JP7053366B2 - Inspection equipment and inspection method - Google Patents

Inspection equipment and inspection method Download PDF

Info

Publication number
JP7053366B2
JP7053366B2 JP2018091086A JP2018091086A JP7053366B2 JP 7053366 B2 JP7053366 B2 JP 7053366B2 JP 2018091086 A JP2018091086 A JP 2018091086A JP 2018091086 A JP2018091086 A JP 2018091086A JP 7053366 B2 JP7053366 B2 JP 7053366B2
Authority
JP
Japan
Prior art keywords
inspection
inspection object
image
defect
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018091086A
Other languages
Japanese (ja)
Other versions
JP2019196985A (en
Inventor
知行 内村
健太郎 織田
智哉 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2018091086A priority Critical patent/JP7053366B2/en
Priority to CN201980030680.2A priority patent/CN112088304A/en
Priority to PCT/JP2019/018467 priority patent/WO2019216362A1/en
Publication of JP2019196985A publication Critical patent/JP2019196985A/en
Application granted granted Critical
Publication of JP7053366B2 publication Critical patent/JP7053366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light

Description

本発明は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置及び検査方法に関する。 The present invention relates to an inspection object formed by melting a material with heat, an inspection object manufactured by polishing the surface, or an inspection object manufactured by cutting, and the surface shape of the curved surface of the inspection object is determined. Regarding the inspection device and inspection method to be inspected.

大型ポンプの羽根車等、複雑な曲面形状をもつ製品およびその部品(以下、部品等)の検査は、数値化が難しく、熟練を必要とし、且つ大きな工数を必要とする作業のひとつである。特に、こういった部品等は鋳造等により製造することが多いが、鋳造等により製造された部品等は、表面の粗さや、うねり(凹凸)を取るために、グラインダ等で研磨を行うことが一般的である。また、機械加工等により製造する場合でも、加工後にいわゆる切削痕を消すため、研磨を行うことがある。あるいは、加工中の熱変形等により、部品等の「そり」や「うねり」が生じることもある。また、近年では金属ワイヤ等を溶融して積層し、部品等を成型する技法(溶融金属積層法等)もあるが、この場合もやはり積層により生じる「段」を、成型後に研磨して除去することがある。このように、溶融による成型、あるいは研磨を行った後の形状の検査は、後述するように数値化が難しく、判断に熟練を要する。 Inspection of products with complicated curved surface shapes such as impellers of large pumps and their parts (hereinafter referred to as parts) is one of the tasks that is difficult to quantify, requires skill, and requires a large number of man-hours. In particular, such parts are often manufactured by casting, etc., but parts manufactured by casting, etc. may be polished with a grinder or the like in order to remove surface roughness and waviness (unevenness). It is common. Further, even in the case of manufacturing by machining or the like, polishing may be performed in order to erase so-called cutting marks after machining. Alternatively, "warping" or "waviness" of parts or the like may occur due to thermal deformation or the like during processing. Further, in recent years, there is also a technique of melting and laminating metal wires and the like to mold parts (fused metal laminating method, etc.), but in this case as well, the "step" generated by the laminating is polished and removed after molding. Sometimes. As described above, the shape inspection after molding or polishing by melting is difficult to quantify and requires skill in judgment as described later.

従来、羽根車の検査方法が開発されている。例えば、特許文献1では、設置場所に置かれる羽根車の回転軸心方向から羽根車の正面を撮像する工程と、上記撮像工程で撮像された羽根車の回転軸心方向からの羽根車の正面に係わる撮像画像を二値化処理し、二値化画像を得る工程と、上記二値化画像に基づいて羽根車対応明部の周囲に備える全ての羽根対応明部の先端部対応明部の位置を検出する工程と、上記検出された全ての先端部対応明部について、各先端部対応明部と羽根車対応明部における予め定められる基準部との位置関係を算出する工程と、上記算出された位置関係と所定の規定値とを比較して羽根車の羽根形状の良否を判定する工程とを備える、羽根車の羽根形状検査方法が開示されている。 Conventionally, an impeller inspection method has been developed. For example, in Patent Document 1, the step of imaging the front surface of the impeller from the direction of the axis of rotation of the impeller placed at the installation location and the front of the impeller from the direction of the axis of rotation of the impeller imaged in the above imaging step. The process of binarizing the captured image related to the above and obtaining the binarized image, and the tip-corresponding bright part of all the blade-compatible bright parts provided around the impeller-compatible bright part based on the binarized image. The step of detecting the position, the step of calculating the positional relationship between each tip-corresponding bright portion and the predetermined reference portion in the impeller-corresponding bright portion for all the detected tip-corresponding bright portions, and the above calculation. A method for inspecting the blade shape of an impeller is disclosed, which comprises a step of determining the quality of the blade shape of the impeller by comparing the obtained positional relationship with a predetermined specified value.

特開2008-51664号公報Japanese Unexamined Patent Publication No. 2008-51664

しかしながら、鋳造時に曲面上に意図しない凹凸が発生したり、鋳造時の表面形状(いわゆる「鋳肌」)は、ポンプ等の流体機械の部品としては表面が荒いために表面を研磨して滑らかにすることが必要なため、時に表面を削りすぎるなどして凹凸が生じたりすることがある。あるいは、機械加工等であっても、加工後に生じる切削痕を消すために表面の研磨を行うことで凹凸が生じることや、加工中の熱変形などが原因で「うねり」や「そり」などの凹凸を生じることがある。こういった凹凸などについては、許容値の設定等が難しい。 However, unintended irregularities occur on the curved surface during casting, and the surface shape during casting (so-called "casting surface") is rough as a part of a fluid machine such as a pump, so the surface is polished and smoothed. Because it is necessary to do so, sometimes the surface may be shaved too much and unevenness may occur. Alternatively, even in the case of machining, unevenness is generated by polishing the surface in order to erase the cutting marks generated after machining, and "waviness" or "warp" is caused by thermal deformation during machining. May cause unevenness. It is difficult to set an allowable value for such unevenness.

具体的には、こういった製品の検査方法としては、各種の寸法測定器、あるいは、いわゆる三次元測定器により製品の寸法を精密に測定し、その寸法が許容値内にあるかどうかを検査する方法がある。 Specifically, as an inspection method for such products, the dimensions of the product are precisely measured by various dimensional measuring instruments or so-called three-dimensional measuring instruments, and it is inspected whether the dimensions are within the permissible value. There is a way to do it.

図1は、設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第1の模式図である。図1には、設計形状(基準形状)を表す一点鎖線L1、寸法の許容値の下限を表す破線L2、寸法の許容値の上限を表す破線L3、及び製品形状を表す実線L4が示されている。例えば図1のように、製品の性能に影響のない範囲で、設計形状(基準形状)に対して寸法の許容値の上限と下限とを定めた場合、製品形状がこの許容値の上限と下限の間(すなわち許容範囲内)にあれば、合格とみなすことができる。 FIG. 1 is a first schematic diagram of a design shape (reference shape), an upper limit and a lower limit of an allowable value, and a product shape. FIG. 1 shows a one-dot chain line L1 representing a design shape (reference shape), a broken line L2 representing the lower limit of the allowable value of dimensions, a broken line L3 representing the upper limit of the allowable value of dimensions, and a solid line L4 representing the product shape. There is. For example, as shown in FIG. 1, when the upper limit and the lower limit of the allowable value of dimensions are set for the design shape (reference shape) within the range that does not affect the performance of the product, the product shape has the upper limit and the lower limit of the allowable value. If it is within the range (that is, within the allowable range), it can be regarded as a pass.

一方で、ポンプの羽根車のような流体機械の部品の場合、これだけでは製品を合格とみなせない場合がある。図2は、設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第2の模式図である。図2には、設計形状(基準形状)を表す一点鎖線L11、寸法の許容値の下限を表す破線L12、寸法の許容値の上限を表す破線L13、及び製品形状を表す実線L14が示されている。例えば、図2の製品形状のように、製品の表面に「波打ち」がある場合、製品形状(各点での測定値)は、許容値の上限と下限の間(すなわち許容範囲内)にあるが、このような「波打ち」は検査装置の性能に大きな影響を与えるため、合格とすることはできない。このような流体機械の部品としては、流路中にある部品は多くが対象となるが、特に、下記のような部品が挙げられる。
○羽根車
○ディフューザー(圧力回復流路、渦巻きケーシング・案内羽根等を含む)
○吸込管/吐出管
○軸受・軸封の水中ケーシング、特にその接液面
○吸い込みベル
○および、これらを構成する部品
On the other hand, in the case of parts of a fluid machine such as an impeller of a pump, this alone may not be enough to consider the product as acceptable. FIG. 2 is a second schematic diagram of a design shape (reference shape), an upper limit and a lower limit of an allowable value, and a product shape. FIG. 2 shows a one-dot chain line L11 representing the design shape (reference shape), a broken line L12 representing the lower limit of the allowable value of the dimension, a broken line L13 representing the upper limit of the allowable value of the dimension, and a solid line L14 representing the product shape. There is. For example, when there is "waviness" on the surface of the product as in the product shape of FIG. 2, the product shape (measured value at each point) is between the upper limit and the lower limit of the allowable value (that is, within the allowable range). However, such "waviness" has a great influence on the performance of the inspection device, and therefore cannot be passed. As the parts of such a fluid machine, most of the parts in the flow path are targeted, and in particular, the following parts can be mentioned.
○ Impeller ○ Diffuser (including pressure recovery flow path, swirl casing, guide blades, etc.)
○ Suction pipe / Discharge pipe ○ Underwater casing of bearing / shaft seal, especially its wetted surface ○ Suction bell ○ and parts that compose these

このような不良を、数値測定により判定しようとすると、このような「波打ち」を数値化することが必要になる。その方法は多数考えられるが、いずれにせよ、多数の点を測定し、記録した上で統計処理するなど、複雑な処理が必要となる上、基準値の設定が難しい。 When trying to determine such a defect by numerical measurement, it is necessary to quantify such "waviness". There are many possible methods, but in any case, complicated processing such as measuring, recording, and statistically processing a large number of points is required, and it is difficult to set a reference value.

