JPS63190115A - Controller for energy beam quenching - Google Patents

Controller for energy beam quenching

Info

Publication number
JPS63190115A
JPS63190115A JP13917987A JP13917987A JPS63190115A JP S63190115 A JPS63190115 A JP S63190115A JP 13917987 A JP13917987 A JP 13917987A JP 13917987 A JP13917987 A JP 13917987A JP S63190115 A JPS63190115 A JP S63190115A
Authority
JP
Japan
Prior art keywords
energy beam
hardening
control device
temperature
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13917987A
Other languages
Japanese (ja)
Inventor
Masaharu Moriyasu
雅治 森安
Takeshi Morita
毅 森田
Masatake Hiramoto
平本 誠剛
Osamu Hamada
治 浜田
Megumi Omine
大峯 恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to GB8720790A priority Critical patent/GB2196155B/en
Priority to US07/093,270 priority patent/US4825035A/en
Priority to DE19873731136 priority patent/DE3731136A1/en
Publication of JPS63190115A publication Critical patent/JPS63190115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always obtain stable quenched characteristic by arranging energy beam control means controlling output and/or shifting velocity of the energy beam and restraining dispersion of the quenched characteristic. CONSTITUTION:This controller is composed of an electromagnetic wave detecting device 5 detecting the electromagnetic wave projected from surface of quenching part 3, temp. converting device 7 converting signal thereof into the temp. quenched characteristic assuming means, energy beam deciding means 8 and energy beam control means 9. The above quenched characteristic means treat the temp. distributing data 7a from the above device 7 to assume the quenched characteristic. And, the above deciding means 8 decide the output and/or the shifting velocity of the energy beam 1 based on the quenched characteristic assumed from the above assuming means. Further, the above control means 9 control the output and/or the shifting velocity of the energy beam based on output of the above deciding means 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばレーザビームや電子ビームによる炭
素鋼の表面焼入などにおいてその焼入深さや、焼入硬さ
等を精密に制御する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for precisely controlling the hardening depth, hardening hardness, etc. in surface hardening of carbon steel using a laser beam or electron beam, for example. It is related to.

〔従来の技術〕[Conventional technology]

第9図は例えば特公昭59−12726号公報に示され
た従来のレーザ焼入装置を示す斜視図である。
FIG. 9 is a perspective view showing a conventional laser hardening apparatus disclosed in Japanese Patent Publication No. 59-12726, for example.

図において、(1)はレーザ発振器から発振されたレー
ザビーム、(2)は例えば炭素鋼である焼入材、(3)
は焼入材(2)の表面に形成された焼入部である。(4
)は焼入材(2)の移動方向であり速度Vで移動する。
In the figure, (1) is a laser beam emitted from a laser oscillator, (2) is a hardened material such as carbon steel, and (3) is a hardened material such as carbon steel.
is a hardened part formed on the surface of hardened material (2). (4
) is the moving direction of the quenched material (2), which moves at a speed V.

従来のレーザ焼入装置は上記のように構成され、レーザ
ビーム(1)は焼入材(2)に照射されながら、焼入材
(2)は速度Vで矢印(4)方向に移動する。この過程
における焼入材(2)の任意の位置における温度履歴を
第10図に示す。第10図において、横軸は時間、縦軸
は温度を示し、Ms、Ac3.Tmp はそれぞれマル
テンサイト変態温度、オーステナイト変態温度、および
溶融温度である。ビームが照射されると時刻0からtl
まで加熱され、時刻t1から1.までオーステナイト変
態温度Ac、以上に保温され、その後ビーム照射が完了
して時刻t、以降は冷却される。この冷却過程における
冷却速度はマルテンサイト変態を引き起こすに十分であ
り、その結果レーザ照射部は硬化する。レーザビームに
よる焼入部所面の硬度分布の一例を第11図に示す。
A conventional laser hardening apparatus is configured as described above, and the hardening material (2) moves at a speed V in the direction of the arrow (4) while the laser beam (1) is irradiated onto the hardening material (2). FIG. 10 shows the temperature history at an arbitrary position of the quenched material (2) during this process. In FIG. 10, the horizontal axis shows time and the vertical axis shows temperature, Ms, Ac3. Tmp are martensitic transformation temperature, austenitic transformation temperature, and melting temperature, respectively. When the beam is irradiated, from time 0 to tl
1. from time t1. The temperature is maintained at or above the austenite transformation temperature Ac until the beam irradiation is completed, and the beam irradiation is completed at time t, after which the temperature is cooled. The cooling rate in this cooling process is sufficient to cause martensitic transformation, and as a result, the laser irradiated area is hardened. FIG. 11 shows an example of the hardness distribution on the surface of the part hardened by the laser beam.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来のレーザ焼入方法では焼入前にあらか
じめレーザビームの出力や焼入速度等の加工条件を設定
しておき、焼入加工中は上記加工条件を変更したりする
ことはなかった。したがって、焼入材(2)の前処理条
件やレーザビームの出力に変動があれば、第w図に示さ
れる温度履歴も同様に変化して焼入深さや焼入硬さを設
定どおりに確保できなくなるという問題点があった。
In the conventional laser hardening method described above, processing conditions such as laser beam output and hardening speed are set in advance before hardening, and the above processing conditions are not changed during hardening. Ta. Therefore, if there are fluctuations in the pretreatment conditions of the hardening material (2) or the output of the laser beam, the temperature history shown in Figure W will change as well, ensuring the hardening depth and hardness as set. The problem was that it was not possible.

