JP7049158B2 - Quenching quality judgment method - Google Patents

Quenching quality judgment method Download PDF

Info

Publication number
JP7049158B2
JP7049158B2 JP2018067505A JP2018067505A JP7049158B2 JP 7049158 B2 JP7049158 B2 JP 7049158B2 JP 2018067505 A JP2018067505 A JP 2018067505A JP 2018067505 A JP2018067505 A JP 2018067505A JP 7049158 B2 JP7049158 B2 JP 7049158B2
Authority
JP
Japan
Prior art keywords
temperature
quenching
irradiation site
scanning direction
quenching quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018067505A
Other languages
Japanese (ja)
Other versions
JP2019178361A (en
Inventor
大介 三浦
健児 森
勝也 山市
政幸 折原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018067505A priority Critical patent/JP7049158B2/en
Publication of JP2019178361A publication Critical patent/JP2019178361A/en
Application granted granted Critical
Publication of JP7049158B2 publication Critical patent/JP7049158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

この発明は、エネルギビームにより焼入れされた焼入れ対象物の焼入れ品質を判定する焼入れ品質判定方法に関する。 The present invention relates to a quenching quality determination method for determining the quenching quality of an object to be quenched that has been quenched by an energy beam.

例えば、特許文献1には、回転する焼入れ対象物に対してエネルギビームを照射し、焼入表層面の加熱と自然冷却を繰り返しながら最も高温となる部位の温度がオーステナイト化温度を上回り、且つ最も低温となる部位の温度が前記オーステナイト化温度を下回るとともにマルテンサイト変態開始温度を上回る状態まで加熱した後、エネルギビームの照射を停止させて冷却する焼入れ方法が開示されている(特許文献1の図3、図4、[0007]、[0019]、[0020])。 For example, in Patent Document 1, an energy beam is applied to a rotating quenched object, and the temperature of the hottest portion exceeds the austeniticization temperature while repeating heating and natural cooling of the hardened surface layer surface, and is the highest. A quenching method is disclosed in which the temperature of a portion to be low is heated to a state where the temperature is lower than the austeniticization temperature and higher than the martensitic transformation start temperature, and then the irradiation of the energy beam is stopped to cool the portion (FIG. 1 of Patent Document 1). 3, FIG. 4, [0007], [0019], [0020]).

特許第5756745号公報Japanese Patent No. 5756745

特許文献1には、エネルギビームの照射停止に伴う冷却工程の冷却直前において最も低温となる部位の温度がマルテンサイト変態開始温度を上回ることから、オーステナイト組織を維持することができ、良好な焼入れ品質を得ることができると開示されている。 According to Patent Document 1, since the temperature of the lowest temperature portion immediately before cooling in the cooling step due to the stop of irradiation of the energy beam exceeds the martensitic transformation start temperature, the austenite structure can be maintained and the quenching quality is good. Is disclosed that can be obtained.

しかしながら、本願発明者等は、エネルギビームの走査照射が終了した走査線上の冷却工程での焼入れ対象物による自己冷却中に、エネルギビームの走査照射が終了前の隣接乃至近接する走査線からの熱伝搬による再加熱により焼戻しが発生する部位があることを見いだし、この焼戻しが発生した部位では、所望の焼入れ品質を達成し得ない場合があるという課題がある。 However, the inventors of the present application have heat from adjacent or adjacent scanning lines before the scanning irradiation of the energy beam is completed during self-cooling by the quenching object in the cooling step on the scanning line where the scanning irradiation of the energy beam is completed. It has been found that there is a portion where tempering occurs due to reheating by propagation, and there is a problem that the desired quenching quality may not be achieved at the portion where tempering occurs.

この発明は、このような課題を考慮してなされたものであり、冷却工程による焼入れ対象物による自己冷却中に、再加熱により焼戻しが発生した部位の焼入れ品質を判定することを可能とする焼入れ品質判定方法を提供することを目的とする。 The present invention has been made in consideration of such a problem, and makes it possible to determine the quenching quality of a portion where tempering has occurred due to reheating during self-cooling by an object to be quenched by a cooling step. It is an object of the present invention to provide a quality judgment method.

この発明に係る焼入れ品質判定方法は、焼入れ対象物の焼入れ品質を判定する焼き入れ品質判定方法であって、
照射されるエネルギビームに対して前記焼入れ対象物を相対的に回転させることで主走査方向に焼入れを行い、前記主走査方向と直交する副走査方向に相対的に順次移送することで、焼入れ対象面に焼入れを行う場合に、
前記エネルギビームの照射部位の前記主走査方向毎の温度履歴を測定する測定ステップと、
各前記主走査方向の前記照射部位の各前記温度履歴毎に、前記回転の周期に応じた再加熱焼戻し温度点を取得する取得ステップと、
取得した前記再加熱焼戻し温度点に基づいて前記焼入れ対象物の焼入れ品質を判定する判定ステップと、
を備える。
The quenching quality determination method according to the present invention is a quenching quality determination method for determining the quenching quality of an object to be quenched.
Quenching is performed in the main scanning direction by rotating the quenching object relative to the irradiated energy beam, and the quenching target is sequentially transferred in the sub-scanning direction orthogonal to the main scanning direction. When quenching the surface,
A measurement step for measuring the temperature history of the irradiation site of the energy beam for each main scanning direction, and a measurement step.
An acquisition step of acquiring a reheating tempering temperature point according to the rotation cycle for each temperature history of the irradiation site in each main scanning direction.
A determination step for determining the quenching quality of the quenching object based on the acquired reheat tempering temperature point, and
To prepare for.

この発明によれば、焼入れ対象面を構成する各主走査方向の照射部位の各温度履歴毎に、焼入れ対象物の回転の周期に応じた再加熱焼戻し温度点を取得し、取得した再加熱焼戻し温度点に基づいて前記焼入れ対象物の焼入れ品質を判定するようにしたので、主走査方向で一の照射部位への照射後、主走査方向で同位置で副走査方向が隣り合う次の照射部位までの焼入れ対象物の自己冷却中に、前記次の照射部位の加熱により前記一の照射部位に対する再加熱が発生し、該再加熱により焼戻しが発生する部位の焼入れ品質(の合否)を的確に判定できる。 According to the present invention, the reheated tempering temperature points according to the rotation cycle of the quenching object are acquired for each temperature history of the irradiation site in each main scanning direction constituting the quenching target surface, and the acquired reheating tempering is obtained. Since the quenching quality of the material to be quenched is determined based on the temperature point, after irradiating one irradiation site in the main scanning direction, the next irradiation site in which the sub-scanning directions are adjacent to each other at the same position in the main scanning direction. During the self-cooling of the object to be quenched up to, the heating of the next irradiation site causes reheating of the one irradiation site, and the quenching quality (pass / fail) of the site where tempering occurs due to the reheating is accurately determined. Can be determined.

前記再加熱焼戻し温度点を取得する取得ステップでは、
焼入れ後の前記焼入れ対象面を構成する各前記主走査方向の照射部位の直前の所定位置の自己冷却部位の温度がマルテンサイト変態開始温度より低い場合であって、且つ前記照射部位に対応する位置での前記自己冷却部位の温度が前記マルテンサイト変態開始温度を上回りオーステナイト化温度より低い温度範囲内の温度に再加熱された場合に、前記再加熱焼戻し温度点であると決定して取得してもよい。
In the acquisition step of acquiring the reheating tempering temperature point,
When the temperature of the self-cooling site at a predetermined position immediately before the irradiation site in each main scanning direction constituting the quenching target surface after quenching is lower than the martensitic transformation start temperature, and the position corresponding to the irradiation site. When the temperature of the self-cooling site in the above is above the martensitic transformation start temperature and reheated to a temperature within the temperature range lower than the austenitization temperature, it is determined to be the reheat tempering temperature point and obtained. May be good.

