JP6507653B2 - Inspection apparatus and control method of inspection apparatus - Google Patents

Inspection apparatus and control method of inspection apparatus Download PDF

Info

Publication number
JP6507653B2
JP6507653B2 JP2015004253A JP2015004253A JP6507653B2 JP 6507653 B2 JP6507653 B2 JP 6507653B2 JP 2015004253 A JP2015004253 A JP 2015004253A JP 2015004253 A JP2015004253 A JP 2015004253A JP 6507653 B2 JP6507653 B2 JP 6507653B2
Authority
JP
Japan
Prior art keywords
projection
inspection
pattern image
imaging
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015004253A
Other languages
Japanese (ja)
Other versions
JP2016130663A (en
Inventor
心平 藤井
心平 藤井
貴行 西
貴行 西
優人 川島
優人 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2015004253A priority Critical patent/JP6507653B2/en
Priority to DE102015116047.1A priority patent/DE102015116047A1/en
Priority to CN201510648233.7A priority patent/CN105783784B/en
Publication of JP2016130663A publication Critical patent/JP2016130663A/en
Application granted granted Critical
Publication of JP6507653B2 publication Critical patent/JP6507653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8829Shadow projection or structured background, e.g. for deflectometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • G01N2021/95646Soldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0635Structured illumination, e.g. with grating

Landscapes

  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、物体にパターン画像を投影した状態で撮像した画像を用いて当該物体の検査を行う検査装置に関する。   The present invention relates to an inspection apparatus that inspects an object using an image captured in a state where a pattern image is projected onto the object.

従来より、画像を用いて物体の3次元形状を計測する手法が研究されている。例えば、アクティブ三角測量法やアクティブステレオ法と呼ばれる手法は、プロジェクタにより物体にパターン画像(縞パターンやドットパターンなど)を投影した状態で撮像を行い、物体表面の凹凸に依存して生じるパターンや輝度の変化を解析することで、物体の3次元情報を取得する技術である。アクティブ三角測量法の例として、位相シフト法、空間コード化法などが実用化されている。   Conventionally, methods for measuring a three-dimensional shape of an object using an image have been studied. For example, in a method called active triangulation or active stereo method, imaging is performed with a projector projecting a pattern image (stripe pattern, dot pattern, etc.) onto an object by a projector, and a pattern or luminance generated depending on the unevenness of the object surface Is a technology for acquiring three-dimensional information of an object by analyzing the change of. As examples of active triangulation methods, phase shift methods, space coding methods, and the like have been put to practical use.

これらの方法においては、物体で反射した光が周囲に存在する他の物体の計測精度を低下させるという現象が生じることがある。この現象について図12を参照して説明する。図12は、撮像装置200とプロジェクタ201を用いた計測系を示している。プロジェクタ201から所定のパターンをもつ光201Lを物体202に投影し、物体202の表面に映る投影パターンを撮像装置200で撮像する。このとき、物体202の表面凹凸による投影パターンの歪みは、撮像装置200で撮像した画像の輝度変化となって現れる。よって、画像の輝度変化を基に、プロジェクタ201と物体202の表面上の点と撮像装置200の位置関係を特定し、物体202の表面の高さ(3次元位置)を推定することができる。   In these methods, a phenomenon may occur in which light reflected by an object degrades the measurement accuracy of other objects present in the surroundings. This phenomenon will be described with reference to FIG. FIG. 12 shows a measurement system using the imaging device 200 and the projector 201. The light 201 L having a predetermined pattern is projected from the projector 201 onto the object 202, and the projection pattern projected on the surface of the object 202 is imaged by the imaging device 200. At this time, distortion of the projection pattern due to the surface unevenness of the object 202 appears as a change in luminance of the image captured by the imaging device 200. Therefore, the positional relationship between the point on the surface of the projector 201 and the object 202 and the imaging device 200 can be specified based on the luminance change of the image, and the height (three-dimensional position) of the surface of the object 202 can be estimated.

しかしながら、図12に示すように、物体202の近傍に背の高い物体203が存在すると、プロジェクタ201の光201Lが物体203の側面で鏡面反射又は拡散反射し、その反射光203Lが物体202の表面を照らしてしまうことがある。そうすると、物体202の表面から撮像装置200に到達する光の中に、プロジェクタ201の光201Lの反射光(1次反射光)201Rだけでなく、物体203からの光203Lの反射光(2次反射光)203Rも含まれることとなる。この2次反射光203Rは、物体202の表面上の投影パターンにノイズとして重畳されるため、投影パターンの解析に悪影響を与え、計測誤差を生じさせてしまうのである。本明細書では、他の物体で反射した光に起因する2次反射を生じ得る物体(例えば図12の物体202)を「2次反射物体」と呼び、2次反射の原因となる反射光を生じる物体(例えば物体203)を「原因物体」と呼ぶ。また、このような2次反射に起因する投影パターンの輝度変化を「2次反射ノイズ」と呼ぶ。   However, as shown in FIG. 12, when a tall object 203 is present in the vicinity of the object 202, the light 201 L of the projector 201 is specularly reflected or diffusely reflected on the side of the object 203, and the reflected light 203 L is the surface of the object 202. May be illuminated. Then, not only the reflected light (primary reflected light) 201R of the light 201L of the projector 201 but also the reflected light (secondary reflected light) of the light 203L from the object 203 in the light reaching the imaging device 200 from the surface of the object 202 Light) 203R is also included. The secondary reflected light 203R is superimposed as a noise on the projection pattern on the surface of the object 202, which adversely affects the analysis of the projection pattern and causes a measurement error. In this specification, an object that can cause secondary reflection due to light reflected by another object (for example, the object 202 in FIG. 12) is referred to as “secondary reflective object”, and the reflected light that causes secondary reflection is The resulting object (for example, the object 203) is called a "cause object". In addition, the brightness change of the projection pattern resulting from such secondary reflection is called "secondary reflection noise".

2次反射ノイズへの対処として、特許文献1では、2以上の方向からパターン画像を照射し、各方向の計測精度(信頼度)に基づいて、影ディフェクト、スペキュラーディフェクトなどが除去された計測値を選別することで、より正確な表面形状の測定を行う方法が提案されている。しかしながら、この従来方法は、複数の方向での計測結果を組み合わせてノイズの影響を低減しようとする方法にすぎず、2次反射ノイズの発生を根本的に解決するものではない。したがって、どの方向からパターン画像を照射しても2次反射が発生するような環境(例えば、周囲に背の高い物体が多数存在する場合など)の場合には、従来方法では、2次反射ノイズの影響を除去することが難しい。   As a countermeasure against secondary reflection noise, in Patent Document 1, a pattern image is irradiated from two or more directions, and a measurement value from which a shadow defect, a specular defect, etc. is removed based on measurement accuracy (reliability) in each direction. The method of performing more accurate measurement of surface shape is proposed by sorting out. However, this conventional method is merely a method of reducing the influence of noise by combining measurement results in a plurality of directions, and does not fundamentally solve the generation of secondary reflection noise. Therefore, in an environment where secondary reflection occurs even if the pattern image is irradiated from any direction (for example, when there are a large number of tall objects in the periphery, etc.), the secondary reflection noise is used in the conventional method. It is difficult to eliminate the influence of

特開2012−112952号公報JP, 2012-112952, A

本発明は上記実情に鑑みなされたものであって、物体にパターン画像を投影した状態で撮像した画像を用いて当該物体の検査を行う検査装置において、2次反射ノイズを抑制し、信頼性の高い計測及び検査を可能にするための技術を提供することを目的とする。   The present invention has been made in view of the above situation, and in an inspection apparatus for inspecting an object using an image captured in a state where a pattern image is projected onto the object, secondary reflection noise is suppressed and reliability is improved. The object is to provide technology for enabling high measurement and inspection.

上記目的を達成するため本発明では、以下の構成を採用する。すなわち、本発明に係る検査装置は、撮像装置と、前記撮像装置の視野内にパターン画像を投影する投影装置と、前記投影装置からパターン画像を投影した状態で前記撮像装置によって撮像された画像を用いて、前記撮像装置の視野内に含まれる1つ以上の物体の検査を行う情報処理装置と、前記撮像装置及び前記投影装置を制御する制御装置と、を有する。前記撮像装置の視野内に、他の物体の反射面で反射した光に起因する2次反射を生じ得る2次反射物体が存在する場合に、前記制御装置は、前記2次反射物体が前記撮像装置の視野内の中心位置にくるように、前記撮像装置の視野内の前記2次反射物体の位置を変更した後、前記反射面に光が当たらないように前記投影装置から投影するパターン画像の投影範囲を当該視野の中心の所定の範囲に変更し、投影範囲が変更されたパターン画像を投影した状態で前記撮像装置により前記2次反射物体を撮像する制御を行う。 In order to achieve the above object, the present invention adopts the following configuration. That is, an inspection apparatus according to the present invention comprises an imaging device, a projection device for projecting a pattern image within the field of view of the imaging device, and an image captured by the imaging device in a state where the pattern image is projected from the projection device. It has an information processor which inspects one or more objects contained in a field of view of the imaging device, and a control device which controls the imaging device and the projection device. In the case where there is a secondary reflection object that can cause secondary reflection due to light reflected by a reflection surface of another object in the field of view of the imaging device, the control device determines that the secondary reflection object is the image After changing the position of the secondary reflecting object in the field of view of the imaging device so as to come to the center position in the field of view of the device, the pattern image projected from the projection device so that light does not hit the reflecting surface The projection range is changed to a predetermined range at the center of the field of view, and control is performed to capture the secondary reflective object by the imaging device in a state where the pattern image whose projection range has been changed is projected.

この構成によれば、撮像装置の視野内に2次反射物体が存在する場合に、2次反射の原因となる原因物体の反射面に光(パターン画像)が当たらないようにパターン画像の投影範囲が変更される。したがって、2次反射ノイズの発生を抑え、物体上の投影パターンを正確に撮像(観測)することができ、物体の計測及び検査の精度を向上することができる。   According to this configuration, when there is a secondary reflection object in the field of view of the imaging device, the projection range of the pattern image so that light (pattern image) does not hit the reflection surface of the cause object causing the secondary reflection. Is changed. Therefore, the occurrence of secondary reflection noise can be suppressed, and the projection pattern on the object can be accurately imaged (observed), and the accuracy of measurement and inspection of the object can be improved.

検査の対象となる複数の物体の内から2次反射物体を特定するための情報を含む検査プログラムを記憶する記憶装置をさらに有し、前記制御装置は、前記検査プログラムに基づいて、前記撮像装置の視野内に2次反射物体が存在するか否かを判断することが好ましい。このような検査プログラムを予め作成し検査装置に設定しておくことで、視野内の2次反射物体の検出を簡単かつ正確に行うことができ、計測及び検査の処理時間の短縮と精度向上を図ることができる。   The image processing apparatus further includes a storage device that stores an inspection program including information for identifying a secondary reflective object from among a plurality of objects to be inspected, the control device based on the inspection program. It is preferable to determine whether there is a secondary reflecting object in the field of view of By creating such an inspection program in advance and setting it in the inspection device, detection of the secondary reflective object in the field of view can be performed easily and accurately, and the processing time for measurement and inspection can be shortened and the accuracy improved. Can be

また、前記検査プログラムは、2次反射物体を撮像するときの撮像条件の情報を含んでおり、前記制御装置は、前記撮像条件の情報に基づいて、前記2次反射物体を撮像するときに投影するパターン画像の投影範囲の変更を行うことも好ましい。このように、2次反射物体それぞれの撮像条件も予め検査装置に設定しておくことで、2次反射を抑制するための投影範囲の変更制御を簡単かつ正確に行うことができ、計測及び検査の処理時間の短縮と精度向上を図ることができる。   Further, the inspection program includes information of imaging conditions when imaging a secondary reflective object, and the control device projects when imaging the secondary reflective object based on the information of the imaging condition. It is also preferable to change the projection range of the pattern image. As described above, by setting the imaging conditions of each of the secondary reflecting objects in advance to the inspection device, the change control of the projection range for suppressing the secondary reflection can be performed easily and accurately, and the measurement and inspection can be performed. Processing time can be shortened and accuracy can be improved.