この発明は、かかる問題点を解決するためになされたも
ので、焼入材の前処理条件やビーム出力に変動があって
も、焼入材の焼入特性を所望どおりに確保できるエネル
ギビーム焼入の制御装置を得ることを目的とする。
This invention was made in order to solve these problems, and it is an energy beam quenching method that can ensure the desired hardening characteristics of the hardened material even if the pretreatment conditions of the hardened material or the beam output vary. The purpose is to obtain a control device for

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るエネルギビーム焼入の制御装置は、エネ
ルギビームが照射されているまたは照射された焼入部表
面から放射される電磁波を検出する電磁波検出装置、こ
の電磁波検出装置からの検出信号を温度に変換する温度
変換装置、この温度変換装置からの温度分布データを処
理して焼入特性を推定する焼入特性推定手段、推定され
た焼入特性に基づき、所望の焼入特性を得るべく照射す
るエネルギビームの出力および移動速度を決定するエネ
ルギビーム決定手段、並びにこのエネルギビーム決定手
段の出力に基づき上記エネルギビームの出力および移動
速度の少なくとも一方を制御するエネルギビーム制御手
段を備え、焼入特性のばらつきを抑制するようにしたも
のである。
An energy beam hardening control device according to the present invention includes an electromagnetic wave detection device that detects electromagnetic waves emitted from the surface of a hardened part that is irradiated with an energy beam, and a detection signal from the electromagnetic wave detection device that converts the detection signal into a temperature. A temperature conversion device for converting, a hardening characteristic estimating means for estimating hardening characteristics by processing temperature distribution data from this temperature converting device, and irradiation to obtain desired hardening characteristics based on the estimated hardening characteristics. Energy beam determining means for determining the output and moving speed of the energy beam, and energy beam controlling means for controlling at least one of the output and moving speed of the energy beam based on the output of the energy beam determining means, This is to suppress variations.

〔作用〕[Effect]

この発明の制御装置においては、焼入部表面の温度分布
をモニタしており、焼入特性に変動を及ぼすような温度
分布が生じた場合、直ちにこれを加工条件にフィードバ
ックして制御するため焼入特性のばらつきを抑制できる
The control device of this invention monitors the temperature distribution on the surface of the hardened part, and if a temperature distribution that causes fluctuations in hardening characteristics occurs, this is immediately fed back to the processing conditions to control the hardening part. Variations in characteristics can be suppressed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。第1
図において、(5)はエネルギビームが照射されている
焼入部表面から放射される電磁波を検出する電磁波検出
装置すなわちこの例では赤外線検出器、(6月よ赤外線
検出器(5)の測定範囲であり、例えば20fi四方で
ある。この例では、赤外線検出器(5)は焼入材(2)
の移動方向(4)と工直な方向に位置しており、レーザ
ビーム(1)と赤外線検出器(5)とは相対向的に移動
しない、すなわち位置関係が固定されている。(7)は
赤外線検出器(5)からの検出信号を温度に変換する温
度変換装置であり、赤外線検出器(5)と温度変換装置
く7)を合せたものとして例えば走査方式の赤外線温度
計などが市販されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (5) is an electromagnetic wave detection device that detects electromagnetic waves emitted from the surface of the hardened part that is irradiated with an energy beam, that is, an infrared detector in this example. For example, the infrared detector (5) is located on the hardened material (2).
The laser beam (1) and the infrared detector (5) do not move relative to each other, that is, their positional relationship is fixed. (7) is a temperature conversion device that converts the detection signal from the infrared detector (5) into temperature, and a combination of the infrared detector (5) and temperature conversion device (7) is an example of a scanning-type infrared thermometer. etc. are commercially available.

(7a)は温度変換装置(7)からの温度分布データ、
(8)は例えば15ビツトのパーソナルコンピュータで
あり、温度分布データ(7a)を処理して焼入部(3)
の温度履歴(8a)を求め、求められた温度履歴(8a
)から焼入特性を推定する焼入特性推定手段と、推定さ
れた焼入特性に基づき、所望の焼入特性を得るべく照射
するエネルギビーム(1)の出力および移動速度Vを決
定するエネルギビーム決定手段とを実現している。(9
月よエネルギビーム決定手段すなわちパーソナルコンピ
ュータ(8)の出力に基づきエネルギビームの出力およ
び移動速度v(4)を制御するエネルギビーム制御手段
であり、例えば一般のレーザ加工装置に付属しているN
G装置により実現される。
(7a) is temperature distribution data from the temperature converter (7),
(8) is, for example, a 15-bit personal computer, which processes the temperature distribution data (7a) and controls the quenching section (3).
The temperature history (8a) of
), and an energy beam that determines the output and moving speed V of the energy beam (1) to be irradiated to obtain desired hardening characteristics based on the estimated hardening characteristics. A means of decision making is realized. (9
It is an energy beam control means that controls the output and moving speed v (4) of the energy beam based on the output of the moon energy beam determining means, that is, the personal computer (8), and for example, the N
This is realized by the G device.

