JP5675296B2 - Surface treatment apparatus and surface treatment method - Google Patents

Surface treatment apparatus and surface treatment method Download PDF

Info

Publication number
JP5675296B2
JP5675296B2 JP2010259415A JP2010259415A JP5675296B2 JP 5675296 B2 JP5675296 B2 JP 5675296B2 JP 2010259415 A JP2010259415 A JP 2010259415A JP 2010259415 A JP2010259415 A JP 2010259415A JP 5675296 B2 JP5675296 B2 JP 5675296B2
Authority
JP
Japan
Prior art keywords
surface treatment
workpiece
processed
projection material
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010259415A
Other languages
Japanese (ja)
Other versions
JP2012110978A (en
Inventor
翼 原田
翼 原田
将一 菊池
将一 菊池
潤 小茂鳥
潤 小茂鳥
剣吾 深沢
剣吾 深沢
佳孝 三阪
佳孝 三阪
川嵜 一博
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Keio University
Original Assignee
Neturen Co Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Keio University filed Critical Neturen Co Ltd
Priority to JP2010259415A priority Critical patent/JP5675296B2/en
Publication of JP2012110978A publication Critical patent/JP2012110978A/en
Application granted granted Critical
Publication of JP5675296B2 publication Critical patent/JP5675296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、鉄鋼材からなる被処理物を誘導加熱しつつ投射材を噴射して表面処理する表面処理装置及び表面処理方法に関し、特に高硬度化と結晶粒微細化を両立できる技術に関する。   The present invention relates to a surface treatment apparatus and a surface treatment method for performing surface treatment by injecting a projection material while inductively heating an object made of a steel material, and particularly relates to a technique capable of achieving both high hardness and crystal grain refinement.

鉄鋼材に表面処理を施す方法としてショットピーニングが用いられている。ショットピーニングは、目的に合わせた種々の手法が知られている(例えば、特許文献1〜7参照)。例えば、圧縮残留応力の生起や高硬度化により鉄鋼材の疲労強度向上を図るためには鉄鋼材の伸び率は小さい方がよいことから、したがって、鉄鋼材の常温領域でショットピ−ニングを行っている。これに対し、鉄鋼材の表面金属組織を微細化させたり、表面を滑らかに仕上げるためには鉄鋼材の伸び率が大きい方がよく、鉄鋼材を加熱してショットピーニングを行っている。   Shot peening is used as a method for surface treatment of steel. For shot peening, various methods are known in accordance with the purpose (see, for example, Patent Documents 1 to 7). For example, in order to improve the fatigue strength of steel materials by generating compressive residual stress or increasing hardness, it is better that the elongation rate of steel materials is small. Therefore, shot peening is performed in the normal temperature region of steel materials. Yes. On the other hand, in order to refine the surface metallographic structure of the steel material or to finish the surface smoothly, it is better that the steel material has a larger elongation rate, and the steel material is heated and shot peened.

一方、鉄鋼材を加熱し、オーステナイトあるいは準オーステナイトの状態で圧延・押出し・引抜き等の塑性加工により成形し、急冷することで、加工硬化と結晶粒微細化を同時に行うオースフォーミングという技術が知られている。   On the other hand, a technology called ausforming, in which work hardening and grain refinement are simultaneously performed by heating steel, forming it by a plastic working such as rolling, extrusion, drawing, etc. in the austenite or quasi-austenite state and quenching it, is known. ing.

特開昭58−192643号公報JP 58-192643 A 特公平5−51433号公報Japanese Patent Publication No. 5-51433 特開平5−277944号公報JP-A-5-277944 特公平6−99739号公報Japanese Patent Publication No. 6-99739 特公平6−72254号公報Japanese Examined Patent Publication No. 6-72254 特開平5−277945号公報JP-A-5-277945 特許第4505779号公報Japanese Patent No. 4507579

上述した鉄鋼材の処理方法では、次のような問題があった。すなわち、製品の多様化に伴い、鉄鋼材の表面に大きな圧縮残留応力を生起させると同時に、表面金属組織を高硬度化・微細化させて疲労強度を向上させることが求められるようになった。しかしながら、ショットピーニングにより高硬度化と結晶粒微細化とを両立させることは温度制御の面からも困難である。   The steel material processing method described above has the following problems. In other words, with the diversification of products, it has been required to generate large compressive residual stress on the surface of steel materials and to improve fatigue strength by increasing the hardness and miniaturization of the surface metallographic structure. However, it is difficult to achieve both high hardness and crystal grain refinement by shot peening from the viewpoint of temperature control.

一方、オースフォーミングでは高硬度化と結晶粒微細化とを両立させることができるが、大型の装置が必要となるとともに、温度管理や鉄鋼材の化学組成を厳密に制御する等、製造プロセスが複雑となり、実用化が困難であるという問題があった。   Ausforming, on the other hand, can achieve both high hardness and crystal grain refinement, but requires a large-scale device and complicated manufacturing processes such as temperature control and strict control of the chemical composition of steel materials. Thus, there is a problem that it is difficult to put into practical use.

そこで本発明は、簡便・低コストな表面処理であるショットピーニングにおいて高硬度化と結晶粒微細化とを両立させることができる表面処理装置及び表面処理方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a surface treatment apparatus and a surface treatment method that can achieve both high hardness and crystal grain refinement in shot peening, which is a simple and low-cost surface treatment.

