JP4950711B2 - Temperature distribution measuring device for hot rolled material in the plate width direction - Google Patents

Temperature distribution measuring device for hot rolled material in the plate width direction Download PDF

Info

Publication number
JP4950711B2
JP4950711B2 JP2007072878A JP2007072878A JP4950711B2 JP 4950711 B2 JP4950711 B2 JP 4950711B2 JP 2007072878 A JP2007072878 A JP 2007072878A JP 2007072878 A JP2007072878 A JP 2007072878A JP 4950711 B2 JP4950711 B2 JP 4950711B2
Authority
JP
Japan
Prior art keywords
temperature
plate width
inflection point
width direction
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007072878A
Other languages
Japanese (ja)
Other versions
JP2008232831A (en
Inventor
岳洋 佃
禎夫 森本
弘幸 大山
敬久 種本
恒明 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007072878A priority Critical patent/JP4950711B2/en
Publication of JP2008232831A publication Critical patent/JP2008232831A/en
Application granted granted Critical
Publication of JP4950711B2 publication Critical patent/JP4950711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱間圧延材の温度分布を測定する板幅方向温度分布測定装置に関する。   The present invention relates to a plate width direction temperature distribution measuring device for measuring a temperature distribution of a hot rolled material.

例えば、熱間圧延にて薄鋼板製品を製造する過程において、仕上げ圧延機にて圧延を行う被圧延材の両端部は中央部と比較して温度が低下しており、このまま圧延を行うと、その温度差により圧延材に耳伸びや平坦不良が発生する。また、圧延機の圧延ロールは、圧延材の板幅方向温度差によってエッジ部が硬化しているので、当接部のロール磨耗が中央部よりも激しく、ロール寿命が短縮されてロール交換の頻度が増大することとなる。このため、仕上げ圧延機の入り側にエッジヒータを設置して、板幅両端部を加熱することでその温度低下を補償している。   For example, in the process of manufacturing a thin steel plate product by hot rolling, the temperature of both ends of the material to be rolled to be rolled by a finish rolling mill is lower than that of the central portion. Due to the difference in temperature, the rolled material has edge extension and poor flatness. Moreover, since the edge part of the rolling roll of the rolling mill is hardened due to the temperature difference in the sheet width direction of the rolled material, the roll wear of the contact part is more intense than the central part, the roll life is shortened, and the frequency of roll replacement Will increase. For this reason, an edge heater is installed on the entrance side of the finish rolling mill, and the temperature drop is compensated by heating both ends of the plate width.

温度低下している板幅両端部をエッジヒータで加熱して精度良く昇温させるためには、板幅方向の正確な温度分布を測定する必要がある。   In order to heat the both ends of the plate width where the temperature is lowered with an edge heater and raise the temperature accurately, it is necessary to measure an accurate temperature distribution in the plate width direction.

また、熱間圧延にて厚鋼板製品を製造する場合において、圧延材の強度などの品質判定は、圧延材の温度測定値を用いて行うことが多い。例えば、圧鋼板の製造では、熱間仕上げ圧延直後に水冷を行い、その後に圧延材の温度を測定し、その測定値が許容範囲内であれば品質が良好であると判定している。厚鋼板の製造では、板長手方向だけでなく、板幅方向も品質管理の対象としているため、板幅方向の温度分布を正確に測定する必要がある(例えば、特許文献1参照)。   Further, when manufacturing a thick steel plate product by hot rolling, quality determination such as strength of the rolled material is often performed using a temperature measurement value of the rolled material. For example, in the production of a pressed steel sheet, water cooling is performed immediately after hot finish rolling, and then the temperature of the rolled material is measured. If the measured value is within an allowable range, it is determined that the quality is good. In the manufacture of thick steel plates, not only the plate longitudinal direction but also the plate width direction is subject to quality control, and therefore it is necessary to accurately measure the temperature distribution in the plate width direction (see, for example, Patent Document 1).

板幅方向の温度分布を測定するためには、回転ミラー方式の走査型放射温度計が用いられる。すなわち、ミラーの回転により圧延材の幅方向に線走査を繰り返して行い、幅方向の温度分布パターンを圧延材の移動に伴って板長手方向に順次繰り返して測定することで、ほぼ板全面の温度分布状態を知ることができる。この温度計で測定された板幅方向の温度分布データは、図14に模式的に示すように、板幅両端部近傍でなだらかに立ち上がり、立ち下がるような波形を示す。このため、板幅両端部を画するためのしきい温度値を設定し、温度分布データの立上り部および立下り部それぞれにおいて前記しきい温度値に一致する温度データの位置を板幅端部と決め、このようにして決定した板幅両端部の間にある温度データを板幅方向の温度分布と認識するのが一般的である。   In order to measure the temperature distribution in the plate width direction, a rotating mirror type scanning radiation thermometer is used. That is, the line scan is repeatedly performed in the width direction of the rolled material by the rotation of the mirror, and the temperature distribution pattern in the width direction is repeatedly measured in the longitudinal direction of the plate along with the movement of the rolled material. The distribution state can be known. The temperature distribution data in the plate width direction measured by this thermometer shows a waveform that rises and falls gently in the vicinity of both ends of the plate width, as schematically shown in FIG. For this reason, a threshold temperature value for defining both ends of the plate width is set, and the position of the temperature data matching the threshold temperature value at each of the rising and falling portions of the temperature distribution data is defined as the plate width end portion. Generally, the temperature data between the both ends of the plate width determined in this way is generally recognized as the temperature distribution in the plate width direction.