このように、焼入れ後の焼入れ対象面を構成する各主走査方向の照射部位の直前の所定位置の自己冷却部位の温度がマルテンサイト変態開始温度より低い場合であって、且つ前記照射部位に対応する位置での前記自己冷却部位の温度が前記マルテンサイト変態開始温度を上回りオーステナイト化温度より低い温度範囲内の温度に再加熱された場合に、焼戻しが発生すると推定できるので、再加熱焼戻し温度点であるか否かを確実に決定して取得することができる。 In this way, the temperature of the self-cooling site at a predetermined position immediately before the irradiation site in each main scanning direction constituting the quenching target surface after quenching is lower than the martensitic transformation start temperature, and corresponds to the irradiation site. Since it can be estimated that quenching occurs when the temperature of the self-cooling site at the position where the tempering occurs exceeds the martensitic transformation start temperature and is reheated to a temperature within the temperature range lower than the austenitic transformation temperature, the reheating tempering temperature point. It is possible to surely determine and acquire whether or not it is.

なお、各前記主走査方向の照射部位の直前の所定位置は、前記エネルギビームの前記照射部位でのビーム径より離れた前記照射部位より前の位置であって、前記エネルギビームの接近により自己冷却から再加熱に切り替わるまでの位置とすることで、該位置の温度がマルテンサイト変態開始温度未満の温度であることを条件とする再加熱焼戻し温度点の取得を確実に行うことができる。 The predetermined position immediately before the irradiation site in each main scanning direction is a position before the irradiation site, which is far from the beam diameter at the irradiation site of the energy beam, and is self-cooled by the approach of the energy beam. By setting the position from to switching to reheating, it is possible to reliably obtain the reheating tempering temperature point on condition that the temperature at that position is lower than the martensitic transformation start temperature.

また、前記焼入れ対象物の前記焼入れ品質を判定する判定ステップでは、
前記再加熱焼戻し温度点を、前記焼入れ対象物の炭素含有率と前記照射部位での前記エネルギビームの照射時間とで重み付けして累積した累積値が、所望の焼入れ硬度を得るための目標硬度に対応して設定した閾値を下回る範囲では前記焼入れ品質が合格であり、前記閾値以上の範囲では前記焼入れ品質が不合格であると判定することで、合否判定を的確に行うことができる。
Further, in the determination step of determining the quenching quality of the quenching object, the quenching quality is determined.
The cumulative value obtained by weighting the reheating tempering temperature point by the carbon content of the quenching object and the irradiation time of the energy beam at the irradiation site is the target hardness for obtaining the desired quenching hardness. By determining that the quenching quality is acceptable in the range below the correspondingly set threshold value and the quenching quality is unacceptable in the range above the threshold value, the pass / fail determination can be accurately performed.

この発明によれば、焼入れ対象面を構成する各主走査方向の照射部位の各温度履歴毎に、焼入れ対象物の回転の周期に応じた再加熱焼戻し温度点を取得し、取得した再加熱焼戻し温度点に基づいて前記焼入れ対象物の焼入れ品質を判定するようにしたので、主走査方向で一の照射部位への照射後、主走査方向で同位置で副走査方向が隣り合う次の照射部位までの焼入れ対象物の自己冷却中に、前記次の照射部位の加熱により前記一の照射部位に対する再加熱が発生し、該再加熱により焼戻しが発生する部位の焼入れ品質(の合否)を的確に判定できる。 According to the present invention, the reheated tempering temperature points according to the rotation cycle of the quenching object are acquired for each temperature history of the irradiation site in each main scanning direction constituting the quenching target surface, and the acquired reheating tempering is obtained. Since the quenching quality of the material to be quenched is determined based on the temperature point, after irradiating one irradiation site in the main scanning direction, the next irradiation site in which the sub-scanning directions are adjacent to each other at the same position in the main scanning direction. During the self-cooling of the object to be quenched up to, the heating of the next irradiation site causes reheating of the one irradiation site, and the quenching quality (pass / fail) of the site where tempering occurs due to the reheating is accurately determined. Can be determined.

図1は、この実施形態に係る焼入れ品質判定方法を実施する焼入れ品質判定システムの概略的な全体構成図である。FIG. 1 is a schematic overall configuration diagram of a quenching quality determination system that implements the quenching quality determination method according to this embodiment. 図2Aは、焼入れ断面の照射部位での上端、中央、下端の3点の温度を測定する3個のスポット温度計の配置を示す説明図である。図2Bは、焼入れ断面から前45°断面の上端、中央、下端の3点の温度を測定する3個のスポット温度計の配置を示す説明図である。FIG. 2A is an explanatory diagram showing the arrangement of three spot thermometers that measure the temperatures at the upper end, the center, and the lower end at the irradiation site of the hardened cross section. FIG. 2B is an explanatory diagram showing the arrangement of three spot thermometers that measure the temperatures at the upper end, the center, and the lower end of the 45 ° front cross section from the quenching cross section. 図3は、レーザビームの説明図である。FIG. 3 is an explanatory diagram of the laser beam. 図4は、加熱断面等の全域を熱画像としてサーモグラフィにより検出する例を示す説明図である。FIG. 4 is an explanatory diagram showing an example in which the entire area such as a heated cross section is detected as a thermal image by thermography. 焼入れ品質判定システムの動作説明に供されるフロー図である。It is a flow diagram provided for the operation explanation of the quenching quality judgment system. 図6Aは、この実施形態に係る焼入れ方案(焼入れ品質判定プログラム)の説明図である。図6Bは、同方案に係るレーザビームによる焼入れ対象面の説明図である。FIG. 6A is an explanatory diagram of a quenching method (quenching quality determination program) according to this embodiment. FIG. 6B is an explanatory diagram of the surface to be quenched by the laser beam according to the plan. 焼入れ対象面の下端、中央、及び上端の温度変化を示す実測図である。It is an actual measurement figure which shows the temperature change of the lower end, the center, and the upper end of the surface to be quenched. 累積型焼戻しパラメータ(累積値)の算出式を説明する説明図である。It is explanatory drawing explaining the calculation formula of the cumulative type tempering parameter (cumulative value). 累積型焼戻しパラメータに対する実硬度の対応関係を示す相関線図である。It is a correlation diagram which shows the correspondence relation of the actual hardness with respect to the cumulative type tempering parameter.

以下、この発明に係る焼入れ品質判定方法について好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, the quenching quality determination method according to the present invention will be described in detail with reference to the attached drawings with reference to suitable embodiments.

[構成]
図1は、この実施形態に係る焼入れ品質判定方法を実施する焼入れ品質判定システム10の概略的な全体構成図である。
[Constitution]
FIG. 1 is a schematic overall configuration diagram of a quenching quality determination system 10 that implements the quenching quality determination method according to this embodiment.

該焼入れ品質判定システム10は、基本的には、焼入れ対象物(ワーク)20にエネルギビームとしてのレーザビームLを照射する光学ヘッド16と、該光学ヘッド16を鉛直線に対して所定角度傾斜させた状態で保持し上下方向に搬送するNC機械18と、焼入れ対象物20を固定保持するチャック22と、該チャック22を水平方向に回転させることで焼入れ対象物20を水平方向に回転するモータ24と、レーザビームLの照射部位(照射位置)の温度(照射部位温度、照射位置温度)と自己冷却部位の温度(自己冷却部位温度)を測定する温度計26と、これらを制御するコントローラ(制御装置)28とから構成される。 The quenching quality determination system 10 basically has an optical head 16 that irradiates a quenching object (work) 20 with a laser beam L as an energy beam, and the optical head 16 is tilted at a predetermined angle with respect to a vertical line. An NC machine 18 that holds the object to be hardened and conveys it in the vertical direction, a chuck 22 that holds the object to be hardened 20 fixedly, and a motor 24 that rotates the object to be hardened 20 in the horizontal direction by rotating the chuck 22 in the horizontal direction. A thermometer 26 that measures the temperature of the irradiation site (irradiation position) of the laser beam L (irradiation site temperature, irradiation position temperature) and the temperature of the self-cooling site (self-cooling site temperature), and a controller (control) that controls these. Device) 28.