前記課題を解決し目的を達成するために、本発明の表面処理装置及び表面処理方法は次のように構成されている。   In order to solve the problems and achieve the object, the surface treatment apparatus and the surface treatment method of the present invention are configured as follows.

鉄鋼材からなる被処理物に投射材を噴射して表面処理する表面処理装置において、前記被処理物を支持する支持部と、この支持部の周囲に配置され、前記被処理物を加熱する誘導加熱コイルと、この誘導加熱コイルに高周波電流を供給して前記被処理物を誘導加熱する高周波印加部と、前記支持部に向けて前記投射材を噴射させる投射材噴射部と、前記被処理物を冷却する冷却部と、前記高周波印加部から前記誘導加熱コイルに高周波電流を供給させて前記被処理物を加熱し、オーステナイト化させ、前記被処理物のA3変態点の−110〜−10℃の所定温度まで冷却された後に前記投射材噴射部から前記投射材を噴射させるとともに前記被処理物が前記所定の温度に維持される状態に前記誘導加熱コイルに高周波電流を供給させ、前記冷却部により前記被処理物を冷却させる制御部を具備した。 In a surface treatment apparatus for injecting a projection material onto a workpiece made of steel and performing a surface treatment, a support portion that supports the workpiece and a guide that is disposed around the support portion and heats the workpiece A heating coil; a high-frequency application unit that supplies a high-frequency current to the induction heating coil to induction-heat the object to be processed; a projection material injection unit that injects the projection material toward the support; and the object to be processed A high-frequency current is supplied from the high-frequency application unit to the induction heating coil to heat the object to be processed and austenitized, and the A3 transformation point of the object to be processed is −10 to −10 ° C. predetermined temperature to the from the projection material ejecting unit after being cooled with ejects the blast material to the induction heating coil in a state where the object to be treated is maintained at the predetermined temperature by supplying a high-frequency current, the cold Equipped with a control unit for cooling the object to be treated by the Department.

鉄鋼材からなる被処理物に投射材を噴射して表面処理する表面処理方法において、前記被処理物をオーステナイト化する温度まで前記被処理物の周囲に配置された誘導加熱コイルで加熱する加熱工程と、前記被処理物のA3変態点の−110〜−10℃の所定温度まで冷却された後に前記被処理物に向けて前記投射材を投射すると共に、前記所定の温度に維持されるように前記誘導加熱コイルに通電する投射工程と、前記被処理部を冷却する冷却工程とを備えた。 In the surface treatment method of the surface treated by injecting blasting materials to be treated composed of ferrous material, heat pressing in the induction heating coil disposed around the object to be treated the temperature or to austenitizing treatment object a heating step, is maintained the the rewritable projecting the projection material toward the object to be processed after being cooled to a predetermined temperature of -110~-10 ℃ of A3 transformation point of the object, the predetermined temperature a projection morphism step energizing the induction heating coil so that, and a cooling step of cooling the treated part.

本発明によれば、簡便・低コストな表面処理であるショットピーニングにおいて高硬度化と結晶粒微細化とを両立させることが可能となる。   According to the present invention, it is possible to achieve both high hardness and crystal grain refinement in shot peening, which is a simple and low-cost surface treatment.

本発明の一実施の形態に係る表面処理装置の構成を示す説明図。Explanatory drawing which shows the structure of the surface treatment apparatus which concerns on one embodiment of this invention. 同表面処理装置における時間と温度変化との関係を示す説明図。Explanatory drawing which shows the relationship between time and temperature change in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物の表面からの距離とビッカース硬度との関係を示す図。The figure which shows the relationship between the distance from the surface of the to-be-processed object surface-treated in the surface treatment apparatus, and Vickers hardness. 同表面処理装置において表面処理された被処理物の表面からの距離とビッカース硬度との関係を示す図。The figure which shows the relationship between the distance from the surface of the to-be-processed object surface-treated in the surface treatment apparatus, and Vickers hardness. 同表面処理装置において表面処理された被処理物の表面からの距離とビッカース硬度との関係を示す図。The figure which shows the relationship between the distance from the surface of the to-be-processed object surface-treated in the surface treatment apparatus, and Vickers hardness. 同表面処理装置において表面処理された被処理物の疲労試験に用いる切欠試験片を示す説明図。Explanatory drawing which shows the notch test piece used for the fatigue test of the to-be-processed object surface-treated in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物のき裂進展挙動観察に用いる微小穴試験片を示す説明図。Explanatory drawing which shows the micro hole test piece used for the crack propagation behavior observation of the to-be-processed object surface-treated in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物の破断までの繰返し数と応力振幅との関係を示す説明図。Explanatory drawing which shows the relationship between the number of repetition until the fracture | rupture of the to-be-processed object surface-treated in the surface treatment apparatus, and stress amplitude. 同表面処理装置において表面処理された被処理物の回転数とき裂の長さとの関係を示す説明図。Explanatory drawing which shows the relationship between the rotation speed of the to-be-processed object surface-treated in the surface treatment apparatus, and the length of a crack. 同表面処理装置において表面処理された被処理物の応力拡大係数範囲とき裂の成長速度との関係を示す説明図。Explanatory drawing which shows the relationship between the stress intensity factor range of the to-be-processed object surface-treated in the surface treatment apparatus, and the growth rate of a crack. 同表面処理装置において表面処理された被処理物の断面組織観察結果を示す説明図。Explanatory drawing which shows the cross-sectional structure | tissue observation result of the to-be-processed object surface-treated in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物の断面組織観察結果を示す説明図。Explanatory drawing which shows the cross-sectional structure | tissue observation result of the to-be-processed object surface-treated in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物の断面組織観察結果を示す説明図。Explanatory drawing which shows the cross-sectional structure | tissue observation result of the to-be-processed object surface-treated in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物の結晶粒径を比較して示す説明図。Explanatory drawing which compares and shows the crystal grain diameter of the to-be-processed object surface-treated in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物の表面からの距離とビッカース硬度との関係を示す図。The figure which shows the relationship between the distance from the surface of the to-be-processed object surface-treated in the surface treatment apparatus, and Vickers hardness. 同表面処理装置において表面処理された被処理物の断面組織観察結果を示す説明図。Explanatory drawing which shows the cross-sectional structure | tissue observation result of the to-be-processed object surface-treated in the same surface treatment apparatus. 同表面処理装置において表面処理された被処理物の外観を示す説明図。Explanatory drawing which shows the external appearance of the to-be-processed object surface-treated in the surface treatment apparatus.