しかしながら、走査型放射温度計による温度測定では、圧延材からの放射熱やロール等からの反射熱等に影響されるため、板幅端部における急激な温度変化、すなわち、圧延材が存在しない部分から板端部への温度の立ち上がり、および、板端部から圧延材が存在しない部分への温度の立ち下がりに十分追従できず、応答遅れが生じる。このため、図15に模式的に示すように、測定温度は板幅端部において圧延材実温度から乖離し、測定誤差が生じる。同図に示すように、温度の立下がり部では、高温の圧延材温度から周囲温度に低下していくため、応答遅れが生じても、こちら側の板幅端部近傍では測定温度は圧延材実温度からはそれほど大きく乖離せず、比較的小さな測定誤差に留まるのに対し、温度の立上り部では、低温の周囲温度から高温の圧延材温度に到達するのに長時間を要するため、こちら側の板幅端部近傍では測定温度は実際の圧延材温度から大きく乖離し、非常に大きな測定誤差が生じてしまうことになる。   However, in temperature measurement with a scanning radiation thermometer, it is affected by radiant heat from the rolled material, reflected heat from the roll, etc., so a sudden temperature change at the end of the plate width, that is, a portion where there is no rolled material Cannot sufficiently follow the rise of the temperature from the plate end to the end of the plate and the fall of the temperature from the plate end to the portion where no rolled material exists, resulting in a response delay. For this reason, as schematically shown in FIG. 15, the measurement temperature deviates from the actual temperature of the rolled material at the end of the sheet width, resulting in a measurement error. As shown in the figure, at the falling edge of the temperature, the temperature of the rolled material decreases from the high temperature of the rolled material to the ambient temperature. This side does not deviate so much from the actual temperature and remains a relatively small measurement error, but at the rising edge of the temperature, it takes a long time to reach the hot rolled material temperature from the low ambient temperature. In the vicinity of the end of the sheet width, the measured temperature greatly deviates from the actual rolled material temperature, resulting in a very large measurement error.

したがって、従来の走査型放射温度計による温度測定では、しきい温度値の設定いかんによって、板幅端部の位置およびその温度が大きく変動するので、板幅端部の位置およびその温度を正確に計測することができない問題があった。   Therefore, in the temperature measurement with a conventional scanning radiation thermometer, the position of the plate width end and its temperature vary greatly depending on the setting of the threshold temperature value. There was a problem that could not be measured.

そこで、上記問題を解決しうる手段として、熱間圧延材の幅方向温度分布を測定する温度検出器と、圧延材の幅長さを計測する下部光源方式のCCDカメラと、走査型温度検出器から入力される圧延材幅方向温度分布信号とCCDカメラから入力される圧延材板幅値信号を圧延材の幅方向距離に対応演算処理する信号処理装置からなる熱間圧延材の幅方向温度分布測定装置が開示されている(特許文献2参照)。   Therefore, as means for solving the above problems, a temperature detector for measuring the temperature distribution in the width direction of the hot-rolled material, a lower light source type CCD camera for measuring the width of the rolled material, and a scanning temperature detector The width direction temperature distribution of the hot rolled material comprising a signal processing device for calculating and processing the rolled material width direction temperature distribution signal inputted from the CCD and the rolled material plate width value signal inputted from the CCD camera in correspondence with the width direction distance of the rolled material A measuring device is disclosed (see Patent Document 2).

圧延材の温度検出器とCCDカメラによるエッジ位置検出機構を組合せることによって、上記走査型放射温度計のみを用いた従来の測定法より高精度で正確に圧延材の幅方向温度分布を検出できるとしている。   By combining the temperature detector of the rolled material and the edge position detection mechanism using a CCD camera, the temperature distribution in the width direction of the rolled material can be detected with higher accuracy and accuracy than the conventional measurement method using only the scanning radiation thermometer. It is said.

しかしながら、本測定装置を用いると、CCDカメラで板幅両端部の位置を正確に特定できたとしても、上述したように、走査型放射温度計で計測した温度分布データ自体には、板幅両端部(特に温度立上り部)近傍での応答遅れによる測定誤差を有するデータが不可避的に含まれるため、依然として板幅端部の温度を高精度に計測することはできない問題がある。
特開2006−177779号公報 特開昭59−29805号公報
However, using this measuring apparatus, even if the positions of both ends of the plate width can be accurately specified by the CCD camera, the temperature distribution data itself measured by the scanning radiation thermometer as described above, Since data having a measurement error due to a response delay in the vicinity of the portion (particularly the temperature rising portion) is inevitably included, there is still a problem that the temperature at the end of the plate width cannot be measured with high accuracy.
JP 2006-177779 A JP 59-29805

そこで本発明の目的は、従来の走査型放射温度計を活用しつつ、簡易かつ高精度に圧延材の板幅方向の温度分布を測定しうる温度測定装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a temperature measuring device that can measure a temperature distribution in the sheet width direction of a rolled material easily and with high accuracy while utilizing a conventional scanning radiation thermometer.

本発明者らは、鋭意研究の結果、走査型放射温度計による温度分布データのみを用いて、簡単なデータ処理にて板幅端部の位置を精度良く特定できることを見出し、以下の発明を完成するに至った。   As a result of diligent research, the present inventors have found that the position of the end of the plate width can be accurately identified by simple data processing using only the temperature distribution data from the scanning radiation thermometer, and completed the following invention. It came to do.