第2図は第1図に示す装置の動作を説明するフローチャ
ートである。
FIG. 2 is a flowchart illustrating the operation of the apparatus shown in FIG.

上記のように構成されたエネルギビーム焼入の制御装置
では、ビーム出力および加工速度を入力QQ シた後、
焼入加工がスタートαυする。エネルギビームが照射さ
れている焼入部表面から放射される電磁波が赤外線検出
器(5)で検出され、この検出信号は温度変換袋H(7
月こより温度に変換されて温度分布データ(7a)が得
られる(2)。温度分布データ(7a)はX軸が焼入材
(2)の移動方向(4)に相当し、Y軸が移動方向(4
)と垂直方向に相当する。この温度分布データ(7a)
はパーソナルコンピュータ(8)に取り込まれて表面の
温度履歴(8a)に換算される(至)。
In the energy beam hardening control device configured as described above, after inputting the beam output and machining speed QQ,
Hardening process starts αυ. Electromagnetic waves emitted from the surface of the hardened part that is irradiated with the energy beam are detected by the infrared detector (5), and this detection signal is transmitted to the temperature conversion bag H (7).
The temperature distribution data (7a) is obtained by converting the temperature from the moon (2). In the temperature distribution data (7a), the X-axis corresponds to the moving direction (4) of the quenched material (2), and the Y-axis corresponds to the moving direction (4).
) corresponds to the vertical direction. This temperature distribution data (7a)
is taken into the personal computer (8) and converted into the surface temperature history (8a) (to).

ここで、温度履歴の横軸は温度分布のX軸であり、赤外
線検出器(5)の測定範囲長さLxであるが、このLx
を焼入材の移動速度Vで除する(Lx/V)ことにより
時間軸に換算できる。すなわち、レーザビーム照射部の
経時的な温度変化が求められたことになる。温度履歴が
求められると、第10図に示されるような加熱・保温・
冷却過程が知られる。
Here, the horizontal axis of the temperature history is the X-axis of the temperature distribution, and is the measurement range length Lx of the infrared detector (5).
can be converted into a time axis by dividing by the moving speed V of the quenched material (Lx/V). In other words, the temperature change over time of the laser beam irradiation section has been determined. Once the temperature history is determined, heating, keeping warm,
The cooling process is known.

焼入するためにはこの温度履歴曲線で最高到達温度をA
C3以上Th1p未満とする必要があり、さらに値で表
わされる値がマルテンサイト変態するための臨界冷却速
度以上である必要がある。この条件が整ってはじめて炭
素鋼が焼入されることになり、冷却速度から最高硬さが
、最高到達温度およびAc3以上の保温時間(i!−j
l)より焼入深さが、データベースに照らしあわせるこ
とによって演算処理装置すなわちパーソナルコンピュー
タ(8)で推定できるQ4)。次に、推定された焼入特
性を所望の値(最初に設定)と比べ(ハ)、設定値と異
なっていれば所望の焼入特性を得るべくエネルギビーム
の出力および加工速度の増減を決定するQl〜(ト)。
In order to harden, the highest temperature reached by this temperature history curve is set to A.
It is necessary to set it to C3 or more and less than Th1p, and furthermore, the value expressed by the value needs to be at least the critical cooling rate for martensitic transformation. Carbon steel is hardened only when these conditions are met, and the maximum hardness is determined by the cooling rate, the maximum temperature reached, and the temperature retention time above Ac3 (i!-j
Q4) From l), the hardening depth can be estimated by a processing unit, that is, a personal computer (8) by comparing it with a database. Next, compare the estimated hardening characteristics with the desired values (set initially) (c), and if they differ from the set values, decide to increase or decrease the energy beam output and machining speed to obtain the desired hardening characteristics. Ql~(g).

エネルギビーム決定手段すなわちパーソナルコンピュー
タ(8)からの出力に基づき、制御装置(9)によりエ
ネルギビームの出力および移動速度を制御する。
Based on the output from the energy beam determining means, that is, the personal computer (8), a control device (9) controls the output and moving speed of the energy beam.

また、推定された焼入特性が所望の値であれば表面の温
度分布測定(6)へ戻り、上記工程を焼入が終了するま
で繰り返す。
Further, if the estimated hardening characteristics are the desired values, the process returns to surface temperature distribution measurement (6), and the above steps are repeated until the hardening is completed.

なお、赤外線検出器(5)の検出素子は例えばInSに
Pb5e 、 PbSなどであるが、より検出波長の短
いSiセンサでも良い。また、焼入のような400℃か
ら1000℃の温度検出には0.7μm以上15μm未
満の波長が適していることが実験により明らかになって
いる。
Note that the detection element of the infrared detector (5) is made of, for example, InS, Pb5e, PbS, etc., but it may also be a Si sensor with a shorter detection wavelength. Further, experiments have revealed that a wavelength of 0.7 μm or more and less than 15 μm is suitable for temperature detection from 400° C. to 1000° C. such as during hardening.