図1は本発明の一実施の形態に係る表面処理方法を実施する表面処理装置100の概略構成を示す断面図である。表面処理装置100は、被処理物Wを誘導加熱しつつ投射材を噴射して表面処理する装置である。ここで、被処理物Wとしては、例えば磁性材料である鋼材を対象とすることができる。特に、鉄を主成分する鋼材が好適である。一方、投射材としては、例えば鉄、クロム、アルミニウム等の金属、あるいはクロム−ニッケルや炭化タングステン−コバルト等の合金、アルミナやシリカ、ジルコニア等のセラミックスである金属酸化物、炭化珪素や窒化珪素等のセラミックスである金属を含有する金属化合物等が例示できる。また、投射材としては、例えば平均粒径が数μm〜数百μmに調整されたものが利用される。   FIG. 1 is a cross-sectional view showing a schematic configuration of a surface treatment apparatus 100 for performing a surface treatment method according to an embodiment of the present invention. The surface treatment apparatus 100 is an apparatus that performs surface treatment by spraying a projection material while induction-heating the workpiece W. Here, as the workpiece W, for example, a steel material that is a magnetic material can be targeted. In particular, a steel material mainly composed of iron is suitable. On the other hand, examples of the projection material include metals such as iron, chromium and aluminum, alloys such as chromium-nickel and tungsten carbide-cobalt, metal oxides such as ceramics such as alumina, silica and zirconia, silicon carbide and silicon nitride. Examples thereof include metal compounds containing metals that are ceramics. Moreover, as a projection material, the thing by which the average particle diameter was adjusted to several micrometers-several hundred micrometers, for example is utilized.

図1に示すように、表面処理装置100は、気密に形成されたチャンバ110を備えている。チャンバ110内には、被処理物Wを載置する支持台120と、この支持台120の周囲に設けられた誘導加熱コイル130と、支持台120に向けて投射材又は圧縮ガスを噴射する噴射ノズル(投射材噴射部)140とが設けられている。   As shown in FIG. 1, the surface treatment apparatus 100 includes a chamber 110 formed in an airtight manner. Inside the chamber 110, a support table 120 on which the workpiece W is placed, an induction heating coil 130 provided around the support table 120, and an injection for injecting a projection material or compressed gas toward the support table 120. A nozzle (projection material injection unit) 140 is provided.

支持台120には、被処理物Wの表面温度を測定する温度センサ121が設けられて居る。温度センサ121の出力は制御部300に接続されている。   A temperature sensor 121 that measures the surface temperature of the workpiece W is provided on the support stand 120. The output of the temperature sensor 121 is connected to the control unit 300.

誘導加熱コイル130は、チャンバ110外に設けられた高周波印加装置200に接続され、所定の周波数の高周波電流が印加される。   The induction heating coil 130 is connected to a high frequency application device 200 provided outside the chamber 110, and a high frequency current having a predetermined frequency is applied thereto.

チャンバ110内には、噴射ノズル140が設けられ、支持台120に向けられたノズル141を備えている。噴射ノズル140には、電磁弁142を介して空気ガスを供給するガスボンベ160及び流量弁・圧力調整弁161に接続されている。流量弁・圧力調整弁161では、空気ガスの噴射速度として例えば数十m/秒から数千m/秒で噴射される。なお、噴射速度ではなく、噴射圧(例えば、0.5MPa)として制御してもよい。   An injection nozzle 140 is provided in the chamber 110 and includes a nozzle 141 directed toward the support base 120. The injection nozzle 140 is connected to a gas cylinder 160 for supplying air gas and a flow rate / pressure regulating valve 161 via an electromagnetic valve 142. In the flow rate valve / pressure regulating valve 161, the air gas is injected at an injection speed of, for example, several tens of m / sec to several thousand m / sec. In addition, you may control not as an injection speed but as an injection pressure (for example, 0.5 MPa).

