の周囲に配置され、前記被処理物を加熱する誘導加熱コイルと、
この誘導加熱コイルに高周波電流を供給して前記被処理物を誘導加熱する高周波印加部と、
前記支持部に向けて前記中性ガスと共に前記投射材を噴射させる投射材噴射部と、
前記被処理物を冷却する冷却部と、
前記中性ガス導入部から中性ガスを導入して前記チャンバ内を前記中性ガスに置換させ、前記高周波印加部から前記誘導加熱コイルに高周波電流を供給させて前記被処理物を所定の温度まで加熱させ、前記被処理物が所定の温度に加熱された後に前記投射材噴射部から前記投射材及び前記中性ガスを噴射させるとともに前記被処理物が前記所定の温度に維持される状態に前記誘導加熱コイルに高周波電流を供給させ、前記冷却部により前記被処理物を冷却させる制御部を具備したことを特徴とした表面処理装置。
In a surface treatment apparatus that performs surface treatment by spraying a projection material onto a workpiece,
A chamber;
A neutral gas introduction part for introducing a neutral gas into the chamber;
A support part disposed in the chamber and supporting the object to be processed;
An induction heating coil that is disposed around the support and heats the workpiece;
A high-frequency application unit for induction-heating the workpiece by supplying a high-frequency current to the induction heating coil;
A projection material injection unit that injects the projection material together with the neutral gas toward the support unit;
A cooling unit for cooling the object to be processed;
A neutral gas is introduced from the neutral gas introduction part to replace the inside of the chamber with the neutral gas, and a high-frequency current is supplied from the high-frequency application part to the induction heating coil to bring the object to be processed to a predetermined temperature. And after the workpiece is heated to a predetermined temperature, the projection material and the neutral gas are injected from the projection material injection unit and the workpiece is maintained at the predetermined temperature. A surface treatment apparatus comprising: a control unit that supplies a high-frequency current to the induction heating coil and cools the workpiece by the cooling unit.
前記冷却部は、前記支持部に向けて前記中性ガスを噴射させて冷却する中性ガス噴射部を備え、
前記制御部は、さらに前記中性ガス噴射部から中性ガスのみを噴射させて前記被処理物を冷却させることを特徴とする請求項5に記載の表面処理装置。
The cooling unit includes a neutral gas injection unit configured to inject and cool the neutral gas toward the support unit,
The surface treatment apparatus according to claim 5, wherein the control unit further cools the workpiece by injecting only the neutral gas from the neutral gas injection unit.
チャンバ内に収容された被処理物に投射材を噴射して表面処理する表面処理方法において、
前記チャンバ内を中性ガスに置換する置換工程と、
前記被処理物を所定の処理温度まで加熱する加熱工程と、
前記所定温度範囲において前記被処理物に向けて前記投射材を投射し、前記被処理物の表面に移着させる移着工程と、
前記被処理物に中性ガスを吹き付けて急速冷却する冷却工程とを備えていることを特徴とする表面処理方法。
In the surface treatment method of spraying a projection material onto a workpiece to be treated contained in a chamber and performing a surface treatment,
A replacement step of replacing the inside of the chamber with a neutral gas;
A heating step of heating the workpiece to a predetermined processing temperature;
Projecting the projection material toward the object to be processed in the predetermined temperature range, and transferring to the surface of the object to be processed; and
A surface treatment method comprising: a cooling step of rapidly cooling the object to be treated by spraying a neutral gas.
チャンバ内に収容された被処理物に投射材を噴射して表面処理する表面処理方法において、
前記チャンバ内を不活性ガス又は中性ガスに置換する置換工程と、
前記被処理物を所定の処理温度まで加熱する加熱工程と、
前記所定温度範囲において前記被処理物に向けて前記投射材を投射し、前記被処理物の表面に移着させる移着工程と、
前記被処理物に冷却液を吹き付けて急速冷却する冷却工程とを備えていることを特徴とする表面処理方法。
In the surface treatment method of spraying a projection material onto a workpiece to be treated contained in a chamber and performing a surface treatment,
A replacement step of replacing the inside of the chamber with an inert gas or a neutral gas;
A heating step of heating the workpiece to a predetermined processing temperature;
Projecting the projection material toward the object to be processed in the predetermined temperature range, and transferring to the surface of the object to be processed; and
And a cooling step of rapidly cooling the object to be processed by spraying a cooling liquid.
JP2009280657A 2008-12-18 2009-12-10 Surface treatment apparatus and surface treatment method Active JP5645398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009280657A JP5645398B2 (en) 2008-12-18 2009-12-10 Surface treatment apparatus and surface treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008322985 2008-12-18
JP2008322985 2008-12-18
JP2009280657A JP5645398B2 (en) 2008-12-18 2009-12-10 Surface treatment apparatus and surface treatment method

Publications (2)

Publication Number Publication Date
JP2010163686A true JP2010163686A (en) 2010-07-29
JP5645398B2 JP5645398B2 (en) 2014-12-24

Family

ID=42580071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009280657A Active JP5645398B2 (en) 2008-12-18 2009-12-10 Surface treatment apparatus and surface treatment method

Country Status (1)