光学ヘッド16は、レーザビームLを発生するレーザ発振器12と、レーザ発振器12で発生されたレーザビームLを収束して焼入れ対象物20に導くレンズを含む工学系14と、から構成される。 The optical head 16 includes a laser oscillator 12 that generates a laser beam L, and an engineering system 14 that includes a lens that converges the laser beam L generated by the laser oscillator 12 and guides the laser beam L to the quenching object 20.

コントローラ28は、マイクロコンピュータを含む計算機であり、CPU(中央処理装置)、メモリ(記憶装置)であるROM(EEPROMも含む。)、RAM(ランダムアクセスメモリ)、その他、A/D変換器、D/A変換器等の入出力装置、計時部としてのタイマ等を有しており、CPUがROMに記録されているプログラムを読み出し実行することで各種機能実現部(機能実現手段、機能部、機能手段)、例えば制御部、演算部、及び処理部等として機能する。 The controller 28 is a computer including a microcomputer, and is a CPU (central processing unit), a memory (storage device) ROM (including EEPROM), RAM (random access memory), and other A / D converters, D. It has an input / output device such as a / A converter, a timer as a timing unit, etc., and the CPU reads and executes the program recorded in the ROM to realize various function realization units (function realization means, function unit, function). Means), for example, functions as a control unit, a calculation unit, a processing unit, and the like.

この実施形態に係るコントローラ28は、NC機械18の上下方向の位置を制御しながら上下方向に搬送するためのNC機械駆動信号Srdと、光学ヘッド16から照射されるレーザビームLの強度(出力)及びレーザビームLのオン(照射)・オフ(非照射)を制御する光学ヘッド駆動信号Shdと、モータ24の回転数及びオン(回転状態)・オフ(停止状態)を制御するためのモータ駆動信号Smdを生成する各機能部を有する。 The controller 28 according to this embodiment has an NC machine drive signal Srd for transporting the NC machine 18 in the vertical direction while controlling the position in the vertical direction, and the intensity (output) of the laser beam L emitted from the optical head 16. And the optical head drive signal Shd that controls on (irradiation) / off (non-irradiation) of the laser beam L, and the motor drive signal for controlling the rotation speed and on (rotational state) / off (stop state) of the motor 24. It has each functional part that generates Smd.

コントローラ28は、また、モータ24のレゾルバ等の回転位置検出信号(回転位相、回転角度)を、焼入れ対象物20の回転位相(回転角度)、すなわち位相検出信号Spdとして取り込み(入力し)、焼入れ対象物20の後述する主走査方向の回転位相(回転角度)θを検出する。 The controller 28 also captures (inputs) the rotation position detection signal (rotation phase, rotation angle) of the resolver of the motor 24 as the rotation phase (rotation angle) of the object to be hardened 20, that is, the phase detection signal Spd, and quenches. The rotation phase (rotation angle) θ of the object 20 in the main scanning direction, which will be described later, is detected.

コントローラ28は、さらに、非接触で焼入れ対象物20の温度を測定する温度計26に接続され、温度検出信号Stを取り込む(入力する)。 The controller 28 is further connected to a thermometer 26 that measures the temperature of the object to be quenched 20 in a non-contact manner, and captures (inputs) the temperature detection signal St.

この実施形態の焼入れ対象物20は、炭素含有率が0.15[%]~1.2[%]程度の軟鋼乃至硬鋼製の円筒であって、該円筒の内周面を焼入れ対象面21としている。 The quenching object 20 of this embodiment is a cylinder made of mild steel or hard steel having a carbon content of about 0.15 [%] to 1.2 [%], and the inner peripheral surface of the cylinder is the surface to be quenched. It is set to 21.

このため、温度計26は、図2Aに示すように、回転角度θがθ=0[゜]のレーザビームLの照射部位(焼入れ断面)Isでの、上端、中央、下端の3点(実質的には、隣接するレーザビームLのオーバーラップ部、又はオーバーラップ相当部)の温度を測定する3個のスポット温度計26a、26b、26cが図示しない固定部材に固定される。 Therefore, as shown in FIG. 2A, the thermometer 26 has three points (substantially) of the upper end, the center, and the lower end at the irradiation site (quenched cross section) Is of the laser beam L having a rotation angle θ of θ = 0 [°]. The three spot thermometers 26a, 26b, and 26c for measuring the temperature of the overlapped portion or the overlapped portion of the adjacent laser beams L are fixed to a fixing member (not shown).

この場合、3個のスポット温度計26a、26b、26cは、それぞれ照射部位Isの下端温度(照射部位温度であって加熱断面下端温度)Ta、中央温度(照射部位温度であって加熱断面中央温度)Tb、及び上端温度(照射部位温度であって加熱断面上端温度)Tcを検出する。 In this case, the three spot thermometers 26a, 26b, and 26c are the lower end temperature of the irradiation site Is (the temperature of the irradiation site and the lower end temperature of the heating section) Ta and the center temperature (the temperature of the irradiation site and the center temperature of the heating section), respectively. ) Tb and the upper end temperature (the temperature of the irradiation site and the upper end temperature of the heated cross section) Tc are detected.

焼入れ対象物20は、回転方向に回転中に照射部位Isを過ぎると、自然冷却によって冷却されるので、グレーの範囲で示す熱影響部Hazで温度が急激に所定温度まで低下する。 When the object to be quenched 20 passes the irradiation site Is while rotating in the rotation direction, it is cooled by natural cooling, so that the temperature drops sharply to a predetermined temperature at the heat-affected zone Haz shown in the gray range.

そこで、温度計26は、さらに、図2Bに示すように、自然冷却後の温度が平衡状態の温度になる照射部位Isより回転方向で前のθ=-0[゜]~-90[゜]の範囲の既照射部位(焼入れ断面より回転方向で前の断面)の温度、この実施形態では、-45[゜](前45゜断面ともいう。)の上端、中央、下端の3点の温度を測定する3個のスポット温度計26d、26e、26fが図示しない固定部材に固定される。 Therefore, as shown in FIG. 2B, the thermometer 26 further has θ = −0 [°] to −90 [°] in the rotational direction from the irradiation site Is where the temperature after natural cooling becomes the temperature in the equilibrium state. The temperature of the already irradiated part (cross section in the rotational direction from the hardened cross section) in the range of, in this embodiment, the temperature of the upper end, the center, and the lower end of −45 [°] (also referred to as the front 45 ° cross section). The three spot thermometers 26d, 26e, and 26f for measuring the temperature are fixed to a fixing member (not shown).

スポット温度計26d、26e、26fは、それぞれ45゜前照射部位Ibの下端温度(加熱前45゜断面下端温度)Td、中央温度(加熱前45゜断面中央温度)Te、及び上端温度(加熱前45゜断面上端温度)Tfを検出する。 The spot thermometers 26d, 26e, and 26f have the lower end temperature (45 ° cross-section lower end temperature before heating) Td, the center temperature (45 ° cross-section center temperature before heating) Te, and the upper end temperature (before heating) of the 45 ° pre-irradiation site Ib, respectively. 45 ° Cross-section top temperature) Tf is detected.