第8図はこの発明の他の実施例によるエネルギビーム焼
入装置を示す構成図であり、この例では、赤外線検出器
(5)は焼入材(2)の移動方向(4)と同一軸上に位
置している所が第1図の実施例と異なる。
FIG. 8 is a block diagram showing an energy beam hardening device according to another embodiment of the present invention, and in this example, the infrared detector (5) is coaxial with the moving direction (4) of the hardening material (2). It differs from the embodiment of FIG. 1 in that it is located at the top.

第4図は第8図に示す装置の動作を説明するフローチャ
ートである。
FIG. 4 is a flowchart illustrating the operation of the apparatus shown in FIG. 8.

上記のように構成されたエネルギビーム焼入の制御装置
では、任意の焼入条件で焼入がスタートするとα0.α
p、赤外線検出器(5)で検出された焼入部からの赤外
線が、温度変換装置(7)により表面の二次元的な温度
分布(7a)として第8図中に示されるように変換され
る0゜図中X軸が焼入材(2)の移動方向(4)に相当
し、Y軸が移動方向(4)と直角な方向に相当する。こ
の表面の温度分布は演算処理装置すなわちパーソナルコ
ンピュータ(8)にとりこまれ、最高温度を示すY軸上
の一次元的な温度分布(8a)が求められる□□□。こ
のY軸上の温度分布(8a) 、および表面の二次元的
な温度分布(7a)のうちX軸とY軸との交点0よりビ
ーム前方の温度分布を基にして焼入材内部の温度分布(
8b)を算出するH、深さ方向の長さは最高到達温度お
よび最高到達温度T に達するーまでの温度勾配Wを用い、データベースに照
らしあわせることにより換算される。得られた焼入材内
部の温度分布(8b)で変態点(Acs)以上に達した
部分が硬化することになり、焼入幅や焼入部さなどの焼
入品質がこの温度分布で推定できる(ト)。次に、推定
された焼入特性を所望の値(最初に設定)と比べQll
G、設定値と異なっていれば所望の焼入特性を得るべく
エネルギビームの出力および加工速度の増減を決定する
Oη〜Q9゜エネルギビーム決定手段すなわちパーソナ
ルコンピュータ(8)からの出力に基づき、制御装置(
9月こよりエネルギビームの出力および移動速度を制御
する。また、推定された焼入特性が所望の値であれば表
面の温度分布測定(2)へ戻り、上記工程を焼入が終了
するまで繰り返す。
In the energy beam hardening control device configured as described above, when hardening is started under arbitrary hardening conditions, α0. α
p. The infrared rays from the hardened part detected by the infrared detector (5) are converted by the temperature converter (7) into a two-dimensional temperature distribution (7a) on the surface as shown in FIG. In the 0° figure, the X axis corresponds to the moving direction (4) of the quenched material (2), and the Y axis corresponds to a direction perpendicular to the moving direction (4). This temperature distribution on the surface is taken into an arithmetic processing unit, that is, a personal computer (8), and a one-dimensional temperature distribution (8a) on the Y-axis indicating the maximum temperature is determined. Based on the temperature distribution on the Y-axis (8a) and the temperature distribution in front of the beam from the intersection point 0 of the X-axis and Y-axis among the two-dimensional temperature distribution on the surface (7a), the temperature inside the quenched material is determined. distribution(
8b), the length in the depth direction is converted by comparing the maximum temperature and the temperature gradient W up to the maximum temperature T with the database. In the obtained temperature distribution (8b) inside the quenched material, the part that reaches the transformation point (Acs) or higher will be hardened, and the quenching quality such as quenched width and hardened part size can be estimated from this temperature distribution. (to). Next, compare the estimated hardening characteristics with the desired value (set initially)
G. If it differs from the set value, determine the increase or decrease of the energy beam output and machining speed to obtain the desired hardening characteristics Oη~Q9° Control based on the output from the energy beam determining means, that is, the personal computer (8) Device(
From September onwards, the output and movement speed of the energy beam will be controlled. Further, if the estimated hardening characteristics are the desired values, the process returns to surface temperature distribution measurement (2) and the above steps are repeated until hardening is completed.

第5図はこの発明のさらに他の実施例によるエネルギビ
ーム焼入の制御装置を示す構成図であり、ξの例ではS
iセンサとQセンサ(共に赤外線検出器(5)に組み込
まれている)によりそれぞれ波長が0.9μmと1.6
μmの赤外線を検出する。また、その測定範囲はエネル
ギビーム(3)または焼入材(2)の移動方向と同一軸
上に例えばaom程度である。
FIG. 5 is a block diagram showing a control device for energy beam hardening according to still another embodiment of the present invention, and in the example of ξ, S
The i-sensor and Q-sensor (both built into the infrared detector (5)) detect wavelengths of 0.9 μm and 1.6 μm, respectively.
Detects infrared rays of μm. Further, the measurement range is, for example, about an aom on the same axis as the moving direction of the energy beam (3) or the hardening material (2).

第6図は第6図に示す装置の動作を説明するフローチャ
ートである。
FIG. 6 is a flowchart illustrating the operation of the apparatus shown in FIG.