検査装置が、投影範囲が互いに異なる複数のパターン画像のデータを予め記憶するパターン画像記憶部をさらに有し、前記撮像装置の視野内に前記2次反射物体が存在する場合に、前記制御装置は、前記パターン画像記憶部に記憶された前記複数のパターン画像の中から、前記2次反射物体を投影範囲に含むが前記反射面を投影範囲に含まないパターン画像を選択し、前記投影装置から投影するパターン画像を前記選択したパターン画像へと変更することが好ましい。パターン画像のデータを予め用意しておくことで、(その都度パターン画像を生成するのに比べて)パターン画像の切り替え処理を簡単化することができる。   The control device further includes a pattern image storage unit that stores in advance data of a plurality of pattern images having different projection ranges from each other in the inspection device, and the secondary reflective object is present in the field of view of the imaging device. Selecting a pattern image that includes the secondary reflective object in the projection range but does not include the reflective surface in the projection range from the plurality of pattern images stored in the pattern image storage unit; It is preferable to change the pattern image to be selected into the selected pattern image. By preparing data of the pattern image in advance, it is possible to simplify the switching process of the pattern image (as compared to generating the pattern image each time).

例えば、視野の中心に2次反射物体がある場合と、視野の端に2次反射物体がある場合とでは、パターン画像の投影範囲を変えなければならない。とはいえ、視野内の位置ごとに別々のパターン画像を用意するとなると、パターン画像の数が膨大となる。また、パターン画像記憶部に多くの記憶容量を確保しなければならず、装置のコストアップを招く。そこで、前記制御装置は、前記2次反射物体が前記撮像装置の視野内の所定位置にくるように、前記撮像装置の視野内の前記2次反射物体の位置を変更した後、投影範囲が変更されたパターン画像を投影した状態で前記撮像装置により前記2次反射物体を撮像する制御を行う。このように2次反射物体を視野内の所定位置に合わせるようにすれば、サイズ違いや形状違いのパターン画像を用意するだけで足り、位置違いのパターン画像は用意する必要がない。言い換えると、サイズや形状がほぼ同じ2次反射物体に対しては同じパターン画像を共通に使用できる。したがって、予め用意しておくパターン画像の数を大幅に減らすことができ、パターン画像記憶部の記憶容量の削減も可能となる。この構成は、投影装置に予め登録可能なパターン画像の数に制限がある場合に特に有効である。 For example, in the case where there is a secondary reflective object at the center of the field of view and in the case where there is a secondary reflective object at the edge of the field of view, the projection range of the pattern image must be changed. However, if separate pattern images are prepared for each position in the field of view, the number of pattern images becomes enormous. In addition, it is necessary to secure a large storage capacity in the pattern image storage unit, which leads to an increase in the cost of the apparatus. Therefore, the control device changes the position of the secondary reflective object in the field of view of the imaging device so that the secondary reflective object comes to a predetermined position in the field of view of the imaging device, and then the projection range changes. It intends line control for imaging the secondary reflection object by the image pickup device pattern image in a state projected to be. As described above, when the secondary reflective object is set to a predetermined position in the field of view, it is sufficient to prepare pattern images of different sizes and different shapes, and it is not necessary to prepare pattern images of different positions. In other words, the same pattern image can be commonly used for secondary reflective objects having substantially the same size and shape. Therefore, the number of pattern images prepared in advance can be significantly reduced, and the storage capacity of the pattern image storage unit can also be reduced. This configuration is particularly effective when the number of pattern images that can be registered in advance in the projection apparatus is limited.

前記所定位置は、前記撮像装置の視野の中心である。撮像装置の視野の中心は、撮像装置の光学系の収差が最も小さい。また、通常は投影装置の投影中心を撮像装置の視野の中
心あたりに合わせるので、撮像装置の視野の中心は投影パターンの歪み(投影装置の光学系の収差による歪)も最小となる。したがって、2次反射物体を撮像装置の視野の中心に合わせて投影及び撮像を行うことで、計測及び検査の精度をより一層向上することが期待できる。
Wherein the predetermined position is Ru center der of the field of view of the imaging device. The center of the field of view of the imaging device has the smallest aberration of the optical system of the imaging device. In addition, since the projection center of the projection device is usually aligned with the center of the field of view of the imaging device, distortion of the projection pattern (distortion due to aberration of the optical system of the projection device) is also minimized at the center of the field of view of the imaging device. Therefore, the accuracy of measurement and inspection can be expected to be further improved by projecting and imaging the secondary reflective object with the center of the field of view of the imaging device.

前記撮像装置の視野内に前記2次反射物体が存在する場合に、前記制御装置は、前記2次反射物体又は前記反射面の位置及びサイズの情報に基づき、前記2次反射物体を投影範囲に含むが前記反射面を投影範囲に含まないパターン画像を生成し、前記投影装置から投影するパターン画像を前記生成したパターン画像へと変更することが好ましい。この構成によれば、2次反射物体と反射面の位置及びサイズに応じて最適な投影範囲を実現することができ、計測及び検査の精度の向上を期待できる。また、2次反射物体ないし撮像視野を物理的に動かす必要がないので、処理時間の短縮を図ることができる。   When the secondary reflective object is present in the field of view of the imaging device, the control device sets the secondary reflective object within the projection range based on the information on the position and size of the secondary reflective object or the reflective surface. It is preferable to generate a pattern image that includes the reflection surface but does not include the reflective surface, and changes the pattern image projected from the projection apparatus to the generated pattern image. According to this configuration, an optimal projection range can be realized according to the position and size of the secondary reflecting object and the reflecting surface, and improvement in the accuracy of measurement and inspection can be expected. In addition, since it is not necessary to physically move the secondary reflective object or the imaging field, the processing time can be shortened.

前記検査装置は、基板上の部品を検査する基板検査装置に好ましく適用できる。この場合、例えばチップ部品やICなどの物体が検査の対象となる。本発明によれば、検査対象の部品の周囲に2次反射の原因物体(例えばコネクタ部品のような背の高い物体)が存在したとしても、2次反射ノイズの発生を抑えて、信頼性の高い部品計測及び部品検査が可能となる。   The inspection apparatus can be preferably applied to a substrate inspection apparatus that inspects components on a substrate. In this case, for example, an object such as a chip part or an IC is an object of inspection. According to the present invention, even if a cause object of secondary reflection (for example, a tall object such as a connector part) is present around a part to be inspected, generation of secondary reflection noise is suppressed to ensure reliability. It enables high part measurement and part inspection.

なお、本発明は、上記手段ないし機能の少なくとも一部を含む検査装置又は基板検査装置として捉えることができる。また、本発明は、上記手段ないし機能の少なくとも一部を含む検査装置又は基板検査装置と、検査装置又は基板検査装置の動作を定義する検査プログラムを作成するティーチング装置と、を有する検査システムとして捉えることもできる。また、本発明は、検査装置の制御方法や検査方法や、その方法の各ステップをコンピュータに実行させるためのコンピュータプログラムや、当該プログラムを非一時的に記憶したコンピュータ読取可能な記憶媒体として捉えることもできる。上記構成および処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。   The present invention can be grasped as an inspection apparatus or a substrate inspection apparatus including at least a part of the above means or functions. Further, the present invention is regarded as an inspection system having an inspection apparatus or substrate inspection apparatus including at least a part of the above means or functions, and a teaching apparatus for creating an inspection program for defining the operation of the inspection apparatus or substrate inspection apparatus. It can also be done. Further, the present invention can be regarded as a control method and inspection method of an inspection apparatus, a computer program for causing a computer to execute each step of the method, and a computer readable storage medium storing the program non-temporarily. You can also. Each of the above configurations and processes can be combined with each other as long as there is no technical contradiction.

本発明によれば、物体にパターン画像を投影した状態で撮像した画像を用いて当該物体の検査を行う検査装置において、2次反射ノイズを抑制し、信頼性の高い計測及び検査を行うことができる。   According to the present invention, in an inspection apparatus that inspects an object using an image captured in a state where a pattern image is projected onto the object, secondary reflection noise is suppressed, and highly reliable measurement and inspection are performed. it can.

基板検査システムのハードウェア構成を示す模式図。The schematic diagram which shows the hardware constitutions of a board | substrate test | inspection system. ティーチング処理の流れを示すフローチャート。The flowchart which shows the flow of teaching processing. 第1実施形態における計測及び検査の流れを示すフローチャート。3 is a flowchart showing the flow of measurement and inspection in the first embodiment. 第1実施形態における計測及び検査の流れを示す図。The figure which shows the flow of the measurement in 1st Embodiment, and a test | inspection. 第1実施形態におけるパターン画像の例。The example of the pattern image in 1st Embodiment. 第2実施形態における計測及び検査の流れを示すフローチャート。The flowchart which shows the flow of measurement and inspection in a 2nd embodiment. 第2実施形態における計測及び検査の流れを示す図。The figure which shows the flow of the measurement in 2nd Embodiment, and a test | inspection. 第3実施形態における計測及び検査の流れを示すフローチャート。The flowchart which shows the flow of measurement and inspection in a 3rd embodiment. 第3実施形態における計測及び検査の流れを示す図。The figure which shows the flow of the measurement in 3rd Embodiment, and a test | inspection. 第4実施形態における計測及び検査の流れを示すフローチャート。The flowchart which shows the flow of measurement and inspection in a 4th embodiment. 第4実施形態における計測及び検査の流れを示す図。The figure which shows the flow of the measurement in 4th Embodiment, and a test | inspection. 2次反射ノイズについて説明する図。The figure explaining secondary reflective noise. パターン画像を投影して撮像される位相画像の例。The example of the phase image imaged by projecting a pattern image.

本発明は、物体にパターン画像を投影した状態で撮像した画像を用いて当該物体の検査を行う検査装置において、2次反射ノイズを抑制し、信頼性の高い計測及び検査を実現するための技術に関する。本発明は、アクティブ三角測量法やアクティブステレオ法による
3次元計測を利用した検査装置に適用でき、特に、FA(ファクトリー・オートメーション)分野や自動車分野で用いられる検査装置に好ましく適用することができる。FA分野の検査としては、画像センサ(3次元ロボットビジョン、3次元デジタイザ、産業用イメージセンサなど)を用いた外観検査、文字検査、位置決め検査、不良品検査などを例示できる。また自動車分野の検査としては、形状測定センサを用いたタイヤ形状検査などを例示できる。
The present invention is a technique for suppressing secondary reflection noise and realizing highly reliable measurement and inspection in an inspection apparatus which inspects the object using an image captured in a state where a pattern image is projected onto the object. About. The present invention can be applied to an inspection apparatus using three-dimensional measurement by active triangulation or active stereo method, and in particular, can be preferably applied to an inspection apparatus used in the field of FA (factory automation) or automotive field. As inspections in the FA field, visual inspection, character inspection, positioning inspection, defective product inspection and the like using an image sensor (three-dimensional robot vision, three-dimensional digitizer, industrial image sensor, etc.) can be exemplified. Further, as inspection in the field of automobiles, tire shape inspection using a shape measurement sensor can be exemplified.

以下この発明を実施するための好ましい形態として、本発明をFA分野の基板検査装置に適用した例を詳しく説明する。ただし、以下の実施形態に記載されている装置の構成や動作は一例であり、本発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, an example in which the present invention is applied to a substrate inspection apparatus in the FA field will be described in detail as a preferred embodiment for carrying out the present invention. However, the configurations and operations of the devices described in the following embodiments are merely examples, and the scope of the present invention is not limited thereto.

<第1実施形態>
(基板検査システムのハードウェア構成)
図1を参照して、本発明の第1実施形態に係る基板検査システムの全体構成について説明する。図1は基板検査システムのハードウェア構成を示す模式図である。基板検査システムは、撮像した画像を用いてプリント基板上の部品やはんだの状態を検査する基板検査装置1と、基板検査装置1が検査時に使用する検査プログラムを作成するティーチング装置2とを備える。この基板検査装置1は、表面実装ラインにおける基板外観検査(例えば、リフロー後の部品浮き検査など)に好ましく利用されるものである。
First Embodiment
(Hardware configuration of board inspection system)
An overall configuration of a substrate inspection system according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing a hardware configuration of a substrate inspection system. The substrate inspection system includes a substrate inspection apparatus 1 that inspects the state of components and solder on a printed substrate using a captured image, and a teaching apparatus 2 that creates an inspection program that the substrate inspection apparatus 1 uses at the time of inspection. The substrate inspection apparatus 1 is preferably used for substrate appearance inspection (for example, component floating inspection after reflow) in a surface mounting line.

基板検査装置1は、主な構成として、ステージ10、計測ユニット11、制御装置12、情報処理装置13、表示装置14、記憶装置(データベース)3を備える。計測ユニット11は、撮像装置(イメージセンサ)110、照明装置111、投影装置(プロジェクタ)112を有している。   The substrate inspection apparatus 1 mainly includes a stage 10, a measurement unit 11, a control device 12, an information processing device 13, a display device 14, and a storage device (database) 3. The measurement unit 11 includes an imaging device (image sensor) 110, a lighting device 111, and a projection device (projector) 112.