請求項1に記載の発明は、2台の走査型放射温度計を互いに逆方向に走査して熱間圧延材の板幅方向温度分布を測定する温度分布測定手段と、前記各走査型放射温度計で測定された板幅方向温度分布データから、温度立下り部における変曲点の位置(以下「変曲点位置」という。)およびこの変曲点における温度勾配(以下「変曲点温度勾配」という。)を計算する変曲点情報計算手段と、予め、過去に測定された多数の板幅方向温度分布データから、変曲点温度勾配がほぼ等しい多数の板幅方向温度分布データを抽出して集め、この変曲点温度勾配がほぼ等しい多数の板幅方向温度分布データより、温度立下り部の各位置における温度ばらつきを計算して、温度ばらつきの板幅方向分布を求め、この温度ばらつきの板幅方向分布に基づいて板幅端部位置を推定し、この板幅端部位置を推定する操作を変曲点温度勾配が異なる場合について多数繰り返すことにより、変曲点位置および変曲点温度勾配と板幅端部位置との関係を求め、この関係を記録しておく変曲点情報対端部位置関係記録手段と、前記変曲点情報計算手段で計算された、変曲点位置および変曲点温度勾配と、前記変曲点情報対端部位置関係記録手段に記録されている関係を用いて、板幅端部位置を決定する板幅端部位置決定手段と、前記板幅端部位置決定手段によって板幅端部位置が決定された、2つの板幅方向温度分布データを合成して、一つの板幅方向温度分布データを作成する板幅方向温度分布データ作成手段と、を備えたことを特徴とする熱間圧延材の板幅方向温度分布測定装置である。 The invention according to claim 1 is a temperature distribution measuring means for measuring the temperature distribution in the sheet width direction of the hot rolled material by scanning two scanning radiation thermometers in the opposite directions, and each of the scanning radiation temperatures. From the temperature distribution data measured in the plate width direction, the position of the inflection point at the temperature falling part (hereinafter referred to as “inflection point position”) and the temperature gradient at this inflection point (hereinafter referred to as “inflection point temperature gradient”). Inflection point information calculation means for calculating)) and a large number of plate width direction temperature distribution data having the same inflection point temperature gradient are extracted from a large number of plate width direction temperature distribution data measured in the past in advance. The temperature variation at each position of the temperature falling part is calculated from a large number of plate width direction temperature distribution data having almost the same inflection point temperature gradient to obtain the plate width direction distribution of the temperature variation. Based on the distribution of variation in the plate width direction Estimate the width end position, by inflection point temperature gradient operation for estimating the plate width edge positions is repeated a number for the case where different, the inflection point position and inflection point temperature gradient and the plate width edge position The inflection point information versus end position relationship recording means for recording the relationship, the inflection point position and the inflection point temperature gradient calculated by the inflection point information calculation means, Inflection point information vs. end position positional relationship Using the relationship recorded in the recording means, a plate width end position determining means for determining the plate width end position, and the plate width end position determining means for determining the plate width end position A sheet width direction temperature distribution data creating means for synthesizing two sheet width direction temperature distribution data determined in position and creating one sheet width direction temperature distribution data; It is a board width direction temperature distribution measuring apparatus of a hot rolled material.

本発明によれば、2台の走査型放射温度計でそれぞれ測定した温度分布データの立下り部における温度データを用いて、簡単なデータ処理により板幅両端部の位置を精度良く決定した後、2つの温度分布データを合成することで、簡易かつ高精度に板幅温度分布の測定が実現できるようになった。   According to the present invention, after using the temperature data at the falling portion of the temperature distribution data respectively measured by the two scanning radiation thermometers, after accurately determining the positions of both ends of the plate width by simple data processing, By combining the two temperature distribution data, it is possible to easily and accurately measure the plate width temperature distribution.

〔実施形態〕
本発明に係る板幅方向温度分布測定装置の構成を図1のブロック図に示す。同図に示すように、本発明に係る板幅方向温度分布測定装置は、(1)温度分布測定手段、(2)変曲点情報計算手段、(3)変曲点情報対端部位置関係記録手段、(4)板幅端部位置決定手段、および、(5)板幅方向温度分布データ作成手段、を備えている。以下、構成要素ごとに順次説明する。
Embodiment
The configuration of the plate width direction temperature distribution measuring apparatus according to the present invention is shown in the block diagram of FIG. As shown in the figure, the plate width direction temperature distribution measuring device according to the present invention includes (1) temperature distribution measuring means, (2) inflection point information calculating means, and (3) inflection point information versus end position relationship. Recording means, (4) plate width end position determining means, and (5) plate width direction temperature distribution data creating means. Hereinafter, each component will be sequentially described.

(1)温度分布測定手段
本手段では、2台の走査型放射温度計を互いに逆方向に走査して熱間圧延材の板幅方向温度分布を測定する。走査型放射温度計としては、熱間圧延材の板幅方向温度分布を測定するために一般に使用されている回転ミラー式のものを用いればよい。2台の走査型放射温度計2,2は、例えば図2に示すように、圧延材1の上方に板幅方向に並べて配置し、2台とも板幅中央部から端部方向に向かって、互いに逆方向に走査するように設定すればよい。
(1) Temperature distribution measuring means In this means, two scanning radiation thermometers are scanned in opposite directions to measure the temperature distribution in the plate width direction of the hot rolled material. As the scanning radiation thermometer, a rotating mirror type generally used for measuring the temperature distribution in the sheet width direction of the hot rolled material may be used. Two scanning radiation thermometers 2, 2 are arranged side by side in the plate width direction above the rolled material 1, for example, as shown in FIG. What is necessary is just to set so that it may scan in a mutually reverse direction.