上記のように構成されたエネルギビーム焼入の制御装置
では、要求条件として例えば焼入れ深さが入力されるα
Qと、データベースより、適正なビーム出力、加工速度
を選定し、加工条件を設定するとともに焼入れが開始さ
れるαη。次に、赤外線検出器(5)で検出された2m
類の検出信号は、温度変換装置(7)によって、それぞ
れ、温度分布(7a)として第6図中に示されたように
変換される(2)。温度分布(7a)は、データ処理装
置(8)すなわちパーソナルコンビエータに取り込まれ
、2つのデータより、測定誤差が小さく精度がよい温度
分布(8a)を算出することができる(2)。一般に赤
外線温度計測は第7図、第8図に示すように、その測定
温度は材料の表面状態に影響される放射率ξによって変
化し、高温になるほど真温度との差すなわち測定誤差は
拡大する。この変化は測定する波長によって異なり、測
定波長が短いほど、この影響は小さくなる。このため、
短波長のセンサが有利であるが、例えば実用上鏝も波長
が短い0.9μmのSiセンサで安定に測定可能な温度
は800℃以上である。
In the energy beam hardening control device configured as described above, for example, the hardening depth is input as the required condition α
Q, and αη, which selects an appropriate beam output and processing speed from the database, sets processing conditions, and starts hardening. Next, the 2m detected by the infrared detector (5)
The detection signals of the above types are each converted (2) by a temperature conversion device (7) as shown in FIG. 6 as a temperature distribution (7a). The temperature distribution (7a) is taken into a data processing device (8), that is, a personal combinator, and the temperature distribution (8a) with small measurement error and high accuracy can be calculated from the two data (2). Generally, in infrared temperature measurement, as shown in Figures 7 and 8, the measured temperature changes depending on the emissivity ξ, which is affected by the surface condition of the material, and the higher the temperature, the greater the difference from the true temperature, or the measurement error. . This change varies depending on the wavelength being measured, and the shorter the measurement wavelength, the smaller this effect will be. For this reason,
Although a sensor with a short wavelength is advantageous, for example, in practice, the temperature that can be stably measured with a Si sensor of 0.9 μm, which has a short wavelength, is 800° C. or more.

そこで、800℃以下の温度はSiより少し波長の長い
1.6μmのGeセンサを用いることにより、300℃
程度まで精度よく測定できる。さらに焼入れ材(2)の
放射率ξは0.4〜0.7の範囲にあり、放射率を0.
6程度に設定して温度変換処理を行えば、必要な温度範
囲において±80℃の精度での温度計測が可能になった
。以上のように、精度よく求めた温度分布(7a)より
、熱伝導をペースにして焼入れ材内部の温度分布(8a
)を求めるQ4゜次に、焼入れ特性、すなわち焼入れ深
さは、最高到達温度および最高列T 達温度に達するまでの温度勾配−aYを用い、データベ
ースに照らしあわせる仁とにより換算される。
Therefore, by using a 1.6 μm Ge sensor, which has a slightly longer wavelength than Si, temperatures below 800 °C can be adjusted to 300 °C.
It can be measured accurately up to a certain degree. Furthermore, the emissivity ξ of the hardened material (2) is in the range of 0.4 to 0.7;
By setting the temperature to about 6 and performing temperature conversion processing, it became possible to measure temperature with an accuracy of ±80°C in the required temperature range. As described above, from the temperature distribution (7a) obtained with high accuracy, the temperature distribution inside the quenched material (8a) is based on heat conduction.
) is calculated Q4゜Next, the quenching characteristic, that is, the quenching depth, is converted by using the maximum temperature and the temperature gradient -aY until the maximum temperature is reached, and comparing it with the database.

得られた焼入材内部の温度分布で変態点(Ac 1 )
以上に達した部分が硬化することになり、焼入部さなど
の焼入品質がこの温度分布で推定できるαQ0次に、推
定された焼入特性を所望の値(最初に設定)と比べαQ
、設定値と異なっていれば所望の焼入特性を得るべくエ
ネルギビームの出力および加工速度の増減を決定するQ
7J ””’ (11(Iエネルギビーム決定手段すな
わちパーソナルコンピュータ(8)からの出力に基づき
、制御装置(9)によりエネルギビームの出力および移
動速度を制御する。また、推定された焼入特性が所望の
値であれば表面の温度分布測定(6)へ戻り、上記工程
を焼入が終了するまで繰り返す。
The temperature distribution inside the obtained quenched material indicates the transformation point (Ac 1 )
The part that reaches the above temperature will be hardened, and the hardening quality such as the hardened part size can be estimated from this temperature distribution αQ0 Next, compare the estimated hardening characteristics with the desired value (set first) αQ
, if it differs from the set value, determine the increase or decrease of the energy beam output and machining speed to obtain the desired hardening characteristics.
7J ""' (11) Based on the output from the energy beam determining means, that is, the personal computer (8), the output and moving speed of the energy beam are controlled by the control device (9). If the desired value is obtained, the process returns to surface temperature distribution measurement (6), and the above steps are repeated until the hardening is completed.

