JP7048428B2 - 超電導磁石およびその保護方法 - Google Patents

超電導磁石およびその保護方法 Download PDF

Info

Publication number
JP7048428B2
JP7048428B2 JP2018115250A JP2018115250A JP7048428B2 JP 7048428 B2 JP7048428 B2 JP 7048428B2 JP 2018115250 A JP2018115250 A JP 2018115250A JP 2018115250 A JP2018115250 A JP 2018115250A JP 7048428 B2 JP7048428 B2 JP 7048428B2
Authority
JP
Japan
Prior art keywords
superconducting
wire
heater
magnet
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115250A
Other languages
English (en)
Other versions
JP2019220524A (ja
Inventor
毅 和久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018115250A priority Critical patent/JP7048428B2/ja
Publication of JP2019220524A publication Critical patent/JP2019220524A/ja
Application granted granted Critical
Publication of JP7048428B2 publication Critical patent/JP7048428B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導磁石、特に高温超電導磁石のクエンチ時の磁石保護に関する。
高温超電導材料は、高価で資源としても希少な液体ヘリウムを利用せずにより高温の領域で動作させられる。このことから、これを用いた超電導磁石の開発が進められている(例えば、特許文献1参照)。高温超電導磁石(以下、HTS磁石と記す)は、液体ヘリウムを用いないという利点ばかりではなく、従来の金属系超電導磁石(NbTi,NbSn)では問題となっていたクエンチ(常伝導転移)をほとんど気にする必要がないため、磁石を運用する上でも信頼性が高い。
しかし、ひとたびクエンチが発生すると、超電導磁石にとってクエンチは対策が必要な重要課題である(例えば、非特許文献1参照)。このため、クエンチが発生したら、超電導磁石からは速やかに磁気エネルギーを回収し磁石の焼損を防止することが必要である。例えば、超電導磁石は励磁電源からの電流供給を断ち、磁石の蓄積エネルギー(磁気エネルギー)を速やかに回収する必要がある。
電源駆動タイプの超電導磁石の場合には、クエンチが発生したら速やかにその発生を検知し、即座に励磁電源から超電導磁石を切り離す。クエンチの検出は磁石に発生する電圧を常時モニターしておき、抵抗性の異常電圧を観測したら磁石保護動作に移行する。エネルギー回収の方法としては、磁石回路に接続された保護抵抗やダイオードで熱として消費させることが一般的であり、さらにエネルギーの一部を積極的に磁石(コイル)自身で熱に変えることもある。
積極的に磁石自身でエネルギーを回収する方法として、クエンチバックという方法もある。これは、ヒータやクエンチ時の磁場減衰により渦電流発熱させる構造物を超電導コイルに設置し、クエンチ時にアクティブまたはパッシブな手法で超電導コイルに熱を投入して、超電導コイルの抵抗領域を拡大するものである。この手法は磁石外部に設置された保護抵抗だけでは絶縁耐圧の観点からエネルギー回収が速やかに行えないような磁石において適用されている。
従来、超電導磁石では、磁石の大きさや運転形態に合わせ様々なクエンチ保護手法が取られ、技術的に確立しており、磁石を焼損させることは幾どない。
特許第5656734号公報
高木ほか、「共巻きコイルを用いたHTSコイルクエンチ検出の高感度化」、低温工学、52巻1号、p.44-51、2017年
クエンチの発生をほとんど気にする必要がないHTS磁石だが、人為的なミスオレーションや想定外の磁石への入熱などによりクエンチが発生するリスクは依然残っており、クエンチが起きた場合の磁石保護、エネルギー回収は他の超電導磁石と同様に必要である。クエンチが発生した場合、HTS磁石は逆にクエンチのしにくさが仇となり下記の課題が生じる。
NbTiなどの従来の超電導磁石では、クエンチが発生すると常伝導に転移した抵抗領域が磁石全体にわたって急激に拡大する(クエンチ伝搬)。そのため、クエンチ直後に抵抗性の電圧がすぐに観測されクエンチ検出が容易である。しかし、臨界温度が高く熱的に安定なHTS磁石では、クエンチ伝搬速度が遅く抵抗領域が拡大しないため、電圧発生が極めて小さくクエンチ検出が困難である。HTS磁石では抵抗領域が拡大してからでないとクエンチ検出ができないため、クエンチ検出までの時間がかかり、磁石保護動作に移行するまでの時間がかかる。従って、HTS磁石では従来超電導磁石よりもより短い時間で急激にエネルギーを回収する必要がある。