上記したθ=-0[゜]とは、図3に示すレーザビームLのビーム径D(例えば、ビームと垂直な断面上の強度分布が半分になる直径)の半分(半径=D/2)よりも離れた位置(レーザビームLの照射部位Isの熱が影響しなくなる位置)であることを意味している。 The above θ = −0 [°] is half (radius = D / 2) of the beam diameter D of the laser beam L shown in FIG. 3 (for example, the diameter at which the intensity distribution on the cross section perpendicular to the beam is halved). It means that the position is farther away (the position where the heat of the irradiation site Is of the laser beam L does not affect).

なお、温度計26は、図2A、図2Bに示したようなスポット温度計26(26a~26f)に限らず、図4に示すように、サーモグラフィ26sgで熱画像として面で全域を観測し、検出するようにしてもよい。 The thermometer 26 is not limited to the spot thermometers 26 (26a to 26f) as shown in FIGS. 2A and 2B, and as shown in FIG. 4, the entire area is observed as a thermal image by the thermography 26sg. It may be detected.

[動作]
基本的には、以上のように構成される焼入れ品質判定システム10の動作を、図5に示すフロー図を参照して説明する。
[motion]
Basically, the operation of the quenching quality determination system 10 configured as described above will be described with reference to the flow chart shown in FIG.

コントローラ28は、ステップS1の初期設定にて、焼入れ対象物20に対応した焼入れ方案(焼入れ品質判定プログラム)を設定する。 The controller 28 sets a quenching method (quenching quality determination program) corresponding to the quenching target 20 in the initial setting of step S1.

[焼入れ方案(焼入れ品質判定プログラム)]
図6A、図6Bに示すように、この実施形態に係る焼入れ方案(焼入れ品質判定プログラム)は、モータ駆動信号Smdによりモータ24及びチャック22を通じて所定回転数(一定回転数)で回転する焼入れ対象物20の円筒内周面に対し、時点t1~t2でレーザビームLにより主走査方向に上端側を走査して予備加熱1を行った後、時点t2にて、NC機械18を通じて光学ヘッド16を、略一ビーム径D分下方(前記主走査方向に直交する副走査方向)に所定分オーバーラップさせて移送し、時点t2~t3で中央部を走査して予備加熱2を行い、さらに、時点t3にて、略一ビーム径D分下方に所定分オーバーラップさせて移送し、時点t3~t4で下端側を走査して予備加熱3を行なう。
[Quenching plan (quenching quality judgment program)]
As shown in FIGS. 6A and 6B, the quenching method (quenching quality determination program) according to this embodiment is a quenching object that rotates at a predetermined rotation speed (constant rotation number) through the motor 24 and the chuck 22 by the motor drive signal Smd. Preheating 1 is performed on the inner peripheral surface of the cylinder of 20 by scanning the upper end side in the main scanning direction with the laser beam L at time points t1 to t2, and then at time point t2, the optical head 16 is passed through the NC machine 18. It is transferred by overlapping approximately one beam diameter D downward (sub-scanning direction orthogonal to the main scanning direction) by a predetermined amount, scanning the central portion at time points t2 to t3 to perform preheating 2, and further, time point t3. At, the beam is transferred downward by approximately one beam diameter D by a predetermined amount, and the lower end side is scanned at time points t3 to t4 to perform preheating 3.

さらに、時点t4にて、同一走査線上(下端側走査線上)、時点t4~t5で走査して本加熱1を行った後、時点t5にて、NC機械18を通じて光学ヘッド16を、略一ビーム径D分上方(前記主走査方向に直交する副走査方向)に所定分オーバーラップさせて移送し、時点t5~t6で中央部を走査して本加熱2を行い、さらに、時点t6にて、略一ビーム径D分上方に所定分オーバーラップさせて移送し、時点t6~t7で上端側を走査して本加熱3を行なうことで、焼入れ対象物20の焼入れ対象面21の全面に対する焼入れ処理を終了する。 Further, at the time point t4, scanning is performed on the same scanning line (on the lower end side scanning line) and at the time points t4 to t5 to perform the main heating 1. It is transferred by overlapping the diameter D above (the sub-scanning direction orthogonal to the main scanning direction) by a predetermined amount, scanning the central portion at time points t5 to t6 to perform main heating 2, and further at time point t6. The entire surface of the surface to be quenched 21 of the object to be quenched 20 is quenched by scanning the upper end side at time points t6 to t7 and performing the main heating 3 by overlapping and transferring by approximately one beam diameter D by a predetermined amount. To finish.

コントローラ28は、予備加熱1~3及び本加熱1~3の間、レーザビームLを、時点t1にて、一定出力(一定強度)でオン(照射)状態とし、時点t7にて、前記一定出力(一定強度)で出力されていたレーザビームLをオフ(非照射)状態とする光学ヘッド駆動信号Shdを光学ヘッド16に供給する。 The controller 28 turns the laser beam L into an on (irradiation) state at a constant output (constant intensity) at a time point t1 during the preliminary heating 1 to 3 and the main heating 1 to 3, and the constant output at the time point t7. The optical head drive signal Shd that turns off (non-irradiates) the laser beam L output at (constant intensity) is supplied to the optical head 16.

モータ24は、後述する再加熱焼戻し温度(再加熱焼戻し温度点)Ti(i=1、2、・・・)が検出されなくなった時点で停止される。 The motor 24 is stopped when the reheating tempering temperature (reheating tempering temperature point) Ti (i = 1, 2, ...) To be described later is no longer detected.

温度検出信号Stは、上述したように、スポット温度計26a~26fにより、回転角度θがθ=0[゜]のレーザビームLの照射部位(焼入れ断面)Isでの下端温度(加熱断面下端温度)Ta、中央温度(加熱断面中央温度)Tb、及び上端温度(加熱断面上端温度)Tcとして連続的に検出するとともに、回転角度θが、θ=-45[゜](前45゜断面ともいう。)の-45゜前照射部位Ibの下端温度(加熱前45゜断面下端温度)Td、中央温度(加熱前45゜断面中央温度)Te、及び上端温度(加熱前45゜断面上端温度)Tfとして予備加熱期間(時点t1~t4)、本加熱期間(時点t4~t7)、及び再加熱焼戻し温度が検出されている期間まで連続的に検出される。 As described above, the temperature detection signal St is the lower end temperature (heating cross section lower end temperature) at the irradiation site (hardening cross section) Is of the laser beam L having a rotation angle θ of θ = 0 [°] by the spot thermometers 26a to 26f. ) Ta, the center temperature (center temperature of the heated cross section) Tb, and the upper end temperature (upper end temperature of the heated cross section) Tc are continuously detected, and the rotation angle θ is θ = −45 [°] (also referred to as the front 45 ° cross section). -45 ° pre-irradiation site Ib bottom temperature (45 ° cross-section bottom temperature before heating) Td, center temperature (45 ° cross-section center temperature before heating) Te, and top temperature (45 ° cross-section top temperature before heating) Tf The preheating period (time points t1 to t4), the main heating period (time points t4 to t7), and the period in which the reheating and tempering temperature is detected are continuously detected.

その後、再加熱焼戻し温度点(再加熱焼戻し温度)Tiに基づき、焼入れ品質を判定する。 Then, the quenching quality is determined based on the reheating tempering temperature point (reheating tempering temperature) Ti.

この実施形態では、上記した焼入れ方案(焼入れ品質判定プログラム)を設定したステップS1の後、ステップS2にて、コントローラ28は、チャック22に固定された焼入れ対象物20の初期走査位置にレーザビームLが照射されるように、NC機械駆動信号SrdによりNC機械18を駆動して光学ヘッド16を位置決めする。換言すれば、ステップS2にて、焼入れ対象物20が、レーザビームLの照射部位に位置決め固定される。 In this embodiment, after step S1 in which the above-mentioned quenching method (quenching quality determination program) is set, in step S2, the controller 28 moves the laser beam L to the initial scanning position of the quenching object 20 fixed to the chuck 22. The NC machine 18 is driven by the NC machine drive signal Srd so that the optical head 16 is positioned. In other words, in step S2, the quenching object 20 is positioned and fixed at the irradiation site of the laser beam L.