なお、赤外線検出器(5)の検出素子として、Siと自
の2種類を使用した場合について示したが、他のセンサ
でもよく、検出温度範囲に応じて、検出波長がそれぞれ
0.7μm以上1.1μm未満および1.4μm以上2
.0μm未満の範囲にある2穏類のセンサが適当である
。また、検出温度範囲が広い場合はセンサを8種′類以
上用いてもよく、逆に狭い場合は1種類のセンサで精度
良く測定できる場合もある。
Although the case is shown in which two types of detection elements, Si and Si, are used as the detection elements of the infrared detector (5), other sensors may be used, and depending on the detection temperature range, the detection wavelength may be 0.7 μm or more. Less than .1μm and 1.4μm or more2
.. Two-mode sensors in the sub-0 μm range are suitable. Further, if the detection temperature range is wide, eight or more types of sensors may be used, whereas if the detection temperature range is narrow, it may be possible to accurately measure with one type of sensor.

また、上記実施例ではエネルギビームがレーザビームで
ある場合について主に説明したが、電子ビームであって
もよく、上記実施例と同様の効果が得られる。
Further, in the above embodiments, the case where the energy beam is a laser beam has been mainly described, but an electron beam may be used, and the same effects as in the above embodiments can be obtained.

さらに、上記実施例では焼入材(2)が移動する場合に
ついて示したが、レーザビーム(1)が移動してもよい
Further, in the above embodiment, the case where the hardened material (2) moves is shown, but the laser beam (1) may also move.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、エネルギビームが照
射されているまたは照射された焼入部表面から放射され
る電磁波を検出する電磁波検出装置、この電磁波検出装
置からの検出信号を温度に変換する温度変換装置、この
温度変換装置からの温度分布データを処理して焼入特性
を推定する焼入特性推定手段、推定された焼入特性に基
づき、所望の焼入特性を得るべく照射するエネルギビー
ムの出力および移動速度を決定するエネルギビーム決定
手段、並びにこのエネルギビーム決定手段の出力に基づ
き上記エネルギビームの出力および移動速度の少なくと
も一方を制御するエネルギビーム制御手段を備え、焼入
特性のばらつきを抑制するようにしたので、焼入材の前
処理条件やビーム出力などに変動があっても、常に安定
な焼入特性が得られる効果がある。
As described above, according to the present invention, there is provided an electromagnetic wave detection device that detects electromagnetic waves emitted from the surface of a hardened part that is irradiated with an energy beam or that has been irradiated, and a detection signal from this electromagnetic wave detection device that is converted into temperature. A temperature converter, a hardening characteristic estimator that processes temperature distribution data from the temperature converter to estimate hardening characteristics, and an energy beam that irradiates to obtain desired hardening characteristics based on the estimated hardening characteristics. energy beam determining means for determining the output and moving speed of the energy beam; and energy beam controlling means for controlling at least one of the output and moving speed of the energy beam based on the output of the energy beam determining means, and Since this is suppressed, stable hardening characteristics can always be obtained even if there are fluctuations in the pretreatment conditions of the hardening material, the beam output, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるエネルギビーム焼入
の制御装置を示す構成図、第2図は第1図の動作を説明
する70−チャート、第8図、第6図はそれぞれこの発
明の他の実施例によるエネルギビーム焼入の制御装置を
示す構成図、第4図。 第6図はそれぞれ第8図、第6図の動作を説明するフロ
ーチャート、第7図、第8図はそれぞれ波長0.9μm
および1.6μmにおける測定誤差を示す特性図、第9
図は従来のエネルギビーム焼入装置の要部を示す斜視図
、第10図は焼入材の温度履歴を示す特性図、第11図
は焼入部所面の硬度分布を示す特性図である。 図において、(1)はレーザビーム、(2)は焼入材、
(3)は焼入部、(4)は移動方向、(5)は赤外線検
出器、(7)は温度変換装置、(8)はパーソナルコン
ピュータ、(9)は制御装置である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a block diagram showing a control device for energy beam hardening according to an embodiment of the present invention, FIG. 2 is a 70-chart explaining the operation of FIG. 1, and FIGS. 8 and 6 are respectively according to the present invention. FIG. 4 is a configuration diagram showing a control device for energy beam hardening according to another embodiment. Fig. 6 is a flowchart explaining the operation of Fig. 8 and Fig. 6, respectively, and Fig. 7 and Fig. 8 are each a wavelength of 0.9 μm.
Characteristic diagram showing measurement error at 1.6 μm, No. 9
The figure is a perspective view showing the main parts of a conventional energy beam hardening device, FIG. 10 is a characteristic diagram showing the temperature history of the hardened material, and FIG. 11 is a characteristic diagram showing the hardness distribution on the surface of the hardened part. In the figure, (1) is a laser beam, (2) is a hardened material,
(3) is a hardening section, (4) is a moving direction, (5) is an infrared detector, (7) is a temperature converter, (8) is a personal computer, and (9) is a control device. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (12)