Country Link
JP (1) JP5645398B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102361A (en) * 2010-11-09 2012-05-31 Keio Gijuku Method for manufacturing metal diffused layer, and metal material
JP2013221168A (en) * 2012-04-13 2013-10-28 Keio Gijuku Surface treatment device and surface treatment method
JP2013224464A (en) * 2012-04-20 2013-10-31 Keio Gijuku Apparatus and method for surface treatment
KR101509432B1 (en) * 2014-04-08 2015-04-09 주식회사 예감 Speedy surface finishing device for the products of 3d-printer
JP2016117953A (en) * 2016-03-28 2016-06-30 学校法人慶應義塾 Surface treatment apparatus and method
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal
JP2017025360A (en) * 2015-07-17 2017-02-02 トヨタ自動車株式会社 Surface treatment method for steel material
KR101807823B1 (en) 2015-11-09 2017-12-11 이수현 Surface treatment apparatus for surface of three dimensional printer output
JP2018063247A (en) * 2016-10-07 2018-04-19 日立金属株式会社 Material tester and material testing method
KR20190096134A (en) * 2018-02-08 2019-08-19 한양대학교 에리카산학협력단 Alloy thin layer and fabricating method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211291A (en) * 1990-01-17 1991-09-17 Nippon Steel Corp Continuous hot dipping method
JP2006070320A (en) * 2004-09-01 2006-03-16 Railway Technical Res Inst Surface-treated material, surface treatment method and surface treatment apparatus
JP2008127647A (en) * 2006-11-22 2008-06-05 High Frequency Heattreat Co Ltd Surface treatment device and method therefore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211291A (en) * 1990-01-17 1991-09-17 Nippon Steel Corp Continuous hot dipping method
JP2006070320A (en) * 2004-09-01 2006-03-16 Railway Technical Res Inst Surface-treated material, surface treatment method and surface treatment apparatus
JP2008127647A (en) * 2006-11-22 2008-06-05 High Frequency Heattreat Co Ltd Surface treatment device and method therefore

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102361A (en) * 2010-11-09 2012-05-31 Keio Gijuku Method for manufacturing metal diffused layer, and metal material
JP2013221168A (en) * 2012-04-13 2013-10-28 Keio Gijuku Surface treatment device and surface treatment method
JP2013224464A (en) * 2012-04-20 2013-10-31 Keio Gijuku Apparatus and method for surface treatment
KR101509432B1 (en) * 2014-04-08 2015-04-09 주식회사 예감 Speedy surface finishing device for the products of 3d-printer
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal
JP2017025360A (en) * 2015-07-17 2017-02-02 トヨタ自動車株式会社 Surface treatment method for steel material
KR101807823B1 (en) 2015-11-09 2017-12-11 이수현 Surface treatment apparatus for surface of three dimensional printer output
JP2016117953A (en) * 2016-03-28 2016-06-30 学校法人慶應義塾 Surface treatment apparatus and method
JP2018063247A (en) * 2016-10-07 2018-04-19 日立金属株式会社 Material tester and material testing method
JP7054433B2 (en) 2016-10-07 2022-04-14 日立金属株式会社 Material test equipment and material test method
KR20190096134A (en) * 2018-02-08 2019-08-19 한양대학교 에리카산학협력단 Alloy thin layer and fabricating method of the same
KR102083075B1 (en) * 2018-02-08 2020-02-28 한양대학교 에리카산학협력단 Alloy thin layer and fabricating method of the same

Also Published As

Publication number Publication date
JP5645398B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5645398B2 (en) Surface treatment apparatus and surface treatment method
Wei et al. Surface modification of 5CrMnMo steel with continuous scanning electron beam process
US6913207B2 (en) Thermal spraying method and apparatus for improved adhesion strength
EP2492360B1 (en) A surface treatment system and a surface treatment process
KR20080110960A (en) Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
Ichiki et al. Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure
JP4247916B2 (en) Microwave carburizing furnace and carburizing method
Takesue et al. Effects of gas blow velocity on the surface properties of Ti-6Al-4V alloy treated by gas blow IH nitriding
Kim et al. Chromium carbide laser-beam surface-alloying treatment on stainless steel
JP5072327B2 (en) Surface treatment method
Liu et al. Surface strengthening technology for mechanical parts
Abdalla et al. Changing in fatigue life of 300 M bainitic steel after laser carburizing and plasma nitriding
Varis et al. Effect of heat treatments on the wear resistance of HVAF and HVOF sprayed tool steel coatings
JP2010106346A (en) Surface treatment apparatus
JP5930827B2 (en) Surface treatment apparatus and surface treatment method
JP5984037B2 (en) Metal diffusion layer manufacturing method and steel material
Yamamoto et al. Effect of the Atmosphere for Heat Treatment on Carbon Flux in Ultra-Rapid Carburizing
Takesue et al. Effect of atmospheric‐controlled induction‐heating fine particle peening on microstructure and fatigue properties of low‐alloy steel
JP5675296B2 (en) Surface treatment apparatus and surface treatment method
Takesue et al. Effect of Room Temperature Fine Particle Peening Pretreatment on Grain Refinement of Fe–Cr Alloys by AIH-FPP
Gao et al. Rapid nitriding of pure iron by thermal plasma jet irradiation
WEI et al. Microstructure and hardness of W alloy on 45 steel by electron beam scanning
Sreedhar et al. Effect of processing parameters on the laser glazing of plasma-sprayed alumina–titania ceramic
Ando et al. Improvement of wear resistance of steels by nitriding using supersonic expanding nitrogen plasma jets
Takesue et al. Rapid formation of titanium nitride coating by atmospheric-controlled induction-heating fine particle peening and investigation of its wear and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250