クエンチ検出が困難なため磁石の焼損防止が難しいHTS磁石に対しては、無絶縁巻線(NI(No Insulation)巻線)が提案されている。通常、素線絶縁された超電導線が巻き回される超電導コイルを、素線絶縁しない状態で巻線する方法である。超電導線の外部には安定化材と呼ばれる銅などの良導体が配置されているが、良導体とは言ってもゼロ抵抗の超電導体に比べれば抵抗は大きいため、定常状態において、電流は超電導線(コイル)を流れる。クエンチが発生した場合には、発生した抵抗を迂回するように電流が隣接する超電導巻線に分流することとなるので、受動的にクエンチに対して保護動作可能である。
しかし、このNIコイルは励磁過程でも分流するために所定の電流配置、完全に超電導線のみに電流が流れ、設計通りの磁場を発生するまでに時間を要し、インダクタンスの大きな大型の磁石や、磁場均一度が要求されるMRI(Magnetic Resonance Imaging)やNMR(Nuclear Magnetic Resonance)といった磁石には現状適用できないし、変動磁場を想定した応用には利用することができない。
HTS磁石にクエンチバックヒータを実装する例としては、米国国立高磁場研究所(米国NHFML)で開発されている32T磁石がある。この磁石は15Tの金属系の超電導磁石の内側にHTS磁石を設置して17T発生させ、合計32Tとするものである。HTS磁石は酸化物超電導テープ線材をダブルパンケーキ巻きしたものを積層して構成されており、パンケーキコイル間にクエンチバックさせるためのミアンダ状のシートヒータが挿入されている。
このHTS磁石は全身用MRIなどに比べればサイズもインダクタンスも小さく、また、液体ヘリウムで冷却されているために冷却特性がよく磁石保護は容易である。大きなコイルになると蓄積エネルギーが大きくなり、焼損を防止するためにはそれを回収する時間を短くする必要がある。現状では全身用MRIなどに適用可能なHTS磁石の保護システムは実用化されていない。
本発明は、前記の課題を解決するための発明であって、クエンチが起った場合に速やかに電流を引き抜くことができる超電導磁石およびその保護方法を提供することを目的とする。
前記目的を達成するため、本発明の超電導磁石は、超電導線が巻き回された超電導コイルを有する超電導磁石であって、超電導コイルは、超電導線に沿うようにヒータ線が共巻きされており、超電導コイルの巻線の一端とヒータ線の巻線の一端が接続されて無誘導の電流経路が形成され、電流経路に電流を通電するための電源(例えば、クエンチバックヒータ電源4)を有することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
本発明によれば、クエンチが起った場合に速やかに電流を引き抜くことができる。
本実施形態に係る超電導磁石の基本原理を示す説明図であり、(a)は回路図、(b)は超電導コイルの概略外観図である。 本実施形態の巻線方法の一形態を示す模式図である。 本実施形態のコイル断面構成の一形態を示す模式図である。 本実施形態のコイル断面構成の他の一形態を示す模式図である。 本実施形態のコイル断面構成のその他の一形態を示す模式図であり、(a)は丸状の超電導導体の場合、(b)は平角状の超電導体の場合である。 本実施形態のクエンチ電圧検出方法の一例を示す回路図である。 本実施形態のクエンチ電圧検出方法の他の一例を示す回路図である。 本実施形態に係る永久電流モード運転の超電導磁石を表す説明図である。 本実施形態の永久電流モード運転磁石の等価回路を表す説明図である。
本発明は、クエンチが起った場合にエネルギー回収が困難なHTS磁石に対し、速やかに電流を引き抜くと同時に磁石全体を瞬時に加熱し磁石焼損を防止するものである。
以下、本発明に係る実施形態について、適宜図面を参照しながら詳細に説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
(基本構成)
図1は、本実施形態に係る超電導磁石の保護の基本原理を示す説明図であり、(a)は回路図、(b)は超電導コイルの概略外観図である。図1(a)に示す超電導磁石100は、超電導コイル21と、保護抵抗5と、励磁電源3を有し、超電導コイル21と励磁電源3とからなるループ回路に対し、保護抵抗5が超電導コイル巻線1と並列となるように接続されている。
超電導コイル21は、超電導コイル巻線1(超電導線)に沿うようにヒータコイル巻線2が共巻きされており、超電導コイル巻線1のインダクタンスと共巻きされたヒータコイル巻線2のインダクタンスは、略等しくなるように実装している。互いに同一の電流経路のコイルが密着して配置されているから、超電導コイル巻線1の一端とヒータコイル巻線2の一端を接続部7で接続すると無誘導の電流経路が形成される。
超電導磁石100は、前記電流経路に電流を通電するためのクエンチバックヒータ電源4(電流源、電流投入手段)を有する。クエンチバックヒータ電源4は、超電導コイル巻線1の接続部1a、ヒータコイル巻線2の接続部2aに接続されている。
図1(b)に示す超伝導コイルを示す概略外観図でおいて、ボビン24の上部フランジには切り欠きが半径方向に設けられている。切り欠きから接続部1a,2a,7を立ち上げている。前記したように、接続部1a,2aは、クエンチバックヒータ電源4と接続されており、接続部7は、励磁電源3の一端と接続されている。図中ではクエンチバックヒータ電源4は接続されているが、クエンチ検出後に超電導コイル巻線1からヒータコイル巻線2に電流を載せかえる瞬間に電気的に接続される。