【特許請求の範囲】[Claims] (1)エネルギビームが照射されているまたは照射され
た焼入部表面から放射される電磁波を検出する電磁波検
出装置、この電磁波検出装置からの検出信号を温度に変
換する温度変換装置、この温度変換装置からの温度分布
データを処理して焼入特性を推定する焼入特性推定手段
、推定された焼入特性に基づき、所望の焼入特性を得る
べく照射するエネルギビームの出力および移動速度を決
定するエネルギビーム決定手段、並びにこのエネルギビ
ーム決定手段の出力に基づき上記エネルギビームの出力
および移動速度の少なくとも一方を制御するエネルギビ
ーム制御手段を備え、焼入特性のばらつきを制御するよ
うにしたエネルギビーム焼入の制御装置。
(1) An electromagnetic wave detection device that detects electromagnetic waves emitted from the surface of the hardened part that is irradiated with or has been irradiated with an energy beam, a temperature conversion device that converts the detection signal from this electromagnetic wave detection device into temperature, and this temperature conversion device Hardening characteristic estimating means for estimating hardening characteristics by processing temperature distribution data from , and determining the output and moving speed of the energy beam to be irradiated to obtain desired hardening characteristics based on the estimated hardening characteristics. An energy beam quenching apparatus comprising: an energy beam determining means; and an energy beam controlling means for controlling at least one of the output and the moving speed of the energy beam based on the output of the energy beam determining means, and is configured to control variations in hardening characteristics. control device.
(2)焼入特性の推定は、温度変換装置からの温度分布
データを処理して焼入部のエネルギビームままた焼入材
移動方向と垂直な方向の温度分布を求め、求められた温
度分布をもとに焼入材内部の温度分布を求めることによ
り行なう特許請求の範囲第1項記載のエネルギビーム焼
入の制御装置。
(2) To estimate the quenching characteristics, process the temperature distribution data from the temperature converter to determine the temperature distribution in the direction perpendicular to the energy beam of the quenching section or the direction of movement of the quenching material. 2. The energy beam hardening control device according to claim 1, wherein the energy beam hardening is performed by determining the temperature distribution inside the hardened material.
(3)焼入特性の推定は、温度変換装置からの温度分布
データを処理して焼入部の温度履歴を求めることにより
行なう特許請求の範囲第1項記載のエネルギビーム焼入
の制御装置。
(3) The energy beam hardening control device according to claim 1, wherein the hardening characteristics are estimated by processing temperature distribution data from a temperature conversion device to determine the temperature history of the hardened portion.
(4)エネルギビームがレーザビームである特許請求の
範囲第1項ないし第3項の何れかに記載のエネルギビー
ム焼入の制御装置。
(4) The energy beam hardening control device according to any one of claims 1 to 3, wherein the energy beam is a laser beam.
(5)エネルギビームが電子ビームである特許請求の範
囲第1項ないし第3項の何れかに記載のエネルギビーム
焼入の制御装置。
(5) The energy beam hardening control device according to any one of claims 1 to 3, wherein the energy beam is an electron beam.
(6)検出する電磁波が光であり、その波長域が0.7
μm以上15μm未満である特許請求の範囲第1項ない
し第5項の何れかに記載のエネルギビーム焼入の制御装
置。
(6) The electromagnetic wave to be detected is light, and its wavelength range is 0.7
The energy beam hardening control device according to any one of claims 1 to 5, wherein the energy beam hardening control device has a diameter of μm or more and less than 15 μm.
(7)電磁波検出装置は、波長の異なる2種類以上の電
磁波を検出する特許請求の範囲第1項ないし第6項の何
れかに記載のエネルギビーム焼入の制御装置。
(7) The energy beam hardening control device according to any one of claims 1 to 6, wherein the electromagnetic wave detection device detects two or more types of electromagnetic waves having different wavelengths.
(8)検出する電磁波は、その波長域がそれぞれ0.7
μm以上1.1μm未満および1.4μm未満の2種類
である特許請求の範囲第7項記載のエネルギビーム焼入
の制御装置。
(8) The electromagnetic waves to be detected have a wavelength range of 0.7
The control device for energy beam hardening according to claim 7, which has two types: μm or more and less than 1.1 μm and less than 1.4 μm.
(9)電磁波検出装置とエネルギビーム照射位置との位
置関係が固定されている特許請求の範囲第1項ないし第
8項の何れかに記載のエネルギビーム焼入の制御装置。
(9) The energy beam hardening control device according to any one of claims 1 to 8, wherein the positional relationship between the electromagnetic wave detection device and the energy beam irradiation position is fixed.
(10)電磁波検出装置は焼入材またはエネルギビーム
の移動方向と垂直な方向に配置されている特許請求の範
囲第1項ないし第9項の何れかに記載のエネルギビーム
焼入の制御装置。
(10) The energy beam hardening control device according to any one of claims 1 to 9, wherein the electromagnetic wave detection device is arranged in a direction perpendicular to the moving direction of the hardening material or the energy beam.
(11)電磁波検出装置は焼入材またはエネルギビーム
の移動方向と同一軸上に配置されている特許請求の範囲
第1項ないし第9項の何れかに記載のエネルギビーム焼
入の制御装置。
(11) The energy beam hardening control device according to any one of claims 1 to 9, wherein the electromagnetic wave detection device is arranged on the same axis as the moving direction of the hardening material or the energy beam.
(12)焼入特性推定手段およびエネルギビーム決定手
段はパーソナルコンピュータで実現されている特許請求
の範囲第1項ないし第11項の何れかに記載のエネルギ
ビーム焼入の制御装置。
(12) The energy beam hardening control device according to any one of claims 1 to 11, wherein the hardening characteristic estimating means and the energy beam determining means are realized by a personal computer.
JP13917987A 1986-09-20 1987-06-03 Controller for energy beam quenching Pending JPS63190115A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB8720790A GB2196155B (en) 1986-09-20 1987-09-04 Control apparatus for energy beam hardening
US07/093,270 US4825035A (en) 1986-09-20 1987-09-04 Control apparatus for energy beam hardening
DE19873731136 DE3731136A1 (en) 1986-09-20 1987-09-16 CONTROL DEVICE FOR CURING BY ENERGY RADIATION

