JPH0526733A - Device for measuring temperature distribution in width direction of rolled material - Google Patents

Device for measuring temperature distribution in width direction of rolled material

Info

Publication number
JPH0526733A
JPH0526733A JP20245891A JP20245891A JPH0526733A JP H0526733 A JPH0526733 A JP H0526733A JP 20245891 A JP20245891 A JP 20245891A JP 20245891 A JP20245891 A JP 20245891A JP H0526733 A JPH0526733 A JP H0526733A
Authority
JP
Japan
Prior art keywords
rolled material
temperature distribution
width direction
strip
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20245891A
Other languages
Japanese (ja)
Inventor
Hironosuke Mori
啓之輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20245891A priority Critical patent/JPH0526733A/en
Publication of JPH0526733A publication Critical patent/JPH0526733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To enable temperature distribution in width direction of a rolled material to be detected highly precisely and accurately by combining a temperature detector which measures temperature distribution in axial direction of the rolled material and a CCD camera which measures a plate width of the rolled material. CONSTITUTION:A rotary mirror 6 within a scanning unit 2 of a scanning-type radiation thermometer scans a surface of a strip 1 at a scanning angle of approximately 60 degrees, converts temperature distribution in axial direction of the strip 1 which is detected by a detection portion 8 of a silicon cell into an electrical signal, amplifies it, and then feeds it to an operation portion 10. On the other hand, a CCD camera control portion 12 detects a plate width value of the strip 1 with an accuracy of + or -0.125mm according to an image of both edge portions of the strip 1 which are input from CCD cameras 3 and 4 and then outputs it to a signal-processing device 11. The device 11 performs signal processing of a temperature distribution signal in width direction which is input from the operation portion 10 and the plate width value which is input from the control portion 12 according to a distance from a line center which is an installation reference and then accurately measures the temperature distribution in width direction of the strip 1 instantly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱間圧延過程におけ
る被圧延材の温度分布を測定する幅方向温度分布測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a widthwise temperature distribution measuring device for measuring a temperature distribution of a material to be rolled in a hot rolling process.

【0002】[0002]

【従来の技術】熱間圧延製品の製造においては、加熱さ
れた素材を圧延方向に移動させながら順次圧延が行われ
る。このような圧延過程においては、被圧延材温度を適
性範囲内に維持する必要がある。しかし一般に被圧延材
の端部は、中央部よりも冷却し易いため、仕上圧延機入
側での圧延材の表面温度は、中央部に比較して両エッジ
部が50〜100℃程度低下している。このように中央
部に比較して温度低下している両エッジ部は、そのまま
仕上圧延機で圧延されると、その温度差により圧延材に
耳伸びや平坦不良が発生し、また、圧延機の圧延ロール
は、圧延材の幅方向温度差によってエッジ部がその硬さ
を増しているので、当接部のロール摩耗が中央部より激
しく、ロールの寿命が短くロール替え頻度が増大するこ
ととなる。
2. Description of the Related Art In the production of hot-rolled products, rolling is performed sequentially while moving a heated material in the rolling direction. In such a rolling process, it is necessary to maintain the temperature of the material to be rolled within an appropriate range. However, in general, the edge of the material to be rolled is easier to cool than the center, so the surface temperature of the rolled material on the entry side of the finish rolling mill is about 50 to 100 ° C. lower at both edges than in the center. ing. In this way, both edge parts whose temperature is lower than that of the center part are rolled by the finish rolling machine as they are, and thus the temperature difference causes edge stretching and flatness failure in the rolled material, and Since the hardness of the edge portion of the rolling roll increases due to the temperature difference in the width direction of the rolled material, the roll wear at the abutting portion is more severe than that at the central portion, and the life of the roll is short and the roll replacement frequency increases. ..

【0003】上記熱間圧延過程における圧延材両エッジ
部の温度低下を防止するため、図4に示すとおり、仕上
圧延機31入側にエッジヒーター32が設置され、エッ
ジヒーター32と仕上圧延機31間に走査型放射温度計
33を設置し、圧延材34の幅方向温度分布を信号処理
装置35に検出してエッジヒーター制御部36に出力す
る。エッジヒーター制御部36は、上位プロセスコンピ
ューター37から入力されるエッジ部昇温目標値と、信
号処理装置35から入力される圧延材34の幅方向温度
分布を比較し、両エッジ部を加熱制御して温度低下を補
償している。しかし、正確に精度よく温度低下している
両エッジ部のみをエッジヒーター32により加熱して昇
温させるためには、圧延材34の幅方向位置に正確に対
応した幅方向、特に両エッジ部近傍の温度分布を測定す
る必要がある。
In order to prevent the temperature of both edges of the rolled material from decreasing during the hot rolling process, as shown in FIG. 4, an edge heater 32 is installed on the inlet side of the finishing rolling mill 31, and the edge heater 32 and the finishing rolling mill 31 are installed. A scanning radiation thermometer 33 is installed in between, and the widthwise temperature distribution of the rolled material 34 is detected by the signal processing device 35 and output to the edge heater control unit 36. The edge heater control unit 36 compares the edge portion temperature raising target value input from the upper process computer 37 with the width direction temperature distribution of the rolled material 34 input from the signal processing device 35, and controls heating of both edge portions. To compensate for the temperature drop. However, in order to accurately heat only the both edge portions where the temperature is lowered by the edge heater 32 to raise the temperature, the width direction accurately corresponding to the position of the rolled material 34 in the width direction, particularly near both edge portions. It is necessary to measure the temperature distribution of.

【0004】従来、熱間圧延過程における圧延材の幅方
向温度分布を測定する方法としては、赤外放射温度計に
より圧延材の幅方向に線走査を繰返し、圧延材表面各部
の温度に対応する温度信号を発生させ、これとほぼ等し
い幅を有する矩形波信号に波形成形するとともに、この
矩形波信号を時間積分し、圧延材の走査線上における幅
方向の少なくとも一端からそれぞれ所定距離に位置する
単数または複数点に対応する設定信号と上記積分された
値とが実質的に相等しくなったときにおける上記温度信
号をサンプリングし、圧延材の幅および移動路の変動に
拘らず上記単数または複数点における圧延材の表面温度
を移動方向にほぼ連続して自動的に検出する方法(特開
昭50−28381号公報)、鍛接管の製造工程におい
て、加熱炉で加熱されたスケルプの幅方向の像を検出す
る温度検出器と、該温度検出器の出力信号を表示する温
度指示計とからなり、前記温度検出器は、結像用光学系
によりスケルプ像の光が投射される自走式フォトダイオ
ードアレイと、クロックパルス発生回路の出力パルスで
付勢され、そのパルス周期に同期してフォトダイオード
の電気出力を増幅器に供給するフォトダイオードアレイ
駆動回路と、増幅器から供給されるパルス状の信号電圧
を一定期間所定のレベルに維持するサンプルアンドホー
ルド回路とを具備した装置(特公昭59−29805号
公報)等の提案が行われている。
Conventionally, as a method for measuring the widthwise temperature distribution of a rolled material in a hot rolling process, line scanning is repeated in the widthwise direction of the rolled material by an infrared radiation thermometer to correspond to the temperature of each part of the surface of the rolled material. A temperature signal is generated and waveform-shaped into a rectangular wave signal having a width substantially equal to the temperature signal, and the rectangular wave signal is time-integrated to be positioned at a predetermined distance from at least one end in the width direction on the scanning line of the rolled material. Or sampling the temperature signal when the set signal corresponding to a plurality of points and the integrated value become substantially equal to each other, regardless of the width of the rolled material and the fluctuation of the moving path, A method of automatically detecting the surface temperature of a rolled material substantially continuously in the moving direction (Japanese Patent Laid-Open No. 50-281381), and heating in a heating furnace in the process of manufacturing a forged tube. A temperature detector for detecting an image of the skelp in the width direction, and a temperature indicator for displaying an output signal of the temperature detector. Supplied from the self-propelled photodiode array projected and the output pulse of the clock pulse generation circuit, and the photodiode array drive circuit that supplies the electrical output of the photodiode to the amplifier in synchronization with the pulse cycle There has been proposed a device (Japanese Patent Publication No. 59-29805) equipped with a sample-and-hold circuit for maintaining a pulsed signal voltage at a predetermined level for a certain period.

【0005】[0005]

【発明が解決しようとする課題】上記特開昭50−28
381号公報、特公昭59−29805号公報に開示の
幅方向温度計は、回転ミラー方式の走査型スキャニング
タイプで、圧延材のエッジ認識方式は、自己温度スレッ
シュホールドレベルでエッジ位置を認識する方式であ
る。一方、前記熱間圧延過程の仕上圧延機前に設置され
ているエッジヒーターは、両方のエッジ端を基準にエッ
ジ端から中央方向への温度分布を正確に測定し、全体が
均一な温度となるよう加熱する必要がある。しかし、上
記自己温度スレッシュホールドレベルでエッジ位置を認
識する方式は、図5に示すとおり、圧延材34からの放
射熱およびロール等からの反射熱等に影響され、エッジ
部近傍の温度分布は、エッジ部の立上りが不明瞭で、幅
方向温度計ヘッド部41で検出される温度パターンから
温度計が認識する板幅TWは、温度スレッシュホールド
レベル42でエッジ位置を認識するため、実際の板幅W
に比較して誤差43が生じ、エッジ部を正確に認識する
ことはできない。また、被測定材の表面温度は、板幅、
板厚、品種に応じて一様ではなく、仕上圧延機入側にお
いて1000℃〜1150℃間で変動があり、エッジ認
識のための温度スレッシュホールドレベル値もその変動
に対応して変化を必要とする。さらに外的影響であるロ
ールからの反射熱やエッジ部における圧延材の放射熱の
影響は、排除することが不可能であり、エッジ検出精度
は±5mm程度が限度である。このため、エッジヒータ
ーにより圧延材全体が均一温度となるよう正確に加熱す
ることは困難である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The width-direction thermometer disclosed in Japanese Patent Publication No. 381 and Japanese Patent Publication No. 59-29805 is a rotating mirror type scanning scanning type, and an edge recognition method of a rolled material is a method of recognizing an edge position at a self-temperature threshold level. Is. On the other hand, the edge heater installed in front of the finishing rolling mill in the hot rolling process accurately measures the temperature distribution from the edge ends to the center direction with reference to both edge ends, and the entire temperature becomes uniform. Need to be heated. However, the method for recognizing the edge position by the self-temperature threshold level is affected by the radiant heat from the rolled material 34 and the reflected heat from the rolls as shown in FIG. The rising edge of the edge portion is unclear, and the plate width TW recognized by the thermometer from the temperature pattern detected by the width direction thermometer head portion 41 is the actual plate width because the edge position is recognized by the temperature threshold level 42. W
An error 43 is generated as compared with the above, and the edge portion cannot be accurately recognized. The surface temperature of the measured material is the plate width,
It is not uniform depending on the plate thickness and product type, but it varies between 1000 ° C and 1150 ° C on the entry side of the finishing rolling mill, and the temperature threshold level value for edge recognition also needs to change accordingly. To do. Further, it is impossible to eliminate external influences such as reflected heat from the roll and radiant heat of the rolled material at the edge portion, and the edge detection accuracy is limited to about ± 5 mm. Therefore, it is difficult to accurately heat the entire rolled material by the edge heater so that the whole rolled material has a uniform temperature.

【0006】この発明の目的は、熱間圧延過程において
圧延材の幅方向温度分布を連続的に、かつ圧延材の両エ
ッジ部の近傍を高精度に圧延材の幅方向の位置と正確に
対応して計測できる温度分布測定装置を提供することに
ある。
The object of the present invention is to continuously and accurately correspond to the temperature distribution in the width direction of the rolled material in the hot rolling process and highly accurately match the vicinity of both edge portions of the rolled material with the position in the width direction of the rolled material. An object of the present invention is to provide a temperature distribution measuring device that can measure the temperature.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験研究を行った。その結果、圧延材
の幅方向温度分布を測定する走査型放射温度計とは別
に、圧延材の板幅値を計測する下部光源方式のCCDカ
メラを設置し、CCDカメラにより測定したストリップ
板幅値と走査型放射温度計による圧延材の幅方向温度分
布から信号処理装置により圧延材幅方向距離に対応した
温度分布に演算処理することによって、圧延材の両エッ
ジ部の近傍を高精度に圧延材の幅方向の位置と正確に対
応して計測できることを究明し、この発明に到達した。
[Means for Solving the Problems] The present inventors conducted various test studies in order to achieve the above object. As a result, in addition to the scanning radiation thermometer that measures the temperature distribution in the width direction of the rolled material, a CCD camera of the lower light source system that measures the plate width value of the rolled material is installed, and the strip plate width value measured by the CCD camera. And the temperature distribution in the width direction of the rolled material measured by the scanning radiation thermometer to a temperature distribution corresponding to the distance in the width direction of the rolled material by the signal processing device. It was clarified that the measurement can be performed accurately corresponding to the position in the width direction of the, and the present invention was reached.

【0008】すなわちこの発明は、圧延材の幅方向温度
分布を測定する温度検出器と、圧延材の板幅値を計測す
る下部光源方式のCCDカメラと、温度検出器から入力
される圧延材の幅方向温度分布信号とCCDカメラから
入力される圧延材の板幅値信号を圧延材幅方向距離に対
応演算処理する信号処理装置からなる。
That is, according to the present invention, a temperature detector for measuring a temperature distribution in the width direction of a rolled material, a CCD camera of a lower light source type for measuring a strip width value of the rolled material, and a rolled material input from the temperature detector The signal processing device comprises a width direction temperature distribution signal and a plate width value signal of the rolled material input from the CCD camera, which corresponds to the distance in the rolled material width direction.

【0009】[0009]

【作用】この発明においては、圧延材の幅方向温度分布
を測定する温度検出器とは別に、圧延材の板幅値を計測
する下部光源方式のCCDカメラを設置したから、温度
検出器による圧延材の幅方向温度分布を、それぞれ設置
基準であるラインセンターからの距離で対応化信号処理
することによって、瞬時に圧延材幅方向温度分布を正確
に測定することができる。圧延材の幅長さを計測する下
部光源方式のCCDカメラの下部光源としては、蛍光灯
を使用することによって圧延材からの赤外線の波長とは
異なるため、正確にCCDカメラは圧延材のエッジ部を
判定することができる。
According to the present invention, since the lower light source type CCD camera for measuring the strip width value of the rolled material is installed in addition to the temperature detector for measuring the temperature distribution in the width direction of the rolled material, rolling by the temperature detector is performed. The temperature distribution in the width direction of the rolled material can be accurately measured instantaneously by performing corresponding signal processing on the distance distribution from the line center which is the installation reference. The bottom light source of the bottom light source type CCD camera that measures the width and length of the rolled material is different from the wavelength of infrared rays from the rolled material by using a fluorescent lamp, so the CCD camera accurately measures the edge portion of the rolled material. Can be determined.

【0010】この発明における温度検出器としては、回
転ミラーを有するシリコンセルを用いた放射温度計、あ
るいはCCDリニアアレイ等の固体撮像素子を使用し、
これらのスキャニングユニットをラインセンター上方に
設置する走査型温度検出器、あるいは結像用光学系を介
して自走式フォトダイオードアレイ等上に圧延材像を投
写する固定式温度検出器のいずれであっても、同様の効
果が得られる。また、下部光源方式のCCDカメラ方式
の板幅計は、図1に示すとおり、ラインセンターLCか
ら所定間隔、すなわち当該熱間圧延ミルでの平均板幅の
1/2離して両側にCCDカメラ21、22を設置す
る。このCCDカメラ21、22による圧延材23の板
幅の検出は、板幅W=R+L、R=CCW/2+RM、
L=CCW/2+LMにより行われる。これによっ圧延
材23が蛇行してもCCDカメラ21、22の視野範囲
24内で絶対幅を測定することが可能となる。なお、2
5は下部光源の蛍光灯である。したがって測定した板幅
値と温度検出器が測定した幅方向温度分布をそれぞれ対
応設置基準であるラインセンターLCからの距離と対応
せしめることによって、圧延材幅方向温度分布を正確に
測定することができる。
As the temperature detector in the present invention, a radiation thermometer using a silicon cell having a rotating mirror, or a solid-state image pickup device such as a CCD linear array is used.
It is either a scanning type temperature detector that installs these scanning units above the line center, or a fixed type temperature detector that projects a rolled material image onto a self-propelled photodiode array or the like via an imaging optical system. However, the same effect can be obtained. Further, as shown in FIG. 1, the bottom light source type CCD camera type plate width meter has a CCD camera 21 on both sides at a predetermined distance from the line center LC, that is, at a distance ½ of the average plate width in the hot rolling mill. , 22 are installed. The plate width W of the rolled material 23 is detected by the CCD cameras 21 and 22, and the plate width W = R + L, R = CCW / 2 + RM,
L = CCW / 2 + LM. As a result, even if the rolled material 23 meanders, the absolute width can be measured within the visual field range 24 of the CCD cameras 21 and 22. 2
Reference numeral 5 is a fluorescent lamp as a lower light source. Therefore, by correlating the measured strip width value and the width direction temperature distribution measured by the temperature detector with the distance from the line center LC which is the corresponding installation reference, the rolled material width direction temperature distribution can be accurately measured. ..

【0011】[0011]

【実施例】以下にこの発明の詳細を実施の一例を示す図
2ないし図3に基づいて説明する。図2はこの発明の幅
方向温度分布測定装置の測定原理の説明図である。図3
はこの発明の幅方向温度分布測定装置の制御系統図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to FIGS. FIG. 2 is an explanatory view of the measurement principle of the width direction temperature distribution measuring device of the present invention. Figure 3
FIG. 3 is a control system diagram of the width direction temperature distribution measuring device of the present invention.

【0012】図3において、1は熱間圧延ミルの仕上圧
延前のストリップ、2はラインセンターの上方に設置し
たストリップ1の幅方向温度分布を測定する走査型放射
温度計のスキャニングユニット、3、4はラインセンタ
ーLCから当該熱間圧延ミルの平均板幅の1/2離して
設置したCCDカメラ、5はストリップ1の下部に設け
た下部光源の蛍光灯である。走査型放射温度計のスキャ
ニングユニット2内には、六面体の回転ミラー6、ロー
タリーエンコーダー7、シリコンセルの検出部8、増幅
器9が組込まれ、走査角度60°でストリップ1の進行
方向と直角方向に、走査速度50m/sec、走査回数
10回/sec、温度測定範囲600〜1200℃、瞬
時視野3.5mm×30mmでストリップ1表面を走査
し、シリコンセルの検出部8で検出されたストリップ1
の幅方向温度分布を電気信号に変換し、増幅器9で増幅
したのち、操作部10に入力される。
In FIG. 3, 1 is a strip before finish rolling of a hot rolling mill, 2 is a scanning radiation thermometer scanning unit for measuring the widthwise temperature distribution of the strip 1 installed above the line center, 3, 4 is a CCD camera installed at a distance of 1/2 of the average plate width of the hot rolling mill from the line center LC, and 5 is a fluorescent lamp of a lower light source provided below the strip 1. In the scanning unit 2 of the scanning radiation thermometer, a hexagonal rotary mirror 6, a rotary encoder 7, a silicon cell detector 8 and an amplifier 9 are incorporated, and the scanning angle is 60 ° in the direction perpendicular to the traveling direction of the strip 1. , Scanning speed 50 m / sec, scanning frequency 10 times / sec, temperature measuring range 600 to 1200 ° C., instantaneous field of view 3.5 mm × 30 mm, the surface of the strip 1 was scanned, and the strip 1 detected by the detection unit 8 of the silicon cell was measured.
The temperature distribution in the width direction is converted into an electric signal, amplified by the amplifier 9, and then input to the operation unit 10.

【0013】操作部10に入力された増幅器9からのス
トリップ1の幅方向温度分布の電気信号は、幅方向温度
分布に変換され、信号処理装置11に出力される。一
方、CCDカメラ3、4は、分解能4000ビット、視
野範囲500mm、1ビット当りの幅方向長さ0.12
5mmでストリップ1の両エッジ部を撮像しCCDカメ
ラ制御部12に出力する。CCDカメラ制御部12は、
CCDカメラ3、4から入力されるストリップ1の両エ
ッジ部の映像からストリップ1の板幅値を精度±0.1
25mmで検出し、信号処理装置11に出力する。信号
処理装置11は、操作部10から入力される図2に示す
幅方向温度分布信号13と、CCDカメラ制御部12か
ら入力される図2に示す板幅値Wからそれぞれ設置基準
であるラインセンターLCからの距離で対応化信号処理
し、図2に示すとおり、ストリップ1の幅方向温度分布
14を瞬時にして正確に測定することができる。
The electric signal of the temperature distribution in the width direction of the strip 1 from the amplifier 9 input to the operation unit 10 is converted into the temperature distribution in the width direction and output to the signal processing device 11. On the other hand, the CCD cameras 3 and 4 have a resolution of 4000 bits, a visual field range of 500 mm, and a width direction length of 0.12 per bit.
Both edges of the strip 1 are imaged at 5 mm and output to the CCD camera control unit 12. The CCD camera control unit 12
The strip width value of the strip 1 is accurately ± 0.1 from the images of both edges of the strip 1 input from the CCD cameras 3 and 4.
It is detected at 25 mm and output to the signal processing device 11. The signal processor 11 uses the width direction temperature distribution signal 13 shown in FIG. 2 input from the operation unit 10 and the plate width value W shown in FIG. Corresponding signal processing is performed at a distance from LC, and as shown in FIG. 2, the temperature distribution 14 in the width direction of the strip 1 can be instantaneously and accurately measured.

【0014】したがって、信号処理装置11で処理され
たストリップ1の幅方向温度分布14をエッジヒーター
制御部に出力してエッジヒーターでの加熱を制御すれ
ば、エッジ部を所定の昇温目標値に高精度で正確に制御
することができる。本発明によれば、総合的なストリッ
プのエッジ位置検出精度は、±1mmは確保可能であ
り、従来の自己温度スレッシュホールドレベル方式の±
5mmに比較して大幅に位置認識精度の向上を図ること
ができる。
Therefore, if the temperature distribution 14 in the width direction of the strip 1 processed by the signal processing device 11 is output to the edge heater control section to control the heating by the edge heater, the edge section reaches a predetermined temperature increase target value. It can be controlled with high precision and accuracy. According to the present invention, the overall edge position detection accuracy of ± 1 mm can be ensured, and ± 1 mm of the conventional self-temperature threshold level method is used.
It is possible to significantly improve the position recognition accuracy as compared with 5 mm.

【0015】[0015]

【発明の効果】以上述べたとおり、この発明によれば、
圧延材の温度検出器とCCDカメラによるエッジ位置検
出機構を組合わせることによって、従来の自己温度スレ
ッシュホールドレベル方式のエッジ位置検出精度±5m
mに比較して5倍以上の精度で、エッジ位置を検出で
き、高精度で正確に圧延材の幅方向温度分布を検出する
ことが可能となり、エッジヒーターによる圧延材エッジ
部の温度調整を正確に行うことができる。
As described above, according to the present invention,
By combining the temperature detector of the rolled material and the edge position detection mechanism by CCD camera, the edge position detection accuracy of the conventional self-temperature threshold level system is ± 5m.
The edge position can be detected more than 5 times more accurately than m, and the widthwise temperature distribution of the rolled material can be detected with high accuracy, and the temperature of the rolled material edge part can be accurately adjusted by the edge heater. Can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の下部光源方式のCCDカメラ方式の
板幅計の測定原理の説明図である。
FIG. 1 is an explanatory view of a measurement principle of a bottom light source type CCD camera type plate width meter of the present invention.

【図2】この発明の幅方向温度分布測定装置の測定原理
の説明図である。
FIG. 2 is an explanatory diagram of a measurement principle of the width direction temperature distribution measuring device of the present invention.

【図3】この発明の幅方向温度分布測定装置の制御系統
図である。
FIG. 3 is a control system diagram of the width-direction temperature distribution measuring device of the present invention.

【図4】従来の熱間圧延ミルにおけるエッジ加熱装置の
制御系統図である。
FIG. 4 is a control system diagram of an edge heating device in a conventional hot rolling mill.

【図5】従来の自己温度スレッシュホールドレベル方式
のエッジ位置検出の測定原理説明図である。
FIG. 5 is an explanatory diagram of a measurement principle of edge position detection of a conventional self-temperature threshold level method.

【符号の説明】[Explanation of symbols]

1、23、34 ストリップ 2、41 スキャニングユニット 3、4、21、22 CCDカメラ 5、25 蛍光灯 6 回転ミラー 7 ロータリエンコーダー 8 検出部 9 増幅器 10 操作部 11、35 信号処理装置 12 CCDカメラ制御部 13 幅方向温度分布信号 14 幅方向温度分布 24 視野範囲 31 仕上圧延機 32 エッジヒーター 33 走査型放射温度計 36 エッジヒーター制御部 37 上位プロセスコンピューター 42 温度スレッシュレベル 43 誤差 1, 23, 34 Strip 2, 41 Scanning Unit 3, 4, 21, 22 CCD Camera 5, 25 Fluorescent Lamp 6 Rotating Mirror 7 Rotary Encoder 8 Detecting Section 9 Amplifier 10 Operating Section 11, 35 Signal Processing Device 12 CCD Camera Control Section 13 Width direction temperature distribution signal 14 Width direction temperature distribution 24 Field-of-view range 31 Finishing mill 32 Edge heater 33 Scanning radiation thermometer 36 Edge heater control unit 37 Upper process computer 42 Temperature threshold level 43 Error

Claims (1)

【特許請求の範囲】 【請求項1】 圧延材の幅方向温度分布を測定する温度
検出器と、圧延材の板幅値を計測する下部光源方式のC
CDカメラと、前記温度検出器から入力される圧延材の
幅方向温度分布信号とCCDカメラから入力される圧延
材の板幅値信号を圧延材の幅方向距離に対応演算処理す
る信号処理装置からなる熱間圧延材の幅方向温度分布測
定装置。
Claim: What is claimed is: 1. A temperature detector for measuring a temperature distribution in the width direction of a rolled material, and a lower light source type C for measuring a strip width value of the rolled material.
From a CD camera and a signal processing device for processing the widthwise temperature distribution signal of the rolled material input from the temperature detector and the plate width value signal of the rolled material input from the CCD camera in correspondence with the distance in the widthwise direction of the rolled material. Width direction temperature distribution measuring device for hot rolled material.
JP20245891A 1991-07-16 1991-07-16 Device for measuring temperature distribution in width direction of rolled material Pending JPH0526733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20245891A JPH0526733A (en) 1991-07-16 1991-07-16 Device for measuring temperature distribution in width direction of rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20245891A JPH0526733A (en) 1991-07-16 1991-07-16 Device for measuring temperature distribution in width direction of rolled material

Publications (1)

Publication Number Publication Date
JPH0526733A true JPH0526733A (en) 1993-02-02

Family

ID=16457867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20245891A Pending JPH0526733A (en) 1991-07-16 1991-07-16 Device for measuring temperature distribution in width direction of rolled material

Country Status (1)

Country Link
JP (1) JPH0526733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053659B3 (en) * 2004-11-03 2006-04-13 My Optical Systems Gmbh Non-contact measurement of the temperature profile of a surface, along a line, uses a rotating and transparent polygon scanner to pass emitted and/or reflected light from the surface to a focusing lens
JP2008232831A (en) * 2007-03-20 2008-10-02 Kobe Steel Ltd Device for measuring temperature distribution in plate width direction of hot rolled plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053659B3 (en) * 2004-11-03 2006-04-13 My Optical Systems Gmbh Non-contact measurement of the temperature profile of a surface, along a line, uses a rotating and transparent polygon scanner to pass emitted and/or reflected light from the surface to a focusing lens
JP2008232831A (en) * 2007-03-20 2008-10-02 Kobe Steel Ltd Device for measuring temperature distribution in plate width direction of hot rolled plate

Similar Documents

Publication Publication Date Title
CN102667400B (en) Method of measuring flatness of plate and method of manufacturing steel plate using same
KR101441226B1 (en) Method for measuring flatness of sheet material and steel sheet production method utilizing said method
US4585343A (en) Apparatus and method for inspecting glass
JPS62293105A (en) Method and device for measuring and adjusting roll clearance
WO2012171627A1 (en) Method and device of determining a tracking characteristic and/or strip width of a moving strip
CN114126776A (en) Hot rolled steel strip meandering control method, meandering control device, and hot rolling facility
US4979556A (en) Thickness control for a continuous caster
EP2230031A1 (en) Edge flatness monitoring
JP3797064B2 (en) Steel plate manufacturing equipment
KR100856276B1 (en) Detecting device for thickness of rolled material
JPH0526733A (en) Device for measuring temperature distribution in width direction of rolled material
JPH08189821A (en) Bending measuring apparatus for long material and method therefor
JP2005134362A (en) Inspection method and inspection device for surface irregularity
ES2263666T3 (en) PROCEDURE AND DEVICE FOR OPERATING A HOT ROLLING TRAIN WITH AT LEAST ONE RECALLED BOX.
CN1259063A (en) Method and device for detecting the actual state of a hot tube
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
JPH06229833A (en) Instrument for measuring surface temperature of high-temperature moving material
KR101176004B1 (en) Moving type apparatus for measuring temperature and moving type apparatus for measuring temperature for strip mill
JP2636557B2 (en) Method for detecting in-furnace tension of annealed material in horizontal continuous annealing furnace
JPS62288506A (en) Method for measuring planar shape of material to be rolled
JPS63221208A (en) Method for detecting in-furnance running state of strip
JPH0711454B2 (en) Strip temperature measurement method for strip continuous heat treatment equipment
CA1260289A (en) Apparatus and method for inspecting glass
JPS6276436A (en) Internal defect detecting method for plate material
JP2005257461A (en) Method for detecting plate end position of hot-rolled member, hot rolling method, and hot rolling facilities