流量弁・圧力調整弁161は、さらに粒子フィーダ150に接続されたフィーダライン151に接続されている。フィーダライン151には粒子フィーダ調整弁152〜154が設けられ、噴射ノズル140に投射材Pが供給されている。   The flow valve / pressure regulating valve 161 is further connected to a feeder line 151 connected to the particle feeder 150. The feeder line 151 is provided with particle feeder adjusting valves 152 to 154, and the projection material P is supplied to the injection nozzle 140.

高周波印加装置200は、単一、あるいは複数の周波数の高周波電流を誘導加熱コイル130に印加し、被処理物Wを誘導加熱する。   The high frequency applying device 200 applies high frequency currents having a single frequency or a plurality of frequencies to the induction heating coil 130 to inductively heat the workpiece W.

図1中300は、表面処理装置100の各部を制御する制御部を示している。制御部300は、作業者の設定、予め設定されたプログラム、センサ出力等の情報に基づいて、高周波印加装置200、電磁弁142、粒子フィーダ調整弁152〜154、被処理物Wの加熱、投射材Pの噴射速度・噴射量、空気ガスの噴射・噴射タイミング等を調整する。   In FIG. 1, reference numeral 300 denotes a control unit that controls each part of the surface treatment apparatus 100. Based on information such as operator settings, preset programs, sensor output, etc., the controller 300 controls the high frequency application device 200, the electromagnetic valve 142, the particle feeder adjustment valves 152 to 154, the heating and projection of the workpiece W. The injection speed / injection amount of the material P, the injection / injection timing of air gas, etc. are adjusted.

制御部300による制御の一例として、高周波印加装置200から誘導加熱コイル130に高周波電流を供給させて被処理物Wがオーステナイト化する温度(例えば、1000℃)まで加熱させ、その後に空気ガスを噴射させることで急冷させ、ノズル141から投射材及び空気ガスを噴射させるとともに被処理物Wが所定の温度(例えば、650〜750℃)に維持される状態に誘導加熱コイル130に高周波電流を供給させ、ノズル141から空気ガスのみを噴射させて被処理物Wを冷却させるように制御を行う。   As an example of the control by the control unit 300, a high-frequency current is supplied from the high-frequency applying device 200 to the induction heating coil 130 so that the workpiece W is heated to a temperature at which the workpiece W becomes austenite (for example, 1000 ° C.), and then air gas is injected. The high frequency current is supplied to the induction heating coil 130 in a state where the projection material and the air gas are ejected from the nozzle 141 and the workpiece W is maintained at a predetermined temperature (for example, 650 to 750 ° C.). Then, control is performed such that only the air gas is injected from the nozzle 141 to cool the workpiece W.

このように構成された表面処理装置100は、次のようにして動作する。なお、被処理材WとしてSCM435H鋼を用いた。図2に示すように、高周波印加装置200から誘導加熱コイル130に高周波電流を供給させて被処理物Wを1000℃まで加熱させる。この加熱により被処理物Wは完全にオーステナイト化する。   The surface treatment apparatus 100 configured as described above operates as follows. In addition, SCM435H steel was used as the workpiece W. As shown in FIG. 2, a high frequency current is supplied from the high frequency application device 200 to the induction heating coil 130 to heat the workpiece W to 1000 ° C. By this heating, the workpiece W is completely austenitic.

次に、ノズル141から空気ガスを噴射させて被処理物Wを所定温度(例えば、650〜750℃)まで冷却する。ノズル141から投射材Pを30秒間噴射させてショットピーニング処理(FPP)を行う。このとき、温度センサ121の出力が650〜750℃に保持されるように、誘導加熱コイル130に高周波電流を供給させる。投射材Pの噴射(FPP)により、投射材Pが被処理物Wの表面に衝突する。次に、放冷或いはノズル141から空気ガスのみを被処理物Wに噴射して冷却を行う。   Next, air gas is injected from the nozzle 141 to cool the workpiece W to a predetermined temperature (for example, 650 to 750 ° C.). The shot peening process (FPP) is performed by spraying the projection material P from the nozzle 141 for 30 seconds. At this time, the induction heating coil 130 is supplied with a high-frequency current so that the output of the temperature sensor 121 is maintained at 650 to 750 ° C. The projection material P collides with the surface of the workpiece W by the injection (FPP) of the projection material P. Next, cooling is performed by cooling or jetting only air gas from the nozzle 141 onto the workpiece W.

図3〜図5は、FPPをそれぞれ650℃(γ−F650)、700℃(γ−F700)、750℃(γ−F750)で行った場合における表面からの距離とビッカース硬度との関係を示す図である。なお、アニール処理した鋼材(Annealed)、アニール処理後に室温でFPP処理した鋼材(F)、熱処理だけの鋼材(IH)を比較として示した。アニール処理したもの、FPP処理したものと比較した場合、試験片全体の硬度が上昇していることが判る。また、熱処理したものと比較した場合、試験片表面の硬度が上昇していることが判る。   3 to 5 show the relationship between the distance from the surface and the Vickers hardness when FPP is performed at 650 ° C. (γ-F 650), 700 ° C. (γ-F 700), and 750 ° C. (γ-F 750), respectively. FIG. In addition, the steel material (Annealed) which annealed, the steel material (F) which FPP-treated at room temperature after the annealing process, and the steel material (IH) only of heat processing were shown as a comparison. It can be seen that the hardness of the entire test piece is increased when compared with those subjected to annealing treatment and those subjected to FPP treatment. Moreover, it turns out that the hardness of the surface of a test piece is rising when compared with what was heat-processed.