このように、走査型放射温度計を2台使用し、2台とも板幅中央部から端部方向に向かって、互いに逆方向に走査するように構成したのは、上述した、温度立上り部における応答遅れによる大きな測定誤差を有する部分の温度分布データを排除し、後述するように、比較的測定誤差の少ない温度立下り部の温度分布データのみを用いて板幅端部位置を特定することにより測定精度を高めるためである。   In this way, two scanning radiation thermometers were used, and both were configured to scan in opposite directions from the central portion of the plate width toward the end portion. By eliminating the temperature distribution data of the part that has a large measurement error due to the response delay, and specifying the plate width end position using only the temperature distribution data of the temperature falling part with a relatively small measurement error, as will be described later. This is to increase the measurement accuracy.

(2)変曲点情報計算手段
本手段により、各走査型放射温度計で測定された板幅方向温度分布データから、温度立下り部における変曲点の位置(以下「変曲点位置」という。)およびこの変曲点における温度勾配(以下「変曲点温度勾配」という。)を計算する。以下、変曲点位置および変曲点温度勾配を「変曲点情報」と総称する。
(2) Inflection point information calculation means By this means, the position of the inflection point at the temperature falling portion (hereinafter referred to as “inflection point position”) is obtained from the temperature distribution data in the plate width direction measured by each scanning radiation thermometer. And a temperature gradient at the inflection point (hereinafter referred to as “inflection point temperature gradient”). Hereinafter, the inflection point position and the inflection point temperature gradient are collectively referred to as “inflection point information”.

すなわち、上述したように、温度立上り部は応答遅れによる測定誤差が非常に大きいので、温度立上り部の温度分布データは用いずに、比較的測定誤差の少ない温度立下り部の温度分布データのみを使用する。   That is, as described above, since the measurement error due to the response delay is very large at the temperature rising portion, only the temperature distribution data at the temperature falling portion with a relatively small measurement error is used without using the temperature distribution data at the temperature rising portion. use.

そして、一定間隔でサンプリングされ、デジタル化された温度立下り部の温度分布データについて数値微分を行うことにより温度立下り部における温度分布曲線の変曲点の位置を決定し、さらに、その変曲点における接線の勾配(傾き)を計算する。具体的には、例えば以下のようにして、前記変曲点の位置および接線の勾配を計算すればよい。   Then, the position of the inflection point of the temperature distribution curve at the temperature falling portion is determined by performing numerical differentiation on the temperature distribution data of the temperature falling portion sampled and digitized at regular intervals, and the inflection point is further determined. Calculate the slope of the tangent at the point. Specifically, for example, the position of the inflection point and the gradient of the tangent may be calculated as follows.

すなわち、図3に模式的に示す板幅方向温度分布データにおいて、板幅方向の任意の測定位置に対応する点aにおける、温度データの値をf(a)、接線の勾配をf’(a)とすると、f’(a)=f(a+1)−f(a)となる。また、f”(a)=f’(a)−f’(a−1)と定義する。そして、点aを板幅中央部側から板幅端部方向に一つずつ順にずらしてf”(a)の値を計算していくと、f”(a)の値が負から正に変わる点が探索される。この正に変わった点が変曲点であり、この点をXとする。また、この変曲点である点Xにおける接線の勾配はf’(X)=f(X+1)−f(X)となる。   That is, in the plate width direction temperature distribution data schematically shown in FIG. 3, the temperature data value at the point a corresponding to an arbitrary measurement position in the plate width direction is f (a), and the tangent gradient is f ′ (a ), F ′ (a) = f (a + 1) −f (a). Further, it is defined as f ″ (a) = f ′ (a) −f ′ (a−1). Then, the point a is shifted one by one in the direction of the plate width end portion from the plate width central portion side to f ″. As the value of (a) is calculated, a point where the value of f ″ (a) changes from negative to positive is searched. This positively changed point is an inflection point, and this point is set as X. In addition, the gradient of the tangent at the point X, which is the inflection point, is f ′ (X) = f (X + 1) −f (X).

(3)変曲点情報対端部位置関係記録手段
本手段により、予め、過去に測定された多数の板幅方向温度分布データを用いて、変曲点温度勾配がほぼ等しい板幅方向温度分布データごとに、温度立下り部の各位置における温度ばらつきを計算して、温度ばらつきの板幅方向分布を求め、この温度ばらつきの板幅方向分布に基づいて板幅端部位置を推定し、変曲点情報(変曲点位置および変曲点温度勾配)と板幅端部位置との関係を求め、この関係を例えば表にして記録する。以下、具体例を用いてさらに詳細に説明する。
(3) Inflection point information versus edge position relationship recording means By using this means, a number of plate width direction temperature distribution data measured in the past in advance, the plate width direction temperature distribution having substantially the same inflection point temperature gradient. For each data, the temperature variation at each position of the temperature falling part is calculated to obtain the plate width direction distribution of the temperature variation, and the plate width end position is estimated based on the plate width direction distribution of the temperature variation. The relationship between the inflection point information (inflection point position and inflection point temperature gradient) and the plate width end position is obtained, and this relationship is recorded in a table, for example. Hereinafter, a more detailed description will be given using specific examples.

すなわち、先ず、走査型放射温度計で計測された、過去の多数の温度分布データから、板幅中央部における圧延材温度と温度立下り部の波形がほぼ等しい温度分布データを多数抽出して集める。図4に、これら多数の温度分布データを重ね合わせて表示したものを示す。次いで、これら多数の温度分布データより、温度立下り部の各位置における温度ばらつき(標準偏差)を計算して、温度ばらつきの板幅方向分布を求める。図5に、得られた温度ばらつきの板幅方向分布を示す。   That is, first, from a large number of past temperature distribution data measured with a scanning radiation thermometer, a large number of temperature distribution data in which the waveform of the rolling material temperature in the central portion of the sheet width and the waveform of the temperature falling portion are substantially equal are extracted and collected. . FIG. 4 shows a superposition of these many temperature distribution data. Next, a temperature variation (standard deviation) at each position of the temperature falling portion is calculated from the large number of temperature distribution data to obtain a plate width direction distribution of the temperature variation. FIG. 5 shows the distribution of the obtained temperature variation in the plate width direction.