ステップS3にて、コントローラ28は、モータ駆動信号Smdによりモータ24が所定回転数(一定回転数)、すなわち焼入れ対象物20が所定回転数(一定回転数)で回転するように速度制御する。 In step S3, the controller 28 speed-controls the motor 24 by the motor drive signal Smd so that the motor 24 rotates at a predetermined rotation speed (constant rotation speed), that is, the quenching object 20 rotates at a predetermined rotation speed (constant rotation speed).

次いで、ステップS4にて、コントローラ28は、スポット温度計26a~26fによる加熱断面下端温度Ta、加熱断面中央温度Tb、及び加熱断面上端温度Tc、加熱前45゜断面下端温度Td、加熱前45゜断面中央温度Te、及び加熱前45゜断面上端温度Tfの検出を開始する。 Next, in step S4, the controller 28 uses the spot thermometers 26a to 26f to measure the heating cross-section lower end temperature Ta, the heating cross-section center temperature Tb, the heating cross-section upper end temperature Tc, the pre-heating 45 ° cross-section lower end temperature Td, and the pre-heating 45 °. Detection of the cross-section center temperature Te and the cross-section upper end temperature Tf before heating is started.

次に、ステップS5、S6にて、それぞれ、図6A、図6Bを参照して説明したレーザビームLによる予備加熱処理、及び本加熱処理を行う。 Next, in steps S5 and S6, the preliminary heat treatment and the main heat treatment by the laser beam L described with reference to FIGS. 6A and 6B are performed, respectively.

予備加熱処理により、加熱前45゜断面下端温度Td、加熱前45゜断面中央温度Te、及び加熱前45゜断面上端温度Tfが、マルテンサイト変態開始温度Ms(Ms点温度という。)より低い所定の加熱前45゜断面温度まで加熱され、加熱前45゜断面温度が安定している(温度勾配が所定値以下)期間の本加熱処理により加熱断面下端温度Ta、加熱断面中央温度Tb、及び加熱断面上端温度Tcが、オーステナイト化温度A3(A3点温度という。)を上回る温度まで加熱されることで焼入れが行われる。 Due to the preheating treatment, the temperature Td at the lower end of the 45 ° cross section before heating, the central temperature Te at 45 ° before heating, and the temperature Tf at the upper end of the 45 ° cross section before heating are predetermined to be lower than the martensitic transformation start temperature Ms (referred to as Ms point temperature). By this heat treatment during the period when the temperature is heated to 45 ° before heating and the 45 ° cross-section temperature before heating is stable (the temperature gradient is equal to or less than the predetermined value), the lower end temperature Ta of the heated cross section, the center temperature Tb of the heated cross section, and heating are performed. Hardening is performed by heating the upper end temperature Tc of the cross section to a temperature higher than the austenizing temperature A3 (referred to as A3 point temperature).

次いで、ステップS7にて、本加熱処理の終了により、加熱前45゜断面下端温度Td、加熱前45゜断面中央温度Te、及び加熱前45゜断面上端温度Tfが、低下開始してから所定時間(例えば、1回転周期)が経過したとき、ステップS8にて、モータ24を停止させるとともに、スポット温度計26a~26fによる温度の検出を終了する。 Next, in step S7, due to the end of the main heat treatment, the 45 ° cross-section lower end temperature Td before heating, the 45 ° cross-section center temperature Te before heating, and the 45 ° cross-section upper end temperature Tf before heating start to decrease for a predetermined time. When (for example, one rotation cycle) has elapsed, in step S8, the motor 24 is stopped and the temperature detection by the spot thermometers 26a to 26f is terminated.

ステップS9にて、焼入れ品質を判定し、今回の処理を終了する。同一の焼入れ対象物20に対する次回以降の焼入れ処理では、ステップS2以降の処理を繰り返せばよい。 In step S9, the quenching quality is determined, and the current process is terminated. In the next and subsequent quenching treatments for the same quenching object 20, the treatments after step S2 may be repeated.

<焼入れ品質判定>
図7は、焼入れ対象面21の下端、中央、及び上端の温度変化を示している。図7中、下方に描いているのこぎり波は、位相検出信号Spdを示し、その振幅値が0[°]から360[°]に対応しているので、1周期・1回転中の任意の時点での焼入れ対象物20の焼入れ面上の回転角度θを検出することができる。
<Quenching quality judgment>
FIG. 7 shows the temperature changes at the lower end, the center, and the upper end of the quenching target surface 21. In FIG. 7, the sawtooth wave drawn downward indicates the phase detection signal Spd, and its amplitude value corresponds to 0 [°] to 360 [°]. It is possible to detect the rotation angle θ on the hardened surface of the hardened object 20 in.

時点t4~t5の本加熱1により下端は、加熱断面下端温度Taの変化から分かるように、A3点温度を上回って加熱されることで焼入れされる。 As can be seen from the change in the lower end temperature Ta of the heating cross section, the lower end is quenched by heating above the A3 point temperature by the main heating 1 at the time points t4 to t5.

同様に、時点t5~t6の本加熱2により中央は、加熱断面中央温度Tbの変化から分かるように、A3点温度を上回って加熱されることで焼入れされる。 Similarly, by the main heating 2 at time points t5 to t6, the center is quenched by being heated above the A3 point temperature, as can be seen from the change in the central temperature Tb of the heating cross section.

また、同様に、時点t6~t7の本加熱3により上端は、加熱断面上端温度Tcの変化から分かるように、A3点温度を上回って加熱されることで焼入れされる。 Similarly, by the main heating 3 at the time points t6 to t7, the upper end is quenched by being heated above the A3 point temperature, as can be seen from the change in the heating cross-sectional upper end temperature Tc.

下端の走査線(下端焼入れ部)は、時点t6の直前の加熱前45゜断面下端温度Tdが、Ms点温度を下回り、時点t6にて、加熱断面下端温度TaがMs点温度を上回っているがA3点温度未満となっているので、再加熱焼戻し温度点(温度T1l)として検出される。 In the lower end scanning line (lower end quenching part), the 45 ° cross-section lower end temperature Td before heating immediately before the time point t6 is lower than the Ms point temperature, and at the time point t6, the heated cross-section lower end temperature Ta is higher than the Ms point temperature. Is less than the A3 point temperature, so it is detected as the reheating tempering temperature point (temperature T1l).

また、下端の走査線(下端焼入れ部)は、時点t7の直前の加熱前45゜断面下端温度Tdが、Ms点温度を下回り、時点t7にて、加熱断面下端温度TaがMs点温度を上回っているがA3点温度未満となっているので、再加熱焼戻し温度点(温度T2l)として検出される。 Further, in the lower end scanning line (lower end quenching portion), the 45 ° lower end temperature Td of the cross section before heating immediately before the time point t7 is lower than the Ms point temperature, and at the time point t7, the lower end temperature Ta of the heated cross section is higher than the Ms point temperature. However, since the temperature is lower than the A3 point temperature, it is detected as the reheating tempering temperature point (temperature T2l).

中央の走査線(中央焼入れ部)は、時点t7の直前の加熱前45゜断面中央温度Teが、Ms点温度を下回り、時点t7にて、加熱断面中央温度TbがMs点温度を上回っているがA3点温度未満となっているので、再加熱焼戻し温度点(温度T1m)として検出される。 In the central scanning line (central quenching portion), the 45 ° cross-sectional center temperature Te before heating immediately before the time point t7 is below the Ms point temperature, and at the time point t7, the heated cross-section center temperature Tb is above the Ms point temperature. Is less than the A3 point temperature, so it is detected as the reheating tempering temperature point (temperature T1 m).