また、図6に示す切欠試験片Q1(K=2.36)を用いて疲労試験(回転曲げ疲労試験)、図7に示す微小穴試験片Q2(K=3)を用いてき裂進展挙動観察を行った。 Further, a fatigue test (rotational bending fatigue test) using the notched specimen Q1 (K t = 2.36) shown in FIG. 6 and a crack propagation using the minute hole specimen Q2 (K t = 3) shown in FIG. The behavior was observed.

疲労試験においては、室温・大気中、2500rpmの条件下で行った。図8は破断までの繰返し数と応力振幅との関係を示したものである。表面処理装置100により、700℃で表面処理したもの(γ−F700)と、アニール処理したもの、熱処理だけのもの、アニール処理後に室温でFPPしたものと、500℃で表面処理したもの(γ−F500)と、600℃で表面処理したもの(γ−F600)とを比較した。図8からも判るように、700℃で表面処理したもの(γ−F700)は十分に疲労強度が向上している。   The fatigue test was performed at room temperature and in the atmosphere at 2500 rpm. FIG. 8 shows the relationship between the number of repetitions until breakage and the stress amplitude. What was surface-treated at 700 ° C. by the surface treatment apparatus 100 (γ-F700), what was annealed, only heat-treated, what was FPPed at room temperature after annealing, and what was surface-treated at 500 ° C. (γ- F500) and a surface treated at 600 ° C. (γ-F600) were compared. As can be seen from FIG. 8, the surface treated at 700 ° C. (γ-F700) has sufficiently improved fatigue strength.

き裂進展挙動観察では、室温・大気中、1000rpmの条件下で行った。図9は回転数とき裂の長さとの関係を示したものである。表面処理装置100により、700℃で表面処理したもの(γ−F700)と、熱処理だけのものとを比較した。図9からも判るように、き裂の進展が抑制されている。図10は応力拡大係数範囲とき裂の成長速度との関係を示したものである。図10からも判るように、き裂の進展が抑制されている。   The crack propagation behavior was observed at room temperature and in the atmosphere at 1000 rpm. FIG. 9 shows the relationship between the rotational speed and the crack length. The surface treatment apparatus 100 (γ-F700) subjected to surface treatment at 700 ° C. and the heat treatment alone were compared. As can be seen from FIG. 9, the crack growth is suppressed. FIG. 10 shows the relationship between the stress intensity factor range and the crack growth rate. As can be seen from FIG. 10, the crack growth is suppressed.

なお、650〜750℃は、被処理物WであるSCM435H鋼のA3変態点の−110〜−10℃の温度である。ここで、−110〜−10℃の温度とした理由について説明する。すなわち、A3変態点よりも−110℃以上低温であると、最表面がフェライト・パーライト組織、またはベイナイト組織となり十分な硬さが得られない。また、A3変態点よりも−10℃以上高温であると、被処理物Wの変形抵抗低下に起因して、投射材Pによる削食量が著しく増加し、品質が低下する(図17参照)。   In addition, 650-750 degreeC is the temperature of -10--10 degreeC of the A3 transformation point of SCM435H steel which is the to-be-processed object W. FIG. Here, the reason why the temperature is −110 to −10 ° C. will be described. That is, when the temperature is lower than the A3 transformation point by −110 ° C. or more, the outermost surface becomes a ferrite / pearlite structure or a bainite structure, and sufficient hardness cannot be obtained. In addition, when the temperature is higher by −10 ° C. or higher than the A3 transformation point, the amount of cutting by the projection material P is remarkably increased due to the decrease in deformation resistance of the workpiece W (see FIG. 17).

図11〜図13は、表面処理装置100において表面処理された被処理物の断面組織観察結果を650℃(γ−F650)、700℃(γ−F700)、750℃(γ−F750)について示す説明図である。これらの処理においては、結晶粒が微細化していることが判る。硬さは全て上昇し高硬度となり、硬さの上昇幅は同じ程度である。また、高硬度層の厚さは50μm程度となる。なお、650℃(γ−F650)で処理を行ったものが最も微細となる。   FIGS. 11 to 13 show the results of observation of the cross-sectional structure of the workpiece surface-treated in the surface treatment apparatus 100 for 650 ° C. (γ-F 650), 700 ° C. (γ-F 700), and 750 ° C. (γ-F 750). It is explanatory drawing. In these treatments, it can be seen that the crystal grains are refined. All the hardness increases and becomes high hardness, and the increase width of the hardness is about the same. The thickness of the high hardness layer is about 50 μm. In addition, what processed at 650 degreeC ((gamma) -F650) becomes the finest.

図14は、表面処理装置100において表面処理された被処理物の結晶粒径を650℃(γ−F650)、700℃(γ−F700)、750℃(γ−F750)について比較して示す説明図である。いずれも最表面で粒径が5μm以下となった。なお、深さ15μm以上では結晶粒径にばらつきが生じる。   FIG. 14 is a diagram illustrating the comparison of the crystal grain size of the workpiece surface-treated in the surface treatment apparatus 100 for 650 ° C. (γ-F 650), 700 ° C. (γ-F 700), and 750 ° C. (γ-F 750). FIG. In all cases, the particle diameter was 5 μm or less on the outermost surface. When the depth is 15 μm or more, the crystal grain size varies.