ステージ10は、基板15を保持し、検査対象物体となる部品150やはんだ151を撮像装置110の視野に位置合わせするための機構である。図1に示すようにステージ10に平行にX軸とY軸をとり、ステージ10と垂直にZ軸をとった場合、ステージ10は少なくともX方向とY方向の2軸の並進が可能である。撮像装置110は、光軸がZ軸と平行になるように配置されており、ステージ10上の基板15を鉛直上方から撮像する。撮像装置110で撮像された画像データは情報処理装置13に取り込まれる。   The stage 10 is a mechanism for holding the substrate 15 and aligning the component 150 and the solder 151 to be inspected with the field of view of the imaging device 110. As shown in FIG. 1, when the X axis and the Y axis are parallel to the stage 10 and the Z axis is vertical to the stage 10, the stage 10 can translate at least two axes in the X direction and the Y direction. The imaging device 110 is disposed such that the optical axis is parallel to the Z axis, and images the substrate 15 on the stage 10 from above from above. The image data captured by the imaging device 110 is taken into the information processing device 13.

照明装置111(111R,111G,111B)は、基板15に対し異なる色(波長)の照明光(赤色光RL,緑色光GL,青色光BL)を照射する照明手段である。図1は照明装置111のXZ断面を模式的に示したものであり、実際には、同じ色の光を全方位(Z軸回りの全方向)から照明可能なように照明装置111は円環状又はドーム形状を呈している。投影装置112は、基板15に対し所定のパターンをもつパターン画像PLを投影するパターン投影手段である。投影装置112は、照明装置111の中腹に設けられた開口を通してパターン画像PLを投射する。投影装置112の数は一つでもよいが、パターン画像PLの死角をなくすために複数の投影装置112を設けるとよい。本実施形態では、異なる方位(対角の位置)に2つの投影装置112を配置している。投影装置112としては、デジタルミラーデバイスを用いた方式のDLP(Digital Light Processing)プロジェクタを好ましく利用できる。DLPプロジェクタは投影パターンを変更可能だからである。照明装置111と投影装置112はいずれも撮像装置110で基板15を撮影するときに用いられる照明系であるが、照明装置111はカラーハイライト照明法による形状計測に用いられる照明であり、投影装置112はアクティブ三角測量法による形状計測に用いられる照明である。   The illumination device 111 (111R, 111G, 111B) is illumination means for illuminating the substrate 15 with illumination light (red light RL, green light GL, blue light BL) of different colors (wavelengths). FIG. 1 schematically shows the XZ cross section of the illumination device 111. In fact, the illumination device 111 has an annular shape so as to be able to illuminate light of the same color from all directions (all directions around the Z axis). Or it has a dome shape. The projection device 112 is a pattern projection unit that projects a pattern image PL having a predetermined pattern on the substrate 15. The projection device 112 projects the pattern image PL through an opening provided in the middle of the illumination device 111. Although the number of projection devices 112 may be one, it is preferable to provide a plurality of projection devices 112 in order to eliminate blind spots in the pattern image PL. In this embodiment, two projection devices 112 are arranged in different azimuths (diagonal positions). As the projection device 112, a DLP (Digital Light Processing) projector of a system using a digital mirror device can be preferably used. This is because the DLP projector can change the projection pattern. The illumination device 111 and the projection device 112 are both illumination systems used when photographing the substrate 15 by the imaging device 110, but the illumination device 111 is illumination used for shape measurement by color highlight illumination method, and the projection device An illumination 112 is used for shape measurement by active triangulation.

制御装置12は、基板検査装置1の動作を制御する制御手段であり、ステージ10の移動制御、照明装置111の点灯制御、投影装置112の点灯制御やパターン・光量の変更
、撮像装置110の撮像制御などを担っている。
The control device 12 is a control unit that controls the operation of the substrate inspection device 1 and controls movement of the stage 10, lighting control of the lighting device 111, lighting control of the projection device 112, change of pattern and light amount, imaging of the imaging device 110 It is responsible for control and the like.

情報処理装置13は、撮像装置110から取り込まれた画像データを用いて、部品150やはんだ151に関する各種の計測値を取得したり、部品150の電極や基板上のランド(パッド)に対するはんだ接合の状態を検査する機能を有する装置である。表示装置14は、情報処理装置13で得られた計測値や検査結果を表示する装置である。記憶装置3は、基板検査装置1で使用される検査プログラム、基板検査装置1で得られたデータ(画像、計測結果、検査結果など)などが格納されるデータベースである。検査プログラムとは、基板検査装置1の動作を定義するソフトウェアであり、制御装置12及び情報処理装置13で実行される各種のコンピュータプログラムと、それらのコンピュータプログラムが利用する各種のパラメータデータとを含んでいる。検査プログラムのパラメータデータには、例えば、基板上に存在する部品の情報(品番、位置、サイズなど)、撮像条件(照明装置111と投影装置112の設定値など)、検査エリア(視野)と撮像する順番、部品ごとの検査項目、判定基準値(良/不良を判定するための閾値や値域など)などが定義されている。また、検査プログラムのパラメータデータには、2次反射ノイズの影響を受ける部品(2次反射物体)を特定する情報、当該部品を撮像するときの撮像条件に関する情報なども定義されている。検査プログラムは、検査に先立ちティーチング装置2によって作成され、記憶装置3に登録される(この作業をティーチングと呼ぶ)。   The information processing apparatus 13 acquires various measurement values of the component 150 and the solder 151 by using the image data taken from the imaging apparatus 110, or solders the electrode of the component 150 and a land (pad) on a substrate. It is an apparatus having a function to check the status. The display device 14 is a device that displays the measurement value and the inspection result obtained by the information processing device 13. The storage device 3 is a database in which an inspection program used in the substrate inspection apparatus 1 and data (image, measurement result, inspection result, etc.) obtained by the substrate inspection apparatus 1 and the like are stored. The inspection program is software that defines the operation of the substrate inspection apparatus 1 and includes various computer programs executed by the control device 12 and the information processing device 13 and various parameter data used by those computer programs. It is. The parameter data of the inspection program includes, for example, information (part number, position, size, etc.) of parts present on the substrate, imaging conditions (set values of the illumination device 111 and the projection device 112, etc.), inspection area (field of view) and imaging The order of execution, the inspection item for each part, the determination reference value (such as a threshold value or a value range for determining pass / fail), and the like are defined. Further, in the parameter data of the inspection program, information specifying a part (secondary reflecting object) affected by the secondary reflection noise, information on an imaging condition when imaging the part, and the like are also defined. Prior to the inspection, the inspection program is created by the teaching device 2 and registered in the storage device 3 (this work is called teaching).

制御装置12と情報処理装置13はいずれも、例えば、CPU(中央演算処理装置)、メモリ、補助記憶装置(ハードディスクドライブなど)、入力装置(キーボード、マウス、タッチパネルなど)を有する汎用のコンピュータにより構成することができる。また、ティーチング装置2も、例えば、CPU、メモリ、補助記憶装置、入力装置を有する汎用のコンピュータにより構成することができる。なお、図1では、制御装置12と情報処理装置13と表示装置14とティーチング装置2と記憶装置3を別のブロックで示したが、これらは別体の装置で構成してもよいし、単一の装置で構成してもよい。   Each of the control device 12 and the information processing device 13 includes, for example, a general-purpose computer having a CPU (central processing unit), a memory, an auxiliary storage device (such as a hard disk drive), and an input device (a keyboard, a mouse, a touch panel or the like). can do. The teaching device 2 can also be configured by, for example, a general-purpose computer having a CPU, a memory, an auxiliary storage device, and an input device. Although FIG. 1 shows the control device 12, the information processing device 13, the display device 14, the teaching device 2 and the storage device 3 in separate blocks, they may be configured as separate devices, You may comprise by one apparatus.

(位相シフト法)
アクティブ三角測量法には大別して時間コード化法と空間コード化法とがあり、時間コード化法には光切断法、位相シフト法などがある。本実施形態では一例として位相シフト法について説明する。
(Phase shift method)
Active triangulation methods are roughly classified into time coding method and space coding method, and light coding method and phase shift method are used as time coding method. In this embodiment, a phase shift method will be described as an example.

位相シフト法とは、パターン画像を物体表面に投影したときのパターンの歪みを解析することにより物体表面の三次元情報(高さ情報)を計測する手法の一つである。具体的には、投影装置112を用いて、所定のパターン(例えば輝度が正弦波状に変化する縞状パターン)を基板に投影した状態で撮像装置110で撮影を行う。そうすると、図13に示すように、物体表面には、その凹凸に応じたパターンの歪みが現れる。この処理を、パターン画像の輝度変化の位相を変化させながら複数回(例えば4回)繰り返すことで、図13に示すように輝度特徴の異なる複数枚の画像(以下、位相画像と呼ぶ)が得られる。各画像の同一画素の明るさ(輝度)は縞状パターンの変化と同一の周期で変化するはずであるから、各画素の明るさの変化に対して正弦波を当てはめることで、各画素の位相が分かる。そして、所定の基準位置(テーブル表面、基板表面など)の位相に対する位相差を求めることで、その基準位置からの距離(高さ)を算出することができる。   The phase shift method is one of the methods of measuring three-dimensional information (height information) of the object surface by analyzing distortion of the pattern when the pattern image is projected on the object surface. Specifically, using the projection device 112, imaging is performed by the imaging device 110 in a state where a predetermined pattern (for example, a stripe pattern in which the luminance changes in a sine wave shape) is projected onto the substrate. Then, as shown in FIG. 13, the distortion of the pattern corresponding to the unevenness appears on the surface of the object. By repeating this process a plurality of times (for example, 4 times) while changing the phase of the luminance change of the pattern image, a plurality of images (hereinafter referred to as phase images) having different luminance features can be obtained as shown in FIG. Be Since the brightness (brightness) of the same pixel of each image should change with the same cycle as the change of the stripe pattern, the phase of each pixel can be obtained by applying a sine wave to the change of the brightness of each pixel. I understand. Then, the distance (height) from the reference position can be calculated by obtaining the phase difference with respect to the phase of the predetermined reference position (table surface, substrate surface, etc.).

このように、位相シフト法では、複数枚の画像間での輝度の周期的変化に基づいて物体表面の高さを推定する。したがって、図12で説明したような2次反射ノイズが発生すると、縞状パターンの位相を正確に検出することが困難となり、計測精度の低下を招いてしまう。そこで、本実施形態の基板検査装置1では、撮像装置の視野内に2次反射ノイズの影響を受ける可能性のある部品(2次反射物体)が存在する場合には、パターン画像の投影範囲を制限することで、2次反射ノイズの原因となる部品(原因物体)に光が当たらな
いようにする。これにより2次反射ノイズの発生を抑え、計測精度の低下を防ぐ。
As described above, in the phase shift method, the height of the object surface is estimated based on the periodic change in luminance among a plurality of images. Therefore, when the secondary reflection noise as described in FIG. 12 occurs, it is difficult to accurately detect the phase of the stripe pattern, which results in a decrease in measurement accuracy. Therefore, in the substrate inspection apparatus 1 according to the present embodiment, when there is a component (secondary reflective object) which may be affected by secondary reflection noise in the field of view of the imaging device, the projection range of the pattern image is selected. By limiting, light does not strike the component (causing object) that causes secondary reflection noise. This suppresses the occurrence of secondary reflection noise and prevents the decrease in measurement accuracy.

以下では、2次反射ノイズ対策に関わる処理として、(1)ティーチングの処理と(2)位相シフトによる計測及び検査の処理について具体的に説明する。なお、本実施形態の基板検査システムではカラーハイライト照明法を利用した計測及び検査も行われるが、それらについては公知の手法を利用できるため説明を省略する。また、ティーチング処理の前(例えば基板検査装置1の製造時や装置設置時など)に、撮像装置110の視野位置の調整やフォーカスの調整、、投影装置112のメモリへのパターン画像の書き込み、投影装置112の分解能・フォーカス・光量・投影位置の調整、通常(標準)の撮像条件の設定などが行われているものとする。   In the following, (1) teaching processing and (2) processing of measurement and inspection based on phase shift will be specifically described as processing relating to measures against secondary reflection noise. In addition, although measurement and inspection using a color highlight illumination method are also performed in the substrate inspection system of the present embodiment, a publicly known method can be used for them, and the description thereof will be omitted. In addition, before the teaching process (for example, at the time of manufacture or installation of the substrate inspection apparatus 1), adjustment of the visual field position of the imaging device 110 and adjustment of focus, writing of a pattern image to the memory of the projection device 112, projection It is assumed that the adjustment of the resolution, focus, light quantity, and projection position of the apparatus 112, the setting of the normal (standard) imaging conditions, and the like are performed.

(1)ティーチング
図2は、ティーチング処理の流れを示すフローチャートである。
(1) Teaching FIG. 2 is a flowchart showing a flow of teaching processing.