上端の走査線(上端焼入れ部)は、時点t8の直前の加熱前45゜断面上端温度Tfが、Ms点温度を下回り、時点t8にて、加熱断面上端温度TcがMs点温度を上回っているがA3点温度未満となっているので、再加熱焼戻し温度点(温度T1u)として検出される。 In the upper end scanning line (upper end quenching portion), the 45 ° cross-section upper end temperature Tf immediately before heating at the time point t8 is below the Ms point temperature, and at the time point t8, the heated cross-section upper end temperature Tc is higher than the Ms point temperature. Is less than the A3 point temperature, so it is detected as the reheating tempering temperature point (temperature T1u).

焼入れ対象物20の焼入れ硬度が目標硬度Htarに達しているか否かにより焼入れ品質の良好(Good)又は不良(NG)が判定されるが、次の(1)式に示す累積型焼戻しパラメータ(累積値)Mを算出することで、この実施形態では、実際の硬度を予測している。 Good or poor quenching quality is determined depending on whether the quenching hardness of the quenching object 20 reaches the target hardness Htar. The cumulative tempering parameter (cumulative) shown in the following equation (1) is determined. Value) In this embodiment, the actual hardness is predicted by calculating M.

M=(C+logt)ΣTi=(C+logt)T1+(C+logt)T2+(C+logt)T3+… …(1) M = (C + log) ΣTi = (C + log) T1 + (C + log) T2 + (C + log) T3 + ... (1)

ここで、Tiは、再加熱焼戻し温度点[℃]、tは焼戻し時間[s]であって、レーザビームLのビーム径Dを主走査方向の周速v[m/s]で割った値、すなわち、照射部位IsでのレーザビームLの照射時間、Cは、鋼材により決定され、C=17.7-5.8×a(aは、炭素含有率[%])である。 Here, Ti is the reheating tempering temperature point [° C.], t is the tempering time [s], and the value obtained by dividing the beam diameter D of the laser beam L by the peripheral speed v [m / s] in the main scanning direction. That is, the irradiation time of the laser beam L at the irradiation site Is, C is determined by the steel material, and C = 17.7-5.8 × a (a is the carbon content [%]).

上記したように、再加熱焼戻し温度点Tiは、下端で温度T1l、T2lの2点が検出され、中央で温度T1mの1点が検出され、上端で温度T1uが検出されている。 As described above, as the reheating tempering temperature point Ti, two points of temperature T1l and T2l are detected at the lower end, one point of temperature T1m is detected at the center, and temperature T1u is detected at the upper end.

ここでは、(1)式の理解の便宜のために、図8に示すように、下端の走査線(下端焼入れ部)で、仮に、3点の再加熱焼戻し温度点T1、T2、T3が検出されたとすると、上記(1)式の第3項までで累積型焼戻しパラメータ(累積値)Mを算出することができる。 Here, for convenience of understanding of equation (1), as shown in FIG. 8, three reheating tempering temperature points T1, T2, and T3 are tentatively detected by the scanning line at the lower end (quenched portion at the lower end). If so, the cumulative tempering parameter (cumulative value) M can be calculated up to the third term of the above equation (1).

図9は、予め取得しておいた累積型焼戻しパラメータ(累積値)Mと実際の硬度との対応関係の特性100(相関線)を示している。 FIG. 9 shows the characteristic 100 (correlation line) of the correspondence between the cumulative tempering parameter (cumulative value) M acquired in advance and the actual hardness.

累積型焼戻しパラメータ(累積値)Mの値が、目標累積値Mtarより大きい場合には、実硬度が目標硬度Htarを下回るので焼入れ品質が不良(NG)と判定され、目標累積値Mtar未満の場合には、実硬度が目標硬度Htarを上回るので焼入れ品質が良好「Good」と判定される。 When the value of the cumulative tempering parameter (cumulative value) M is larger than the target cumulative value Mtar, the actual hardness is lower than the target hardness Htar, so the quenching quality is judged to be poor (NG), and when the value is less than the target cumulative value Mtar. Since the actual hardness exceeds the target hardness Htar, the quenching quality is good and it is judged as "Good".

[まとめ及び変形例]
上述した実施形態に係る焼入れ品質判定方法は、焼入れ対象物20の焼入れ品質を判定する焼き入れ品質判定方法であって、照射されるエネルギビーム(半導体レーザ等のレーザビームLあるいは電子ビーム)に対して焼入れ対象物20を回転させることで主走査方向に焼入れを行い、前記主走査方向と直交する副走査方向に順次移送することで、焼入れ対象面21の全面に焼入れを行う。
[Summary and modification examples]
The quenching quality determination method according to the above-described embodiment is a quenching quality determination method for determining the quenching quality of the quenching object 20, with respect to the irradiated energy beam (laser beam L or electron beam such as a semiconductor laser). By rotating the object to be quenched 20 to quench in the main scanning direction, and sequentially transferring the object to be quenched in the sub-scanning direction orthogonal to the main scanning direction, the entire surface of the surface to be quenched 21 is quenched.

なお、上記した実施形態では、固定されたレーザビームLに対して、焼入れ対象物20をモータ24で回転させることで走査し、焼入れ対象面21に焼入れを行うようにしているが、これに限らず、ガルバノスキャナ等を利用することで、レーザビームLを3次元空間で走査させて焼入れ対象面21に焼入れを行うようにしてもよい。要は、照射されるエネルギビームLに対して焼入れ対象物20を相対的に回転させることで焼入れ対象面21を走査すればよい。 In the above embodiment, the fixed laser beam L is scanned by rotating the quenching object 20 with the motor 24, and the quenching target surface 21 is quenched, but the present invention is limited to this. Instead, by using a galvano scanner or the like, the laser beam L may be scanned in a three-dimensional space to perform quenching on the quenching target surface 21. In short, the surface to be quenched 21 may be scanned by rotating the object to be quenched 20 relative to the energy beam L to be irradiated.

そして、この実施形態では、焼入れ品質を判定する際に、エネルギビームLの照射部位Isの主走査方向毎の温度履歴(加熱断面下端温度Ta、加熱断面中央温度Tb、及び加熱断面上端温度Tc)を測定する測定ステップと、各前記主走査方向の照射部位Isの各温度履歴毎に、回転の周期(位相検出信号Spdの周期)に応じた再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)を取得する取得ステップと、取得した前記再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)に基づいて焼入れ対象物20の焼入れ品質を判定する判定ステップと、を備える。 Then, in this embodiment, when determining the quenching quality, the temperature history for each main scanning direction of the irradiation site Is of the energy beam L (heating cross-section lower end temperature Ta, heating cross-section center temperature Tb, and heating cross-section upper end temperature Tc). Reheating and quenching temperature points (temperatures T1l, T2l, T1m, according to the rotation cycle (period of the phase detection signal Spd)) for each temperature history of the irradiation site Is in the main scanning direction. It includes an acquisition step for acquiring T1u) and a determination step for determining the quenching quality of the quenching object 20 based on the acquired reheated tempering temperature points (temperatures T1l, T2l, T1m, T1u).

この実施形態によれば、焼入れ対象面21を構成する各主走査方向の照射部位Isの各温度履歴(加熱断面下端温度Ta、加熱断面中央温度Tb、加熱断面上端温度Tc)毎に、焼入れ対象物20の回転の周期に応じた再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)を取得し、取得した再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)に基づいて焼入れ対象物20の焼入れ品質を判定するようにしたので、主走査方向で一の照射部位Is(例えば、図6Bの下端走査線上の照射部位Is)への照射後、主走査方向で同位置で副走査方向が隣り合う次の照射部位Is(この場合、図6Bの中央走査線上の照射部位Is)までの焼入れ対象物20の自己冷却中に、前記次の照射部位Is(中央走査線上の照射部位Is)の加熱により前記一の照射部位(下端走査線上の照射部位Is)に対する再加熱が発生し、該再加熱により焼戻しが発生する部位の焼入れ品質(の合否)を的確に判定できる。 According to this embodiment, the quenching target is for each temperature history (heating cross-section lower end temperature Ta, heating cross-section center temperature Tb, heating cross-section upper end temperature Tc) of the irradiation site Is in each main scanning direction constituting the quenching target surface 21. The reheated tempering temperature points (temperatures T1l, T2l, T1m, T1u) according to the rotation cycle of the object 20 are acquired, and the quenching target is obtained based on the acquired reheated tempering temperature points (temperatures T1l, T2l, T1m, T1u). Since the quenching quality of the object 20 is determined, after irradiating one irradiation site Is (for example, the irradiation site Is on the lower end scanning line in FIG. 6B) in the main scanning direction, the sub-scanning is performed at the same position in the main scanning direction. During the self-cooling of the quenching object 20 to the next irradiation site Is (in this case, the irradiation site Is on the central scanning line in FIG. 6B) adjacent to each other in the direction, the next irradiation site Is (irradiation site Is on the central scanning line). ) Reheats the one irradiation site (irradiation site Is on the lower end scanning line), and the quenching quality (pass / fail) of the site where tempering occurs due to the reheating can be accurately determined.

前記再加熱焼戻し温度点Tiを取得する取得ステップでは、焼入れ後の前記焼入れ対象面21を構成する各前記主走査方向の照射部位Isの直前の所定位置(例えば、加熱前45°断面)の自己冷却部位の温度(Tf、Te、Td)がマルテンサイト変態開始温度Ms点より低い場合であって、且つ前記照射部位Isに対応する位置での前記自己冷却部位の温度がマルテンサイト変態開始温度Ms点を上回りオーステナイト化温度A3点より低い温度範囲内の温度に再加熱された場合に、再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)であると決定して取得する。 In the acquisition step of acquiring the reheat tempering temperature point Ti, the self at a predetermined position (for example, a 45 ° cross section before heating) immediately before the irradiation site Is in each main scanning direction constituting the quenching target surface 21 after quenching. When the temperature of the cooling site (Tf, Te, Td) is lower than the martensitic transformation start temperature Ms point, and the temperature of the self-cooling site at the position corresponding to the irradiation site Is is the martensitic transformation start temperature Ms. When the temperature exceeds the point and is reheated to a temperature within the temperature range lower than the austenitic transformation temperature A3 point, it is determined and acquired as the reheat tempering temperature point (temperatures T1l, T2l, T1m, T1u).

このように、焼入れ後の焼入れ対象面21を構成する各主走査方向の照射部位Isの直前の所定位置(例えば、加熱前45°断面)の自己冷却部位の温度がマルテンサイト変態開始温度Ms点より低い場合であって、且つ前記照射部位Isに対応する位置での前記自己冷却部位の温度がマルテンサイト変態開始温度Msを上回りオーステナイト化温度A3点より低い温度範囲内の温度に再加熱された場合に、焼戻しが発生すると推定できるので、再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)であるか否かを確実に決定して取得することができる。 As described above, the temperature of the self-cooling portion at a predetermined position immediately before the irradiation portion Is in each main scanning direction (for example, a 45 ° cross section before heating) constituting the quenching target surface 21 after quenching is the martensitic transformation start temperature Ms point. In the lower case, the temperature of the self-cooling site at the position corresponding to the irradiation site Is exceeded the martensitic transformation start temperature Ms and was reheated to a temperature within the temperature range lower than the austenitization temperature A3 point. In this case, since it can be estimated that tempering will occur, it is possible to reliably determine and obtain whether or not the temperature is the reheating tempering temperature point (temperatures T1l, T2l, T1m, T1u).

なお、各前記主走査方向の照射部位Isの直前の所定位置は、エネルギビームLの照射部位Isでのビーム径(D/2)より離れた照射部位Isより前の位置であって、エネルギビームLの接近により自己冷却から再加熱に切り替わるまでの位置とすることで、該位置の温度がマルテンサイト変態開始温度Ms点未満の温度であることを条件とする再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)の取得を確実に行うことができる。 The predetermined position immediately before the irradiation site Is in each main scanning direction is a position before the irradiation site Is, which is far from the beam diameter (D / 2) at the irradiation site Is of the energy beam L, and is an energy beam. By setting the position until switching from self-cooling to reheating due to the approach of L, the reheating tempering temperature point (temperature T1l, provided that the temperature at that position is less than the martensitic transformation start temperature Ms point). T2l, T1m, T1u) can be reliably acquired.

また、焼入れ対象物20の前記焼入れ品質を判定する判定ステップでは、再加熱焼戻し温度点(温度T1l、T2l、T1m、T1u)を、焼入れ対象物20の炭素含有率a[%]と照射部位IsでのエネルギビームLの照射時間t(ビーム径D/周速v)とで重み付けして累積した累積値(例えば、M=(C+logt)(T1l+T2l))が、所望の焼入れ硬度を得るための目標硬度Htarに対応して設定した閾値(目標累積値)Mtarを下回る範囲では前記焼入れ品質が合格であり、閾値(目標累積値)Mtar以上の範囲では前記焼入れ品質が不合格であると判定するので、合否判定を的確に行うことができる。 Further, in the determination step for determining the quenching quality of the quenching object 20, the reheating tempering temperature points (temperatures T1l, T2l, T1m, T1u) are set to the carbon content a [%] of the quenching object 20 and the irradiation site Is. The cumulative value (for example, M = (C + log) (T1l + T2l)) weighted and accumulated by the irradiation time t (beam diameter D / peripheral speed v) of the energy beam L in the above is the target for obtaining the desired quenching hardness. Since it is determined that the quenching quality is acceptable in the range below the threshold (target cumulative value) Mtar set corresponding to the hardness Htar, and the quenching quality is rejected in the range above the threshold (target cumulative value) Mtar. , Pass / fail judgment can be performed accurately.

つまり、上記(1)式を利用して、累積値Mが閾値以上か未満かで焼入れ品質の合否判定が行えるので、所望の焼入れ硬度を得るための合否判定を容易に行うことができる。 That is, since the pass / fail judgment of the quenching quality can be performed based on whether the cumulative value M is equal to or less than the threshold value by using the above equation (1), the pass / fail judgment for obtaining the desired quenching hardness can be easily performed.

なお、この発明は、上述の実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various configurations can be adopted based on the contents described in this specification.

10…焼入れ品質判定システム 16…光学ヘッド
20…焼入れ対象物 21…焼入れ対象面
26…温度計 28…コントローラ
L…レーザビーム
10 ... Quenching quality judgment system 16 ... Optical head 20 ... Quenching object 21 ... Quenching target surface 26 ... Thermometer 28 ... Controller L ... Laser beam

Claims (4)

焼入れ対象物の焼入れ品質を判定する焼き入れ品質判定方法であって、
照射されるエネルギビームに対して前記焼入れ対象物を相対的に回転させることで主走査方向に焼入れを行い、前記主走査方向と直交する副走査方向に相対的に順次移送することで、焼入れ対象面に焼入れを行う場合に、
前記エネルギビームの照射部位の前記主走査方向毎の温度履歴を測定する測定ステップと、
各前記主走査方向の前記照射部位の各前記温度履歴毎に、前記回転の周期に応じた再加熱焼戻し温度点を取得する取得ステップと、
取得した前記再加熱焼戻し温度点に基づいて前記焼入れ対象物の焼入れ品質を判定する判定ステップと、
を備えることを特徴とする焼入れ品質判定方法。
It is a quenching quality determination method for determining the quenching quality of an object to be quenched.
Quenching is performed in the main scanning direction by rotating the quenching object relative to the irradiated energy beam, and the quenching target is sequentially transferred in the sub-scanning direction orthogonal to the main scanning direction. When quenching the surface,
A measurement step for measuring the temperature history of the irradiation site of the energy beam for each main scanning direction, and a measurement step.
An acquisition step of acquiring a reheating tempering temperature point according to the rotation cycle for each temperature history of the irradiation site in each main scanning direction.
A determination step for determining the quenching quality of the quenching object based on the acquired reheat tempering temperature point, and
A quenching quality determination method characterized by comprising.
請求項1に記載の焼入れ品質判定方法において、
前記再加熱焼戻し温度点を取得する取得ステップでは、
焼入れ後の前記焼入れ対象面を構成する各前記主走査方向の照射部位の直前の所定位置の自己冷却部位の温度がマルテンサイト変態開始温度より低い場合であって、且つ前記照射部位に対応する位置での前記自己冷却部位の温度が前記マルテンサイト変態開始温度を上回りオーステナイト化温度より低い温度範囲内の温度に再加熱された場合に、前記再加熱焼戻し温度点であると決定して取得する
ことを特徴とする焼入れ品質判定方法。
In the quenching quality determination method according to claim 1,
In the acquisition step of acquiring the reheating tempering temperature point,
When the temperature of the self-cooling site at a predetermined position immediately before the irradiation site in each main scanning direction constituting the quenching target surface after quenching is lower than the martensitic transformation start temperature, and the position corresponding to the irradiation site. When the temperature of the self-cooling site in the above is above the martensitic transformation start temperature and reheated to a temperature within the temperature range lower than the austenitization temperature, it is determined to be the reheat tempering temperature point and obtained. Quenching quality determination method characterized by.
請求項2に記載の焼入れ品質判定方法において、
各前記主走査方向の照射部位の直前の所定位置は、前記エネルギビームの前記照射部位でのビーム径より離れた前記照射部位より前の位置であって、前記エネルギビームの接近により自己冷却から再加熱に切り替わるまでの位置とされている
ことを特徴とする焼入れ品質判定方法。
In the quenching quality determination method according to claim 2,
The predetermined position immediately before the irradiation site in each main scanning direction is a position before the irradiation site far from the beam diameter at the irradiation site of the energy beam, and is re-cooled from self-cooling due to the approach of the energy beam. A quenching quality determination method characterized by the position until switching to heating.
請求項1~3のいずれか1項に記載の焼入れ品質判定方法において、
前記焼入れ対象物の前記焼入れ品質を判定する判定ステップでは、
前記再加熱焼戻し温度点を、前記焼入れ対象物の炭素含有率と前記照射部位での前記エネルギビームの照射時間とで重み付けして累積した累積値が、所望の焼入れ硬度を得るための目標硬度に対応して設定した閾値を下回る範囲では前記焼入れ品質が合格であり、前記閾値以上の範囲では前記焼入れ品質が不合格であると判定する
ことを特徴とする焼入れ品質判定方法。
In the quenching quality determination method according to any one of claims 1 to 3,
In the determination step of determining the quenching quality of the quenching object,
The cumulative value obtained by weighting the reheating tempering temperature point by the carbon content of the quenching object and the irradiation time of the energy beam at the irradiation site is the target hardness for obtaining the desired quenching hardness. A quenching quality determination method, characterized in that it is determined that the quenching quality is acceptable in a range below the correspondingly set threshold, and that the quenching quality is unacceptable in a range above the threshold.
JP2018067505A 2018-03-30 2018-03-30 Quenching quality judgment method Active JP7049158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067505A JP7049158B2 (en) 2018-03-30 2018-03-30 Quenching quality judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067505A JP7049158B2 (en) 2018-03-30 2018-03-30 Quenching quality judgment method

Publications (2)

Publication Number Publication Date
JP2019178361A JP2019178361A (en) 2019-10-17
JP7049158B2 true JP7049158B2 (en) 2022-04-06

Family

ID=68277999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067505A Active JP7049158B2 (en) 2018-03-30 2018-03-30 Quenching quality judgment method

Country Status (1)

Country Link
JP (1) JP7049158B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327105A (en) 2006-06-08 2007-12-20 Jtekt Corp Laser beam heat-treatment method and apparatus therefor
JP2010047789A (en) 2008-08-19 2010-03-04 Toyota Motor Corp Quenching method and quenching system with the use of energy beam
JP2013136802A (en) 2011-12-28 2013-07-11 Fuji Heavy Ind Ltd Quench hardening method and quench hardening apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190115A (en) * 1986-09-20 1988-08-05 Mitsubishi Electric Corp Controller for energy beam quenching
JPS6487713A (en) * 1987-09-29 1989-03-31 Toshiba Corp Laser control equipment
JPH08157967A (en) * 1994-11-30 1996-06-18 Mitsubishi Motors Corp Laser hardening device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327105A (en) 2006-06-08 2007-12-20 Jtekt Corp Laser beam heat-treatment method and apparatus therefor
JP2010047789A (en) 2008-08-19 2010-03-04 Toyota Motor Corp Quenching method and quenching system with the use of energy beam
JP2013136802A (en) 2011-12-28 2013-07-11 Fuji Heavy Ind Ltd Quench hardening method and quench hardening apparatus

Also Published As

Publication number Publication date
JP2019178361A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US11898214B2 (en) Method and system for heat treating a workpiece
KR102396213B1 (en) Method and system for laser hardening of a surface of a workpiece
Pfefferkorn et al. Effect of beam diameter on pulsed laser polishing of S7 tool steel
JP5717341B2 (en) Method and apparatus for quenching surface coatings of complex shaped components
CN112501419B (en) Method and apparatus for heat treating ferrous material using energy beam
CN109593919A (en) Bearing surface laser-quenching apparatus and method based on the scanning of Distributed Three-dimensional light beam
JP7049158B2 (en) Quenching quality judgment method
US20180327872A1 (en) Device and method for providing a selective heat treatment on a metal sheet
Sancho et al. Dynamic control of laser beam shape for heat treatment
JP5756745B2 (en) Quenching method and quenching apparatus
CN102808077A (en) Thin-wall gear ring type part quenching method for keeping accuracy level
US20040108306A1 (en) Laser heat treatment of crankshaft fillets
CN113122701B (en) Method and device for preparing soft area by thermoforming part
CN115491484A (en) Temperature-controlled laser heat treatment method for double-beam modulation scanning
JP2020076148A (en) Surface hardening treatment method for workpiece
JPS63190115A (en) Controller for energy beam quenching
JP6662635B2 (en) Gear heat treatment method and gear heat treatment apparatus
JPH07252521A (en) Quenching method by laser beam
Anusha et al. Numerical and statistical modelling of high speed rotating diode laser surface hardening process on a steel rod
JPS5887225A (en) Heat treatment for trapezoidal screw
Billaud et al. Prediction of Hardness Profile of 4340 Steel Plate Heat Treated by Laser Using 3D Model and Experimental Validation
Orazi et al. A new computationally efficient model for martensite to austenite transformation in multi-tracks laser hardening
JPS60149727A (en) Laser heat treatment of fork shaft
JP2018152442A (en) Laser processing device
JPS60204823A (en) Hardening method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220325

R150 Certificate of patent or registration of utility model

Ref document number: 7049158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150