図2は、本実施形態の巻線方法の一形態を示す模式図である。図2には、ダブルパンケーキコイル11(図1の超電導コイル21に対応)を示す。幅4mmの市販イットリウム系の超電導テープ材12(図1の超電導コイル巻線1に対応)と同じく4mm幅で厚さ100μmの銅テープ材13(図1のヒータコイル巻線2に対応)を巻き回したものである。図示はしていないが超電導テープ材12にはポリイミドテープによって素線絶縁がされており、銅テープ材13は電気絶縁をせずにそのまま巻き回した。
図1に示すように、超電導コイル巻線1とヒータコイル巻線2は、両者を密着させて共巻きすることにより、それぞれのコイルの自己インダクタンスはほぼ等しく、かつ、相互インダクタンスもそれぞれの自己インダクタンスと等しくなる。
クエンチ発生時には、図1に示すような超電導コイル巻線1とヒータコイル巻線2で構成される無誘導回路にクエンチバックヒータ電源4から電流を投入する。投入する電流の向きは超電導コイル巻線1に流れる電流とは逆向きになるようにした。
クエンチバックヒータ電源4としては、10000μFのコンデンサを2並列とし100Vをチャージしたものを利用した。コイル巻線の総長はおよそ140mである。銅テープの抵抗は、およそ0.46Ωであり、1ミリ秒のオーダーでヒータに電流が投入される設計とした。コンデンサを接続した瞬間に超電導コイルからは50アンペア以上の電流が急激に引き抜かれ、同時にクエンチバックヒータによってコイル全体を昇温させノーマル状態とすることができた。
本実施形態の高温超電導磁石(HTS磁石)の保護方法は、クエンチ時の磁石焼損を防止することを狙いとしている。すなわち、図2に示すように、超電導コイル21は、超電導コイル巻線1とヒータコイル巻線2を共巻きし、超電導コイル巻線1とヒータコイル巻線2にて無誘導の回路を構成している。クエンチ発生時にこの無誘導回路に超電導コイルに流れる電流に対し逆向きとなるように電流を投入することにより、超電導コイルの電流を引き抜くと同時にクエンチヒータに通電しコイル全体の抵抗発生を促進させることができる。
本実施形態の超電導磁石100は、超電導線が巻きまわされた超電導コイルを有する超電導磁石であって、超電導コイル21は、超電導線に沿うようにヒータ線が共巻きされており、超電導コイルの巻線の一端とヒータ線の巻線の一端が接続されて無誘導の電流経路が形成され、電流経路に電流を通電するための電源(例えば、クエンチバックヒータ電源4)を有する。
本実施形態の超電導磁石100は、超電導線が巻き回された超電導コイルがある。この超電導コイルには、超電導線に沿うようにヒータ線が共巻きされており、超電導コイルのインダクタンスと共巻きされたヒータ線のインダクタンスは概略等しくなっているように実装する。互いに同一電流経路のコイルが密着して配置されているから、超電導コイルの巻線の一端とヒータ巻線の一端を接続すると無誘導の電流経路を構成することができる。
無誘導巻線に対しては、誘導電圧を発生させることなく、高速で電流の出し入れが可能となる。従って、超電導コイルにヒータ線を共巻きし、共巻きされた巻線同士の一端を接続して無誘導経路が形成し、この無誘導経路に対して電流投入をするための電源を設置することによって、超電導コイルに対し高速で電流の出し入れをすると同時にヒータ巻線に対しても同時に電流の出し入れを行うことが可能となる。
この無誘導電流経路に、超電導コイルに流れる電流とは逆向きに電流を投入すると、超電導コイルに流れていた電流はあたかもヒータ巻線に乗り移ったように見える。電源が行う仕事は超電導コイル側からヒータ巻線へ電流を移動させる仕事だけである。
超電導コイルの電流は急激にヒータ側へ引き抜かれることになるから、クエンチ発生箇所の電流値を瞬時に下げることが可能となる。クエンチが発生しているとき、超電導線材の電流versus電圧特性(電流対電圧特性)はべき乗則で記述できるから、電流値を下げることは、クエンチ発生箇所における発熱量をいちじるしく低減する効果があり、超電導磁石の焼損防止に効果的である。
電源が行う仕事は基本的には超電導コイルからヒータへ電流を乗せ替えるだけであるから、マクロに見た時に電源は磁石に対してなんら影響を与えていない。電流の乗せ替えしても磁石のトータルの電流は変らないため、磁石に働く電磁力も変化しない。
(ヒータ線)
共巻きするヒータ線(ヒータコイル巻線2)は、磁石の大きさやヒータ線に付加的に付与する機能に応じて様々な材料を選択することができる。熱伝導冷却をする伝導冷却磁石の場合、ヒータ線として熱的良導体である銅やアルミニウムを使うことによって、磁石の巻線内部の熱伝導を改善することが可能である。
また、これらの導体は電気抵抗が小さいため、より大きな電流を超電導コイル側から乗せ替えることが可能であり、クエンチした超電導線の電流を大きく引き抜くことで焼損防止効果が高い。ヒータ線として、ステンレスや鉄、ハステロイなどのヤング率の高い、高強度のものを共巻きすることにより、フープ力(電磁力)に対する補強効果をもたせることも可能である。
また、超電導巻線の温度を急激に上げることが必要な磁石においてはより発熱が大きくなるように高抵抗のヒータ線として、銅ではなく、マンガニン、コンスタンタン、ニクロムを使うことも可能である。マンガニン、コンスタンタン、ニクロムは、電気抵抗率が銅よりも1桁以上大きな材料である。ただし、ヒータ駆動電源が定電流源である場合である。ヒータ電源が定電圧源であったり、電流が大きくならないように制限する場合にも高抵抗のヒータ線を利用するのが適切である。