ティーチング用のサンプル基板を基板検査装置1のステージ10にセットし、ティーチング装置2に対しティーチング処理の開始(検査プログラム作成開始)の指示を入力すると、図2の処理が開始される。サンプル基板としては、検査対象物体となる部品等がすべて正しい状態で実装された良品基板を用いるとよい。各検査対象物体の正解の高さ・位置を検査プログラムに登録するためである。また、2次反射ノイズが発生し得る部品をもれなく検出するためである。   When a sample substrate for teaching is set on the stage 10 of the substrate inspection apparatus 1 and an instruction to start teaching processing (inspection program creation start) is input to the teaching apparatus 2, the processing of FIG. 2 is started. As the sample substrate, it is preferable to use a non-defective substrate on which all parts to be inspected and the like are mounted in a correct state. This is to register the height and position of the correct answer of each inspection target object in the inspection program. Moreover, it is for detecting components which may generate secondary reflection noise without omission.

ステップS200では、制御装置12が、ステージ10を制御し、サンプル基板上の検査エリアを撮像装置110の視野内に移動させる。ステップS201では、制御装置12が照明装置111を全点灯し(又は、投影装置112からパターンのない均一白色光を投影し)、撮像装置110に撮像させる(ここで取得された画像を以後「パターンなし画像」と呼ぶ)。次にステップS202では、制御装置12が、投影装置112に縞状パターンのパターン画像を投影させ、撮像装置110に位相画像を撮像させる。このとき、縞状パターンの位相を変化させながら複数枚(例えば4枚)の位相画像が撮像される。ステップS201及びステップS202で得られたパターンなし画像及び位相画像は、ティーチング装置2に取り込まれる。   In step S200, the control device 12 controls the stage 10 to move the inspection area on the sample substrate into the field of view of the imaging device 110. In step S201, the control device 12 turns on the illumination device 111 entirely (or projects uniform white light without a pattern from the projection device 112), and causes the imaging device 110 to capture (here, the image acquired No image called "). Next, in step S202, the control device 12 causes the projection device 112 to project a pattern image of a stripe pattern, and causes the imaging device 110 to capture a phase image. At this time, a plurality of (for example, four) phase images are captured while changing the phase of the stripe pattern. The pattern-free image and the phase image obtained in step S201 and step S202 are taken into the teaching device 2.

ティーチング装置2は、基板上に存在する複数の検査対象物体のそれぞれに対し、検査ウィンドウを設定する(ステップS203)。検査ウィンドウは、検査対象物体の位置及びサイズを特定するための情報であり、例えば、検査対象物体の外接矩形などで定義される。検査ウィンドウの設定は、基板のCAD情報を参照して自動で設定してもよいし、作業者が手動で設定してもよい。手動設定の場合は、基板のパターンなし画像を画面表示し、マウスなどを利用して画像上で検査ウィンドウの領域指定をできるようにすると、操作が簡便である。検査対象物体の典型は部品であるが、部品以外の物体(例えば、電極などの部品の一部、ランド、はんだ、配線など)を検査対象物体に設定してもよい。その後、ティーチング装置2が、各検査対象物体に対し、検査パラメータ(検査項目、判定基準値など)を設定する(ステップS204)。検査パラメータの設定については従来のティーチングと同じであるため説明を割愛する。   The teaching device 2 sets an inspection window for each of the plurality of inspection target objects present on the substrate (step S203). The inspection window is information for specifying the position and size of the inspection target object, and is defined by, for example, a circumscribed rectangle of the inspection target object. The setting of the inspection window may be set automatically with reference to the CAD information of the substrate, or may be set manually by the operator. In the case of the manual setting, it is easy to operate by displaying the patternless image of the substrate on the screen and making it possible to designate the area of the inspection window on the image using a mouse or the like. Although the typical inspection object is a component, an object other than the component (for example, a part of a component such as an electrode, land, solder, wiring, etc.) may be set as the inspection object. Thereafter, the teaching device 2 sets inspection parameters (inspection items, determination reference values, etc.) for each inspection target object (step S204). The setting of the inspection parameter is the same as the conventional teaching, so the description will be omitted.

続いて、2次反射抑制用のティーチングが実施される。まずステップS205において、検査ウィンドウを設定した複数の検査対象物体のなかに、2次反射物体が存在するか否かを判断し、検出された2次反射物体に対してフラグを付ける処理を行う。ステップS205の処理は、ティーチング装置2が自動で検出・設定する処理でもよいし、作業者が目視で検出し手動設定する処理でもよい。自動検出の方法としては、ステップS202で取得した位相画像における投影パターンの信頼度、鮮明度、輝度を評価する方法や、その位相画像から算出した高さ情報のばらつき、誤差を評価する方法などを用いることができる
。あるいは、基板のCAD情報から各物体の高さ及び位置関係を取得し、投影パターンの入射角、物体の高さ、物体間の距離に基づく幾何学的な計算により、2次反射物体を検出することもできる。一方、手動設定の場合は、基板のパターンなし画像を画面表示し、マウスなどを利用して画面上で2次反射物体を選択できるようにすればよい。
Subsequently, teaching for suppressing secondary reflection is performed. First, in step S205, it is determined whether or not there is a secondary reflecting object among a plurality of inspection target objects for which an inspection window has been set, and a process of adding a flag to the detected secondary reflecting object is performed. The processing in step S205 may be processing that the teaching device 2 automatically detects and sets, or processing that an operator visually detects and sets manually. As a method of automatic detection, a method of evaluating the reliability, sharpness, and luminance of the projection pattern in the phase image acquired in step S202, a method of evaluating variation in height information calculated from the phase image, and the like It can be used. Alternatively, the height and positional relationship of each object is acquired from the CAD information of the substrate, and the secondary reflection object is detected by geometrical calculation based on the incident angle of the projection pattern, the height of the object, and the distance between the objects. It can also be done. On the other hand, in the case of manual setting, a patternless image of the substrate may be displayed on the screen, and a secondary reflective object may be selected on the screen using a mouse or the like.

続いて、ティーチング装置2は、フラグが付された2次反射物体に対し(ステップS206;YES)、2次反射抑制用の撮像条件を設定する(ステップS207)。本実施形態では、検査時に「2次反射物体を撮像装置110の視野中心に移動し、2次反射物体を包含する領域にのみパターン画像を投影して撮像する」という処理を行うため、撮像条件としては、少なくとも、2次反射物体を撮像するときの視野位置を定義する条件と、パターン画像の投影範囲(又は投影サイズ)を定義する条件とが設定される。なお、画像中に複数の2次反射物体が存在する場合は、それぞれの2次反射物体に対し個別に2次反射抑制用の撮像条件を設定してもよいし、近接する複数の2次反射物体を1つのグループとして、グループ単位で2次反射抑制用の撮像条件を設定してもよい。   Subsequently, the teaching device 2 sets an imaging condition for secondary reflection suppression with respect to the secondary reflective object to which the flag is attached (step S206; YES) (step S207). In this embodiment, at the time of inspection, the processing of “move the secondary reflective object to the center of the field of view of the imaging device 110 and project and capture the pattern image only on the area including the secondary reflective object” is performed. As at least, a condition that defines a view position when imaging a secondary reflective object, and a condition that defines a projection range (or projection size) of a pattern image are set. When a plurality of secondary reflection objects are present in the image, imaging conditions for secondary reflection suppression may be set individually for each secondary reflection object, or a plurality of secondary reflections adjacent to each other may be set. Objects may be set as one group, and imaging conditions for secondary reflection suppression may be set in group units.

以上で、ステップS200で設定した検査エリアに対するティーチングが終了する。基板のサイズが撮像装置110の視野よりも大きい場合には、検査エリアを変更してステップS200〜S207の処理を繰り返す(ステップS208)。例えば、基板のサイズが210mm×210mmで、撮像装置110の視野が30mm×30mmの場合には、7×7=49の検査エリアに対しティーチングが行われる。最後に、ティーチング装置2が検査プログラムを記憶装置3に格納し、処理を終了する(ステップS209)。なお、基板上の全ての検査対象物体に対する設定が完了した後、検査時の撮像回数やステージ10の移動距離を最小とするように、検査時の検査エリアの位置及びそのスキャン順を最適化する処理を行ってもよい。   Above, teaching to the inspection area set up at Step S200 is completed. If the size of the substrate is larger than the field of view of the imaging device 110, the inspection area is changed and the processing of steps S200 to S207 is repeated (step S208). For example, when the size of the substrate is 210 mm × 210 mm and the field of view of the imaging device 110 is 30 mm × 30 mm, teaching is performed on a 7 × 7 = 49 inspection area. Finally, the teaching device 2 stores the inspection program in the storage device 3, and the process ends (step S209). In addition, after setting for all objects to be inspected on the substrate is completed, the position of the inspection area at the time of inspection and the scan order thereof are optimized so as to minimize the number of imaging times at the time of inspection and the moving distance of the stage 10. You may process.

(2)位相シフトによる計測及び検査
図3のフローチャートを参照して、基板検査装置1における検査処理の一例を説明する。図3は、第1実施形態における位相シフトによる計測及び検査の流れを示している。これらの処理は、情報処理装置13及び制御装置12が検査プログラムに従ってステージ10、撮像装置110、照明装置111、投影装置112を制御することにより実施される。
(2) Measurement and Inspection Based on Phase Shift An example of inspection processing in the substrate inspection apparatus 1 will be described with reference to the flowchart in FIG. FIG. 3 shows the flow of measurement and inspection based on phase shift in the first embodiment. These processes are implemented by the information processing device 13 and the control device 12 controlling the stage 10, the imaging device 110, the illumination device 111, and the projection device 112 according to the inspection program.

検査対象となる基板がステージ10上に搬入されると、制御装置12は、基板上のフィデューシャルマークに基づき基板の位置調整を行った後(ステップS300)、最初の検査エリアを撮像装置110の視野に合わせる(ステップS301)。図4の(1)は、視野41内の基板を模式的に示している。この例では、視野41内に2つのチップ部品42a、42bと背の高いコネクタ部品43が含まれている。   When the substrate to be inspected is carried onto the stage 10, the controller 12 adjusts the position of the substrate based on the fiducial marks on the substrate (step S300), and then the imaging device 110 is used to scan the first inspection area. (Step S301). (1) of FIG. 4 schematically shows the substrate in the field of view 41. In this example, two chip parts 42 a, 42 b and a tall connector part 43 are included in the field of view 41.

まずは視野(検査エリア)41の全体を撮像するため、制御装置12は、投影装置112の投影パターンを「通常パターン画像」に設定する(ステップS302)。通常パターン画像とは、撮像装置110の視野41の略全体に縞状パターンを投影するための画像である。図4の(2)は通常パターン画像を投影したときの視野の状態の例である。   First, in order to image the entire visual field (inspection area) 41, the control device 12 sets the projection pattern of the projection device 112 to the "normal pattern image" (step S302). The normal pattern image is an image for projecting a stripe pattern on substantially the entire field of view 41 of the imaging device 110. (2) of FIG. 4 is an example of the state of the field of view when the normal pattern image is projected.

図5に、投影装置112から投影可能なパターン画像の種類を模式的に示す。本実施形態では、投影装置112のメモリ(パターン画像記憶部)50内に、通常パターン画像51に加え、サイズ違いの5種類の2次反射抑制パターン画像52〜56の、計6種類のデータが格納されている。2次反射抑制パターン画像52、53、54、55、56は、それぞれ、視野41の中心の2mm×2mm、4mm×4mm、6mm×6mm、8mm×8mm、10mm×10mmの範囲に縞状パターンを投影するための画像である。つまり、2次反射抑制パターン画像52〜56は、パターン画像の投影範囲を視野41の一部分
に制限した画像である。なお、図5では、各投影サイズについて1枚の画像のみ示しているが、実際には、各投影サイズについて位相の異なる複数枚(例えば4枚)の画像が用意される。また、計測レンジを拡大するために、パターンの周期を変えた画像を用意してもよい。
FIG. 5 schematically shows types of pattern images that can be projected from the projection device 112. In this embodiment, in addition to the normal pattern image 51, a total of six types of data of five types of secondary reflection suppression pattern images 52 to 56 of different sizes are included in the memory (pattern image storage unit) 50 of the projection device 112. It is stored. The secondary reflection suppression pattern images 52, 53, 54, 55, 56 respectively have striped patterns in the range of 2 mm × 2 mm, 4 mm × 4 mm, 6 mm × 6 mm, 8 mm × 8 mm, 10 mm × 10 mm at the center of the visual field 41 It is an image for projection. That is, the secondary reflection suppression pattern images 52 to 56 are images in which the projection range of the pattern image is limited to a part of the field of view 41. Although only one image is shown for each projection size in FIG. 5, actually, a plurality of (for example, four) images having different phases are prepared for each projection size. Further, in order to expand the measurement range, an image in which the pattern cycle is changed may be prepared.

ステップS303では、制御装置12は、投影装置112から投影する通常パターン画像51の位相を切り替えながら、撮像装置110に撮像させる。これにより、複数枚の位相画像が得られる(ステップS303で取得した位相画像を「通常位相画像」と呼ぶ)。取得した位相画像のデータは情報処理装置13に取り込まれる。ステップS304では、情報処理装置13が、ステップS303で得られた通常位相画像データを用いて各画素の輝度変化の位相を解析することで、各画素の高さを計算する。計算された高さ情報は、基板表面からの高さ(Z位置)を画素値で表現した画像データ(高さデータと呼ぶ)の形式で保存される。図4の(3)は高さデータの一例を示す。基板表面が黒色(画素値:0)で示され、基板表面からの高さが大きくなるほど明るく(画素値が大きく)なる。   In step S303, the control device 12 causes the imaging device 110 to capture an image while switching the phase of the normal pattern image 51 projected from the projection device 112. Thereby, a plurality of phase images are obtained (the phase image acquired in step S303 is referred to as a "normal phase image"). Data of the acquired phase image is taken into the information processing device 13. In step S304, the information processing device 13 calculates the height of each pixel by analyzing the phase of the luminance change of each pixel using the normal phase image data obtained in step S303. The calculated height information is stored in the form of image data (referred to as height data) in which the height (Z position) from the substrate surface is represented by pixel values. (3) of FIG. 4 shows an example of height data. The substrate surface is shown in black (pixel value: 0), and becomes brighter (pixel value becomes larger) as the height from the substrate surface becomes larger.

次に、制御装置12は、検査プログラムを参照して、現在の視野41内に2次反射物体のフラグが付された検査対象物体が存在するか否かを判断する(ステップS305)。2次反射物体が存在した場合、制御装置12は、検査プログラム内の2次反射抑制用の撮像条件に従って、当該2次反射物体を撮像装置110の視野中心に移動し(ステップS306)、投影装置112の投影パターンを適切な「2次反射抑制パターン画像」に変更する(ステップS307)。   Next, the control device 12 refers to the inspection program and determines whether or not there is an inspection target object with a flag of a secondary reflective object in the current visual field 41 (step S305). If there is a secondary reflective object, the control device 12 moves the secondary reflective object to the center of the field of view of the imaging device 110 according to the imaging condition for secondary reflection suppression in the inspection program (step S306), and the projection device The projection pattern 112 is changed to an appropriate "secondary reflection suppression pattern image" (step S307).

例えば、コネクタ部品43の右側面が反射面となり、投影装置112からの光がチップ部品42aの上面に反射され、チップ部品42aに2次反射ノイズが発生しているとする。その場合、図4の(4)に示すように、チップ部品42aの中心が視野41の中心に一致するようチップ部品42aを移動し、図4の(5)に示すように、チップ部品42aにのみ縞状パターンが当たるように投影範囲を制限する。チップ部品42aのサイズが例えば2mm×5mmであれば、その部品サイズよりも投影サイズが大きい2次反射抑制パターン画像54〜56のいずれかが用いられる。ただし、2次反射ノイズの原因であるコネクタ部品43の反射面(右側面)には縞状パターンが当たらないようにする。   For example, it is assumed that the right side surface of the connector component 43 is a reflection surface, light from the projection device 112 is reflected by the top surface of the chip component 42a, and secondary reflection noise is generated in the chip component 42a. In that case, as shown in (4) of FIG. 4, the chip component 42a is moved so that the center of the chip component 42a coincides with the center of the visual field 41, and as shown in (5) of FIG. Limit the projection range so that only striped patterns hit. If the size of the chip component 42a is, for example, 2 mm × 5 mm, any one of the secondary reflection suppression pattern images 54 to 56 having a projection size larger than the component size is used. However, the stripe pattern does not hit the reflection surface (right side surface) of the connector part 43 which is the cause of the secondary reflection noise.

そして、ステップS308において、制御装置12は、投影装置112から投影する2次反射抑制パターン画像の位相を切り替えながら、撮像装置110に撮像させ、複数枚の位相画像を取得する(ステップS308で取得した位相画像を「2次反射抑制位相画像」と呼ぶ)。取得した位相画像データは情報処理装置13に取り込まれる。ステップS309では、情報処理装置13が、ステップS308で得られた2次反射抑制位相画像データを用いてステップS304と同様の処理を行い、2次反射物体の部分の高さデータを生成する。このとき、2次反射抑制位相画像データに不足している情報(例えば、基板表面の高さ情報、2次反射物体周辺の高さ情報など)は、通常位相画像データから抽出された情報を利用するとよい。視野41内に他にも2次反射物体が存在する場合はステップS306〜S309の処理が繰り返され、各2次反射物体の高さデータが取得される。図4の(6)は2次反射物体の高さデータの一例である。   Then, in step S308, the control device 12 causes the imaging device 110 to capture images while switching the phase of the secondary reflection suppression pattern image projected from the projection device 112, and acquires a plurality of phase images (acquired in step S308) The phase image is called "secondary reflection suppression phase image"). The acquired phase image data is taken into the information processing device 13. In step S309, the information processing device 13 performs processing similar to that in step S304 using the secondary reflection suppression phase image data obtained in step S308 to generate height data of a portion of the secondary reflective object. At this time, information lacking in the secondary reflection suppression phase image data (for example, height information of the substrate surface, height information around the secondary reflective object, etc.) usually uses information extracted from the phase image data. It is good to do. When there are other secondary reflective objects in the field of view 41, the processing of steps S306 to S309 is repeated, and height data of each secondary reflective object is acquired. (6) of FIG. 4 is an example of height data of the secondary reflective object.

ステップS310では、情報処理装置13が、ステップS304で生成した視野全体の高さデータと、ステップS309で生成した2次反射物体の高さデータとを合成する。合成方法としては、視野全体の高さデータ中の該当部分のデータを2次反射物体の高さデータに置き換える方法、視野全体の高さデータ中の該当部分のデータと2次反射物体の高さデータの平均又は重み付け平均を求める方法など、どのような画像合成方法を用いてもよい。これにより、図4の(7)に示すように、2次反射ノイズが抑制された高さデータを得ることができる。   In step S310, the information processing device 13 combines the height data of the entire visual field generated in step S304 with the height data of the secondary reflective object generated in step S309. As a synthesizing method, a method of replacing the data of the corresponding part in the height data of the whole visual field with the height data of the secondary reflecting object, the data of the corresponding part in the height data of the whole visual field and the height of the secondary reflecting object Any image combining method may be used, such as a method of determining an average or weighted average of data. Thereby, as shown to (7) of FIG. 4, the height data by which secondary reflection noise was suppressed can be obtained.

ステップS301〜S310の処理を基板上のすべての検査エリアに対し実行した後(ステップS311)、情報処理装置13は、ステップS310で得られた合成後の高さデータを用いて、各検査対象物体の検査(例えば、部品浮き、はんだフィレット不良など)を行い、結果を出力する(ステップS312)。以上で1つの基板に対する計測及び検査処理が完了する。   After executing the processing of steps S301 to S310 on all inspection areas on the substrate (step S311), the information processing apparatus 13 uses the height data after composition obtained in step S310 to execute each inspection object object Inspection (for example, component floating, solder fillet failure, etc.), and the result is output (step S312). Thus, the measurement and inspection process for one substrate is completed.

(本実施形態の利点)
本実施形態の構成によれば、撮像装置110の視野41内に2次反射物体(例:チップ部品42a)が存在する場合に、2次反射の原因となる原因物体(例:コネクタ部品43)の反射面に光が当たらないようにパターン画像の投影範囲が変更される。したがって、2次反射ノイズの発生を抑え、検査対象物体上の投影パターンを正確に撮像(観測)することができ、検査対象物体の計測及び検査の精度を向上することができる。
(Advantages of the present embodiment)
According to the configuration of the present embodiment, when there is a secondary reflective object (for example: chip component 42a) in the field of view 41 of the imaging device 110, the cause object (for example: connector component 43) that causes secondary reflection The projection range of the pattern image is changed so that light does not hit the reflective surface of. Therefore, the generation of secondary reflection noise can be suppressed, and the projection pattern on the inspection target object can be accurately imaged (observed), and the accuracy of measurement and inspection of the inspection target object can be improved.

また本実施形態では、投影装置112のパターン画像記憶部50のなかに複数種類のパターン画像のデータを予め用意しておくので、(その都度パターン画像を生成するのに比べて)パターン画像の切り替え処理を簡単化することができる。   Further, in the present embodiment, since data of a plurality of types of pattern images are prepared in advance in the pattern image storage unit 50 of the projection device 112, switching of pattern images (compared to generation of a pattern image each time) Processing can be simplified.

さらに、2次反射物体を視野中心に移動して2次反射抑制用の撮像を行うので、サイズや形状がほぼ同じ物体に対して同じ2次反射抑制パターン画像を共通に使用でき、予め用意しておくパターン画像の数を大幅に減らすことができる。通常、投影装置112に内蔵されているパターン画像記憶部(メモリ)50の記憶容量は限られているので、パターン画像の数(データ容量)を減らすことができるのは実用上のメリットが大きい。しかも、視野中心は、撮像装置110の光学系の収差が最も小さいとともに、投影パターンの歪み(投影装置112の光学系の収差による歪)も最も小さいので、計測及び検査の精度をより一層向上することが期待できる。   Furthermore, since the secondary reflection object is moved to the center of the field of view to perform imaging for secondary reflection suppression, the same secondary reflection suppression pattern image can be commonly used for objects of substantially the same size and shape, and prepared in advance. The number of pattern images to be stored can be significantly reduced. Usually, the storage capacity of the pattern image storage unit (memory) 50 built in the projection device 112 is limited, so that the number of pattern images (data capacity) can be reduced, which is a great practical advantage. Moreover, since the visual field center has the smallest aberration of the optical system of the imaging device 110 and the smallest distortion of the projection pattern (the distortion due to the aberration of the optical system of the projection device 112), the accuracy of measurement and inspection is further improved. Can be expected.

なお、本実施形態では視野中心に2次反射物体を移動したが、本発明の範囲はこれに限定されない。2次反射物体が撮像装置110の視野内の所定位置にくるように2次反射物体を移動した後、投影及び撮像を行うようにすれば、少なくとも、2次反射ノイズの抑制、パターン画像の切り替え処理の簡単化、パターン画像の共通化の作用効果を得ることができる。   In the present embodiment, the secondary reflective object is moved to the center of the visual field, but the scope of the present invention is not limited to this. After projection and imaging are performed after moving the secondary reflective object so that the secondary reflective object comes to a predetermined position in the field of view of the imaging device 110, at least suppression of secondary reflective noise, switching of the pattern image The effects of simplification of processing and commonality of pattern images can be obtained.

<第2実施形態>
次に本発明の第2実施形態について説明する。上記第1実施形態では、2次反射物体を視野中心に移動して撮像したのに対し、第2実施形態は、2次反射物体の視野内位置は変えずに、2次反射物体の位置及びサイズに合わせて適切な投影範囲をもつパターン画像を生成し投影する点に特徴がある。基板検査システムの基本構成は第1実施形態のものと同様であるため、以下では、本実施形態に特有の構成及び動作を主に説明する。
Second Embodiment
Next, a second embodiment of the present invention will be described. In the first embodiment, while the secondary reflective object is moved to the center of the field of view and imaged, in the second embodiment, the position of the secondary reflective object and the position of the secondary reflective object are not changed. It is characterized in that a pattern image having an appropriate projection range is generated and projected according to the size. The basic configuration of the substrate inspection system is the same as that of the first embodiment, and therefore, the configuration and operation specific to this embodiment will be mainly described below.

図6及び図7を参照して、第2実施形態における位相シフトによる計測及び検査の流れを説明する。図6は計測及び検査の流れを示すフローチャートであり、図7は計測及び検査の流れを示す模式図である。   The flow of measurement and inspection based on phase shift in the second embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 is a flowchart showing the flow of measurement and inspection, and FIG. 7 is a schematic view showing the flow of measurement and inspection.

まず、第1実施形態と同様に、通常パターン画像を用いて視野全体を撮像し、通常位相画像に基づき視野全体の高さデータを計算する(図6のステップS300〜S304、図7の(1)〜(3))。   First, as in the first embodiment, the entire field of view is imaged using the normal pattern image, and height data of the entire field of view is calculated based on the normal phase image (steps S300 to S304 in FIG. )-(3)).

その後、制御装置12は、検査プログラムを参照して、現在の視野41内に2次反射物体のフラグが付された検査対象物体が存在するか否かを判断する(ステップS305)。
2次反射物体が存在した場合、制御装置12は、検査プログラム内の2次反射抑制用の撮像条件に従って、当該2次反射物体の撮像に用いる2次反射抑制パターン画像を生成する(ステップS600)。2次反射抑制用の撮像条件としては、2次反射物体の位置及びサイズの情報(例えば、2次反射物体を包含する矩形(近接する複数の2次反射物体を1つのグループとして一緒に撮像する場合には、グループに属する複数の2次反射物体を包含する矩形)の左上点と右下点の座標値)が与えられる。そして、制御装置12は、生成した2次反射抑制パターン画像のデータを投影装置112のメモリに書き込み、投影装置112の投影パターンを変更する(ステップS601)。これ以降の処理(ステップS308〜S312)は、第1実施形態の処理と同じである。
Thereafter, the control device 12 refers to the inspection program and determines whether or not there is an inspection target object with the flag of the secondary reflection object present in the current visual field 41 (step S305).
If there is a secondary reflection object, the control device 12 generates a secondary reflection suppression pattern image used for imaging the secondary reflection object according to the imaging condition for secondary reflection suppression in the inspection program (step S600). . Information on the position and size of the secondary reflective object (for example, a rectangle including secondary reflective objects (a plurality of neighboring secondary reflective objects are imaged together as one group) as imaging conditions for secondary reflection suppression In this case, the coordinate values of the upper left point and the lower right point of the rectangle including the plurality of secondary reflective objects belonging to the group are given. Then, the control device 12 writes the data of the generated secondary reflection suppression pattern image into the memory of the projection device 112, and changes the projection pattern of the projection device 112 (step S601). The subsequent processing (steps S308 to S312) is the same as the processing of the first embodiment.

本実施形態の構成によれば、図7の(4)に示すように、チップ部品42aの視野内位置はそのままで、2次反射物体(チップ部品42a)を投影範囲に含むが原因物体(コネクタ部品43)の反射面は投影範囲から外れるような2次反射抑制パターン画像が自動生成され、投影される。したがって、2次反射ノイズの発生を抑え、検査対象物体上の投影パターンを正確に撮像(観測)することができ、検査対象物体の計測及び検査の精度を向上することができる。   According to the configuration of the present embodiment, as shown in (4) of FIG. 7, the position within the field of view of the chip component 42a remains unchanged, and the secondary reflective object (chip component 42a) is included in the projection range. In the reflection surface of the part 43), a secondary reflection suppression pattern image which is out of the projection range is automatically generated and projected. Therefore, the generation of secondary reflection noise can be suppressed, and the projection pattern on the inspection target object can be accurately imaged (observed), and the accuracy of measurement and inspection of the inspection target object can be improved.

また本実施形態では、2次反射物体の位置及びサイズに応じて最適な投影範囲を実現することができるため、ノイズの発生を可及的に抑え、計測及び検査の精度のさらなる向上を期待できる。しかも、2次反射物体の視野内位置を変更する必要がないので、ステージ移動などの物理的な駆動を減らすことができ、処理時間の短縮を図ることができる。   Further, in the present embodiment, since an optimum projection range can be realized according to the position and size of the secondary reflective object, generation of noise can be suppressed as much as possible, and further improvement in the accuracy of measurement and inspection can be expected. . Moreover, since it is not necessary to change the position within the field of view of the secondary reflective object, physical drive such as stage movement can be reduced, and processing time can be shortened.

なお、本実施形態では検査時に2次反射抑制パターン画像を生成したが、ティーチング時にあらかじめ2次反射物体ごとの2次反射抑制パターン画像を生成し記憶しておいてもよい。投影装置112内のパターン画像記憶部(メモリ)に十分な記憶容量がある場合には、投影装置112にあらかじめ全てのパターン画像のデータを書き込んでおけばよい。投影装置112の記憶容量が十分でない場合は、記憶装置3内又は情報処理装置13の補助記憶装置内のパターン画像記憶部にパターン画像のデータを格納しておき、必要なときに必要なパターン画像のデータを、制御装置12が読み込み使用すればよい。   In the present embodiment, the secondary reflection suppression pattern image is generated at the inspection time, but the secondary reflection suppression pattern image for each secondary reflection object may be generated and stored in advance at the time of teaching. If the pattern image storage unit (memory) in the projection device 112 has a sufficient storage capacity, data of all pattern images may be written in the projection device 112 in advance. If the storage capacity of the projection device 112 is not sufficient, data of the pattern image is stored in the pattern image storage unit in the storage device 3 or in the auxiliary storage device of the information processing device 13, and the pattern image required when necessary. The controller 12 may read and use the data of.

<第3実施形態>
次に本発明の第3実施形態について説明する。視野内に2次反射物体が存在する場合に、第1及び第2実施形態では、通常パターン画像を用いた視野全体の撮像と、2次反射抑制パターン画像を用いた2次反射物体の撮像とを実行した。これに対し、第3実施形態では、通常パターン画像の代わりに、原因物体の反射面に光が当たらないような投影範囲をもつ2次反射抑制パターン画像を用いて視野全体を撮像する点に特徴がある。基板検査システムの基本構成は第1実施形態のものと同様であるため、以下では、本実施形態に特有の構成及び動作を主に説明する。
Third Embodiment
Next, a third embodiment of the present invention will be described. When there is a secondary reflective object in the field of view, in the first and second embodiments, imaging of the entire field of view using a normal pattern image and imaging of a secondary reflective object using a secondary reflection suppression pattern image Was done. On the other hand, the third embodiment is characterized in that the entire field of view is imaged using a secondary reflection suppression pattern image having a projection range such that light does not hit the reflection surface of the cause object instead of the normal pattern image. There is. The basic configuration of the substrate inspection system is the same as that of the first embodiment, and therefore, the configuration and operation specific to this embodiment will be mainly described below.

図8及び図9を参照して、第3実施形態における位相シフトによる計測及び検査の流れを説明する。図8は計測及び検査の流れを示すフローチャートであり、図9は計測及び検査の流れを示す模式図である。   The flow of measurement and inspection based on phase shift in the third embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is a flowchart showing the flow of measurement and inspection, and FIG. 9 is a schematic view showing the flow of measurement and inspection.

まず、第1実施形態と同様に、検査対象となる基板を搬入し、最初の検査エリアを撮像装置110の視野に合わせる(図8のステップS300〜S301、図9の(1))。制御装置12は、検査プログラムを参照して、現在の視野41内に2次反射物体のフラグが付された検査対象物体が存在するか否かを判断する(ステップS800)。2次反射物体が存在しない場合(ステップS800;NO)、制御装置12は、投影装置112の投影パターンを通常パターン画像に設定する(ステップS801)。   First, as in the first embodiment, a substrate to be inspected is carried in, and the first inspection area is adjusted to the field of view of the imaging device 110 (steps S300 to S301 in FIG. 8, (1) in FIG. 9). The control device 12 refers to the inspection program and determines whether or not there is an inspection target object with the flag of the secondary reflective object in the current visual field 41 (step S800). When there is no secondary reflective object (step S800; NO), the control device 12 sets the projection pattern of the projection device 112 as a normal pattern image (step S801).

一方、2次反射物体が存在する場合(ステップS800;YES)、制御装置12は、検査プログラム内の2次反射抑制用の撮像条件を基に2次反射抑制パターン画像を生成する(ステップS802)。本実施形態では、2次反射抑制用の撮像条件として、原因物体であるコネクタ部品43の反射面の位置及びサイズの情報(例えば、反射面に光を当てないために投影範囲から除外すべき矩形領域の左上点と右下点の座標値)が与えられる。また、2次反射抑制パターン画像としては、図9の(2)に示すように、通常パターン画像の投影範囲から原因物体(コネクタ部品43)の反射面を含む部分90を除いた投影範囲をもつ画像が生成される。制御装置12は、生成した2次反射抑制パターン画像のデータを投影装置112のメモリに書き込み、投影装置112の投影パターンを2次反射抑制パターン画像に設定する(ステップS803)。   On the other hand, when there is a secondary reflection object (step S800; YES), the control device 12 generates a secondary reflection suppression pattern image based on the imaging condition for secondary reflection suppression in the inspection program (step S802). . In the present embodiment, information on the position and size of the reflective surface of the connector part 43 which is the cause object (for example, a rectangle to be excluded from the projection range in order not to apply light to the reflective surface) as imaging conditions for secondary reflection suppression The coordinate values of the upper left and lower right points of the region are given. In addition, as the secondary reflection suppression pattern image, as shown in (2) of FIG. 9, it has a projection range excluding a portion 90 including the reflection surface of the cause object (connector part 43) from the projection range of the normal pattern image. An image is generated. The control device 12 writes the data of the generated secondary reflection suppression pattern image in the memory of the projection device 112, and sets the projection pattern of the projection device 112 as a secondary reflection suppression pattern image (step S803).

その後、ステップS801又はS803で設定されたパターン画像を用いて位相画像の撮像が行われ(ステップS804)、情報処理装置13にて高さデータが計算される(ステップS805)。これ以降の処理(ステップS311〜S312)は第1実施形態の処理と同じである。   Thereafter, imaging of a phase image is performed using the pattern image set in step S801 or S803 (step S804), and height data is calculated by the information processing apparatus 13 (step S805). The subsequent processing (steps S311 to S312) is the same as the processing of the first embodiment.

本実施形態の構成によれば、図9の(2)に示すように、視野41内に2次反射物体(チップ部品42a)が存在する場合、反射面を含む部分90に光が当たらないような投影範囲をもつ2次反射抑制パターン画像が自動生成され、投影される。したがって、2次反射ノイズの発生を抑え、検査対象物体上の投影パターンを正確に撮像(観測)することができ、検査対象物体の計測及び検査の精度を向上することができる。   According to the configuration of the present embodiment, as shown in (2) of FIG. 9, when there is a secondary reflective object (chip component 42a) in the field of view 41, light does not strike the portion 90 including the reflective surface. The secondary reflection suppression pattern image with various projection range is automatically generated and projected. Therefore, the generation of secondary reflection noise can be suppressed, and the projection pattern on the inspection target object can be accurately imaged (observed), and the accuracy of measurement and inspection of the inspection target object can be improved.

また本実施形態では、反射面以外の領域にはパターン画像が投影されるため、パターン画像の投影範囲を最大限大きくすることができる。これにより、1回の投影及び撮像で計測できる物体の数を可及的に大きくすることができ(例えば、図9(2)、(3)の例では1回の投影及び撮像で視野内の全ての物体の高さデータを取得できる。)、第1及び第2実施形態に比べて撮像回数の削減ならびに処理時間の短縮を図ることができる。   Further, in the present embodiment, since the pattern image is projected on the area other than the reflective surface, the projection range of the pattern image can be maximized. As a result, the number of objects that can be measured in one projection and imaging can be increased as much as possible (for example, in the example of FIGS. 9 (2) and (3), the number of objects in the field of view in one projection and imaging) The height data of all objects can be acquired.) The number of imaging times can be reduced and the processing time can be shortened as compared with the first and second embodiments.

なお、本実施形態では検査時に2次反射抑制パターン画像を生成したが、ティーチング時にあらかじめ検査エリアごとの2次反射抑制パターン画像を生成し記憶しておいてもよい。投影装置112内のパターン画像記憶部(メモリ)に十分な記憶容量がある場合には、投影装置112にあらかじめ全てのパターン画像のデータを書き込んでおけばよい。投影装置112の記憶容量が十分でない場合は、記憶装置3内又は情報処理装置13の補助記憶装置内のパターン画像記憶部にパターン画像のデータを格納しておき、必要なときに必要なパターン画像のデータを、制御装置12が読み込み使用すればよい。   In the present embodiment, the secondary reflection suppression pattern image is generated at the inspection time, but the secondary reflection suppression pattern image for each inspection area may be generated and stored in advance at the time of teaching. If the pattern image storage unit (memory) in the projection device 112 has a sufficient storage capacity, data of all pattern images may be written in the projection device 112 in advance. If the storage capacity of the projection device 112 is not sufficient, data of the pattern image is stored in the pattern image storage unit in the storage device 3 or in the auxiliary storage device of the information processing device 13, and the pattern image required when necessary. The controller 12 may read and use the data of.

<第4実施形態>
次に本発明の第4実施形態について説明する。視野内に2次反射物体が存在する場合に、第1〜第3実施形態ではパターン画像の投影範囲を変更し2次反射ノイズを抑制したのに対し、第4実施形態は、パターン画像の投影位置を再設定することで2次反射ノイズを抑制する点に特徴がある。基板検査システムの基本構成は第1実施形態のものと同様であるため、以下では、本実施形態に特有の構成及び動作を主に説明する。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described. In the first to third embodiments, the projection range of the pattern image is changed to suppress the secondary reflection noise when there is a secondary reflection object in the field of view, whereas in the fourth embodiment, the projection of the pattern image is performed. It is characterized in that secondary reflection noise is suppressed by resetting the position. The basic configuration of the substrate inspection system is the same as that of the first embodiment, and therefore, the configuration and operation specific to this embodiment will be mainly described below.

図10及び図11を参照して、第4実施形態における位相シフトによる計測及び検査の流れを説明する。図10は計測及び検査の流れを示すフローチャートであり、図11は計測及び検査の流れを示す模式図である。   The flow of measurement and inspection based on phase shift in the fourth embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a flowchart showing the flow of measurement and inspection, and FIG. 11 is a schematic view showing the flow of measurement and inspection.

まず、第1実施形態と同様に、通常パターン画像を用いて視野全体を撮像し、通常位相画像に基づき視野全体の高さデータを計算する(図10のステップS300〜S304、図11の(1)〜(3))。   First, as in the first embodiment, the entire field of view is imaged using the normal pattern image, and height data of the entire field of view is calculated based on the normal phase image (steps S300 to S304 in FIG. 10; )-(3)).

その後、制御装置12は、検査プログラムを参照して、現在の視野41内に2次反射物体のフラグが付された検査対象物体が存在するか否かを判断する(ステップS305)。2次反射物体が存在した場合、制御装置12は、検査プログラム内の2次反射抑制用の撮像条件に従って、ステージ10を制御し、当該2次反射物体を2次反射が起こらない位置に移動する(ステップS1000)。具体的には、図11の(4)に示すように、2次反射物体(チップ部品42a)は投影範囲に含まれるが、2次反射の原因となる原因物体(コネクタ部品43)の反射面は投影範囲から外れるように、パターン画像の投影位置を再設定する。本実施形態では、撮像装置110の視野41とパターン画像の投影範囲とが略一致し、且つ、両者は一緒に移動するため、「パターン画像の投影位置」は「視野位置」と言い換えることもできる。このとき2次反射抑制用の撮像条件としては、2次反射物体を撮像するときの視野位置の情報が与えられる。パターン画像の投影位置を再設定した後、制御装置12は、図11の(5)に示すように、投影装置112から通常パターン画像を投影して2次反射物体の位相画像を撮像する(ステップS1001)。これ以降の処理(ステップS309〜S312、図11の(6)〜(7))は、第1実施形態の処理と同じである。   Thereafter, the control device 12 refers to the inspection program and determines whether or not there is an inspection target object with the flag of the secondary reflection object present in the current visual field 41 (step S305). When there is a secondary reflective object, the control device 12 controls the stage 10 according to the imaging condition for secondary reflection suppression in the inspection program, and moves the secondary reflective object to a position where secondary reflection does not occur. (Step S1000). Specifically, as shown in (4) of FIG. 11, although the secondary reflective object (chip component 42a) is included in the projection range, the reflective surface of the cause object (connector component 43) that causes secondary reflection Resets the projection position of the pattern image so as to be out of the projection range. In the present embodiment, since the field of view 41 of the imaging device 110 substantially matches the projection range of the pattern image and the two move together, the “projected position of the pattern image” can be reworded as “field of view position”. . At this time, information of a visual field position at the time of imaging a secondary reflective object is given as an imaging condition for secondary reflection suppression. After resetting the projection position of the pattern image, as shown in (5) of FIG. 11, the control device 12 projects a normal pattern image from the projection device 112 and captures a phase image of the secondary reflection object (step S1001). The subsequent processing (steps S309 to S312 and (6) to (7) in FIG. 11) is the same as the processing of the first embodiment.

本実施形態の構成によれば、撮像装置110の視野41内に2次反射物体(例:チップ部品42a)が存在する場合に、2次反射の原因となる原因物体(例:コネクタ部品43)の反射面に光が当たらないようにパターン画像の投影位置(視野位置)が変更される。したがって、2次反射ノイズの発生を抑え、検査対象物体上の投影パターンを正確に撮像(観測)することができ、検査対象物体の計測及び検査の精度を向上することができる。   According to the configuration of the present embodiment, when there is a secondary reflective object (for example: chip component 42a) in the field of view 41 of the imaging device 110, the cause object (for example: connector component 43) that causes secondary reflection The projection position (field of view position) of the pattern image is changed so that light does not hit the reflection surface of Therefore, the generation of secondary reflection noise can be suppressed, and the projection pattern on the inspection target object can be accurately imaged (observed), and the accuracy of measurement and inspection of the inspection target object can be improved.

また本実施形態では、第1〜第3実施形態のようにパターン画像を変更する必要がないため、パターン画像記憶部の記憶容量が小さい投影装置や、パターン画像が変更できないタイプの投影装置を用いることができるという利点もある。   Further, in the present embodiment, since it is not necessary to change the pattern image as in the first to third embodiments, a projection device with a small storage capacity of the pattern image storage unit or a projection device of a type in which the pattern image can not be changed is used. It also has the advantage of being able to

<他の実施形態>
上記の実施形態の説明は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明は、その技術的思想の範囲内で種々の変形が可能である。例えば、上記実施形態では位相シフト法を用いたが、パターン画像を投影した状態で物体を撮像するという工程を含む方法であれば位相シフト法以外の方法に対しても本発明を好ましく適用することができる。また、上記実施形態では本発明を基板検査に適用した例を説明したが、本発明の適用範囲はこれに限らず、例えば、FA分野や自動車分野で用いられる検査装置に好ましく適用することができる。
Other Embodiments
The above description of the embodiment merely exemplifies the present invention, and the present invention is not limited to the above specific form. The present invention can be modified in various ways within the scope of the technical idea. For example, although the phase shift method is used in the above embodiment, the present invention is preferably applied to methods other than the phase shift method as long as the method includes the step of imaging an object in a state where a pattern image is projected. Can. Further, although the example in which the present invention is applied to substrate inspection has been described in the above embodiment, the scope of application of the present invention is not limited to this. For example, the present invention can be preferably applied to inspection devices used in the FA field and automotive field .

1:基板検査装置、2:ティーチング装置、3:記憶装置
10:ステージ、11:計測ユニット、12:制御装置、13:情報処理装置、14:表示装置、15:基板
41:視野、42a,42b:チップ部品、43:コネクタ部品
50:パターン画像記憶部、51:通常パターン画像、52〜56:2次反射抑制パターン画像
90:反射部品の反射面を含む部分
110:撮像装置、111:照明装置、111B:青色光源、111G:緑色光源、111R:赤色光源、112:投影装置
150:部品、151:はんだ
200:撮像装置、201:プロジェクタ、201L:パターン光、201R:1次反射光、202:物体、203:背の高い物体、203L:反射光、203R:2次反射光
RL:赤色光、BL:青色光、GL:緑色光、PL:パターン画像
1: Substrate inspection device 2: 2: Teaching device 3: Storage device 10: Stage 11: Measurement unit 12: Control device 13: Information processing device 14: Display device 15: Substrate 41: Field of view 42a, 42b : Chip part, 43: connector part 50: pattern image storage part, 51: normal pattern image, 52 to 56: secondary reflection suppression pattern image 90: part 110 including the reflection surface of reflective part 110: imaging device, 111: illumination device , 111B: blue light source, 111G: green light source, 111R: red light source, 112: projection device 150: parts, 151: solder 200: imaging device, 201: projector, 201L: pattern light, 201R: primary reflected light, 202: Object, 203: tall object, 203L: reflected light, 203R: secondary reflected light RL: red light, BL: blue light, GL: green light, L: pattern image

Claims (10)

撮像装置と、
前記撮像装置の視野内にパターン画像を投影する投影装置と、
前記投影装置からパターン画像を投影した状態で前記撮像装置によって撮像された画像を用いて、前記撮像装置の視野内に含まれる1つ以上の物体の検査を行う情報処理装置と、
前記撮像装置及び前記投影装置を制御する制御装置と、を有し、
前記撮像装置の視野内に、他の物体の反射面で反射した光に起因する2次反射を生じ得る2次反射物体が存在する場合に、
前記制御装置は、前記2次反射物体が前記撮像装置の視野内の中心位置にくるように、前記撮像装置の視野内の前記2次反射物体の位置を変更した後、前記反射面に光が当たらないように前記投影装置から投影するパターン画像の投影範囲を当該視野の中心の所定の範囲に変更し、投影範囲が変更されたパターン画像を投影した状態で前記撮像装置により前記2次反射物体を撮像する制御を行う
ことを特徴とする検査装置。
An imaging device,
A projection device for projecting a pattern image within the field of view of the imaging device;
An information processing apparatus for inspecting one or more objects included in a field of view of the imaging device using an image captured by the imaging device in a state in which a pattern image is projected from the projection device;
A control device that controls the imaging device and the projection device;
In the field of view of the imaging device, if there is a secondary reflective object that can cause secondary reflection due to light reflected by the reflective surface of another object,
The control device changes the position of the secondary reflective object in the field of view of the imaging device so that the secondary reflective object is at a central position in the field of view of the imaging device, and then light is transmitted to the reflective surface. The secondary reflective object is changed by the imaging device in a state where the projection range of the pattern image projected from the projection device is changed to a predetermined range at the center of the visual field so that the projection image does not hit, and the pattern image whose projection range is changed is projected. An inspection apparatus that performs control of imaging an image.
検査の対象となる複数の物体の内から2次反射物体を特定するための情報を含む検査プログラムを記憶する記憶装置をさらに有し、
前記制御装置は、前記検査プログラムに基づいて、前記撮像装置の視野内に2次反射物体が存在するか否かを判断する
ことを特徴とする請求項1に記載の検査装置。
And a storage device for storing an inspection program including information for identifying a secondary reflective object from among a plurality of objects to be inspected.
The inspection apparatus according to claim 1, wherein the control device determines whether a secondary reflective object is present in a field of view of the imaging device based on the inspection program.
前記検査プログラムは、2次反射物体を撮像するときの撮像条件の情報を含んでおり、
前記制御装置は、前記撮像条件の情報に基づいて、前記2次反射物体を撮像するときに投影するパターン画像の投影範囲の変更を行う
ことを特徴とする請求項2に記載の検査装置。
The inspection program includes information of imaging conditions when imaging a secondary reflective object,
The inspection apparatus according to claim 2, wherein the control device changes a projection range of a pattern image to be projected when imaging the secondary reflective object, based on information of the imaging condition.
投影範囲が互いに異なる複数のパターン画像のデータを予め記憶するパターン画像記憶部をさらに有し、
前記撮像装置の視野内に前記2次反射物体が存在する場合に、
前記制御装置は、前記パターン画像記憶部に記憶された前記複数のパターン画像の中から、前記2次反射物体を投影範囲に含むが前記反射面を投影範囲に含まないパターン画像を選択し、前記投影装置から投影するパターン画像を前記選択したパターン画像へと変更する
ことを特徴とする請求項1〜3のうちいずれか1項に記載の検査装置。
The image processing apparatus further includes a pattern image storage unit that stores in advance data of a plurality of pattern images having different projection ranges.
When the secondary reflective object is present in the field of view of the imaging device,
The control device selects, from the plurality of pattern images stored in the pattern image storage unit, a pattern image that includes the secondary reflective object in the projection range but does not include the reflective surface in the projection range. The inspection apparatus according to any one of claims 1 to 3, wherein a pattern image projected from a projection device is changed to the selected pattern image.
前記撮像装置の視野内に前記2次反射物体が存在する場合に、
前記制御装置は、前記2次反射物体又は前記反射面の位置及びサイズの情報に基づき、前記2次反射物体を投影範囲に含むが前記反射面を投影範囲に含まないパターン画像を生成し、前記投影装置から投影するパターン画像を前記生成したパターン画像へと変更することを特徴とする請求項1〜3のうちいずれか1項に記載の検査装置。
When the secondary reflective object is present in the field of view of the imaging device,
The control device generates a pattern image that includes the secondary reflective object in the projection range but does not include the reflective surface in the projection range, based on the information of the position and size of the secondary reflective object or the reflective surface. The inspection apparatus according to any one of claims 1 to 3, wherein a pattern image projected from a projection device is changed to the generated pattern image.
前記検査装置は、基板上の部品を検査する基板検査装置である
ことを特徴とする請求項1〜のうちいずれか1項に記載の検査装置。
The inspection apparatus according to any one of claims 1 to 5 , wherein the inspection apparatus is a substrate inspection apparatus that inspects a component on a substrate.
撮像装置と、前記撮像装置の視野内にパターン画像を投影する投影装置と、前記投影装置からパターン画像を投影した状態で前記撮像装置によって撮像された画像を用いて、前記撮像装置の視野内に含まれる1つ以上の物体の検査を行う情報処理装置と、前記撮像装置及び前記投影装置を制御する制御装置と、を有する検査装置と、
前記検査装置の動作を定義する検査プログラムを作成するティーチング装置と、
を有する検査システムであって、
前記ティーチング装置は、他の物体の反射面で反射した光に起因する2次反射を生じ得る2次反射物体を特定するための情報と、2次反射物体を撮像するときの撮像条件の情報とを含む検査プログラムを作成し、
前記撮像装置の視野内に、他の物体の反射面で反射した光に起因する2次反射を生じ得る2次反射物体が存在する場合に、前記制御装置は、前記2次反射物体が前記撮像装置の視野内の中心位置にくるように、前記撮像装置の視野内の前記2次反射物体の位置を変更した後、前記検査プログラムに基づいて、前記反射面に光が当たらないように前記投影装置から投影するパターン画像の投影範囲を当該視野の中心の所定の範囲に変更し、投影範囲が変更されたパターン画像を投影した状態で前記撮像装置により前記2次反射物体を撮像する制御を行う
ことを特徴とする検査システム。
An imaging device, a projection device for projecting a pattern image within the field of view of the imaging device, and an image captured by the imaging device in a state where the pattern image is projected from the projection device are used within the field of view of the imaging device An inspection apparatus including an information processing apparatus that inspects one or more included objects; and a control apparatus that controls the imaging apparatus and the projection apparatus.
A teaching apparatus for creating an inspection program that defines the operation of the inspection apparatus;
An inspection system having
The teaching apparatus includes information for identifying a secondary reflection object that may cause secondary reflection due to light reflected by a reflection surface of another object, and information of imaging conditions when imaging the secondary reflection object. Create an inspection program that includes
In the case where there is a secondary reflection object that can cause secondary reflection due to light reflected by a reflection surface of another object in the field of view of the imaging device, the control device determines that the secondary reflection object is the image After changing the position of the secondary reflective object in the field of view of the imaging device so as to come to the center position in the field of view of the device, the projection is performed so that light does not hit the reflective surface based on the inspection program. The projection range of the pattern image to be projected from the device is changed to a predetermined range at the center of the field of view, and control is performed to capture the secondary reflective object by the imaging device in a state where the pattern image whose projection range is changed is projected. An inspection system characterized by
撮像装置と、前記撮像装置の視野内にパターン画像を投影する投影装置と、を有する検査装置の制御方法であって、
前記撮像装置の視野内に、他の物体の反射面で反射した光に起因する2次反射を生じ得る2次反射物体が存在する場合に、前記2次反射物体が前記撮像装置の視野内の中心位置にくるように、前記撮像装置の視野内の前記2次反射物体の位置を変更した後、前記反射面に光が当たらないように前記投影装置から投影するパターン画像の投影範囲を当該視野の中心の所定の範囲に変更するステップと、
投影範囲が変更されたパターン画像を投影した状態で前記撮像装置により前記2次反射物体を撮像するステップと、
前記撮像装置によって撮像された画像を用いて前記2次反射物体の検査を行うステップと、を含む
ことを特徴とする検査装置の制御方法。
A control method of an inspection apparatus, comprising: an imaging device; and a projection device for projecting a pattern image into a field of view of the imaging device,
In the field of view of the imaging device, in the case where there is a secondary reflecting object that may cause secondary reflection due to light reflected by the reflecting surface of another object, the secondary reflecting object is in the field of view of the imaging device to come to the center position, after changing the position of the secondary reflection object in the field of view of the imaging device, the projection range of the pattern image projected from the projection device so as not exposed to light on the reflecting surface the field Changing to a predetermined range at the center of the
Imaging the secondary reflective object by the imaging device in a state where the pattern image whose projection range has been changed is projected;
And D. inspecting the secondary reflection object using the image captured by the imaging device.
前記検査装置は、検査の対象となる複数の物体の内から2次反射物体を特定するための情報を含む検査プログラムを記憶する記憶装置をさらに有しており、
前記検査プログラムに基づいて、前記撮像装置の視野内に2次反射物体が存在するか否かの判断が行われる
ことを特徴とする請求項に記載の検査装置の制御方法。
The inspection apparatus further includes a storage device for storing an inspection program including information for identifying a secondary reflective object from among a plurality of objects to be inspected.
9. The control method of the inspection apparatus according to claim 8 , wherein it is determined whether or not a secondary reflective object is present in the field of view of the imaging device based on the inspection program.
前記検査プログラムは、2次反射物体を撮像するときの撮像条件の情報を含んでおり、
前記撮像条件の情報に基づいて、前記2次反射物体を撮像するときに投影するパターン画像の投影範囲の変更が行われる
ことを特徴とする請求項に記載の検査装置の制御方法。
The inspection program includes information of imaging conditions when imaging a secondary reflective object,
The control method of the inspection apparatus according to claim 9 , wherein a change of a projection range of a pattern image to be projected when imaging the secondary reflective object is performed based on the information of the imaging condition.
JP2015004253A 2015-01-13 2015-01-13 Inspection apparatus and control method of inspection apparatus Active JP6507653B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015004253A JP6507653B2 (en) 2015-01-13 2015-01-13 Inspection apparatus and control method of inspection apparatus
DE102015116047.1A DE102015116047A1 (en) 2015-01-13 2015-09-23 Test apparatus and control method for a test apparatus
CN201510648233.7A CN105783784B (en) 2015-01-13 2015-10-09 Inspection apparatus and control method of inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004253A JP6507653B2 (en) 2015-01-13 2015-01-13 Inspection apparatus and control method of inspection apparatus

Publications (2)

Publication Number Publication Date
JP2016130663A JP2016130663A (en) 2016-07-21
JP6507653B2 true JP6507653B2 (en) 2019-05-08

Family

ID=56233764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004253A Active JP6507653B2 (en) 2015-01-13 2015-01-13 Inspection apparatus and control method of inspection apparatus

Country Status (3)

Country Link
JP (1) JP6507653B2 (en)
CN (1) CN105783784B (en)
DE (1) DE102015116047A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146449A (en) 2017-03-07 2018-09-20 オムロン株式会社 Device and method for measuring three-dimensional shape
JP6658625B2 (en) * 2017-03-08 2020-03-04 オムロン株式会社 Three-dimensional shape measuring device and three-dimensional shape measuring method
JP6702234B2 (en) * 2017-03-10 2020-05-27 オムロン株式会社 Three-dimensional measuring device, three-dimensional measuring method, and program
JP6782194B2 (en) * 2017-06-02 2020-11-11 株式会社日立製作所 Automatic inspection system
JP7053366B2 (en) * 2018-05-10 2022-04-12 株式会社荏原製作所 Inspection equipment and inspection method
JP7145444B2 (en) * 2018-06-20 2022-10-03 パナソニックIpマネジメント株式会社 PROJECTION SYSTEM, PROJECTION ADJUSTMENT PROGRAM AND PROJECTION METHOD
KR102267919B1 (en) 2018-06-28 2021-06-23 주식회사 고영테크놀러지 Method and electronic apparatus for determining cause of mounting failure for component mounted on board
CN110870401B (en) * 2018-06-28 2022-02-11 株式会社高迎科技 Electronic device and method for determining unqualified mounting reason of substrate component
US11428644B2 (en) 2018-11-27 2022-08-30 Koh Young Technology Inc. Method and electronic apparatus for displaying inspection result of board
US11682584B2 (en) * 2018-12-26 2023-06-20 Camtek Ltd. Measuring buried layers
CN114128418B (en) * 2019-07-26 2023-10-20 株式会社富士 Inspection apparatus
JP7221409B2 (en) * 2019-09-26 2023-02-13 株式会社Fuji height measuring device
JP7364439B2 (en) * 2019-11-25 2023-10-18 ファナック株式会社 Object detection system using TOF sensor
JP7088232B2 (en) * 2020-04-28 2022-06-21 オムロン株式会社 Inspection equipment, inspection methods, and programs
KR102631655B1 (en) * 2020-12-17 2024-02-01 (주)메티스 Vision inspection apparatus for enhancing operation efficiency
WO2023170814A1 (en) 2022-03-09 2023-09-14 ヤマハ発動機株式会社 Operation device for three-dimensional measurement, three-dimensional measurement program, recording medium, three-dimensional measurement device, and operation method for three-dimensional measurement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291513A (en) * 1986-06-11 1987-12-18 Shinko Electric Co Ltd Distance measurement by light-intercepting method
US5617209A (en) * 1995-04-27 1997-04-01 View Engineering, Inc. Method and system for triangulation-based, 3-D imaging utilizing an angled scaning beam of radiant energy
US5812269A (en) * 1996-07-29 1998-09-22 General Scanning, Inc. Triangulation-based 3-D imaging and processing method and system
JP2000329521A (en) * 1999-05-18 2000-11-30 Nikon Corp Pattern measuring method and aligning method
US7111783B2 (en) * 2004-06-25 2006-09-26 Board Of Trustees Operating Michigan State University Automated dimensional inspection
JP2006090756A (en) * 2004-09-21 2006-04-06 Victor Co Of Japan Ltd Camera calibration device
JP4611782B2 (en) * 2005-03-28 2011-01-12 シチズンホールディングス株式会社 Three-dimensional shape measuring method and measuring apparatus
US7898651B2 (en) * 2005-10-24 2011-03-01 General Electric Company Methods and apparatus for inspecting an object
JP4103921B2 (en) * 2006-08-11 2008-06-18 オムロン株式会社 Method of setting inspection reference data for fillet inspection, and substrate visual inspection apparatus using this method
US7465916B2 (en) * 2006-10-19 2008-12-16 Fujikura Ltd. Optical detection sensor
JP2008309551A (en) * 2007-06-13 2008-12-25 Nikon Corp Method and apparatus for shape measurement and storage medium
US8854610B2 (en) * 2008-02-26 2014-10-07 Koh Young Technology Inc. Apparatus and method for measuring a three-dimensional shape
JP2009281824A (en) * 2008-05-21 2009-12-03 Hitachi Kokusai Electric Inc Sample inspection device
KR101174676B1 (en) * 2010-11-19 2012-08-17 주식회사 고영테크놀러지 Method and apparatus of profiling a surface
JP5765651B2 (en) * 2011-02-01 2015-08-19 Jukiオートメーションシステムズ株式会社 3D measuring device
JP5869281B2 (en) * 2011-04-11 2016-02-24 株式会社ミツトヨ Optical probe
JP6071363B2 (en) * 2012-09-19 2017-02-01 キヤノン株式会社 Distance measuring apparatus and method
US9857166B2 (en) * 2012-09-19 2018-01-02 Canon Kabushiki Kaisha Information processing apparatus and method for measuring a target object
US9041914B2 (en) * 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation

Also Published As

Publication number Publication date
CN105783784A (en) 2016-07-20
DE102015116047A1 (en) 2016-07-14
CN105783784B (en) 2019-12-13
JP2016130663A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6507653B2 (en) Inspection apparatus and control method of inspection apparatus
JP6303867B2 (en) Substrate inspection apparatus and control method thereof
JP6330574B2 (en) Teaching apparatus and teaching method for substrate inspection apparatus
JP2018040649A (en) Image inspection device, image inspection method, image inspection program, computer-readable recording medium and recording apparatus
WO2012096004A1 (en) Solder-attachment inspection method, solder-attachment inspection device, and pcb-inspection system
CN105372259B (en) Measurement apparatus, base board checking device and its control method, storage media
CN108323179B (en) Inspection system and inspection method
TWI484164B (en) Optical re - inspection system and its detection method
JP5682419B2 (en) Inspection method and inspection apparatus
JP2013205071A (en) Visual inspection device and visual inspection method
JP2006208084A (en) Inspection device for irregularities in cyclic pattern
JP2009097977A (en) Visual inspection device
US10410336B2 (en) Inspection device, storage medium, and program
JP2008064715A (en) Defect inspection device and defect inspection method
JP7368141B2 (en) Wafer appearance inspection device and method
JP2009204388A (en) Defect inspection method
JP2023151945A (en) Inspection system and inspection method
KR20170124509A (en) Inspection system and inspection method
JP2006145228A (en) Unevenness defect detecting method and unevenness defect detector
JP4967132B2 (en) Defect inspection method for object surface
KR101849192B1 (en) Apparatus and method for inspecting pattern defect of substrate
JP7459525B2 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method and program
JP7392582B2 (en) Inspection system and method
WO2018198828A1 (en) Defect inspection image generating device and defect inspection image generating method
JP2022112379A (en) Inspection system and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250