ここで、上記表面処理により、高硬度化と結晶粒微細化が可能となる原理について説明する。すなわち、被処理物Wは加熱により転移の消失(軟化)が生じる。一方、その間、連続的に高速度で投射材Pが衝突する。このため、再結晶核が多数生成されるとともに、転位の導入(硬化)と再結晶が繰り返される。軟化・硬化とが繰り返されることにより、高温下においても高転位密度に保つことが可能である。   Here, the principle by which high hardness and crystal grain refinement are possible by the surface treatment will be described. That is, disappearance (softening) of the transition occurs in the workpiece W due to heating. On the other hand, the projection material P collides continuously at a high speed. For this reason, many recrystallized nuclei are generated, and dislocation introduction (hardening) and recrystallization are repeated. By repeating softening and hardening, it is possible to maintain a high dislocation density even at high temperatures.

一方、一般的な結晶粒微細化処理として知られている圧延等の塑性加工と加熱においては加工硬化が不十分となる。この理由について説明する。すなわち、加工硬化段階(冷間加工)において、材料内の転位密度が増大し、再結晶核(潜在核)が形成される。次に、回復段階(高温保持)において、転位の消失と再配列(整列)が行われ、粒内の転位密度が減少し、再結晶核が成長する。そして、再結晶段階(高温保持)において、再結晶粒の形成と粒成長が生じ、再結晶粒(転位を含まない)が形成され、結晶粒微細化が生じる。また、圧延加工と熱処理の組合せでは、結晶粒微細化は可能であるが、再結晶により加工硬化の効果は失われる。   On the other hand, work hardening is insufficient in plastic processing such as rolling and heating, which is known as general crystal grain refining treatment. The reason for this will be described. That is, in the work hardening stage (cold working), the dislocation density in the material increases and recrystallized nuclei (latent nuclei) are formed. Next, in the recovery stage (high temperature holding), dislocations disappear and are rearranged (aligned), the dislocation density in the grains decreases, and recrystallization nuclei grow. In the recrystallization stage (high temperature holding), formation of recrystallized grains and grain growth occur, recrystallized grains (not including dislocations) are formed, and crystal grain refinement occurs. Further, in the combination of rolling and heat treatment, crystal grain refinement is possible, but the effect of work hardening is lost by recrystallization.

ここで、本願発明の対象外となる温度範囲(650℃未満、750℃超)について説明する。   Here, the temperature range (below 650 ° C., more than 750 ° C.) that is outside the scope of the present invention will be described.

図15は、FPPを600℃(γ−F600)で行った場合における表面からの距離とビッカース硬度との関係を示す図である。なお、アニール処理した鋼材(Annealed)、アニール処理後に室温でFPP処理した鋼材(F)、熱処理だけの鋼材(IH)を比較として示した。熱処理だけの鋼材(IH)としたものに比べ、あまり硬度が上昇していないことが判る。   FIG. 15 is a diagram showing the relationship between the distance from the surface and the Vickers hardness when FPP is performed at 600 ° C. (γ−F600). In addition, the steel material (Annealed) which annealed, the steel material (F) which FPP-treated at room temperature after the annealing process, and the steel material (IH) only of heat processing were shown as a comparison. It can be seen that the hardness has not increased much compared to the steel material (IH) that is only heat-treated.

図16は、表面処理装置100において表面処理された被処理物の断面組織観察結果を600℃(γ−F600)について示す説明図である。これらの処理においては、結晶粒が微細化していないことが判る。   FIG. 16 is an explanatory diagram showing a result of observing a cross-sectional structure of the workpiece surface-treated in the surface treatment apparatus 100 at 600 ° C. (γ-F600). It can be seen that the crystal grains are not refined in these treatments.

図17は、750℃以上で処理した場合を示している。被処理物Wが投射材Pにより著しく削食されている。   FIG. 17 shows the case of processing at 750 ° C. or higher. The workpiece W is significantly etched by the projection material P.

上述したように、本実施の形態に係る表面処理装置100は、被処理物Wは完全にオーステナイト化した後、被処理物のA3変態点の−110〜−10℃の温度領域においてショットピーニング処理を施すことにより、焼入れとショットピーニングによる改質効果が同時に得られ、高硬度化及び結晶粒微細化が可能となり、疲労特性が改善する。したがって、簡便・低コストな表面処理あるショットピーニングにおいて高硬度化と結晶粒微細化とを両立させることができる表面処理装置及び表面処理方法が得られる。   As described above, the surface treatment apparatus 100 according to the present embodiment performs shot peening treatment in the temperature region of −10 to −10 ° C. of the A3 transformation point of the workpiece after the workpiece W is completely austenitic. As a result, the effect of modification by quenching and shot peening can be obtained at the same time, the hardness can be increased and the crystal grains can be refined, and the fatigue characteristics can be improved. Therefore, it is possible to obtain a surface treatment apparatus and a surface treatment method that can achieve both high hardness and crystal grain refinement in shot peening with simple and low-cost surface treatment.