図4より、板幅端部位置は、温度立下り部の高温側の測定位置10〜18辺りまでの間のいずれかの測定位置に存在すると推定される。また、図5より、板幅端部が存在すると推定される測定位置(測定位置10〜18辺りまでの間のいずれかの測定位置)から変曲点位置である測定位置22までは、温度ばらつき(標準偏差)は単調に増加するという特徴があることがわかる。すなわち、圧延材が存在しない測定位置では、温度ばらつき(標準偏差)は単調に増加すると想定される。   From FIG. 4, it is presumed that the plate width end position exists at any measurement position between 10 and 18 around the high temperature side of the temperature falling part. Further, from FIG. 5, the temperature variation from the measurement position (any measurement position between the measurement positions 10 to 18) estimated to have the plate width end to the measurement position 22 which is the inflection point position. It can be seen that (standard deviation) is monotonically increasing. That is, it is assumed that the temperature variation (standard deviation) increases monotonously at the measurement position where no rolled material exists.

次に、板幅中央部の圧延材温度はほぼ等しいが、温度立下り部の波形が異なる温度分布データを多数抽出して集め、上記と同様、これら多数の温度分布データより、温度立下り部の各位置における温度ばらつき(標準偏差値)を計算して、温度ばらつきの板幅方向分布を求める。図6に、これら多数の温度分布データを重ね合わせて表示したものを、図7に、温度ばらつきの板幅方向分布をそれぞれ示す。   Next, a large number of temperature distribution data having different temperatures at the central portion of the sheet width, but different in the waveform of the temperature falling portion, are extracted and collected. The temperature variation (standard deviation value) at each position is calculated to obtain the plate width direction distribution of the temperature variation. FIG. 6 shows these temperature distribution data superimposed on each other, and FIG. 7 shows the distribution of temperature variations in the plate width direction.

図7に示す温度ばらつきは、図5の場合と異なり、温度立下り部の板幅中央部に近い側で急激に上昇して極大値を示した後、緩やかに低下して極小値を示し、その後は、図5の場合と同様に単調増加している。このように、温度立下り部の板幅中央部に近い側で温度ばらつきが急激に増大しているのは、例えば圧延材表面に散水冷却した際にその板幅端部近傍に残留する水滴の量が変動するためと想定される。したがって、温度ばらつきの影響が残っている測定位置16までは、少なくとも圧延材が存在していると推定される。一方、上記図5について考察したように、圧延材が存在しない測定位置では、温度ばらつき(標準偏差)は単調に増加すると想定されるので、図7において、温度ばらつき(標準偏差)が単調に増加し始める測定位置17から変曲点位置である測定位置21までには、圧延材は存在しないと推定される。よって、これらのことから、板幅端部位置は、図7中の点Aで示す測定位置16に相当すると推定できる。   Unlike the case of FIG. 5, the temperature variation shown in FIG. 7 rapidly rises on the side near the center of the plate width of the temperature falling portion to show a maximum value, and then gradually decreases to show a minimum value. Thereafter, it increases monotonously as in the case of FIG. In this way, the temperature variation rapidly increases on the side near the center of the plate width at the temperature falling part, for example, when water droplets remaining in the vicinity of the end of the plate width when water is cooled on the surface of the rolled material. It is assumed that the amount fluctuates. Therefore, it is estimated that at least the rolled material is present up to the measurement position 16 where the influence of temperature variation remains. On the other hand, as discussed above with reference to FIG. 5, the temperature variation (standard deviation) is assumed to increase monotonously at the measurement position where there is no rolled material. It is presumed that no rolled material exists from the measurement position 17 at which measurement starts to the measurement position 21 that is the inflection point position. Therefore, from these, it can be estimated that the plate width end position corresponds to the measurement position 16 indicated by the point A in FIG.

そこで、図6に示す多数の温度分布データの各温度分布データごとに変曲点位置および変曲点温度勾配を求めると、変曲点位置は、いずれの温度分布データについても測定位置21に集約され、変曲点温度勾配は−50℃以上−40℃未満の範囲に集約されることがわかった。これらの結果より、温度分布データの変曲点温度勾配が−50℃以上−40℃未満の範囲にあるときには、板幅端部位置は、変曲点位置(本例では測定位置21)より測定位置5点分だけ板幅中央寄りに戻した測定位置(本例では測定位置16)に相当すると推定できることとなる。   Therefore, when the inflection point position and the inflection point temperature gradient are obtained for each temperature distribution data of the large number of temperature distribution data shown in FIG. 6, the inflection point position is collected at the measurement position 21 for any temperature distribution data. It was found that the inflection point temperature gradient is concentrated in the range of −50 ° C. or more and less than −40 ° C. From these results, when the inflection point temperature gradient of the temperature distribution data is in the range of −50 ° C. or more and less than −40 ° C., the plate width end position is measured from the inflection point position (measurement position 21 in this example). It can be estimated that it corresponds to the measurement position (measurement position 16 in this example) returned to the center of the plate width by 5 positions.