急激に超電導から電流を引き抜くと同時に、瞬間的に一様に超電導コイルを昇温して抵抗状態にすることも焼損防止には重要である。そのためには、超電導コイル巻線とヒータ巻線は近接して設置され熱的に良好に接続されていることが不可欠である。
図2に示したように、超電導線材がテープ状の導体の場合(例えば、超電導テープ材12参照)には、共巻きされたヒータ線(例えば、銅テープ材13)もテープ状導体であり密着して巻き回すことによりこれを実現することができる。超電導線材が丸もしくは平角の断面形状であれば、ヒータ巻線もほぼ同じような寸法を持つことが良好な熱接触を得るためには望ましい。図3および図4を参照して説明する。なお、図3および図4は、図2とは別形態である。
(コイルの熱伝導特性改善)
図3は、本実施形態のコイル断面構成の一形態を示す模式図である。図3には、超電導コイル21の半径方向(r方向)の伝熱を改善するコイル巻線断面を示す。ここでは、超電導線として、MgB平角線を用いた実施例を示す。超電導コイル21は、ボビン24に、平角状の超電導導体22と丸状または平角状のヒータ導体23を超電導線に沿うように共巻きされている。超電導線材とヒータ線材の半径方向の厚さ(線材厚さ)が同じになるように寸法を選び2本持ちで巻線をした。ヒータ線はアルミニウムとした。整列巻きを行って、各層のアルミニウムのヒータ線がほぼ重なるように巻き回した。
ヒータ線として熱良導体を用いてコイル巻線部の熱伝導を改善しようとする場合、ヒータ巻線同士が接触していることが必要となる。コイル巻線の半径方向に熱伝導を改善しようとする場合、ヒータ線の半径方向の厚さは超電導線の厚さと等しくする、もしくは、厚くすることによって、層方向にヒータ線が重なるようにコイルを巻き回すことでこれを実現できる。
すなわち、図3では、超電導線が巻き回された超電導コイルの半径方向の線材断面寸法を線材厚さとするとき、超電導線の線材厚さとヒータ線の線材厚さが略等しい。ヒータ線が熱良導体であって、ヒータ線の層間である超電導コイルの半径方向で、ヒータ線が互いに接触するように巻き回されている。これにより、半径方向のコイルの熱伝導特性を改善することができる。
図4は、本実施形態のコイル断面構成の他の一形態を示す模式図である。図4は、図3とは別形態である。図4には、図4には、超電導コイル21の軸方向(Z軸方向)の伝熱を改善するコイル巻線断面を示す。ここでは、超電導線として、MgB平角線を用いた実施例を示す。超電導コイル21は、ボビン24に、平角状の超電導導体22と丸状または平角状のヒータ導体23を超電導線に沿うように共巻きされている。超電導線材とヒータ線材の軸方向の幅(線材幅)が同じになるように寸法を調製し巻線をした。ヒータ線はアルミニウムとした。超電導線を巻いたあとにアルミニウムが巻かれるように巻線機を工夫し、アルミニウムによって超電導線が加圧されるように調整した。アルミニウムによる予荷重と熱収縮による効果によって超電導巻線は運転時に良好な熱接触が維持される。
ヒータ線として熱良導体を用いてコイル巻線部の熱伝導を改善しようとする場合、ヒータ巻線同士が接触していることが必要となる。ヒータ線の軸方向の幅は超電導線の幅と略等しくする、もしくは、広くすることによって、軸方向にヒータ線が接触するようにコイルを巻き回すことでこれを実現できる。
すなわち、図4では、超電導線が巻き回された超電導コイルの軸方向の線材断面寸法を線材幅とするとき、超電導線の線材幅とヒータ線の線材幅が略等しい。ヒータ線が熱良導体であって、ヒータ線の列間である超電導コイルの軸方向で、ヒータ線が互いに接触するように巻き回されている。これにより、軸方向のコイルの熱伝導特性を改善することができる。
(コイル電流密度低下抑制)
ヒータ巻線はコイル電流密度を低下させるから、磁場発生の観点からはないほうが望ましい。超電導線の断面形状が丸や平角の場合にはコイル巻線には隙間が生じるから、この隙間を利用してヒータ線を巻き回すことにより、コイル電流密度の低下を抑制することが可能である。
図5は、本実施形態のコイル断面構成のその他の一形態を示す模式図である。平角状または丸状の超電導導体22は、超電導磁石に広く使用されており、導体のR部にあわせてヒータ巻線を設置することにより、コイル電流密度の抑制が可能となる。
図5(a)は、丸状の超電導導体22と、丸状のヒータ導体23とを用いた場合である。超電導導体22の断面形状が丸状の場合には、コイル巻線には隙間が生じるから、この隙間を利用してヒータ導体23を巻き回すことにより、コイル電流密度の低下を抑制することが可能である。
図5(b)は、矩形断面の四隅に形成される角部に所定の曲率を有する平角状の超電導導体22と、丸状のヒータ導体23とを用いた場合である。超電導導体22の断面形状が矩形断面の四隅に形成される角部に所定の曲率を有する平角状の場合には、コイル巻線には隙間が生じるから、この隙間を利用してヒータ導体23を巻き回すことにより、コイル電流密度の低下を抑制することが可能である。
すなわち、本実施形態の超電導磁石100は、超電導線の断面形状が丸状または角部に所定の曲率を有する平角状であり、超電導線を巻き回された超電導コイルは、超電導線間の隙間に、ヒータ線を配設している。これにより、コイル電流密度の低下を抑制することが可能である。
(クエンチバックヒータ電源)
図1に示したように、無誘導経路に電流を投入するために常時電源が待機しておく必要がある。電源容量は超電導コイルからヒータに電流を乗せ替える分だけが必要であるから、コンデンサバンクに必要なエネルギーを保持させておくことで対応可能である。もちろんクエンチ保護のためにアクティブな電源を待機させておいてもよい。
(エネルギー回収)
本発明は超電導コイル巻線から速やかにヒータ巻線に電流を載せかえて超電導巻線の局所焼損を防止することが特徴であるが、電流を載せかえること以外については通常の超電導磁石保護の考え方と同じである。クエンチが検出されると励磁電源3は磁石から切り離され磁石のエネルギー回収が行われるが、超電導コイル巻線とヒータ巻線の両方のエネルギーがそれぞれ回収される。超電導コイル巻線とヒータ巻線に配分された磁石のエネルギーは、それぞれの巻線に適切に設置された抵抗やダイオードなどによって回収される(図示せず)。クエンチバック電源は電流を載せかえるための仕事をするために利用され、磁石全体の蓄積エネルギーの回収には本質的に寄与しないが、積極的にアクティブな電源によってエネルギー回収量の分配や回収速度を制御や電源側にエネルギーを回収することも可能である。
(クエンチ検出)
図6は、本実施形態のクエンチ電圧検出方法の一例を示す回路図である。微小なクエンチ電圧を検出するためには電圧検出系のS/Nを向上させることが不可欠である。図6は、共巻のヒータ線を利用して誘導性電圧をキャンセルする、いわゆる共巻き法であり、クエンチ検出器6によりクエンチ電圧を検出する。
図7は、本実施形態のクエンチ電圧検出方法の他の一例を示す回路図である。図7は、共巻きされたヒータ線を有する超電導コイルの中点で、ヒータ線と超電導線とのバランス電圧をみる中点バランス電圧方式である。中点バランス電圧方式は、単純に誘導性ノイズをキャンセルするだけでなく、電源由来の電圧性ノイズや超電導内部の磁化の時間変化に起因する電圧もキャンセルすることができ、微小なクエンチ電圧の発生を検出し、クエンチ発生から極めて短い時間で磁石保護動作に移行することができ、磁石焼損防止に極めて有効である。
中点バランス方式の場合には通常運転時にはスイッチ8によって超電導コイル巻線1とヒータコイル巻線2が導通状態になり、クエンチ検出器6によってバランス電圧を計測する。クエンチが検出されると、クエンチバックヒータ電源4から供給される電圧がスイッチ8を短絡電流が流れないようにスイッチ8をオープン状態にし、その後、超電導コイル巻線1からヒータコイル巻線2に電流を載せかえるためにクエンチバックヒータ電源4から電流が供給される。
焼損防止のために高速に磁石からエネルギーを引き抜き、クエンチバックをさせることが必要であるが、この動作のトリガーとなるクエンチ検出をいかに早く行うかが重要である。共巻きされたヒータ巻線を利用することによって、クエンチ電圧検出の障害となる磁石自身の誘導電圧(ノイズ)をキャンセルすることが可能であるから、クエンチ検出自体に対しても格段の効果を発揮する。
(永久電流モード)
図8は、本実施形態に係る永久電流モード運転の超電導磁石を表す説明図である。電源に接続された状態で運転される磁石(ドライブモード磁石)に対し、本発明の適用例を示してきたが、電源から切り離されて運転される永久モード運転においてこそ本発明は最も効果的である。図8に永久電流モード状態の磁石の模式回路を示す。永久電流モード運転では、磁石に電流が投入された後、永久電流スイッチ(PCS:persistent current switch)という超電導、すなわち電気抵抗ゼロのスイッチによってコイルの両端が電気的に閉じられて電流ループを形成し、その後励磁電源は取り払われる。
ドライブモード運転の磁石では、クエンチ検出後すみやかに励磁電源3を磁石から切り離すことによって磁石のエネルギー回収状態に移行でき、また、エネルギーを回収するための外部抵抗などを設置することも容易である。一方、永久電流モード運転ではPCSをオフ(抵抗状態)にするためにはヒータ加熱が必要があることからエネルギー回収状態に移行するのに時間がかかり、また、PCSそのもので磁石のエネルギーを回収するには抵抗、熱容量などが不足する。したがって、永久電流モード運転のHTS磁石の保護はドライブモード運転に比べ著しく困難である。
図9は、本実施形態の永久電流モード運転磁石の等価回路を表す説明図である。図8の等価回路を図9に示す。超電導コイル巻線1とヒータコイル巻線2は磁気的に密に結合しており、ほとんどL=L=Mとなる。したがって、クエンチバックヒータ電源4から供給される電流は、ほとんどLとLを素通りし、したがって永久電流モード運転であってもL(超電導コイル巻線)を流れていた永久電流ループの電流IをL(ヒータ巻線)に載せかえることが可能である。
しかし、ヒータコイル巻線2に電流を載せかえてヒータ巻線に外部抵抗(図示せず)を設置してこの抵抗で電流を消費させるだけでは磁石のエネルギー回収は十分には行われない。それは、超電導コイル巻線側の抵抗が小さくヒータ巻線側の抵抗がそれより大きい場合には(すなわち超電導コイル巻線側が超電導状態であれば)、ヒータ巻線に乗り移った電流は磁気結合を通じて超電導コイル巻線側に戻されてしまうためである。したがって、永久電流モード運転でエネルギー回収がなされるためには超電導コイル巻線が抵抗状態になる必要がある。
本発明では、ヒータコイル巻線2は超電導コイル巻線1を抵抗状態にするクエンチヒータとしての役割を持ち、コイル全体を同時に瞬間的に加熱することが可能である。超電導コイル巻線1に流れる電流の一部もしくは全部をヒータコイル巻線2に載せかえ、超電導コイル巻線1が加熱されて抵抗状態に転移することによって、磁石のエネルギー回収が開始される。超電導コイル巻線の温度が上昇し抵抗状態になるのを待つ必要があるが、超電導コイル巻線1を流れていた電流の一部もしくは全部がヒータコイル巻線2に載せかえられているため、超電導コイル巻線におけるクエンチ箇所での局所発熱を抑制でき、焼損を防止することができる。
クエンチバックヒータ電源4は永久電流モード運転磁石において、エネルギー回収のきっかけをつくるためのトリガーの役割をするが、クエンチバックヒータ電源4をアクティブに制御することによって、ヒータコイル巻線2側のエネルギー回収回路におけるエネルギー回収量と超電導コイル巻線側の電流回路におけるエネルギー回収量の分配を調整し、最適なエネルギー回収条件でエネルギー回収することが可能となる。また、永久電流モード運転状態ではクエンチバックヒータ電源4から一定の電流を供給しているときは、磁石の蓄積エネルギーは変化せず、電源から投入されたエネルギーは磁石の温度を上げる仕事に費やされる。外部抵抗でエネルギー回収をすることができない永久電流モード運転では、磁石自身の熱量容量を利用してエネルギー回収をすることになるので、外部から余分なエネルギーを投入することは磁石の温度上昇につながり望ましくない。クエンチバックヒータ電源4をアクティブに制御することにより、超電導コイル巻線1を抵抗状態にするためのエネルギー投入を最適に制御することが可能となる。
これらの手法により、クエンチ検出が困難で、磁石保護のためのエネルギー回収およびクエンチバックのための時間をとれないHTS磁石に対しても、磁石保護が可能となる。
本実施形態の超電導磁石100は、あらゆる高温超電導磁石に適用でき、特にMRI、NMRといった高精度の磁場が必要な用途や、加速器用の磁石など磁場の再現性がもとめられる用途に最適である。
1 超電導コイル巻線(超電導線)
2 ヒータコイル巻線(ヒータ線)
3 励磁電源
4 クエンチバック用電源(電源、電流投入手段)
5 保護抵抗
6 クエンチ検出器(電圧計)
7 接続部
8 スイッチ
11 ダブルパンケーキコイル
12 超電導テープ材
13 銅テープ材
21 超電導コイル
22 超電導導体
23 ヒータ導体
24 ボビン
100 超電導磁石

Claims (12)

  1. 超電導線が巻き回された超電導コイルを有する超電導磁石であって、
    前記超電導コイルは、前記超電導線に沿うようにヒータ線が共巻きされており、
    前記超電導コイルの巻線の一端と前記ヒータ線の巻線の一端が接続されて無誘導の電流経路が形成され、前記電流経路に電流を通電するための電源を有する
    ことを特徴とする超電導磁石。
  2. 前記ヒータ線の材質が、銅、アルミニウムのいずれかである、
    もしくは、前記ヒータ線の材質が、ステンレス、鉄、ハステロイのいずれかである、
    もしくは、前記ヒータ線の材質が、マンガニン、コンスタンタン、ニクロムのいずれかである
    ことを特徴とする請求項1に記載の超電導磁石。
  3. 前記超電導線および前記ヒータ線は、ともにテープ状の導体である
    ことを特徴とする請求項1に記載の超電導磁石。
  4. 前記超電導線の断面形状が丸状または角部に所定の曲率を有する平角状であり、前記超電導線を巻き回された前記超電導コイルは、前記超電導線間の隙間に、前記ヒータ線を配設する
    ことを特徴とする請求項1に記載の超電導磁石。
  5. 前記超電導線が巻き回された前記超電導コイルの半径方向の線材断面寸法を線材厚さとするとき、前記超電導線の線材厚さと前記ヒータ線の線材厚さが略等しい
    ことを特徴とする請求項1に記載の超電導磁石。
  6. 前記ヒータ線が熱良導体であって、前記ヒータ線の層間である前記超電導コイルの半径方向で、前記ヒータ線が互いに接触するように巻き回されている
    ことを特徴とする請求項5に記載の超電導磁石。
  7. 前記超電導線が巻き回された前記超電導コイルの軸方向の線材断面寸法を線材幅とするとき、前記超電導線の線材幅と前記ヒータ線の線材幅が略等しい
    ことを特徴とする請求項1に記載の超電導磁石。
  8. 前記ヒータ線が熱良導体であって、前記ヒータ線の列間である前記超電導コイルの軸方向で、前記ヒータ線が互いに接触するように巻き回されている
    ことを特徴とする請求項7に記載の超電導磁石。
  9. 前記電流経路に電流を通電するための電源はコンデンサである
    ことを特徴とする請求項1に記載の超電導磁石。
  10. 前記電流経路に電流を通電するための電源が制御され、前記超電導コイルと前記ヒータ線に流れる電流分配量が制御される
    ことを特徴とする請求項1に記載の超電導磁石。
  11. 前記共巻きされたヒータ線がクエンチ検出のための巻線として利用される
    ことを特徴とする請求項1乃至10のいずれか1項に記の超電導磁石。
  12. 超電導線が巻き回された超電導コイルを有する超電導磁石の保護方法であって、
    前記超電導コイルは、前記超電導線に沿うようにヒータ線が共巻きされており、
    前記超電導コイルの巻線の一端と前記ヒータ線の巻線の一端が接続されて無誘導の電流経路を形成されており、
    クエンチが発生した際の保護として、前記電流経路に定常運転時の前記超電導コイルに流れる電流に対して逆向きの電流を流す
    ことを特徴とする超電導磁石の保護方法。
JP2018115250A 2018-06-18 2018-06-18 超電導磁石およびその保護方法 Active JP7048428B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115250A JP7048428B2 (ja) 2018-06-18 2018-06-18 超電導磁石およびその保護方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115250A JP7048428B2 (ja) 2018-06-18 2018-06-18 超電導磁石およびその保護方法

Publications (2)

Publication Number Publication Date
JP2019220524A JP2019220524A (ja) 2019-12-26
JP7048428B2 true JP7048428B2 (ja) 2022-04-05

Family

ID=69096935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115250A Active JP7048428B2 (ja) 2018-06-18 2018-06-18 超電導磁石およびその保護方法

Country Status (1)

Country Link
JP (1) JP7048428B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370307B2 (ja) * 2020-09-16 2023-10-27 三菱電機株式会社 超電導マグネット装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164877A1 (en) 2007-01-09 2008-07-10 Xianrui Huang Method and apparatus for actively controlling quench protection of a superconducting magnet
JP2011138892A (ja) 2009-12-28 2011-07-14 Toshiba Corp 超伝導マグネット装置及びそのクエンチ保護方法
JP2016051833A (ja) 2014-09-01 2016-04-11 株式会社日立製作所 超電導電磁石装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533896B2 (ja) * 1973-08-29 1978-02-10
JPS59218783A (ja) * 1983-05-27 1984-12-10 Toshiba Corp 熱式超電導スイツチ
JPS61226979A (ja) * 1985-03-30 1986-10-08 Toshiba Corp 永久電流スイツチ
JPH01173906U (ja) * 1988-02-03 1989-12-11
JPH0258306U (ja) * 1988-10-19 1990-04-26
JP2720565B2 (ja) * 1990-03-09 1998-03-04 富士電機株式会社 永久電流スイッチ
JPH08330124A (ja) * 1995-05-30 1996-12-13 Toyota Motor Corp 高温超電導マグネット及びそのクエンチ保護方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164877A1 (en) 2007-01-09 2008-07-10 Xianrui Huang Method and apparatus for actively controlling quench protection of a superconducting magnet
JP2008168121A (ja) 2007-01-09 2008-07-24 General Electric Co <Ge> 超伝導マグネットのクエンチ保護を能動的に制御するための方法及び装置
JP2011138892A (ja) 2009-12-28 2011-07-14 Toshiba Corp 超伝導マグネット装置及びそのクエンチ保護方法
JP2016051833A (ja) 2014-09-01 2016-04-11 株式会社日立製作所 超電導電磁石装置

Also Published As

Publication number Publication date
JP2019220524A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
Tosaka et al. R&D project on HTS magnets for ultrahigh-field MRI systems
CN110494925B (zh) 超导磁体中的淬火保护
US20110218111A1 (en) High temperature superconducting parallel conductors, high temperature superconducting coil using the same, and high temperature superconducting magnet
AU2019360423B2 (en) High temperature superconductor magnet
Gupta et al. High field HTS solenoid for a muon collider—Demonstrations, challenges, and strategies
US4812796A (en) Quench propagation device for a superconducting magnet
Miyazaki et al. Design of a REBCO insert coil for a cryogen-free 25-T superconducting magnet
Li et al. Key designs of a short-bore and cryogen-free high temperature superconducting magnet system for 14 T whole-body MRI
Li et al. Preliminary mechanical analysis of a 9.4-T whole-body MRI magnet
Park et al. A cryogen-free 25-T REBCO magnet with the extreme-no-insulation winding technique
JP7048428B2 (ja) 超電導磁石およびその保護方法
Li et al. Ramping loss and mechanical response in a no-insulation high-temperature superconducting layer-wound coil and intra-layers no-insulation coil
Bosi et al. Compact superconducting high gradient quadrupole magnets for the interaction regions of high luminosity colliders
Song et al. Review of core technologies for development of 2G HTS NMR/MRI magnet: A status report of progress in Korea University
Mato et al. Mechanical damage protection method by reducing induced current in NI REBCO pancake coils during quench propagation
Dong et al. On fault-mode phenomenon in no-insulation superconducting magnets: A preventive approach
Ito et al. Fabrication and test of HTS magnet for induction heating device in aluminum extrusion processing
Park et al. Stress analysis of HTS magnet for a 600 kJ SMES
Lee et al. Partial-insulation HTS magnet for reduction of quench-induced peak currents
Kar et al. Step-by-step design of a single phase 3.3 kV/200 a resistive type superconducting fault current limiter (R-SFCL) and cryostat
Shen et al. Quench protection modeling of an HTS magnet for MRI system
Imagawa et al. Design, fabrication and soundness test of a Bi2223 magnet designed for cooling by liquid hydrogen
Shimada et al. Experimental study on quench protection method for HTS coil that uses Cu tape co-wound with HTS tape
Bae et al. Design and fabrication of a conduction-cooled superconducting magnet for gyrotron
EP3867931B1 (en) Fast quench protection for low copper to superconducting wire coils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150