また、チャンバ110内において、温度制御及び投射材Pの投射を行うことで表面処理が行われるので、表面処理工程を生産ラインに組み込むことができる。この際、高周波誘導加熱を用いているため、制御性が良く自動ライン化に有利となる。   In addition, since the surface treatment is performed by performing temperature control and projection of the projection material P in the chamber 110, the surface treatment process can be incorporated into the production line. At this time, since high frequency induction heating is used, the controllability is good and it is advantageous for automatic line formation.

なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1]鉄鋼材からなる被処理物に投射材を噴射して表面処理する表面処理装置において、前記被処理物を支持する支持部と、この支持部の周囲に配置され、前記被処理物を加熱する誘導加熱コイルと、この誘導加熱コイルに高周波電流を供給して前記被処理物を誘導加熱する高周波印加部と、前記支持部に向けて前記投射材を噴射させる投射材噴射部と、前記被処理物を冷却する冷却部と、前記高周波印加部から前記誘導加熱コイルに高周波電流を供給させて前記被処理物を加熱し、オーステナイト化させ、前記被処理物のA3変態点の−110〜−10℃の温度まで冷却された後に前記投射材噴射部から前記投射材を噴射させるとともに前記被処理物が前記所定の温度に維持される状態に前記誘導加熱コイルに高周波電流を供給させ、前記冷却部により前記被処理物を冷却させる制御部を具備した表面処理装置。
[2]鉄鋼材からなる被処理物に投射材を噴射して表面処理する表面処理方法において、前記被処理物をオーステナイト化する温度まで加熱する加熱工程と、前記被処理物のA3変態点の−110〜−10℃の温度まで冷却された後に前記被処理物に向けて前記投射材を投射する投射工程とを備えている表面処理方法。
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention . Hereinafter, the invention described in the scope of claims of the present application will be appended.
[1] In a surface treatment apparatus for injecting a projection material onto a workpiece made of steel and surface-treating, a support portion that supports the workpiece and a periphery of the support portion, the workpiece to be processed An induction heating coil for heating, a high frequency application section for supplying high frequency current to the induction heating coil to induction heat the workpiece, a projection material injection section for injecting the projection material toward the support section, and A cooling unit that cools the workpiece, and a high-frequency current is supplied from the high-frequency applying unit to the induction heating coil to heat the workpiece to be austenitized, which is −110 to the A3 transformation point of the workpiece. After being cooled to a temperature of −10 ° C., the high-frequency current is supplied to the induction heating coil in a state where the projection material is injected from the projection material injection unit and the workpiece is maintained at the predetermined temperature, Surface treatment apparatus having a control unit for cooling the object to be processed by却部.
[2] In a surface treatment method in which a projection material is sprayed onto a workpiece made of a steel material to perform a surface treatment, a heating step of heating the workpiece to a temperature for austenitizing, and an A3 transformation point of the workpiece A surface treatment method comprising: a projection step of projecting the projection material toward the workpiece after being cooled to a temperature of −110 to −10 ° C.

100…表面処理装置、110…チャンバ、120…支持台、121…温度センサ、130…誘導加熱コイル、140…噴射ノズル、142…電磁弁、150…粒子フィーダ、151…フィーダライン、152〜154…粒子フィーダ調整弁、160…ガスボンベ、161…流量弁・圧力調整弁、200…高周波印加装置、300…制御部、W…被処理物、P…投射材。   DESCRIPTION OF SYMBOLS 100 ... Surface treatment apparatus, 110 ... Chamber, 120 ... Support stand, 121 ... Temperature sensor, 130 ... Induction heating coil, 140 ... Injection nozzle, 142 ... Solenoid valve, 150 ... Particle feeder, 151 ... Feeder line, 152-154 ... Particle feeder adjustment valve, 160 ... gas cylinder, 161 ... flow rate valve / pressure adjustment valve, 200 ... high frequency application device, 300 ... control unit, W ... workpiece, P ... projection material.

Claims (2)