図8〜11は、変曲点温度勾配が上記図4〜7の場合と異なる場合の例であり、これらの結果より、温度分布データの変曲点温度勾配が−40℃以上−30℃未満の範囲にあるときには、板幅端部位置は、変曲点位置(本例では測定位置21)より測定位置4点分だけ板幅中央寄りに戻した測定位置(本例では測定位置17)に相当すると推定できることとなる。   8 to 11 are examples in the case where the inflection point temperature gradient is different from those in FIGS. 4 to 7, and from these results, the inflection point temperature gradient of the temperature distribution data is −40 ° C. or more and less than −30 ° C. In this range, the end position of the plate width is the measurement position (measurement position 17 in this example) that is returned to the center of the plate width by 4 measurement positions from the inflection point position (measurement position 21 in this example). It can be estimated that it corresponds.

上記と同様の操作を変曲点温度勾配が異なる場合について多数繰り返すことにより、下記表1に例示するような、温度分布データの変曲点情報(変曲点位置および変曲点温度勾配)と板幅端部位置との関係が求められるので、この関係を演算装置の所定の記憶領域に記録しておけばよい。

Figure 0004950711
By repeating the same operation as described above many times when the inflection point temperature gradient is different, the inflection point information (inflection point position and inflection point temperature gradient) of the temperature distribution data as illustrated in Table 1 below, and Since a relationship with the plate width end position is required, this relationship may be recorded in a predetermined storage area of the arithmetic unit.
Figure 0004950711

なお、放射温度計の圧延材からの設置高さや走査速度などによって、圧延材からの放射熱およびロール等からの反射熱等による影響の度合いや応答遅れの程度が変化して温度分布データが変化するので、温度分布データの変曲点情報(変曲点位置および変曲点温度勾配)と板幅端部位置との関係は、必ずしも上記表1に示す結果とは一致しない。   Depending on the installation height of the radiation thermometer from the rolled material, the scanning speed, etc., the degree of influence and response delay due to the radiant heat from the rolled material and the reflected heat from the roll, etc. change, and the temperature distribution data changes. Therefore, the relationship between the inflection point information (the inflection point position and the inflection point temperature gradient) of the temperature distribution data and the plate width end position does not necessarily match the results shown in Table 1 above.

(4)板幅端部位置決定手段
本手段により、前記変曲点情報計算手段で計算された変曲点情報(変曲点位置および変曲点温度勾配)と前記勾配対位置関係記録手段に記録されている関係(本例では上記表1に示す関係)を用いて、板幅端部位置を決定する。
(4) Plate width end position determining means By this means, the inflection point information (inflection point position and inflection point temperature gradient) calculated by the inflection point information calculation means and the gradient-to-position relation recording means are recorded. The plate width end position is determined using the recorded relationship (in this example, the relationship shown in Table 1 above).

例えば、ある温度分布データの変曲点位置が測定位置21で、変曲点温度勾配が−37℃の場合、上記表1に示す関係より、板幅端部位置は、変曲点位置である測定位置21から測定位置4点分だけ板幅中央寄りに戻した測定位置17であると決定する。   For example, when the inflection point position of certain temperature distribution data is the measurement position 21 and the inflection point temperature gradient is −37 ° C., the plate width end position is the inflection point position from the relationship shown in Table 1 above. The measurement position 17 is determined to be returned to the center of the plate width by four measurement positions from the measurement position 21.

(5)板幅方向温度分布データ作成手段
本手段にて、前記板幅端部位置決定手段によって板幅端部位置が決定された、2つの板幅方向温度分布データを合成して、一つの板幅方向温度分布データを作成する。
(5) Plate width direction temperature distribution data creation means In this means, two plate width direction temperature distribution data whose plate width end portion position is determined by the plate width end position determination means are combined into one Create plate width direction temperature distribution data.

温度分布データの合成に際して、2台の放射温度計の間には通常、器差が存在するため、図12に模式的に示すように、2つの板幅方向温度分布データには器差分だけ偏差が生じる。このため、2つの板幅方向温度分布データが重なリ合う部分の温度データ(すなわち、同じ測定位置の温度データ)が一致するように、例えば、一方の板幅方向温度分布データを基準として他方の板幅方向温度分布データを器差分だけ補正してから合成すればよい。   When synthesizing the temperature distribution data, there is usually an instrumental difference between the two radiation thermometers. Therefore, as schematically shown in FIG. Occurs. For this reason, for example, in order to match the temperature data of the overlapping part of the two plate width direction temperature distribution data (that is, the temperature data at the same measurement position), the other one with the one plate width direction temperature distribution data as the reference What is necessary is just to synthesize | combine, after correcting only the plate | board width direction temperature distribution data only for a device difference.

このようにして作成された一つの板幅方向温度分布データは、応答遅れによる測定誤差の比較的少ない温度立下り部の温度データのみを用い、簡単なデータ処理により板幅両端部位置が精度良く特定されているので、それに伴って板幅端部温度も精度良く推定されることとなり、簡易かつ高精度に板幅温度分布の測定が実現できるようになった。   The temperature distribution data in the plate width direction created in this way uses only the temperature data of the temperature falling part with relatively little measurement error due to response delay, and the positions of both ends of the plate width are accurate by simple data processing. Accordingly, the temperature at the end of the plate width is estimated with high accuracy, and the measurement of the plate width temperature distribution can be realized easily and with high accuracy.

(変形例)
上記実施形態では、2台の走査型放射温度計2,2を板幅方向に並べて配置する例を示したが、図13に示すように、板長手方向に並べて配置してもよい。この場合にも、上述した本発明の測定原理から明らかなように、互いに逆方向に走査するように設定する必要がある。
(Modification)
In the above-described embodiment, the example in which the two scanning radiation thermometers 2 and 2 are arranged side by side in the plate width direction has been shown. However, as shown in FIG. Also in this case, it is necessary to set so as to scan in opposite directions, as is apparent from the measurement principle of the present invention described above.