図3は、比較例に係る検査方法を示す模式図である。図3には、設計形状(基準形状)を表す一点鎖線L21、寸法の許容値の下限を表す破線L22、寸法の許容値の上限を表す破線L23、製品形状を表す実線L24、及びサンプリングデータを表す階段状の実線L25が示されている。一方、例えば、図3に示すように、形状データを一定間隔でサンプリングし、その隣り合う計測値(サンプリングデータ)の差分を計算し、これに基づいて良否を判定する方法が考えられる。この場合、この差分が、設計形状の差分に比して一定以上大きい、あるいは一定以上小さい場合に不良とする、などの方法がある。しかし、この場合、多数の点を測定する必要があり、また、波打ちの周期(波長)や大きさは、都度異なるため、その閾値を決めることは難しい。 FIG. 3 is a schematic diagram showing an inspection method according to a comparative example. In FIG. 3, the alternate long and short dash line L21 representing the design shape (reference shape), the broken line L22 representing the lower limit of the allowable value of the dimension, the broken line L23 representing the upper limit of the allowable value of the dimension, the solid line L24 representing the product shape, and sampling data are shown. A stepped solid line L25 is shown. On the other hand, for example, as shown in FIG. 3, a method is conceivable in which shape data is sampled at regular intervals, the difference between adjacent measured values (sampling data) is calculated, and the quality is determined based on the difference. In this case, there is a method such as making a defect when this difference is larger than a certain value or smaller than a certain value with respect to the difference of the design shape. However, in this case, it is necessary to measure a large number of points, and since the period (wavelength) and magnitude of the waviness are different each time, it is difficult to determine the threshold value.

そのため、実務的にはこのような「波打ち」などは、寸法(数値)の測定ではなく、検査員の目視検査や、手などの触覚による、いわゆる「官能検査」により行なうことが多い。官能検査であれば、都度基準値を定めなくても、検査員の感覚により製品の良否を判定することができる。また、「波打ち」のような状態は、比較的、人間(検査員)の感性により良し悪しを判断するほうが、基準値等を定めるより、不良品を良品と判定するリスクは小さくできる。 Therefore, in practice, such "waviness" is often performed not by measuring the dimensions (numerical values) but by a visual inspection by an inspector or a so-called "sensory inspection" by the tactile sensation of a hand or the like. In the case of a sensory test, the quality of a product can be judged by the sense of an inspector without setting a standard value each time. In addition, it is possible to reduce the risk of judging a defective product as a good product by judging whether it is good or bad based on the sensibility of a human being (inspector), rather than setting a reference value or the like.

しかしながら、官能検査には、(1)測定者により判断がばらつく(合格/不合格の判定が測定者により異なる)こと、(2)人間にしか測定ができないため、自動化できないこと、(3)数値化が難しく、記録等がしにくいこと、(4)数値化が難しいため「許容範囲」を決めることが難しく、得てして「過剰品質」を求める傾向がある(必要以上の修正工数をかけてしまう)ことといった問題がある。特に、昨今は検査員の高齢化と、技術伝承の難しさなどもあり、熟練した検査員の確保が難しくなってきており、これらを客観的且つ自動的に検査できる検査装置や検査方法の開発は急務となっている。 However, in the sensory test, (1) the judgment varies depending on the measurer (the judgment of pass / fail differs depending on the measurer), (2) the measurement can only be performed by humans, so it cannot be automated, and (3) the numerical value. It is difficult to convert and record, etc. (4) It is difficult to determine the "allowable range" because it is difficult to quantify, and there is a tendency to obtain "excessive quality" (it takes more correction man-hours than necessary). There is a problem such as that. In particular, in recent years, it has become difficult to secure skilled inspectors due to the aging of inspectors and the difficulty of passing on technology, and the development of inspection equipment and inspection methods that can objectively and automatically inspect these. Is an urgent task.

また、流体機械の部品等の中でも大型ポンプ等の、いわゆるカスタム製品では、たとえば羽根車の形状は客先の仕様に合わせて最適化されているため、製品ごとに基準形状が異なり、都度、検査に用いるデータを作成する必要がある。これも、自動化の妨げとなる。 Also, among the parts of fluid machinery, so-called custom products such as large pumps, for example, the shape of the impeller is optimized according to the customer's specifications, so the standard shape differs for each product and is inspected each time. It is necessary to create the data used for. This also hinders automation.

本発明は、上記問題に鑑みてなされたものであり、寸法公差だけでは判定しにくい物体の曲面の表面形状を客観的且つ自動的に検査することを可能とする検査装置及び検査方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an inspection device and an inspection method capable of objectively and automatically inspecting the surface shape of a curved surface of an object, which is difficult to determine only by dimensional tolerances. The purpose is.

本発明の第1の態様に係る検査装置は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置であって、前記検査対象物に特定の模様を投影する投影装置と、前記模様が投影された検査対象物を撮像する撮像装置と、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、前記撮像装置により撮像された撮像画像を、学習済みの前記人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する判定回路と、を備える。 The inspection device according to the first aspect of the present invention relates to an inspection object formed by melting a material with heat, an inspection object manufactured by polishing the surface, or an inspection object manufactured by cutting. An inspection device for inspecting the surface shape of a curved surface of an inspection object, the projection device for projecting a specific pattern on the inspection object, an imaging device for imaging the inspection object on which the pattern is projected, and the inspection. A learning object that is the same type as the object and whose surface shape of the curved surface is known to be good or bad. The learning object is photographed with the same specific pattern as the specific pattern projected on the inspection object. It has artificial intelligence that has learned the set of the image and the sensory test result of the surface shape of the curved surface of the object for learning as teacher data, and has already learned the image captured by the image pickup device. It is provided with a determination circuit that is applied to the artificial intelligence and determines whether the surface shape of the curved surface of the inspection object is good or bad.

この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。 According to this configuration, in order to judge the quality of the surface shape of the curved surface of the inspection object by applying it to the learned artificial intelligence, the surface shape of the curved surface of the inspection object, which is difficult to judge only by the dimensional tolerance, is objectively and. It can be inspected automatically. That is, defects such as "waviness", which were difficult to determine by the conventional numerical method, can be mechanically determined. Further, the inspection can be performed unattended, the determination result can be recorded numerically, and the determination can be eliminated from the inspector's variation as in the conventional case.

本発明の第2の態様に係る検査装置は、第1の態様に係る検査装置であって、前記特定の模様は、縞模様、もしくは格子模様である。 The inspection device according to the second aspect of the present invention is the inspection device according to the first aspect, and the specific pattern is a striped pattern or a lattice pattern.

この構成によれば、表面形状における波打ち、段差、割れがあると、縞模様、もしくは格子模様の一部に波打ち、角が生じたり、模様の一部が消えたりするので、このような模様の変化を人工知能が学習することにより、表面形状における波打ち、段差、割れなどの不良を判定することができる。 According to this configuration, if there are waviness, steps, or cracks in the surface shape, waviness, corners, or part of the pattern disappears in a part of the striped pattern or lattice pattern. By learning the changes by artificial intelligence, it is possible to determine defects such as waviness, steps, and cracks in the surface shape.

本発明の第3の態様に係る検査装置は、第1または2の態様に係る検査装置であって、前記投影装置は2台あり、それぞれの投影装置は、投影方向が略直交する2方向から縞模様を投影することにより、格子模様を前記特定の模様として投影する。 The inspection device according to the third aspect of the present invention is the inspection device according to the first or second aspect, and there are two projection devices, and each projection device is from two directions in which the projection directions are substantially orthogonal to each other. By projecting the striped pattern, the lattice pattern is projected as the specific pattern.

この構成によれば、格子模様の変化を人工知能が学習することにより、表面形状における波打ち、段差、割れなどの不良を判定することができる。 According to this configuration, by learning the change of the lattice pattern by artificial intelligence, it is possible to determine defects such as waviness, step, and crack in the surface shape.

本発明の第4の態様に係る検査装置は、第1から3のいずれかの態様に係る検査装置であって、前記人工知能は、曲面の表面形状が良好であることが既知の検査対象物について当該検査対象物の画像と良品を識別する識別情報との組、及び曲面の表面形状が不良であることが既知の検査対象物について当該検査対象物の画像と当該不良の要因を識別する識別情報との組を教師データとして良品の確信度及び不良の要因毎の確信度を出力するよう学習しており、前記判定回路は、良品の確信度及び不良の要因の確信度を用いて、良品か、または不良の要因を識別する識別情報を出力する。 The inspection device according to the fourth aspect of the present invention is the inspection device according to any one of the first to third aspects, and the artificial intelligence is an inspection object known to have a good surface shape of a curved surface. The pair of the image of the inspection target and the identification information for identifying the non-defective product, and the identification of the inspection target whose surface shape of the curved surface is known to be defective, to identify the image of the inspection object and the cause of the defect. It is learned to output the certainty of a good product and the certainty of each factor of a defect by using a set with information as teacher data, and the determination circuit uses the certainty of a good product and the certainty of a factor of a defect to output a good product. Or, output identification information that identifies the cause of the defect.

この構成によれば、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。 According to this configuration, the inspector can grasp not only the quality of the inspection target but also the cause of the defect in the case of a defect.

本発明の第5の態様に係る検査装置は、第1から3のいずれかの態様に係る検査装置であって、前記判定回路には、不良の要因毎に人工知能が設けられており、前記人工知能それぞれは、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について当該学習用対象物の画像と前記対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び前記対象とする不良の要因の確信度を出力するよう学習しており、前記人工知能それぞれは、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力し、前記判定回路は、前記人工知能それぞれから出力された前記良品に対する確信度それぞれ及び前記不良の要因の確信度それぞれを用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する。 The inspection device according to the fifth aspect of the present invention is the inspection device according to any one of the first to third aspects, and the determination circuit is provided with artificial intelligence for each cause of failure. For each of the artificial intelligences, a set of an image of the learning object and identification information for identifying a good product for a learning object which is the same type as the inspection object and is known to have a good curved surface shape, and the above-mentioned For a learning object that is the same type as the inspection object and is known to have a defect factor targeted by the artificial intelligence in the surface shape of the curved surface, the image of the learning object and the defect factor of the target are identified. It is learned to output the certainty of a good product and the certainty of the cause of the defect to be the target by using the set with the identification information as the teacher data, and each of the artificial intelligences uses the captured image of the inspection object. , The certainty of good products and the certainty of different factors of defects for the inspection object are output, and the determination circuit outputs the certainty of each of the good products and the certainty of the factors of the defects output from each of the artificial intelligences. Each of them is used to output identification information for identifying the cause of good or bad for the inspection object.

この構成によれば、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。 According to this configuration, the inspector can grasp not only the quality of the inspection target but also the cause of the defect in the case of a defect.

本発明の第6の態様に係る検査装置は、第1から5のいずれかの態様に係る検査装置であって、前記投影装置は、投影と非投影とを切り替えられるようになっており、前記撮像装置は、前記模様が非投影の状態で前記検査対象物を撮像して第1の画像を取得し、当該模様が投影された状態で検査対象物を撮像して第2の画像を取得し、前記判定回路は、前記第1の画像と前記第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した前記学習済みの人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する。 The inspection device according to the sixth aspect of the present invention is the inspection device according to any one of the first to fifth aspects, and the projection device can switch between projection and non-projection. The image pickup apparatus captures the inspection object in a non-projected state to acquire a first image, and images the inspection object in a state where the pattern is projected to acquire a second image. The determination circuit applies the difference image between the first image and the second image to the trained artificial intelligence learned by using the teacher data of the difference image similarly created. The quality of the surface shape of the curved surface of the inspection object is determined.

この構成によれば、差分画像は投影された模様のみが強調されるので、学習による判定精度を向上し、判定結果の精度を向上させることができる。特に、溶融金属の積層により造形された部品等の場合、積層により生じる縞模様等による影響を低減することができる。 According to this configuration, only the projected pattern is emphasized in the difference image, so that the determination accuracy by learning can be improved and the accuracy of the determination result can be improved. In particular, in the case of a part or the like formed by laminating molten metal, it is possible to reduce the influence of the striped pattern or the like generated by the laminating.

本発明の第7の態様に係る検査装置は、第1から6のいずれかの態様に係る検査装置であって、表面を研磨して製造した部品である。 The inspection device according to the seventh aspect of the present invention is the inspection device according to any one of the first to sixth aspects, and is a part manufactured by polishing the surface.

この構成によれば、学習済みの人工知能に適用して、表面を研磨して製造した部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい部品の曲面の表面形状を客観的且つ自動的に検査することができる。 According to this configuration, in order to judge the quality of the surface shape of the curved surface of the part manufactured by polishing the surface by applying it to the learned artificial intelligence, the surface shape of the curved surface of the part that is difficult to judge only by the dimensional tolerance is determined. It can be inspected objectively and automatically.

本発明の第8の態様に係る検査装置は、第1から7のいずれかの態様に係る検査装置であって、前記検査対象物は、流体機械の部品である。 The inspection device according to the eighth aspect of the present invention is the inspection device according to any one of the first to seventh aspects, and the inspection object is a part of a fluid machine.

この構成によれば、学習済みの人工知能に適用して、流体機械の部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい流体機械の部品の曲面の表面形状を客観的且つ自動的に検査することができる。 According to this configuration, in order to judge the quality of the surface shape of the curved surface of the fluid machine part by applying it to the learned artificial intelligence, the surface shape of the curved surface of the fluid machine part, which is difficult to judge only by the dimensional tolerance, is objectively determined. It can be inspected objectively and automatically.

本発明の第9の態様に係る検査装置は、第1から8のいずれかの態様に係る検査装置であって、前記検査対象物は、溶融金属積層法または研磨により製造した部品である。 The inspection device according to the ninth aspect of the present invention is the inspection device according to any one of the first to eighth aspects, and the inspection object is a part manufactured by a fused metal lamination method or polishing.

この構成によれば、学習済みの人工知能に適用して、溶融金属積層法または研磨により製造した部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい部品の曲面の表面形状を客観的且つ自動的に検査することができる。 According to this configuration, in order to judge whether the surface shape of the curved surface of a part manufactured by the molten metal lamination method or polishing is good or bad by applying it to the learned artificial intelligence, it is difficult to judge the surface of the curved surface of the part only by the dimensional tolerance. The shape can be inspected objectively and automatically.

本発明の第10の態様に係る検査方法は、材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査方法であって、前記検査対象物に特定の模様を投影する手順と、前記模様が投影された検査対象物を撮像する手順と前記撮像された画像を、学習済みの人工知能に適用して、前記曲面の表面形状の良否を判定する手順と、を有し、前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習したものである検査方法である。 In the inspection method according to the tenth aspect of the present invention, the surface shape of the curved surface of the inspection object is inspected for the inspection object formed by melting the material with heat or the inspection object manufactured by polishing the surface. In the inspection method, the procedure of projecting a specific pattern on the inspection object, the procedure of imaging the inspection object on which the pattern is projected, and the captured image are applied to the learned artificial intelligence. The artificial intelligence has a procedure for determining the quality of the surface shape of the curved surface, and the artificial intelligence is applied to the inspection target for a learning object which is the same type as the inspection object and whose surface shape of the curved surface is known to be good or bad. Teacher data is a set of the image of the learning object taken with the same specific pattern as the projected specific pattern and the sensory test result of the quality of the surface shape of the curved surface of the learning object. It is an inspection method that was learned as.

この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。 According to this configuration, in order to judge the quality of the surface shape of the curved surface of the inspection object by applying it to the learned artificial intelligence, the surface shape of the curved surface of the inspection object, which is difficult to judge only by the dimensional tolerance, is objectively and. It can be inspected automatically. That is, defects such as "waviness", which were difficult to determine by the conventional numerical method, can be mechanically determined. Further, the inspection can be performed unattended, the determination result can be recorded numerically, and the determination can be eliminated from the inspector's variation as in the conventional case.

本発明の一態様によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。 According to one aspect of the present invention, in order to determine the quality of the surface shape of the curved surface of the inspection object by applying it to the learned artificial intelligence, the surface shape of the curved surface of the inspection object, which is difficult to determine only by the dimensional tolerance, is determined. It can be inspected objectively and automatically. That is, defects such as "waviness", which were difficult to determine by the conventional numerical method, can be mechanically determined. Further, the inspection can be performed unattended, the determination result can be recorded numerically, and the determination can be eliminated from the inspector's variation as in the conventional case.

設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第1の模式図である。It is the first schematic diagram of the design shape (reference shape), the upper limit and the lower limit of the permissible value, and the product shape. 設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第2の模式図である。It is the second schematic diagram of the design shape (reference shape), the upper limit and the lower limit of the permissible value, and the product shape. 比較例に係る検査方法を示す模式図である。It is a schematic diagram which shows the inspection method which concerns on the comparative example. 本実施形態に係る検査装置の構成を示す模式的構成図である。It is a schematic block diagram which shows the structure of the inspection apparatus which concerns on this embodiment. 良品の羽根車に格子模様が投影された場合の模式図である。It is a schematic diagram when a lattice pattern is projected on a good impeller. 不良品の羽根車に格子模様が投影された場合の模式図である。It is a schematic diagram when the lattice pattern is projected on the impeller of a defective product. 本実施形態に係る判定回路の構成を説明する模式図である。It is a schematic diagram explaining the structure of the determination circuit which concerns on this embodiment. 本実施形態に係る判定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the determination process which concerns on this embodiment. 変形例に係る判定回路の構成を説明する模式図である。It is a schematic diagram explaining the structure of the determination circuit which concerns on the modification.

以下、各実施形態について、図面を参照しながら説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, each embodiment will be described with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art.

本実施形態に係る検査装置及び検査方法は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査するものである。特に、大型ポンプやコンプレッサーのような流体機械の部品等の表面検査に適し、流体機械の部品の中でも羽根車のような複雑な三次元形状を有する製品の検査に適する。ここで流体機械の部品は、例えば、羽根車、ディフューザー(圧力回復流路、渦巻きケーシング・案内羽根等を含む)、吸込管/吐出管、軸受・軸封の水中ケーシング、特にその接液面、吸い込みベルおよび、これらを構成する部品などである。また材料を熱で溶融して造形されるものとしては、例えば鋳造、粉末冶金、溶融金属の積層などがある。このように、材料を熱で溶融して造形された検査対象物は、冷却の過程で材料が収縮するため、曲面の表面形状が設計どおりの寸法にならないことがあるので、検査が必要である。また、表面を研磨して製造した場合、時に表面を削りすぎるなどして凹凸が生じたりすることがある。この場合も、同様に検査が必要である。 The inspection device and inspection method according to the present embodiment are inspected for an inspection object formed by melting a material with heat, an inspection object manufactured by polishing the surface, or an inspection object manufactured by cutting. It inspects the surface shape of the curved surface of an object. In particular, it is suitable for surface inspection of parts of fluid machines such as large pumps and compressors, and is suitable for inspection of products having a complicated three-dimensional shape such as impellers among parts of fluid machines. Here, the parts of the fluid machine include, for example, an impeller, a diffuser (including a pressure recovery flow path, a swirl casing / guide vane, etc.), a suction pipe / discharge pipe, an underwater casing for a bearing / shaft seal, and particularly a wetted surface thereof. The suction bell and the parts that make up these. Further, examples of the material formed by melting the material by heat include casting, powder metallurgy, and laminating of molten metal. In this way, the inspection object formed by melting the material with heat needs to be inspected because the surface shape of the curved surface may not be as designed because the material shrinks during the cooling process. .. Further, when the surface is polished and manufactured, unevenness may occur due to excessive scraping of the surface. In this case as well, inspection is required.

図4は、本実施形態に係る検査装置の構成を示す模式的構成図である。検査装置は、検査対象物(ここでは一例として羽根車2)に特定の模様を投影する投影装置を備える。模様は、縞模様、あるいは格子模様であることが望ましい。図4に示すように、本実施形態に係る検査装置1は、投影装置11及び投影装置12を備え、一例として、投影方向が略直交する2つの投影装置、すなわち投影装置11および投影装置12から縞模様を投影することで、検査対象物である羽根車2に格子状の模様を投影してもよい。 FIG. 4 is a schematic configuration diagram showing the configuration of the inspection device according to the present embodiment. The inspection device includes a projection device that projects a specific pattern onto an inspection object (here, an impeller 2 as an example). The pattern is preferably a striped pattern or a checkered pattern. As shown in FIG. 4, the inspection device 1 according to the present embodiment includes a projection device 11 and a projection device 12, and as an example, from two projection devices whose projection directions are substantially orthogonal to each other, that is, the projection device 11 and the projection device 12. By projecting a striped pattern, a grid pattern may be projected on the impeller 2 which is an inspection object.

これにより、製品の表面にはその曲面により、複数の曲線W1~W10が現れる。このとき、前述のような波打ち等があると、投影された模様にも波打ちによるゆがみが生じる。 As a result, a plurality of curves W1 to W10 appear on the surface of the product due to the curved surface thereof. At this time, if there is waviness or the like as described above, the projected pattern is also distorted due to the waviness.

ここで本実施形態に係る検査装置1は、模様が投影された検査対象物である羽根車2を撮像する撮像装置13と、撮像装置13により撮像された画像を、学習済みの人工知能を適用して、曲面の表面形状の良否を判定する判定回路14とを備える。 Here, the inspection device 1 according to the present embodiment applies the learned artificial intelligence to the image pickup device 13 that captures the impeller 2 that is the inspection target on which the pattern is projected and the image captured by the image pickup device 13. A determination circuit 14 for determining the quality of the surface shape of the curved surface is provided.

図5Aは、良品の羽根車に格子模様が投影された場合の模式図である。図5Aは、不良品の羽根車に格子模様が投影された場合の模式図である。例えば、良品であれば図5Aのように、羽根車上には滑らかな曲線が現れる。一方、前述のような「波打ち」があれば、図5Bに示したように、投影された模様も波打つ。また、表面に鈍角が生じるような「段差」であれば、投影された模様に「角」が生じる。また、表面に「割れ」等が生じていれば、投影された模様の一部が消えたり、角が生じたりする。 FIG. 5A is a schematic view when a grid pattern is projected on a non-defective impeller. FIG. 5A is a schematic view when a grid pattern is projected on a defective impeller. For example, in the case of a non-defective product, a smooth curve appears on the impeller as shown in FIG. 5A. On the other hand, if there is "waviness" as described above, the projected pattern also undulates as shown in FIG. 5B. Further, if there is a "step" that causes an obtuse angle on the surface, a "corner" is generated in the projected pattern. Further, if "cracks" or the like are generated on the surface, a part of the projected pattern disappears or corners are generated.

例えばこの「波打ち」を第1の不良要因として、第1の不良要因を有する場合、第1の不良であり、第1の不良要因を有する羽根車の分類が第1の不良クラスに設定されている。例えばこの「段差」を第2の不良要因として、第2の不良要因を有する場合、第2の不良であり、第2の不良要因を有する羽根車の分類が第2の不良クラスに設定されている。例えばこの「割れ」を第3の不良要因として、第3の不良要因を有する場合、第3の不良であり、第3の不良要因を有する羽根車の分類が第3の不良クラスに設定されている。 For example, when this "wavy" is set as the first defect factor and the first defect factor is present, the classification of the impeller which is the first defect and has the first defect factor is set to the first defect class. There is. For example, when this "step" is set as the second defect factor and the second defect factor is present, the classification of the impeller which is the second defect and has the second defect factor is set to the second defect class. There is. For example, when this "crack" is set as the third defect factor and the third defect factor is present, the classification of the impeller which is the third defect and has the third defect factor is set to the third defect class. There is.

図6は、本実施形態に係る判定回路の構成を説明する模式図である。予め人(例えば、熟練した検査担当者)が、既知の羽根車について、良否として例えば、良品、第1の不良、第2の不良、第3の不良に判別している。そして、検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮像装置13により撮像されて取得された既知の羽根車の画像とその良否との組が教師データとなり、判定回路14における人工知能は、この教師データを用いて学習する。
このように、人工知能を用いた判定回路14には、良品と不良品との撮像データと、人によって判別された良否との組を、予め決められた必要な数用いて、予め学習させておく。その際、不良品の場合についてはいくつかの不良要因に分けて、撮像データを学習させておくことで、良否の判定と同時に、不良要因の特定もできる。
FIG. 6 is a schematic diagram illustrating the configuration of the determination circuit according to the present embodiment. A person (for example, a skilled inspector) determines in advance whether a known impeller is good or bad, for example, a good product, a first defect, a second defect, or a third defect. Then, the set of the known impeller image acquired by the image pickup device 13 in the state where the same specific pattern as the specific pattern projected on the inspection object is projected and the quality thereof becomes the teacher data, and the determination is made. The artificial intelligence in the circuit 14 is learned using this teacher data.
In this way, the determination circuit 14 using artificial intelligence is preliminarily trained using a predetermined number of pairs of image data of good and defective products and good or bad determined by a person. back. At that time, in the case of a defective product, by dividing the defective product into several defective factors and learning the imaging data, it is possible to identify the defective factor at the same time as determining the quality.

要するに、人工知能32は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該検査対象物の画像と良品を識別する識別情報との組、及び曲面の表面形状が不良であることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該不良の要因を識別する識別情報(ここでは例えば、第1の不良、第2の不良、または第3の不良)との組を教師データとして学習している。人工知能32は、検査対象物の撮像画像を用いて、検査対象物について良品の確信度及び不良の要因毎の確信度を出力する。そして、判定回路14は例えば、この良品の確信度及びこの不良の要因の確信度を用いて、検査対象物について良品か、または不良の要因を識別する識別情報(ここでは例えば、第1の不良、第2の不良、または第3の不良)を出力する。この構成により、検査者は、検査対象物の良品か不良品かだけでなく、不良品の場合、その不良の要因を特定することができる。 In short, the artificial intelligence 32 is a set of an image of the inspection object and identification information for identifying a good product for a learning object known to be of the same type as the inspection object and having a good surface shape of the curved surface, and a curved surface. For a learning object whose surface shape is known to be defective, an image of the learning object taken with the same specific pattern as the specific pattern projected on the inspection object and the defect The pair with the identification information (here, for example, the first defect, the second defect, or the third defect) that identifies the factor is learned as teacher data. The artificial intelligence 32 outputs the certainty of a good product and the certainty of each defect factor for the inspection object by using the captured image of the inspection object. Then, the determination circuit 14 uses, for example, the certainty of the good product and the certainty of the cause of the defect to identify the good product or the cause of the defect of the inspection object (here, for example, the first defect). , Second defect, or third defect) is output. With this configuration, the inspector can identify not only whether the inspection target is a good product or a defective product, but also, in the case of a defective product, the cause of the defect.

ここで、判定回路で用いる人工知能について述べる。本実施形態で使用する人工知能は、いわゆる「画像認識」に類するものであり、ニューラルネットワーク、特にディープニューラルネットワーク(以下、DNNともいう)を用いたものが好適であるため、ここではディープニューラルネットワークを例として説明する。 Here, the artificial intelligence used in the determination circuit will be described. The artificial intelligence used in this embodiment is similar to so-called "image recognition", and a neural network, particularly one using a deep neural network (hereinafter, also referred to as DNN) is suitable, and therefore, a deep neural network is used here. Will be described as an example.

一般にDNNでは、事前に「良品」と、複数の「不良品」の画像を、必要数用意し、これらを「深層学習(ディープラーニング)」と呼ばれる手法で学習する。本実施形態であれば、ここまで説明してきた方法により、製品の画像を取得するとともに、同じ製品に対して従来どおりの官能検査を実施して良否の判定を行い、良品、および複数の不良品の画像を、それぞれ必要枚数(例えば、数十枚から数百枚程度)用意し、DNNに学習させる。これにより、DNNは一般に、「良品」には現れず、それぞれの「不良品」に現れる「特徴」に対して、強い反応を示し、該当する「クラス」の「スコア」を高く評価するようになる。このように判定回路14は、検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有している。 Generally, in DNN, a necessary number of images of "good products" and a plurality of "defective products" are prepared in advance, and these are learned by a method called "deep learning". In the present embodiment, the image of the product is acquired by the method described so far, and the same product is subjected to the conventional sensory test to determine whether the product is good or bad, and the good product and a plurality of defective products. Prepare the required number of images (for example, about several tens to several hundreds) and let the DNN learn. As a result, DNN generally does not appear in "good products", but shows a strong reaction to the "characteristics" that appear in each "defective product", and the "score" of the corresponding "class" is highly evaluated. Become. In this way, the determination circuit 14 takes a picture in a state where the same specific pattern as the specific pattern projected on the inspection object is projected on the learning object which is the same type as the inspection object and whose surface shape of the curved surface is known. It has artificial intelligence that has learned a set of the image of the learning object and the sensory test result of the quality of the surface shape of the curved surface of the learning object as teacher data.

ここで重要なのは、これらの「特徴」については何らかの基準値が存在するわけではなく、DNN内の論理素子である「ニューロン」のうち、それらの特徴に対応するものが、「学習」により強い反応を返すようになることである。一般に、画像処理に使用されるDNNでは、さまざまな状態の「不良」を学習させることにより、それらの特徴が現れる位置や大きさによらず、強い反応を得ることができる。 What is important here is that there is no reference value for these "features", and among the "neurons" that are logical elements in the DNN, those corresponding to those features respond more strongly to "learning". Is to return. In general, in DNN used for image processing, by learning "defects" in various states, a strong reaction can be obtained regardless of the position and size in which those characteristics appear.

また、学習させる場合は、使用する製品について、多くのバリエーション(種類)を有する製品を用いて学習データを作成することが重要である。例えば、ポンプの羽根車であれば、大きなものや小さなもの、異なるNs値(軸流ポンプと斜流ポンプなど)、羽根車の枚数、二次元羽根車と三次元羽根車などである。これにより、これらの違いによる画像の変化は、製品の良否と「関係ない」ことを、DNNは学習することができ、これにより、DNNは規準形状がなくとも製品の良否が判断できるようになる。 In addition, when learning, it is important to create learning data using products that have many variations (types) for the products to be used. For example, in the case of a pump impeller, there are large and small ones, different Ns values (axial flow pump and mixed flow pump, etc.), number of impellers, two-dimensional impeller and three-dimensional impeller, and the like. As a result, the DNN can learn that the change in the image due to these differences is "not related" to the quality of the product, so that the DNN can judge the quality of the product even if there is no standard shape. ..

したがって、本実施形態のような場合、従来の形状測定を行う場合などと異なり、寸法数値などとしての閾値は不要となるし、設計(基準)形状がわからなくても製品の良否を判定することが可能となる。このため、いったん学習が完了すれば、検査等を自動化することも容易である。 Therefore, in the case of the present embodiment, unlike the case of performing the conventional shape measurement, the threshold value as the dimensional value is unnecessary, and the quality of the product can be judged even if the design (reference) shape is not known. Is possible. Therefore, once the learning is completed, it is easy to automate the inspection and the like.

なお、判定回路に用いる人工知能としては、本実施形態では一例としてニューラルネットワーク(特にディープニューラルネットワーク)を使用するが、場合により、他の人工知能アルゴリズムを用いたもの(例えば、KNN法、決定木法、MT法等)であってもよい。 As the artificial intelligence used in the determination circuit, a neural network (particularly a deep neural network) is used as an example in this embodiment, but in some cases, another artificial intelligence algorithm is used (for example, KNN method, decision tree). The method, MT method, etc.) may be used.

良否の判定は、次のような方法による。図6における人工知能32の出力は、「良品」を含む、複数の出力項目(クラス)と、その確信度(スコア)の行列となる。具体的には、出力項目(クラス)は、良品クラスと、1以上の不良要因に対応した不良クラスとなる。なお、ここでは複数要因(2以上)の不良クラスを有するものとして説明する。 The judgment of good or bad is made by the following method. The output of the artificial intelligence 32 in FIG. 6 is a matrix of a plurality of output items (classes) including "non-defective products" and their certainty (score). Specifically, the output items (classes) are a good product class and a defective class corresponding to one or more defective factors. In addition, here, it is described as having a defect class of a plurality of factors (2 or more).

具体的には、本実施形態では図6に示すように一例として、検査対象物を撮像した撮像画像が入力画像31として判定回路14の人工知能32に入力される。人工知能32から出力される出力行列33は、良品クラスとその確信度(スコア)、第1の不良クラスとその確信度(スコア)、第2の不良クラスとその確信度(スコア)、第3の不良クラスとその確信度(スコア)を含む。ここで確信度(スコア)は、対応するクラスへの確信度を示し、スコアの値が大きいほど確信度が高い。この出力行列33が判定回路14の最終判定部34に入力される。 Specifically, in the present embodiment, as shown in FIG. 6, as an example, an captured image obtained by capturing an image of an inspection object is input to the artificial intelligence 32 of the determination circuit 14 as an input image 31. The output matrix 33 output from the artificial intelligence 32 is a good product class and its certainty (score), a first bad class and its certainty (score), a second bad class and its certainty (score), and a third. Includes bad class and its certainty (score). Here, the certainty (score) indicates the certainty to the corresponding class, and the larger the score value, the higher the certainty. This output matrix 33 is input to the final determination unit 34 of the determination circuit 14.

その後、最終判定部34では、図7に沿って、判定する。図7は、本実施形態に係る判定処理の一例を示すフローチャートである。
(ステップS101)まず最終判定部34は、「良品」クラスのスコアを確認する。例えば、良品の基準スコアを0.8とすれば、最終判定部34は、「良品」クラスのスコアが0.8以上であるか否か判定する。
After that, the final determination unit 34 makes a determination according to FIG. 7. FIG. 7 is a flowchart showing an example of the determination process according to the present embodiment.
(Step S101) First, the final determination unit 34 confirms the score of the “good product” class. For example, assuming that the reference score of a non-defective product is 0.8, the final determination unit 34 determines whether or not the score of the “non-defective product” class is 0.8 or more.

(ステップS102)ステップS101で良品クラスのスコアが0.8以上である場合、最終判定部34は、検査対象物を良品と判定する。 (Step S102) When the score of the non-defective product class is 0.8 or more in step S101, the final determination unit 34 determines that the inspection target is a non-defective product.

(ステップS103)ステップS101で良品クラスのスコアが0.8未満の場合、次に最終判定部34は、複数ある不良項目(不良クラス)のスコアを順次確認する。ここで、各不良項目のスコアのうち、最もスコアの高いものが、不良要因として可能性が高いこととなる。よって、最終判定部34は、第1~3の不良クラスのうち最もスコアが高いクラスを判別し、最もスコアが高いクラスに対応する不良要因を識別する識別情報(例えば、第1の不良など)を出力してもよい。ここでは一例として、まず最終判定部34は、第1~3の不良クラスのうち第1の不良クラスのスコアが最大であるか否か判定する。 (Step S103) When the score of the non-defective product class is less than 0.8 in step S101, the final determination unit 34 then sequentially confirms the scores of a plurality of defective items (defective class). Here, among the scores of each defective item, the one with the highest score is likely to be a defective factor. Therefore, the final determination unit 34 determines the class having the highest score among the first to third defective classes, and the identification information for identifying the defect factor corresponding to the class having the highest score (for example, the first defect). May be output. Here, as an example, first, the final determination unit 34 determines whether or not the score of the first defective class among the first to third defective classes is the maximum.

(ステップS104)ステップS103で第1~3の不良クラスのうち第1の不良クラスのスコアが最大である場合、最終判定部34は、第1の不良と判定する。 (Step S104) When the score of the first defect class among the first to third defect classes is the maximum in step S103, the final determination unit 34 determines that the first defect.

(ステップS105)ステップS103で第1~3の不良クラスのうち第1の不良クラスのスコアが最大でない場合、最終判定部34は、第1~3の不良クラスのうち第2の不良クラスのスコアが最大であるか否か判定する。 (Step S105) When the score of the first defective class among the first to third defective classes is not the maximum in step S103, the final determination unit 34 determines the score of the second defective class among the first to third defective classes. Is the maximum.

(ステップS106)ステップS105で第1~3の不良クラスのうち第2の不良クラスのスコアが最大である場合、最終判定部34は、第2の不良と判定する。 (Step S106) When the score of the second defect class among the first to third defect classes is the maximum in step S105, the final determination unit 34 determines that the second defect.

(ステップS107)ステップS105で第1~3の不良クラスのうち第2の不良クラスのスコアが最大である場合、最終判定部34は、第3の不良と判定する。 (Step S107) When the score of the second defect class among the first to third defect classes is the maximum in step S105, the final determination unit 34 determines that the third defect.

そして、最終判定部34は、検査対象物についての良否の判定結果として、良品か、または不良の要因を識別する識別情報(具体的には、第1の不良、第2の不良または第3の不良)を出力する。これにより、検査対象物の良否を把握することができ、不良の場合には、不良の要因を把握することができる。 Then, the final determination unit 34 determines identification information (specifically, a first defect, a second defect, or a third defect) that identifies the cause of the defect as a result of determining the quality of the inspection object. Defective) is output. As a result, it is possible to grasp the quality of the inspection target, and in the case of a defect, it is possible to grasp the cause of the defect.

このように、本実施形態では、人工知能32は、良品に対する確信度、及び不良の要因毎の確信度を出力する。判定回路14は、良品に対する確信度それぞれ、及び不良の要因の確信度それぞれを用いて、曲面の表面形状の良否を判定する。これにより、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。 As described above, in the present embodiment, the artificial intelligence 32 outputs the certainty of the good product and the certainty of each factor of the defect. The determination circuit 14 determines whether the surface shape of the curved surface is good or bad by using the certainty of the good product and the certainty of the cause of the defect. As a result, the inspector can grasp not only the quality of the inspection object but also the cause of the defect in the case of a defect.

なお、不良要因のクラスが第1の不良クラス、第2の不良クラスの二つの場合、判定回路14は、良品、第1の不良、または第2の不良のいずれかを出力してもよいし不良要因のクラスが4つ以上の場合、判定回路14は、良品とそれぞれの不良のいずれかを出力してもよい。 When there are two classes of defect factors, a first defect class and a second defect class, the determination circuit 14 may output either a non-defective product, a first defect, or a second defect. When the class of the defect factor is four or more, the determination circuit 14 may output either a good product or each defect.

撮像装置13は、このように模様が投影された検査対象物(ここでは一例として羽根車)を撮像する。撮像装置13は、最終的にデジタルデータが必要となるため、いわゆるデジタルカメラやそれに類するものが望ましい。 The image pickup apparatus 13 takes an image of an inspection object (here, an impeller as an example) on which the pattern is projected. Since the image pickup apparatus 13 finally requires digital data, a so-called digital camera or a similar one is desirable.

なお、投影装置11および投影装置12を、模様の投影と非投影とを切り替えられるようにしてもよい。その場合、撮像装置13は、計測時にまず、模様が非投影の状態で検査対象物を撮像して第1の画像を取得し、次に、模様が投影された状態で検査対象物を撮像して第2の画像を取得する。そして、撮像装置13は、第1の画像と第2の画像の差分を求め、この差分画像を画像データとして判定回路14に出力してもよい。判定回路14は、第1の画像と第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した学習済みの人工知能を適用して、曲面の表面形状の良否を判定する。これにより、差分画像は投影された模様のみが強調されるので、学習による判定精度を向上し、判定結果の精度を向上させることができる。特に、溶融金属の積層により造形された部品等の場合、積層により生じる縞模様等による影響を低減することができる。すなわち、溶融金属積層法等により成型した部品等は、表面を研磨しても、積層時の接合面(積層の「段」)が、縞模様となって残りやすい。このような縞模様は、検査のために投影する格子模様等と紛らわしく、判定に影響する。このため、画像の差分を使用することとすると、これらの縞模様がほぼ消去され、判定に影響しにくくなる。なお、さらに精度を上げようとした場合、差分をとる前に第1の画像と第2の画像に、投影する格子模様の反射光等の影響を抑えるため、画質調整等を加えてもよい。 The projection device 11 and the projection device 12 may be capable of switching between projection and non-projection of the pattern. In that case, at the time of measurement, the image pickup apparatus 13 first takes an image of the inspection object in a state where the pattern is not projected and acquires a first image, and then takes an image of the inspection object in a state where the pattern is projected. And get the second image. Then, the image pickup apparatus 13 may obtain the difference between the first image and the second image and output the difference image as image data to the determination circuit 14. The determination circuit 14 applies the trained artificial intelligence learned by using the teacher data of the difference image created in the same manner to the difference image between the first image and the second image, and applies the surface shape of the curved surface. Judge the quality of. As a result, only the projected pattern is emphasized in the difference image, so that the determination accuracy by learning can be improved and the accuracy of the determination result can be improved. In particular, in the case of a part or the like formed by laminating molten metal, it is possible to reduce the influence of the striped pattern or the like generated by the laminating. That is, even if the surface of a part or the like molded by the fused metal lamination method or the like is polished, the joint surface (“step” of the lamination) at the time of lamination tends to remain as a striped pattern. Such a striped pattern is confusing with a grid pattern or the like projected for inspection, and affects the judgment. Therefore, if the difference between the images is used, these striped patterns are almost erased, and the determination is less likely to be affected. When further improving the accuracy, image quality adjustment or the like may be added to the first image and the second image in order to suppress the influence of the reflected light of the grid pattern to be projected on the first image and the second image before taking the difference.

以上、本実施形態に係る検査装置1は、材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置である。検査装置1は、検査対象物に特定の模様を投影する投影装置11、12と、模様が投影された検査対象物を撮像する撮像装置13とを備える。更に検査装置1は、検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、撮像装置13により撮像された撮像画像を、学習済みの前記人工知能に適用して、検査対象物の曲面の表面形状の良否を判定する判定回路14を備える。 As described above, the inspection device 1 according to the present embodiment inspects the surface shape of the curved surface of the inspection target, which is formed by melting the material with heat or the inspection target manufactured by polishing the surface. It is a device. The inspection device 1 includes projection devices 11 and 12 that project a specific pattern on the inspection object, and an image pickup device 13 that captures an image of the inspection object on which the pattern is projected. Further, the inspection device 1 was photographed in a state where the same specific pattern as the specific pattern projected on the inspection object is projected on the learning object which is the same type as the inspection object and whose surface shape of the curved surface is known. It has artificial intelligence that learns the set of the image of the learning object and the sensory test result of the surface shape of the curved surface of the learning object as teacher data, and is imaged by the image pickup device 13. The image is applied to the trained artificial intelligence, and the determination circuit 14 for determining the quality of the surface shape of the curved surface of the object to be inspected is provided.

この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった、「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。 According to this configuration, in order to judge the quality of the surface shape of the curved surface of the inspection object by applying it to the learned artificial intelligence, the surface shape of the curved surface of the inspection object, which is difficult to judge only by the dimensional tolerance, is objectively and. It can be inspected automatically. That is, defects such as "waviness", which were difficult to determine by the conventional numerical method, can be mechanically determined. Further, the inspection can be performed unattended, the determination result can be recorded numerically, and the determination can be eliminated from the inspector's variation as in the conventional case.

<変形例>
変形例として、複数の不良要因に対して、個々に合格と不合格とを判定する人工知能を用いた判定回路を用い、同時に、もしくは順次、撮像画像について判定してもよい。
<Modification example>
As a modification, a determination circuit using artificial intelligence that individually determines whether to pass or fail may be used for a plurality of defective factors, and the captured images may be determined simultaneously or sequentially.

図8は、変形例に係る判定回路の構成を説明する模式図である。図8に示すように、変形例に係る判定回路14bは、第1の不良要因用の人工知能41と、第2の不良要因用の人工知能42と、第3の不良要因用の人工知能43とを備える。 FIG. 8 is a schematic diagram illustrating the configuration of the determination circuit according to the modified example. As shown in FIG. 8, the determination circuit 14b according to the modified example includes an artificial intelligence 41 for a first defect factor, an artificial intelligence 42 for a second defect factor, and an artificial intelligence 43 for a third defect factor. And prepare.

<学習時の処理>
人工知能41の学習時には、第1の不良要因用の人工知能41は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第1の不良要因(ここでは一例として波打ち)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第1の不良要因を識別する識別情報(ここでは例えば、第1の不良)との組を教師データとして予め学習する。
<Processing during learning>
At the time of learning the artificial intelligence 41, the artificial intelligence 41 for the first defect factor is an image of the learning object which is the same type as the inspection object and is known to have a good curved surface shape. An inspection object for a learning object that is known to have the first defect factor (here, waviness as an example), which is the same type as the inspection object and has the surface shape of the curved surface. An image of the learning object taken with the same specific pattern projected on the object and identification information (here, for example, the first defect) for identifying the first defect factor. The set of is learned in advance as teacher data.

また人工知能42の学習時には、第2の不良要因用の人工知能42は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第2の不良要因(ここでは一例として段差)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第2の不良要因を識別する識別情報(ここでは例えば、第2の不良)との組を教師データとして予め学習する。 Further, at the time of learning the artificial intelligence 42, the artificial intelligence 42 for the second defect factor is the same type as the inspection object and the surface shape of the curved surface is known to be good for the learning object. A learning target that is known to have a second defect factor (here, as an example, a step) that is the same type as the inspection target and has a curved surface shape that is the same as the combination of the image and the identification information that identifies the non-defective product. Identification information that identifies the image of the learning object taken with the same specific pattern projected on the object and the second defect factor (here, for example, the second defect). The pair with and is learned in advance as teacher data.

また人工知能43の学習時には、第3の不良要因用の人工知能43は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第3の不良要因(ここでは一例として割れ)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第3の不良要因を識別する識別情報(ここでは例えば、第3の不良)との組を教師データとして予め学習する。 Further, at the time of learning the artificial intelligence 43, the artificial intelligence 43 for the third defect factor is the same type as the inspection object and the surface shape of the curved surface is known to be good. An inspection target for a learning object that is known to have a third defect factor (here, as an example, cracking) in the combination of the image and the identification information that identifies the non-defective product, and the surface shape of the curved surface that is the same as the inspection object. Identification information that identifies the third defect factor from the image of the learning object taken with the same specific pattern projected on the object (here, for example, the third defect). The pair with and is learned in advance as teacher data.

<判定時の処理>
人工知能41の判定時には、第1の不良要因用の人工知能41に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第1の不良クラスとそのスコアの組とを含む出力行列51が出力される。
また人工知能42の判定時には、第2の不良要因用の人工知能42に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第2の不良クラスとそのスコアの組とを含む出力行列52が出力される。
また人工知能43の判定時には、第3の不良要因用の人工知能43に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第3の不良クラスとそのスコアの組とを含む出力行列53が出力される。
<Processing at the time of judgment>
At the time of determination of the artificial intelligence 41, the captured image of the inspection target is input as an input image to the artificial intelligence 41 for the first defect factor, and the good product class and its score set, and the first defective class and its score set. An output matrix 51 including and is output.
At the time of determination of the artificial intelligence 42, the captured image of the inspection target is input as an input image to the artificial intelligence 42 for the second defect factor, and the good product class and its score set, the second defect class and its score. The output matrix 52 including the set is output.
At the time of determination of the artificial intelligence 43, the captured image of the inspection target is input as an input image to the artificial intelligence 43 for the third defective factor, and the good product class and its score set, and the third defective class and its score. The output matrix 53 including the set is output.

最終判定部61に、これら三つの出力行列51~53が入力される。最終判定部61は例えば、出力行列51の良品クラスのスコアが第1の不良クラスのスコアより高く、出力行列52の良品クラスのスコアが第2の不良クラスのスコアより高く、且つ出力行列53の良品クラスのスコアが第3の不良クラスのスコアより高い場合、良品と判定する。一方、例えば、最終判定部61は、第1の不良クラスのスコアが出力行列51の良品クラスのスコアより高い場合、第1の不良と判定する。また例えば、最終判定部61は、第2の不良クラスのスコアが出力行列52の良品クラスのスコアより高い場合、第2の不良と判定する。また例えば、最終判定部61は、第3の不良クラスのスコアが出力行列53の良品クラスのスコアより高い場合、第3の不良と判定する。この場合、最終判定部61は、第1の不良クラスのスコアが出力行列51の良品クラスのスコアより高く且つ第2の不良クラスのスコアが出力行列52の良品クラスのスコアより高い場合、検査対象物に対して、第1の不良で、第2の不良であると判定することになる。このように、検査対象物に対して、複数の不良があると判定することができる。 These three output matrices 51 to 53 are input to the final determination unit 61. In the final determination unit 61, for example, the score of the good product class of the output matrix 51 is higher than the score of the first defective class, the score of the good product class of the output matrix 52 is higher than the score of the second defective class, and the score of the output matrix 53 is higher. If the score of the good product class is higher than the score of the third bad class, it is judged as a good product. On the other hand, for example, when the score of the first defective class is higher than the score of the good product class of the output matrix 51, the final determination unit 61 determines that it is the first defective. Further, for example, when the score of the second defective class is higher than the score of the good product class of the output matrix 52, the final determination unit 61 determines that the score is the second defect. Further, for example, when the score of the third defective class is higher than the score of the good product class of the output matrix 53, the final determination unit 61 determines that the third defect is defective. In this case, if the score of the first defective class is higher than the score of the good product class of the output matrix 51 and the score of the second defective class is higher than the score of the good product class of the output matrix 52, the final determination unit 61 is to be inspected. It is determined that the object is the first defect and the second defect. In this way, it can be determined that the inspection target has a plurality of defects.

このように、判定回路14bには、不良の要因毎に人工知能が設けられている。人工知能41~43それぞれは、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び対象とする不良の要因の確信度を出力するよう学習している。人工知能41~43それぞれは、検査対象物の撮像画像を用いて、検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力する。判定回路14bは、人工知能それぞれから出力された良品に対する確信度それぞれ及び不良の要因の確信度それぞれを用いて、検査対象物について良品か、または不良の要因を識別する識別情報を出力する。これにより、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。 As described above, the determination circuit 14b is provided with artificial intelligence for each cause of failure. Each of the artificial intelligences 41 to 43 is a set of an image of the learning object and identification information for identifying a good product for the learning object which is the same type as the inspection object and is known to have a good curved surface shape. And the same specific pattern as the specific pattern projected on the inspection object is projected for the learning object that is the same type as the inspection object and that the surface shape of the curved surface is known to have the cause of the defect targeted by the artificial intelligence. The set of the image of the learning object taken in the state of being taken and the identification information for identifying the cause of the target defect is used as teacher data to output the certainty of the good product and the certainty of the target defect factor. I'm learning. Each of the artificial intelligences 41 to 43 outputs the certainty of a non-defective product and the certainty of different defective factors for the inspection target by using the captured image of the inspection target. The determination circuit 14b outputs identification information for identifying whether the inspection target is a good product or a defective factor by using the certainty of the good product and the certainty of the cause of the defect output from each artificial intelligence. As a result, the inspector can grasp not only the quality of the inspection object but also the cause of the defect in the case of a defect.

ここで、本実施形態と変形例とを比べると、本実施形態では、短時間で計算機資源をあまり消費せずに判定できることが長所である。一方、変形例の場合、複数の不良要因が複合して発生している場合でも、個々の不良要因を適切に判断できることが長所である。
大抵の場合、複数の不良要因が同時に発生することは少なく、発生していたとしても、本実施形態の方法でもスコアの大小である程度の判定ができる。また、良否の判定だけであれば特段の不都合はない。このため、変形例と比べて本実施形態による方が利便性は高いが、用途に応じて使い分けることが好ましい。
Here, comparing the present embodiment with the modified example, the present embodiment has an advantage that the determination can be made in a short time without consuming much computer resources. On the other hand, in the case of the modified example, it is an advantage that individual defect factors can be appropriately determined even when a plurality of defect factors are compounded.
In most cases, a plurality of defective factors rarely occur at the same time, and even if they do occur, the method of the present embodiment can also determine the score to some extent. In addition, there is no particular inconvenience if it is only a judgment of good or bad. Therefore, although it is more convenient to use this embodiment as compared with the modified example, it is preferable to use it properly according to the intended use.

以上、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 As described above, the present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. Further, components over different embodiments may be combined as appropriate.

1 検査装置
11、12 投影装置
13 撮像装置
14、14b 判定回路
2 羽根車
31 入力画像
32 人口知能
33 出力行列
34 最終判定部
41、42、43 人工知能
51、52、53 出力行列
61 最終判定部
1 Inspection device 11, 12 Projection device 13 Imaging device 14, 14b Judgment circuit 2 Impeller 31 Input image 32 Artificial intelligence 33 Output matrix 34 Final judgment unit 41, 42, 43 Artificial intelligence 51, 52, 53 Output matrix 61 Final judgment unit

Claims (10)

材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置であって、
前記検査対象物に特定の模様を投影する投影装置と、
前記模様が投影された検査対象物を撮像する撮像装置と、
前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、前記撮像装置により撮像された撮像画像を、学習済みの前記人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する判定回路と、
を備える検査装置。
An inspection device that inspects the surface shape of the curved surface of an inspection object that is formed by melting the material with heat, an inspection object that is manufactured by polishing the surface, or an inspection object that is manufactured by cutting. And
A projection device that projects a specific pattern on the inspection object, and
An image pickup device that captures an image of an inspection object on which the pattern is projected, and an image pickup device.
A learning object that is the same as the inspection object and whose surface shape of the curved surface is known to be good or bad. The learning object is photographed with the same specific pattern as the specific pattern projected on the inspection object. It has artificial intelligence that learns the set of the image of the object and the sensory test result of the surface shape of the curved surface of the object for learning as teacher data, and learns the image captured by the image pickup device. A determination circuit that is applied to the artificial intelligence that has already been applied to determine the quality of the surface shape of the curved surface of the inspection object, and
Inspection device equipped with.
前記特定の模様は、縞模様、もしくは格子模様である
請求項1に記載の検査装置。
The inspection device according to claim 1, wherein the specific pattern is a striped pattern or a grid pattern.
前記投影装置は2台あり、それぞれの投影装置は、投影方向が略直交する2方向から縞模様を投影することにより、格子模様を前記特定の模様として投影する
請求項1または2に記載の検査装置。
The inspection according to claim 1 or 2, wherein there are two projection devices, and each projection device projects a grid pattern as the specific pattern by projecting a striped pattern from two directions whose projection directions are substantially orthogonal to each other. Device.
前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状が不良であることが既知の学習用対象物について当該学習用対象物の画像と当該不良の要因を識別する識別情報との組を教師データとして良品の確信度及び不良の要因毎の確信度を出力するよう学習しており、
前記人工知能は、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び不良の要因毎の確信度を出力し、
前記判定回路は、前記良品の確信度及び前記不良の要因の確信度を用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する
請求項1から3のいずれか一項に記載の検査装置。
The artificial intelligence is a set of an image of a learning object and identification information for identifying a good product for a learning object which is the same type as the inspection object and is known to have a good surface shape of a curved surface, and the above-mentioned. For a learning object that is the same type as the inspection object and is known to have a defective surface shape on the curved surface, a set of an image of the learning object and identification information that identifies the cause of the defect is used as teacher data for a good product. I am learning to output the degree of certainty and the degree of certainty for each cause of failure,
The artificial intelligence uses the captured image of the inspection object to output the certainty of a good product and the certainty of each defect factor for the inspection object.
The determination circuit uses the certainty of the good product and the certainty of the cause of the defect to output identification information for identifying the good product or the cause of the defect for the inspection target, whichever is claimed 1 to 3. The inspection device according to paragraph 1.
前記判定回路には、不良の要因毎に人工知能が設けられており、
前記人工知能それぞれは、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について当該学習用対象物の画像と前記対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び前記対象とする不良の要因の確信度を出力するよう学習しており、
前記人工知能それぞれは、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力し、
前記判定回路は、前記人工知能それぞれから出力された前記良品に対する確信度それぞれ及び前記不良の要因の確信度それぞれを用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する
請求項1から3のいずれか一項に記載の検査装置。
The determination circuit is provided with artificial intelligence for each cause of failure.
Each of the artificial intelligences is a set of an image of the learning object and identification information for identifying a good product for the learning object which is the same type as the inspection object and is known to have a good curved surface shape, and For a learning object that is the same type as the inspection object and is known to have a defect factor targeted by the artificial intelligence in the surface shape of the curved surface, the image of the learning object and the defect factor targeted by the target are We are learning to output the certainty of good products and the certainty of the cause of the defect to be targeted by using the pair with the identification information to be identified as teacher data.
Each of the artificial intelligences uses the captured image of the inspection object to output the certainty of a non-defective product and the certainty of different defective factors for the inspection object.
The determination circuit uses the certainty of the good product and the certainty of the cause of the defect output from each of the artificial intelligences to obtain identification information for identifying whether the inspection object is a good product or the cause of the defect. The inspection device according to any one of claims 1 to 3 to be output.
前記投影装置は、投影と非投影とを切り替えられるようになっており、
前記撮像装置は、前記模様が非投影の状態で前記検査対象物を撮像して第1の画像を取得し、当該模様が投影された状態で検査対象物を撮像して第2の画像を取得し、
前記判定回路は、前記第1の画像と前記第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した前記学習済みの人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する
請求項1から5のいずれか一項に記載の検査装置。
The projection device can switch between projection and non-projection.
The image pickup apparatus captures the inspection object in a non-projected state to acquire a first image, and images the inspection object in a state where the pattern is projected to acquire a second image. death,
The determination circuit applies the difference image between the first image and the second image to the learned artificial intelligence learned by using the teacher data of the difference image similarly created, and said. The inspection device according to any one of claims 1 to 5, which determines whether the surface shape of the curved surface of the inspection object is good or bad.
前記検査対象物は、表面を研磨して製造した部品である
請求項1から6のいずれか一項に記載の検査装置。
The inspection device according to any one of claims 1 to 6, wherein the inspection object is a part manufactured by polishing the surface.
前記検査対象物は、流体機械の部品である
請求項1から7のいずれか一項に記載の検査装置。
The inspection device according to any one of claims 1 to 7, wherein the inspection object is a component of a fluid machine.
前記検査対象物は、溶融金属積層法または研磨により製造した部品である
請求項1から8のいずれか一項に記載の検査装置。
The inspection device according to any one of claims 1 to 8, wherein the inspection object is a part manufactured by a fused metal lamination method or polishing.
材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査方法であって、
前記検査対象物に特定の模様を投影する手順と、
前記模様が投影された検査対象物を撮像する手順と
前記撮像された画像を、学習済みの人工知能に適用して、前記曲面の表面形状の良否を判定する手順と、
を有し、
前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習したものである検査方法。
It is an inspection method for inspecting the surface shape of the curved surface of the inspection object, which is formed by melting the material with heat or the inspection object manufactured by polishing the surface.
The procedure for projecting a specific pattern on the inspection object and
A procedure for imaging an inspection object on which the pattern is projected, a procedure for applying the captured image to learned artificial intelligence, and a procedure for determining the quality of the surface shape of the curved surface.
Have,
The artificial intelligence is photographed in a state where the same specific pattern as the specific pattern projected on the inspection object is projected on the learning object which is the same type as the inspection object and whose surface shape of the curved surface is known. An inspection method in which a set of an image of the learning object and a sensory test result of the quality of the surface shape of the curved surface of the learning object is learned as teacher data.
JP2018091086A 2018-05-10 2018-05-10 Inspection equipment and inspection method Active JP7053366B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018091086A JP7053366B2 (en) 2018-05-10 2018-05-10 Inspection equipment and inspection method
CN201980030680.2A CN112088304A (en) 2018-05-10 2019-05-09 Inspection apparatus and inspection method
PCT/JP2019/018467 WO2019216362A1 (en) 2018-05-10 2019-05-09 Inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091086A JP7053366B2 (en) 2018-05-10 2018-05-10 Inspection equipment and inspection method

Publications (2)

Publication Number Publication Date
JP2019196985A JP2019196985A (en) 2019-11-14
JP7053366B2 true JP7053366B2 (en) 2022-04-12

Family

ID=68466993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091086A Active JP7053366B2 (en) 2018-05-10 2018-05-10 Inspection equipment and inspection method

Country Status (3)

Country Link
JP (1) JP7053366B2 (en)
CN (1) CN112088304A (en)
WO (1) WO2019216362A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210035A (en) * 2020-03-05 2022-10-18 松下知识产权经营株式会社 Weld bead appearance inspection device, weld bead appearance inspection method, program, and weld bead appearance inspection system
WO2021177435A1 (en) * 2020-03-05 2021-09-10 パナソニックIpマネジメント株式会社 Bead external appearance inspection device, bead external appearance inspection method, program, and bead external appearance inspection system
WO2021177361A1 (en) * 2020-03-05 2021-09-10 パナソニックIpマネジメント株式会社 Bead appearance inspection device and bead appearance inspection system
KR102237374B1 (en) * 2020-09-09 2021-04-07 정구봉 Method and system for manufacturing parts and parts inspection jig using 3d printing
KR102512873B1 (en) * 2020-11-06 2023-03-23 한국생산기술연구원 Moire interferometer measurement system and moire interferometer measurement method using artificial intelligence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191850B1 (en) 1999-10-15 2001-02-20 Cognex Corporation System and method for inspecting an object using structured illumination
JP5164696B2 (en) 2008-07-01 2013-03-21 昭和電工株式会社 Aluminum alloy drawn material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219505A (en) * 1988-02-26 1989-09-01 Toyota Motor Corp Automatic inspecting device for film smoothness
JP2795013B2 (en) * 1991-12-11 1998-09-10 日産自動車株式会社 Painted surface evaluation device
JP3201217B2 (en) * 1995-04-17 2001-08-20 日産自動車株式会社 Surface defect inspection equipment
JPH1023203A (en) * 1996-07-01 1998-01-23 Ricoh Co Ltd Paper classification device
JP3493979B2 (en) * 1997-10-20 2004-02-03 日産自動車株式会社 Method and apparatus for inspecting defects on inspected surface
JP3732757B2 (en) * 2001-06-08 2006-01-11 株式会社東芝 Image recognition method and image recognition apparatus
JP5818341B2 (en) * 2010-12-13 2015-11-18 国立大学法人 和歌山大学 Shape measuring apparatus and shape measuring method
JP6507653B2 (en) * 2015-01-13 2019-05-08 オムロン株式会社 Inspection apparatus and control method of inspection apparatus
JP6795993B2 (en) * 2016-02-18 2020-12-02 株式会社ミツトヨ Shape measurement system, shape measurement device and shape measurement method
JP6333871B2 (en) * 2016-02-25 2018-05-30 ファナック株式会社 Image processing apparatus for displaying an object detected from an input image
JP6832650B2 (en) * 2016-08-18 2021-02-24 株式会社Screenホールディングス Inspection equipment and inspection method
US10586318B2 (en) * 2016-10-07 2020-03-10 Raytheon Company Automated model-based inspection system for screening electronic components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191850B1 (en) 1999-10-15 2001-02-20 Cognex Corporation System and method for inspecting an object using structured illumination
JP5164696B2 (en) 2008-07-01 2013-03-21 昭和電工株式会社 Aluminum alloy drawn material

Also Published As

Publication number Publication date
WO2019216362A1 (en) 2019-11-14
JP2019196985A (en) 2019-11-14
CN112088304A (en) 2020-12-15

Similar Documents

Publication Publication Date Title
JP7053366B2 (en) Inspection equipment and inspection method
JP6618478B2 (en) Automatic in-line inspection and measurement using projected images
US6771807B2 (en) Method and system for detecting defects on a printed circuit board
JP6560220B2 (en) Method and apparatus for inspecting inspection system for detection of surface defects
KR101910484B1 (en) A method for three dimensional (3d) vision inspection
JP5243335B2 (en) Defect inspection method, defect inspection apparatus, defect inspection program, and recording medium recording the program
JP2005292136A (en) System for inspecting multiplex resolution and its operation method
JP4617970B2 (en) Defect inspection apparatus and defect inspection method
KR101982347B1 (en) Apparatus and Method for Detecting Defects in Auto Repair System
JP6371044B2 (en) Surface defect inspection apparatus and surface defect inspection method
JPH11251224A (en) Method for measuring pattern dimension
CN108257171A (en) Car radar assembling aperture detection method based on light vision
JP2015197396A (en) Image inspection method and image inspection device
JP6630912B1 (en) Inspection device and inspection method
JP4778685B2 (en) Pattern shape evaluation method and apparatus for semiconductor device
US11761910B2 (en) Surface or interface defect detection
JPH11231507A (en) Method and device for inspecting mask
JP2006266780A (en) Flaw inspection device and flaw inspection method
CN114609139A (en) Inspection system, management device, inspection method, recording medium, and article manufacturing method
JP7157380B2 (en) Appearance inspection method and electronic component manufacturing method
Louban Image processing of edge and surface defects
JP2005283267A (en) Through hole measuring device, method, and program for through hole measurement
US20090312863A1 (en) Methodology for evaluating valve seat characteristics with a vision-based system
JP2011002280A (en) Flaw inspection method
Ieamsaard et al. Automatic optical inspection of solder ball burn defects on head gimbal assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150