鉄鋼材からなる被処理物に投射材を噴射して表面処理する表面処理装置において、
前記被処理物を支持する支持部と、
この支持部の周囲に配置され、前記被処理物を加熱する誘導加熱コイルと、
この誘導加熱コイルに高周波電流を供給して前記被処理物を誘導加熱する高周波印加部と、
前記支持部に向けて前記投射材を噴射させる投射材噴射部と、
前記被処理物を冷却する冷却部と、
前記高周波印加部から前記誘導加熱コイルに高周波電流を供給させて前記被処理物を加熱し、オーステナイト化させ、前記被処理物のA3変態点の−110〜−10℃の所定温度まで冷却された後に前記投射材噴射部から前記投射材を噴射させるとともに前記被処理物が前記所定の温度に維持される状態に前記誘導加熱コイルに高周波電流を供給させ、前記冷却部により前記被処理物を冷却させる制御部を具備したことを特徴とした表面処理装置。
In a surface treatment apparatus that performs surface treatment by injecting a projection material onto a workpiece made of steel,
A support portion for supporting the object to be processed;
An induction heating coil that is disposed around the support and heats the workpiece;
A high-frequency application unit for induction-heating the workpiece by supplying a high-frequency current to the induction heating coil;
A projection material injection unit that injects the projection material toward the support unit;
A cooling unit for cooling the object to be processed;
A high-frequency current was supplied from the high-frequency application unit to the induction heating coil to heat the object to be processed, austenitized, and cooled to a predetermined temperature of −10 to −10 ° C. of the A3 transformation point of the object to be processed. Later, the projection material is ejected from the projection material ejecting section, the high frequency current is supplied to the induction heating coil in a state where the object to be processed is maintained at the predetermined temperature, and the processing object is cooled by the cooling section. A surface treatment apparatus comprising a control unit.
鉄鋼材からなる被処理物に投射材を噴射して表面処理する表面処理方法において、
前記被処理物をオーステナイト化する温度まで前記被処理物の周囲に配置された誘導加熱コイルで加熱する加熱工程と、
前記被処理物のA3変態点の−110〜−10℃の所定温度まで冷却された後に前記被処理物に向けて前記投射材を投射すると共に、前記所定の温度に維持されるように前記誘導加熱コイルに通電する投射工程と、
前記被処理部を冷却する冷却工程とを備えていることを特徴とする表面処理方法。
In the surface treatment method of spraying a projection material onto a workpiece made of steel and surface-treating the surface,
A pressurized heat heating step in the induction heating coil disposed around the object to be processed to the processing object at a temperature or austenitizing,
Said to be maintained The rewritable projecting the projection material toward the object to be processed after being cooled to a predetermined temperature of -110~-10 ℃ of A3 transformation point of the object, the predetermined temperature a projection morphism step energizing the induction heating coil,
A surface treatment method comprising: a cooling step for cooling the portion to be treated .
JP2010259415A 2010-11-19 2010-11-19 Surface treatment apparatus and surface treatment method Active JP5675296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259415A JP5675296B2 (en) 2010-11-19 2010-11-19 Surface treatment apparatus and surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259415A JP5675296B2 (en) 2010-11-19 2010-11-19 Surface treatment apparatus and surface treatment method

Publications (2)

Publication Number Publication Date
JP2012110978A JP2012110978A (en) 2012-06-14
JP5675296B2 true JP5675296B2 (en) 2015-02-25

Family

ID=46495749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259415A Active JP5675296B2 (en) 2010-11-19 2010-11-19 Surface treatment apparatus and surface treatment method

Country Status (1)

Country Link
JP (1) JP5675296B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106670983B (en) * 2017-01-11 2018-07-13 南京航空航天大学 A kind of low temperature abradant jet processing unit (plant)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369913A (en) * 1986-09-10 1988-03-30 Nissan Motor Co Ltd Strengthening apparatus for surface of steel part
JPH02298218A (en) * 1989-05-11 1990-12-10 Sumitomo Metal Ind Ltd Production of steel stock having superfine structure
JPH057914A (en) * 1991-07-04 1993-01-19 Nippon Steel Corp Hot rolling method for steel for preventing generation of surface flaw
JP2003055711A (en) * 2001-08-16 2003-02-26 Mazda Motor Corp Surface treatment method for steel member, and hardened component thereof
JP2006111971A (en) * 2005-09-26 2006-04-27 Jtekt Corp Machine part
JP2008133530A (en) * 2006-10-31 2008-06-12 Jfe Steel Kk Bearing steel component and its production method, and bearing

Also Published As

Publication number Publication date
JP2012110978A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
EP2492360B1 (en) A surface treatment system and a surface treatment process
JP5645398B2 (en) Surface treatment apparatus and surface treatment method
JP5572251B1 (en) Surface hardening treatment method and surface hardening treatment apparatus for steel members
CN102676752A (en) Thermal treatment process for die steel H13 of automobile forged piece
Prisco Case microstructure in induction surface hardening of steels: an overview
JPWO2007102280A1 (en) Method for surface hardening treatment of metal causing transformation
JP5675296B2 (en) Surface treatment apparatus and surface treatment method
Oh et al. Microstructural characterization of laser heat treated AISI 4140 steel with improved fatigue behavior
JP5534492B2 (en) Carbon tool steel strip manufacturing method
JPH07316640A (en) Carburization hardening method and driving power transmission member subjected to carburization hardening
JP4079139B2 (en) Carburizing and quenching method
EP3155134A1 (en) Method of heat treatment of bearing steel
JP5408465B2 (en) Method of carburizing steel
KR101738503B1 (en) Method for heat treatment for reducing deformation of cold-work articles
KR100592757B1 (en) Method of gas carburizing
JP6645644B2 (en) Method for surface nitriding of titanium material
Hauserova et al. Microstructure development of bearing steel during accelerated carbide spheroidisation
JP2019527777A (en) In-line manufacturing method of steel pipe
Badaruddin et al. Effect of single and double quenching-tempering heat treatments on microstructures and tensile strength of AISI 4140 in annealing condition
Rudnev Recent inventions and innovations in induction hardening of gears and gear-like components
JP2835057B2 (en) Spring steel and manufacturing method thereof
RU2353671C2 (en) Method for production of thermomechanically treated hot rolled pipes
Hauserova et al. Accelerated carbide spheroidization and refinement (ASR) of the C45 steel during induction heating
Maisuradze et al. Induction surface hardening of 42CrMo4 steel tubes designed for rotary percussive drilling equipment
Ahlfors Heat treatment with unpreceded possibilities and flexibility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

R150 Certificate of patent or registration of utility model

Ref document number: 5675296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250