実施形態に係る板幅方向温度分布測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the board width direction temperature distribution measuring apparatus which concerns on embodiment. 実施形態に係る2台の走査型放射温度計の配置例(板幅方向に配置する例)を示す斜視図である。It is a perspective view which shows the example of arrangement | positioning (example arrange | positioned in the board width direction) of the two scanning radiation thermometers which concern on embodiment. 板幅方向温度分布データから温度立下り部における変曲点位置および変曲点温度勾配を求める計算方法を説明するためのグラフ図である。It is a graph for demonstrating the calculation method which calculates | requires the inflection point position and inflection point temperature gradient in a temperature falling part from board width direction temperature distribution data. 板幅中央部における圧延材温度と温度立下り部の波形がほぼ等しい、多数の温度分布データを重ね合わせて表示したグラフ図である。It is the graph which superimposed and displayed many temperature distribution data in which the waveform of a rolling-material temperature in a sheet | seat width center part and the waveform of a temperature falling part are substantially equal. 図4に示す多数の温度分布データより得られた、温度立下り部における温度ばらつきの板幅方向分布を示すグラフ図である。It is a graph which shows the board width direction distribution of the temperature dispersion | variation in the temperature falling part obtained from many temperature distribution data shown in FIG. 板幅中央部における圧延材温度はほぼ等しいが、温度立下り部の波形が異なる、多数の温度分布データを重ね合わせて表示したグラフ図である。It is the graph which superimposed and displayed many temperature distribution data from which the rolled material temperature in a plate | board width center part is substantially equal, but the waveform of a temperature falling part differs. 図6に示す多数の温度分布データより得られた、温度立下り部における温度ばらつきの板幅方向分布を示すグラフ図である。It is a graph which shows the board width direction distribution of the temperature dispersion | variation in the temperature falling part obtained from many temperature distribution data shown in FIG. 図4とは変曲点温度勾配が異なり、板幅中央部における圧延材温度と温度立下り部の波形がほぼ等しい、多数の温度分布データを重ね合わせて表示したグラフ図である。FIG. 5 is a graph in which a large number of temperature distribution data is superimposed and displayed, in which the inflection point temperature gradient is different from that of FIG. 4 and the rolled material temperature in the central portion of the sheet width is substantially equal to the waveform of the temperature falling portion. 図8に示す多数の温度分布データより得られた、温度立下り部における温度ばらつきの板幅方向分布を示すグラフ図である。It is a graph which shows the board width direction distribution of the temperature dispersion | variation in the temperature falling part obtained from many temperature distribution data shown in FIG. 図6とは変曲点温度勾配が異なり、板幅中央部における圧延材温度はほぼ等しいが、温度立下り部の波形が異なる、多数の温度分布データを重ね合わせて表示したグラフ図である。FIG. 7 is a graph in which a large number of temperature distribution data is superimposed and displayed, in which the inflection point temperature gradient is different and the rolled material temperature in the central portion of the sheet width is substantially equal, but the waveform of the temperature falling portion is different. 図10に示す多数の温度分布データより得られた、温度立下り部における温度ばらつきの板幅方向分布を示すグラフ図である。It is a graph which shows the board width direction distribution of the temperature dispersion | variation in the temperature falling part obtained from many temperature distribution data shown in FIG. 2つの板幅方向温度分布データの合成方法を説明するための模式図である。It is a schematic diagram for demonstrating the synthetic | combination method of two board width direction temperature distribution data. 実施形態に係る2台の走査型放射温度計の別の配置例(板長手方向に配置する例)を示す斜視図である。It is a perspective view which shows another example of arrangement | positioning (example arrange | positioned in a plate longitudinal direction) of the two scanning radiation thermometers which concern on embodiment. 従来の、走査型放射温度計で測定された板幅方向温度分布データから板幅端部位置を決定する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of determining the board width edge part position from the board width direction temperature distribution data measured with the conventional scanning radiation thermometer. 走査型放射温度計により測定された温度分布データと実際の圧延材温度との差を説明するための模式図である。It is a schematic diagram for demonstrating the difference between the temperature distribution data measured with the scanning radiation thermometer and the actual rolling material temperature.

符号の説明Explanation of symbols

1…圧延材
2…走査型放射温度計
DESCRIPTION OF SYMBOLS 1 ... Rolled material 2 ... Scanning type radiation thermometer

Claims (1)