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-223365 1986-09-20
JP22336586 1986-09-20
JP61-223366 1986-09-20

Publications (1)

Publication Number Publication Date
JPS63190115A true JPS63190115A (en) 1988-08-05

Family

ID=16797003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13917987A Pending JPS63190115A (en) 1986-09-20 1987-06-03 Controller for energy beam quenching

Country Status (1)

Country Link
JP (1) JPS63190115A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196672A (en) * 1991-02-28 1993-03-23 Nissan Motor Co., Ltd. Laser processing arrangement
US7126124B2 (en) 2003-05-19 2006-10-24 Fuji Photo Film Co., Ltd. Marking determining method and marking determining apparatus
JP2010047789A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Quenching method and quenching system with the use of energy beam
JP2013015824A (en) * 2011-06-09 2013-01-24 Nidek Co Ltd Dyeing method and dyeing device
KR20150054901A (en) * 2012-09-06 2015-05-20 에체-따르 에세.아. Method and system for laser hardening of a surface of a workpiece
JP2019178361A (en) * 2018-03-30 2019-10-17 本田技研工業株式会社 Hardening quality determination method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798620A (en) * 1980-12-08 1982-06-18 Agency Of Ind Science & Technol Laser working device
JPS61288010A (en) * 1985-06-14 1986-12-18 Hitachi Seiko Ltd Electron beam control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798620A (en) * 1980-12-08 1982-06-18 Agency Of Ind Science & Technol Laser working device
JPS61288010A (en) * 1985-06-14 1986-12-18 Hitachi Seiko Ltd Electron beam control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196672A (en) * 1991-02-28 1993-03-23 Nissan Motor Co., Ltd. Laser processing arrangement
US7126124B2 (en) 2003-05-19 2006-10-24 Fuji Photo Film Co., Ltd. Marking determining method and marking determining apparatus
JP2010047789A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Quenching method and quenching system with the use of energy beam
JP2013015824A (en) * 2011-06-09 2013-01-24 Nidek Co Ltd Dyeing method and dyeing device
KR20150054901A (en) * 2012-09-06 2015-05-20 에체-따르 에세.아. Method and system for laser hardening of a surface of a workpiece
KR20210013308A (en) * 2012-09-06 2021-02-03 에체-따르 에세.아. Method and system for laser hardening of a surface of a workpiece
JP2019178361A (en) * 2018-03-30 2019-10-17 本田技研工業株式会社 Hardening quality determination method

Similar Documents

Publication Publication Date Title
US4825035A (en) Control apparatus for energy beam hardening
US20170102689A1 (en) System and method for real time closed-loop monitoring and control of material properties in thermal material processing
Santhanakrishnan et al. Hardness prediction in multi-pass direct diode laser heat treatment by on-line surface temperature monitoring
Lusquinos et al. Theoretical and experimental analysis of high power diode laser (HPDL) hardening of AISI 1045 steel
JP2006265606A (en) High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article
JPS63190115A (en) Controller for energy beam quenching
KR20160004289A (en) Determining the ferrite phase fraction after heating or cooling of a steel strip
JP2017122579A (en) Phase transformation acquisition device, phase transformation acquisition method, and manufacturing apparatus
Farshidianfar Real-time closed-loop control of microstructure and geometry in laser materials processing
Lima et al. Laser surface remelting and hardening of an automotive shaft sing a high-power fiber laser
JPS642163B2 (en)
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JPS63317208A (en) Control device for cooling hot rolled steel strip
JP2508940B2 (en) Method of forming signal pattern using high density energy source
KR20010081868A (en) Method and Apparatus to Control Laser Power by Measuring the Temperature of Melt Pool and its use
JPH05203498A (en) Temperature meter utilizing auxiliary heat source
JP7049158B2 (en) Quenching quality judgment method
JP2007217759A (en) Induction hardening method, induction hardening facility and induction-hardened product
Ishkinyaev et al. Determining the Size of the Hardening Zone by Temperature Fields during Laser Processing
JP4950711B2 (en) Temperature distribution measuring device for hot rolled material in the plate width direction
JP4508956B2 (en) Induction heat treatment method and induction heat treatment apparatus
Protasov et al. Modeling the effect of beam shaping at selective laser melting
JPS61238490A (en) Method and apparatus for controlling laser beam processing machine
JPS5847242A (en) Measurement for phase modification points of steel
KR0151955B1 (en) Measuring instrument for height of melted iron