2台の走査型放射温度計を互いに逆方向に走査して熱間圧延材の板幅方向温度分布を測定する温度分布測定手段と、
前記各走査型放射温度計で測定された板幅方向温度分布データから、温度立下り部における変曲点の位置(以下「変曲点位置」という。)およびこの変曲点における温度勾配(以下「変曲点温度勾配」という。)を計算する変曲点情報計算手段と、
予め、過去に測定された多数の板幅方向温度分布データから、変曲点温度勾配がほぼ等しい多数の板幅方向温度分布データを抽出して集め、この変曲点温度勾配がほぼ等しい多数の板幅方向温度分布データより、温度立下り部の各位置における温度ばらつきを計算して、温度ばらつきの板幅方向分布を求め、この温度ばらつきの板幅方向分布に基づいて板幅端部位置を推定し、この板幅端部位置を推定する操作を変曲点温度勾配が異なる場合について多数繰り返すことにより、変曲点位置および変曲点温度勾配と板幅端部位置との関係を求め、この関係を記録しておく変曲点情報対端部位置関係記録手段と、
前記変曲点情報計算手段で計算された、変曲点位置および変曲点温度勾配と、前記変曲点情報対端部位置関係記録手段に記録されている関係を用いて、板幅端部位置を決定する板幅端部位置決定手段と、
前記板幅端部位置決定手段によって板幅端部位置が決定された、2つの板幅方向温度分布データを合成して、一つの板幅方向温度分布データを作成する板幅方向温度分布データ作成手段と、
を備えたことを特徴とする熱間圧延材の板幅方向温度分布測定装置。
Temperature distribution measuring means for scanning two scanning radiation thermometers in opposite directions to measure the temperature distribution in the sheet width direction of the hot rolled material;
From the temperature distribution data in the plate width direction measured by each scanning radiation thermometer, the position of the inflection point at the temperature falling portion (hereinafter referred to as “inflection point position”) and the temperature gradient at the inflection point (hereinafter referred to as “inflection point position”). Inflection point information calculation means for calculating "inflection point temperature gradient"),
In advance, a large number of plate width direction temperature distribution data having substantially the same inflection point temperature gradient are extracted and collected from a large number of plate width direction temperature distribution data measured in the past. The temperature variation at each position of the temperature falling part is calculated from the temperature distribution data in the plate width direction to obtain the plate width direction distribution of the temperature variation, and the plate width end position is determined based on the plate width direction distribution of the temperature variation. Estimate and repeat the operation of estimating the plate width end position many times when the inflection point temperature gradient is different , to obtain the inflection point position and the relationship between the inflection point temperature gradient and the plate width end position, Inflection point information to record this relationship versus end position relationship recording means,
The inflection point position and the inflection point temperature gradient calculated by the inflection point information calculation means and the relationship recorded in the inflection point information versus end position relationship recording means, Plate width end position determining means for determining the position;
The plate width direction temperature distribution data is created by synthesizing two plate width direction temperature distribution data whose plate width end position is determined by the plate width end position determining means to create one plate width direction temperature distribution data. Means,
An apparatus for measuring a temperature distribution in the plate width direction of a hot-rolled material.
JP2007072878A 2007-03-20 2007-03-20 Temperature distribution measuring device for hot rolled material in the plate width direction Expired - Fee Related JP4950711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072878A JP4950711B2 (en) 2007-03-20 2007-03-20 Temperature distribution measuring device for hot rolled material in the plate width direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072878A JP4950711B2 (en) 2007-03-20 2007-03-20 Temperature distribution measuring device for hot rolled material in the plate width direction

Publications (2)

Publication Number Publication Date
JP2008232831A JP2008232831A (en) 2008-10-02
JP4950711B2 true JP4950711B2 (en) 2012-06-13

Family

ID=39905805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072878A Expired - Fee Related JP4950711B2 (en) 2007-03-20 2007-03-20 Temperature distribution measuring device for hot rolled material in the plate width direction

Country Status (1)

Country Link
JP (1) JP4950711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687903A (en) * 2018-12-28 2019-04-26 东南大学 Optical fiber macrobending on-line monitoring system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151383A (en) * 1974-10-30 1976-05-06 Nippon Steel Corp HABAHOKOONDOSOKUTE ISOCHI
JPH0526733A (en) * 1991-07-16 1993-02-02 Sumitomo Metal Ind Ltd Device for measuring temperature distribution in width direction of rolled material
JPH0534203A (en) * 1991-07-26 1993-02-09 Kawasaki Steel Corp Temperature measuring method for high temperature body
JPH08193887A (en) * 1995-01-18 1996-07-30 Kawasaki Steel Corp Method for measuring temperature of material in hot rolling line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687903A (en) * 2018-12-28 2019-04-26 东南大学 Optical fiber macrobending on-line monitoring system and method
CN109687903B (en) * 2018-12-28 2021-09-28 东南大学 Optical fiber macrobend on-line monitoring system and method

Also Published As

Publication number Publication date
JP2008232831A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
EP2286935B1 (en) Steel plate quality assurance system and method
CN109073472A (en) Temperature in increasing material manufacturing system measures calibration
JP5170240B2 (en) Thickness control device for rolling mill
EP3617693B1 (en) Scale composition determining system, scale composition determining method, and computer program
JP6028871B2 (en) Thickness control device for rolling mill
CN104289532B (en) Strip steel watermark point temperature-controlled process
CN105229413A (en) The manufacture method of the flatness assay method of sheet material, the flatness determinator of sheet material and steel plate
JP4950711B2 (en) Temperature distribution measuring device for hot rolled material in the plate width direction
CN110732559A (en) method for evaluating temperature uniformity of hot-rolled strip steel intermediate billet in width direction
US20150023387A1 (en) Steel plate quality assurance system and equipment thereof
JP6481677B2 (en) Steel sheet residual stress estimation method, steel sheet manufacturing method, steel sheet residual stress estimation apparatus, and steel sheet manufacturing equipment
JP6797759B2 (en) Steel material temperature prediction method
JP5028939B2 (en) Abnormality detection device, abnormality detection method, temperature controller and heat treatment device
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JP5310144B2 (en) Thick steel plate surface temperature measuring device and material judgment method
JP4762758B2 (en) Linear heating method and linear heating control system
JP2007196261A (en) Method and apparatus for detecting/controlling edge drop in cold rolling
JP2005233731A (en) Method and apparatus for measuring temperature of sheet steel
JP2000042631A (en) Predicting method of steel plate shape and its device
Lambiase et al. Experimental investigation of parameters effect on laser forming productiveness
JPH0525567B2 (en)
KR101030857B1 (en) Method of measuring plate flatness
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
JP2000254718A (en) Method for predicting shape of steel plate
US20140016855A1 (en) Thermal image smoothing method, surface temperature-measuring method, and surface temperature-measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees