JP7047803B2 - Single crystal pulling device - Google Patents

Single crystal pulling device Download PDF

Info

Publication number
JP7047803B2
JP7047803B2 JP2019050166A JP2019050166A JP7047803B2 JP 7047803 B2 JP7047803 B2 JP 7047803B2 JP 2019050166 A JP2019050166 A JP 2019050166A JP 2019050166 A JP2019050166 A JP 2019050166A JP 7047803 B2 JP7047803 B2 JP 7047803B2
Authority
JP
Japan
Prior art keywords
exhaust gas
single crystal
deposit
main chamber
deposits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019050166A
Other languages
Japanese (ja)
Other versions
JP2020152588A (en
Inventor
祥 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019050166A priority Critical patent/JP7047803B2/en
Publication of JP2020152588A publication Critical patent/JP2020152588A/en
Application granted granted Critical
Publication of JP7047803B2 publication Critical patent/JP7047803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、チョクラルスキー法(CZ法)による単結晶引上げ装置に関する。 The present invention relates to a single crystal pulling device by the Czochralski method (CZ method).

CZ法による半導体結晶の製造では、炉内の石英ルツボ内に原料融液を生成し、種結晶を着液させ単結晶を引上げる。このとき、石英ルツボの内面から原料融液に酸素が溶け出し、これが原料融液と反応し酸化珪素(SiOやSiO)を生じる。また、ヒーター等の黒鉛部材からはCOやCOが生じる。酸化珪素は昇華性で、炉内で温度が低下する事で固体となり、原料融液に落下し、単結晶成長時の有転位の原因となる。COやCOは原料融液に取り込まれ、結晶をカーボン汚染させる原因となる。そのため、これらの有害ガスを排出する為に炉内にArガス等の不活性ガスを流通させながら、その炉内を所定の真空度に保つことが行われている。 In the production of a semiconductor crystal by the CZ method, a raw material melt is generated in a quartz crucible in a furnace, a seed crystal is deposited, and a single crystal is pulled up. At this time, oxygen dissolves from the inner surface of the quartz crucible into the raw material melt, which reacts with the raw material melt to generate silicon oxide (SiO and SiO 2 ). In addition, CO and CO 2 are generated from graphite members such as heaters. Silicon oxide is sublimable, and when the temperature drops in the furnace, it becomes a solid and falls into the raw material melt, causing dislocations during single crystal growth. CO and CO 2 are incorporated into the raw material melt and cause carbon contamination of the crystals. Therefore, in order to discharge these harmful gases, while an inert gas such as Ar gas is circulated in the furnace, the inside of the furnace is kept at a predetermined vacuum degree.

酸化珪素は、低温となると固化し粉体となるが、構造物などの固体と接触したときに昇華点以下の温度となる場合はこれに付着し塊状となる。このようになり易い位置は、CZ法によるシリコン単結晶引上げ装置の場合、排気ガスをチャンバーから排出する配管付近である事が多く、多くの場合、排ガス管内である。 Silicon oxide solidifies into powder at low temperatures, but when it comes into contact with a solid such as a structure and has a temperature below the sublimation point, it adheres to it and becomes lumpy. In the case of the silicon single crystal pulling device by the CZ method, the position where such a tendency is likely to occur is often in the vicinity of the pipe for discharging the exhaust gas from the chamber, and in many cases, in the exhaust gas pipe.

CZ法によるシリコン単結晶引上げ装置から排出される酸化物を含有する排気ガスを排出する配管では、引上げ機出口部分から排ガス管内にかけて酸化物や珪素が堆積する。排ガス管系統における酸化物や珪素の堆積は、該排ガス管系統の温度により進行速度が異なり、特定の個所で顕著に進行する。 In the pipe that discharges the exhaust gas containing the oxide discharged from the silicon single crystal pulling device by the CZ method, the oxide and silicon are deposited from the pulling machine outlet portion to the inside of the exhaust gas pipe. The deposition of oxides and silicon in the exhaust gas pipe system has a different progress rate depending on the temperature of the exhaust gas pipe system, and progresses remarkably at a specific place.

この特定の個所での堆積は操業時間が経過する事で進行し、堆積が進行することにより炉内に流す不活性ガスの流量や真空度制御に支障が起こる。不活性ガスの流量や真空度制御に支障が起こると、製造している結晶の品質が所望のものにならない問題がある。 The deposition at this specific location progresses as the operating time elapses, and the progress of the deposition causes problems in controlling the flow rate and vacuum degree of the inert gas flowing into the furnace. If the flow rate of the inert gas or the degree of vacuum control is disturbed, there is a problem that the quality of the crystal being manufactured is not desired.

これを防ぐ為、真空度制御に支障が出る前に操業を終了させて堆積物の除去を行う必要がある。さらに、ドーパントを高濃度にドープする必要がある操業においては、酸化物の蒸発量が多くなり、短時間で排ガス管系統における酸化物や珪素の堆積が進行し、予定より早い段階で流量や真空度制御に支障が発生し操業を中断せざる負えない問題が発生することが起こり易い。 In order to prevent this, it is necessary to terminate the operation and remove the sediment before the vacuum degree control is hindered. Furthermore, in operations where it is necessary to dope the dopant at a high concentration, the amount of oxide evaporation increases, the deposition of oxide and silicon progresses in the exhaust gas pipe system in a short time, and the flow rate and vacuum are earlier than planned. It is easy for problems to occur in which the control of the degree is hindered and the operation must be interrupted.

そこで、このような問題を解決するために、従来、例えば、特許文献1に示されるように、排出口を数多く設けることや排出口の形状を工夫することで閉塞しにくくすることが提案されている。 Therefore, in order to solve such a problem, it has been proposed, for example, as shown in Patent Document 1, that a large number of outlets are provided and the shape of the outlets is devised to make it difficult to block. There is.

特開2002-97098号公報Japanese Unexamined Patent Publication No. 2002-97098

しかしながら、特許文献1に示される方法のみでは、閉塞しやすい箇所を複数に分散することで真空度制御に不具合を生ずるまでの時間を延ばす効果はあるが、大幅な延長効果は望めず、また、ドーパントを高濃度にドープする場合の突発的な真空度制御の不具合を防ぐことはできない。また、形状変更による工夫は、操業条件の変更により排気ガス温度が変化するとその効果は急激に低下する問題がある。 However, the method shown in Patent Document 1 alone has the effect of prolonging the time until a defect occurs in the vacuum degree control by dispersing the easily blocked portions in a plurality of places, but a significant prolongation effect cannot be expected, and the effect of prolonging the vacuum degree control cannot be expected. It is not possible to prevent a sudden defect in vacuum degree control when the dopant is doped at a high concentration. In addition, there is a problem that the effect of the device by changing the shape is sharply reduced when the exhaust gas temperature changes due to the change of the operating conditions.

一方、酸化物や珪素が堆積しやすい箇所を排ガス管内にできない様にするために、排ガス管に入る前に排気ガスの温度を昇華点より低い温度に低下させることも考えられる。この場合、炉内の排気ガスが通過する経路の炉内温度を低くする事が必要となる。しかし、近年のエネルギー効率改善の取り組みで炉内の断熱を強化したHZ(ホットゾーン)型や、生産性を向上するために炉体の大きさに対し石英ルツボ口径を大型化したHZ型の単結晶引上げ装置では、これらHZ型の特徴と、排気ガスが通過する経路の炉内温度を低くする技術とを両立させることは困難である。 On the other hand, in order to prevent the place where oxides and silicon are likely to be deposited in the exhaust gas pipe, it is conceivable to lower the temperature of the exhaust gas to a temperature lower than the sublimation point before entering the exhaust gas pipe. In this case, it is necessary to lower the temperature inside the furnace in the path through which the exhaust gas in the furnace passes. However, the HZ (hot zone) type, which has strengthened the heat insulation inside the furnace through recent efforts to improve energy efficiency, and the HZ type, which has a larger quartz rut pot diameter than the size of the furnace body in order to improve productivity, are single. In the crystal pulling device, it is difficult to achieve both the characteristics of the HZ type and the technique of lowering the temperature in the furnace of the path through which the exhaust gas passes.

以上述べたように、従来の技術では、酸化物や珪素が排ガス管に堆積しやすい箇所を生じさせないようにする事は困難であり、安定した操業を行うためには操業時間を短縮して排ガス管系統の清掃を頻繁に行う必要があり、その解決手段が望まれていた。 As described above, with the conventional technology, it is difficult to prevent the formation of places where oxides and silicon are likely to accumulate in the exhaust gas pipe, and in order to perform stable operation, the operation time is shortened and the exhaust gas is exhausted. It was necessary to clean the pipe system frequently, and a solution to this was desired.

本発明は、上記問題を解決するためになされたものであり、操業を継続したまま排ガス管内に堆積した酸化物や珪素などの堆積物を取り除く手段を具備した単結晶引上げ装置を提供することを目的とする。 The present invention has been made to solve the above problems, and to provide a single crystal pulling device provided with means for removing deposits such as oxides and silicon deposited in an exhaust gas pipe while continuing operation. The purpose.

上記目的を達成するために、本発明では、メインチャンバーと、前記メインチャンバー内のガスを排出する排ガス管とを備えたCZ法による単結晶引上げ装置であって、操業中に前記排ガス管内の堆積物を除去可能な堆積物除去機構を具備するものであることを特徴とする単結晶引上げ装置を提供する。 In order to achieve the above object, the present invention is a single crystal pulling device by the CZ method including a main chamber and an exhaust gas pipe for discharging gas in the main chamber, and deposits in the exhaust gas pipe during operation. Provided is a single crystal pulling device characterized by having a deposit removing mechanism capable of removing an object.

このようなシリコン単結晶引上げ装置によれば、操業中に該堆積物除去機構により排ガス管内に付着した堆積物を除去することができるため、連続操業時間を安定的に延長し、かつ装置のダウンタイムロスの低減を図ることができる。 According to such a silicon single crystal pulling device, the deposits adhering to the inside of the exhaust gas pipe can be removed by the deposit removing mechanism during the operation, so that the continuous operation time can be stably extended and the device can be downed. Time loss can be reduced.

前記堆積物除去機構は、前記操業中に前記堆積物が堆積する箇所に設置され、単結晶の製造を継続しながら所定のタイミングで自動的に作動されるものであることが好ましい。 It is preferable that the deposit removing mechanism is installed at a place where the deposit is deposited during the operation and is automatically operated at a predetermined timing while continuing the production of the single crystal.

この場合、単結晶の製造を中断せずに排ガス管の堆積物を除去できるため、連続操業時間を安定的に延長し、かつダウンタイムロスの低減を図ることができる。 In this case, since the deposits in the exhaust gas pipe can be removed without interrupting the production of the single crystal, the continuous operation time can be stably extended and the downtime loss can be reduced.

前記所定のタイミングは、前記単結晶を引き上げている期間以外、又は前記メインチャンバーの真空度を制御する圧力調整バルブが全開となる前の所定の時点に設定されることが好ましい。 It is preferable that the predetermined timing is set at a predetermined time other than the period during which the single crystal is pulled up, or before the pressure adjusting valve for controlling the degree of vacuum of the main chamber is fully opened.

このように、所定のタイミングが単結晶を引き上げている期間以外に設定されていれば、堆積物を取り除く動作によって排出ガスの流れに対する抵抗が変化しても、これが育成される単結晶の品質に影響を与えることはない。また、所定のタイミングがメインチャンバーの真空度を制御する圧力調整バルブが全開となる前に設定されていれば、該圧力調整バルブにより真空度の制御ができなくなる前に排ガス管内の堆積物の除去を行える。 In this way, if the predetermined timing is set to a period other than the period during which the single crystal is pulled up, even if the resistance to the flow of the exhaust gas changes due to the operation of removing the deposit, the quality of the single crystal in which the single crystal is grown will be improved. It has no effect. Further, if the predetermined timing is set before the pressure adjustment valve that controls the vacuum degree of the main chamber is fully opened, the deposits in the exhaust gas pipe are removed before the pressure adjustment valve cannot control the vacuum degree. Can be done.

前記堆積物除去機構は、回転しながら前記排ガス管内を移動することで前記堆積物を除去する掻き取り部を有するものであることが好ましい。 It is preferable that the deposit removing mechanism has a scraping portion for removing the deposit by moving in the exhaust gas pipe while rotating.

この場合、排ガス管内の堆積物を確実に取り除くことができるため、育成される単結晶の品質を維持しつつ、連続操業時間を安定的に延長することができる。 In this case, since the deposits in the exhaust gas pipe can be reliably removed, the continuous operation time can be stably extended while maintaining the quality of the grown single crystal.

前記排ガス管は、前記堆積物が選択的に堆積するように、前記堆積物の昇華点以下の温度になる箇所を局所的に有することが好ましい。 It is preferable that the exhaust gas pipe locally has a portion where the temperature is equal to or lower than the sublimation point of the deposit so that the deposit is selectively deposited.

このように、酸化物や珪素などの堆積物が堆積しやすい箇所を意図的に設けることで、上記堆積物除去機構により該箇所に付着した堆積物を容易に取り除くことができる。 As described above, by intentionally providing a place where deposits such as oxides and silicon are likely to be deposited, the deposits adhering to the place can be easily removed by the deposit removing mechanism.

前記堆積物は、酸化珪素である。 The deposit is silicon oxide.

すなわち、例えば、シリコン単結晶を育成する場合には、メインチャンバー内に単結晶の有転位化の原因となる酸化珪素ガスが発生する。そこで、該酸化珪素ガスをメインチャンバーから排出し、排ガス管内に前記酸化珪素ガスに起因する堆積物(酸化珪素)を意図的に上記箇所に堆積させ、これを上記堆積物除去機構により取り除けば、長時間にわたり安定して高品質なシリコン単結晶を育成することができる。 That is, for example, when growing a silicon single crystal, silicon oxide gas that causes dislocation of the single crystal is generated in the main chamber. Therefore, if the silicon oxide gas is discharged from the main chamber, deposits (silicon oxide) caused by the silicon oxide gas are intentionally deposited at the above-mentioned location in the exhaust gas pipe, and the deposits are removed by the deposit removal mechanism, the deposits can be removed. It is possible to stably grow high-quality silicon single crystals for a long period of time.

以上、説明したように、本発明によれば、排ガス管に堆積物が堆積し、これが進行することによりメインチャンバーの真空度の制御に支障をきたすという問題を、堆積物除去機構の動作で効果的に抑制する事ができる。この為、連続操業時間を安定的に延長する事ができ、装置のダウンタイムロスの低減を図ることができる。 As described above, according to the present invention, the problem that deposits are accumulated in the exhaust gas pipe and the progress thereof interferes with the control of the vacuum degree of the main chamber is effective in the operation of the deposit removal mechanism. Can be suppressed. Therefore, the continuous operation time can be stably extended, and the downtime loss of the device can be reduced.

また、排ガス管内での酸化物や珪素などの堆積物の堆積の進行速度が早いドーパントの高濃度ドープが必要な単結晶の製造を行う操業において、仮に、操業状況のバラつきで予定より早く排ガス管内に該堆積物による詰まりを生じたとしても、メインチャンバーの真空度の制御に支障が発生する前に該状況を検知し、かつ堆積物除去機構の動作で該堆積物を除去することで、効果的に操業の中断を防止でき、原材料ロスや品質不良の回避を図ることができる。 In addition, in the operation of producing a single crystal that requires high-concentration doping of a dopant whose deposition rate of deposits such as oxides and silicon is fast in the exhaust gas pipe, it is assumed that the operation status varies and the inside of the exhaust gas pipe is earlier than planned. Even if the sediment is clogged, it is effective to detect the situation before the control of the vacuum degree of the main chamber is disturbed and to remove the sediment by the operation of the sediment removal mechanism. It is possible to prevent interruption of operations and avoid loss of raw materials and quality defects.

本発明の単結晶引上げ装置の例を示す断面図である。It is sectional drawing which shows the example of the single crystal pulling apparatus of this invention. 堆積物を除去する掻き取り部の例を示す模式図である。It is a schematic diagram which shows the example of the scraping part which removes a deposit. 比較例の単結晶引上げ装置を示す断面図である。It is sectional drawing which shows the single crystal pulling apparatus of a comparative example. 連続操業時間の延長に関する効果を説明する図である(実施例1、比較例1)。It is a figure explaining the effect with respect to the extension of a continuous operation time (Example 1, comparative example 1). 連続操業時間の延長に関する効果を説明する図である(実施例2、比較例2)。It is a figure explaining the effect with respect to the extension of a continuous operation time (Example 2, comparative example 2).

上述のように、CZ法による単結晶引上げ装置から排出される酸化物や珪素などを含有する排気ガスを排出する排ガス管では、該酸化物や該珪素などからなる堆積物が堆積する。このように、排ガス管系統で酸化物や珪素などからなる堆積物が堆積すると、メインチャンバー内に流す不活性ガスの流量やメインチャンバーの真空度の制御に支障が起こり、所望の結晶品質を得られなくなる。これを防ぐ為には、該真空度の制御に支障が発生しない範囲の稼働時間で操業を打ち切り、清掃を行なう必要があり、生産性と歩留り低下を生じていた。 As described above, in the exhaust gas pipe that discharges the exhaust gas containing the oxide and silicon discharged from the single crystal pulling device by the CZ method, deposits composed of the oxide and the silicon are deposited. In this way, when deposits of oxides, silicon, etc. are deposited in the exhaust gas pipe system, the flow rate of the inert gas flowing into the main chamber and the control of the vacuum degree of the main chamber are hindered, and the desired crystal quality is obtained. I can't do it. In order to prevent this, it is necessary to stop the operation and perform cleaning within the operating time within the range where the control of the degree of vacuum is not hindered, resulting in a decrease in productivity and yield.

また、ドーパントの高濃度ドープを必要とする単結晶を製造する操業では、排ガス管系統での酸化物や珪素などの堆積物の堆積進行速度が早く、また、操業状況のバラつきで予定よりも早く、排ガス管系統に詰まりを生じ、メインチャンバーの真空度の制御に支障が発生することもある。このような場合には、高頻度で操業を中断し、排ガス管系統の清掃を行うことを余儀なくさせられており、結果として、原材料ロスや品質不良を生じている。 In addition, in the operation of producing a single crystal that requires a high concentration of dopant, the deposition progress rate of deposits such as oxides and silicon in the exhaust gas pipe system is fast, and the operation status varies, so it is faster than planned. , The exhaust gas pipe system may be clogged, which may interfere with the control of the vacuum degree of the main chamber. In such a case, the operation is frequently interrupted and the exhaust gas pipe system is obliged to be cleaned, resulting in raw material loss and poor quality.

このようなことから、排ガス管系統の清掃頻繁を減らし、連続操業時間を安定的に延長することで、装置のダウンタイム短縮による生産性の向上を図る手法の開発が求められていた。 For these reasons, there has been a demand for the development of a method for improving productivity by reducing the downtime of the equipment by reducing the frequency of cleaning the exhaust gas pipe system and stably extending the continuous operation time.

本発明者らは、上記課題について鋭意検討を重ねた結果、排ガス管系統の詰まりを生じ易い位置に操業を停止することなく動作させられる構造の堆積物除去機構を設け、操業中に不活性ガスの流量や真空度の制御に支障を起こさない条件で堆積物除去機構を動作させ、排ガス管の詰まりを除去することで、排ガス管系統の詰まり、並びに真空度の制御に支障をきたすことなく、連続操業時間を安定的に延長可能とすることができることを見出し、本発明を完成させた。 As a result of diligent studies on the above-mentioned problems, the present inventors have provided a sediment removal mechanism having a structure that can be operated without stopping the operation at a position where the exhaust gas pipe system is likely to be clogged, and an inert gas during the operation. By operating the sediment removal mechanism under conditions that do not interfere with the control of the flow rate and the degree of vacuum, and removing the clogging of the exhaust gas pipe, the clogging of the exhaust gas pipe system and the control of the degree of vacuum are not hindered. We have found that the continuous operation time can be stably extended, and completed the present invention.

すなわち、本発明は、メインチャンバーと、前記メインチャンバー内のガスを排出する排ガス管とを備えたCZ法による単結晶引上げ装置であって、操業中に前記排ガス管内の堆積物を除去可能な堆積物除去機構を具備するものであることを特徴とする単結晶引上げ装置である。 That is, the present invention is a single crystal pulling device by the CZ method including a main chamber and an exhaust gas pipe for discharging gas in the main chamber, and deposits capable of removing deposits in the exhaust gas pipe during operation. It is a single crystal pulling device characterized by being provided with an object removing mechanism.

なお、排ガス管の堆積物を除去する堆積物除去機構は、メインチャンバー(炉)内に原料融液がある状態で該排ガス管内の堆積物を除去できる構造とし、具体的には、機械的に堆積物を削り落とす方法などであることが好ましい。さらに、堆積物の除去動作中にも炉内からの排出ガスの流れが損なわれない構造とすることが好ましい。また、複数の排気ガス出口を設けてあるメインチャンバーに該機構を設置する場合は、作動タイミングをずらし、操業中に必ず1箇所以上の排出ガス経路を用意できる状態にすることで、1つの箇所で排出ガスの流れをせき止めて堆積物の除去動作を行っても、他の箇所から排出ガスを排出することで操業に支障が起きないようにしても良い。 The deposit removal mechanism for removing the deposits in the exhaust gas pipe has a structure capable of removing the deposits in the exhaust gas pipe while the raw material melt is in the main chamber (furnace), specifically, mechanically. It is preferable to use a method of scraping off the deposit. Further, it is preferable to have a structure in which the flow of exhaust gas from the furnace is not impaired even during the operation of removing deposits. In addition, when the mechanism is installed in the main chamber provided with multiple exhaust gas outlets, the operation timing is staggered so that one or more exhaust gas paths can always be prepared during operation at one location. Even if the flow of the exhaust gas is blocked and the deposit is removed, the exhaust gas may be discharged from another place so as not to hinder the operation.

また、排ガス管の堆積物を除去する堆積物除去機構の作動は、必ずしも常時行っている必要はなく、堆積物により排出ガスの流れに抵抗を生じ、炉内の真空度の制御に不具合が発生する前までの間に断続的に行えば良い。例えば、該機構の作動中は機械的に堆積物を削り落とす機構部が排ガス管内で移動し、排ガス管内での排出ガスの流れに対する抵抗を変化させる可能性がある。そこで、該機構の作動タイミングは、精密な真空度制御が必要な単結晶成長途中ではなく、単結晶製造以外の工程の、例えば、原料溶融時など、精密な真空度制御が必要でない工程で行うことが好ましい。 In addition, the sediment removal mechanism that removes the deposits in the exhaust gas pipe does not necessarily have to be operated all the time, and the deposits cause resistance to the flow of exhaust gas, causing problems in controlling the degree of vacuum in the furnace. You can do it intermittently before you do. For example, during the operation of the mechanism, the mechanism portion that mechanically scrapes off the deposit may move in the exhaust gas pipe and change the resistance to the flow of the exhaust gas in the exhaust gas pipe. Therefore, the operation timing of the mechanism is not in the middle of single crystal growth that requires precise vacuum degree control, but in a process other than single crystal production, for example, when the raw material is melted, that does not require precise vacuum degree control. Is preferable.

また、排ガス管内の堆積物を除去する堆積物除去機構の動作の周期は、経験的に求められた排ガス管の堆積物により真空度制御に不具合を生じるまでの時間に基づいて実施することが好ましい。また、ドーパントの高濃度ドープを必要とする単結晶を製造する操業などでは、短時間で排ガス管系統に酸化物や珪素などの堆積物の堆積が進行するため、時間管理では動作の周期を決められない事がある。このような場合は、排ガス管の堆積物により排出ガスの流れに生じている抵抗を感知し、該感知された抵抗に基づいて排ガス管の堆積物を除去する機構の作動を行うか否かを決めるようにしてもよい。 Further, it is preferable that the operation cycle of the deposit removing mechanism for removing the deposits in the exhaust gas pipe is carried out based on the time until the vacuum degree control becomes defective due to the deposits in the exhaust gas pipe obtained empirically. .. In addition, in operations such as manufacturing single crystals that require high-concentration doping of dopants, deposits of oxides, silicon, and other deposits progress in the exhaust gas pipe system in a short time, so the operation cycle is determined by time management. There are things that cannot be done. In such a case, whether or not to detect the resistance generated in the flow of the exhaust gas by the deposits of the exhaust gas pipe and operate the mechanism for removing the deposits of the exhaust gas pipe based on the sensed resistance. You may decide.

排ガス管の堆積物により排出ガスの流れに生じている抵抗を感知する方法としては、例えば、メインチャンバー内の圧力(真空度)を制御する圧力調整バルブのバルブ開度に基づく方法を採用することができる。すなわち、排ガス管の堆積物により排出ガスの流れに抵抗を生ずると、メインチャンバー内の圧力を目標値に維持するために、バルブ操作が行われ、圧力調整バルブのバルブ開度が変化する。これは、圧力調整バルブのバルブ開度が全開になる前においては、排ガス管内に堆積物が堆積しても圧力調整バルブの開度を大きくしていくことで、メインチャンバー内の圧力を目標値に維持できることを意味する。 As a method of sensing the resistance generated in the flow of exhaust gas due to the deposit of the exhaust gas pipe, for example, a method based on the valve opening of the pressure adjustment valve that controls the pressure (vacuum degree) in the main chamber is adopted. Can be done. That is, when resistance is generated in the flow of exhaust gas due to the deposits in the exhaust gas pipe, a valve operation is performed in order to maintain the pressure in the main chamber at the target value, and the valve opening degree of the pressure adjusting valve changes. This is because before the valve opening of the pressure adjusting valve is fully opened, the pressure in the main chamber is set to the target value by increasing the opening of the pressure adjusting valve even if deposits are accumulated in the exhaust gas pipe. Means that it can be maintained.

従って、圧力調整バルブのバルブ開度が全開になる前、すなわち、一定値以上のバルブ開度に達した事を検知したときに排ガス管の堆積物を除去する機構を作動させるようにすれば、実質的に、排ガス管の堆積物により排出ガスの流れに生じている抵抗が真空度制御に不具合を生じる程度まで蓄積されたときに該機構を作動させることと同義となる。 Therefore, if the mechanism for removing the deposits of the exhaust gas pipe is activated before the valve opening of the pressure adjusting valve is fully opened, that is, when it is detected that the valve opening reaches a certain value or more. Substantially, it is synonymous with operating the mechanism when the resistance generated in the flow of the exhaust gas due to the deposit of the exhaust gas pipe is accumulated to the extent that the vacuum degree control is defective.

以上のように、排ガス管の堆積物を除去する機構の作動タイミングを設定することで、長時間の連続操業や、ドーパントの高濃度ドープを必要とする単結晶を製造する操業などにおいて、排ガス管内の堆積物により排出ガスの流れに抵抗を生じ、炉内の真空度が目標値から乖離する不具合が発生する前に、該堆積物を除去することができ、安定的に操業を継続することが可能となる。 As described above, by setting the operation timing of the mechanism for removing the deposits in the exhaust gas pipe, in the exhaust gas pipe in the continuous operation for a long time or in the operation of manufacturing a single crystal requiring high concentration doping of the dopant. The deposits cause resistance to the flow of exhaust gas, and the deposits can be removed before the problem that the degree of vacuum in the furnace deviates from the target value occurs, and stable operation can be continued. It will be possible.

以下、本発明の実施の形態について、添付した図面に基づいて具体的に説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the present invention is not limited thereto.

図1は、本発明の単結晶引上げ装置の例を示す。
メインチャンバー1内に石英ルツボ3aとこれを保持する黒鉛等の材質からなる外ルツボ3bが配置され、これを回転支持体(ルツボ軸)14を介してルツボ駆動部15により回転駆動並びに昇降駆動を行う。原料融液13は、石英ルツボ3aの中に入れられ、保温筒4により保温されたヒーター5により加熱される。
FIG. 1 shows an example of the single crystal pulling device of the present invention.
A quartz crucible 3a and an outer crucible 3b made of a material such as graphite that holds the quartz crucible 3a are arranged in the main chamber 1, and the crucible drive unit 15 drives the rotation and elevating of the crucible 3b via a rotation support (crucible shaft) 14. conduct. The raw material melt 13 is placed in a quartz crucible 3a and heated by a heater 5 kept warm by a heat insulating cylinder 4.

単結晶の製造では、プルチャンバー2より下げたシードワイヤー11に取り付けた種結晶(図示せず)を原料融液13に着液させ、ヒーター5の電力を制御して単結晶12を育成する。原料融液13の液面からは石英ルツボ3aと原料融液13が反応して生じた酸化物や珪素などの酸化珪素ガスが生じる。この酸化珪素ガスは、ガス導入管17からメインチャンバー1内に導入された不活性ガス(例えば、Arガス)が原料融液表面を経由する際に酸化物や珪素などを含有した酸化珪素ガスとなり、2箇所に設けた排ガス管6a、6bから排出ガスとしてメインチャンバー1の外部へ排出される。すなわち、該酸化珪素ガスは、排ガス管6a、6bと、メインチャンバー1の真空度の制御を行う圧力調整バルブ9を経由して、真空ポンプ10により排出される。 In the production of a single crystal, a seed crystal (not shown) attached to the seed wire 11 lowered from the pull chamber 2 is landed on the raw material melt 13, and the electric power of the heater 5 is controlled to grow the single crystal 12. From the liquid surface of the raw material melt 13, silicon oxide gas such as oxides and silicon generated by the reaction between the quartz crucible 3a and the raw material melt 13 is generated. This silicon oxide gas becomes silicon oxide gas containing oxides, silicon, etc. when the inert gas (for example, Ar gas) introduced into the main chamber 1 from the gas introduction pipe 17 passes through the surface of the raw material melt. The exhaust gas pipes 6a and 6b provided at the two locations are discharged to the outside of the main chamber 1 as exhaust gas. That is, the silicon oxide gas is discharged by the vacuum pump 10 via the exhaust gas pipes 6a and 6b and the pressure adjusting valve 9 that controls the degree of vacuum in the main chamber 1.

ここで、排ガス管6a、6bの上端部に設けられた排出口に入った排出ガスは、排ガス管6a、6b内の堆積物が堆積しやすい箇所6a’、6b’において堆積物(例えば、酸化珪素の塊など)16を生じさせる。堆積物が堆積しやすい箇所6a’、6b’とは、該排出ガスに含まれる元素や化合物の昇華点以下の温度となる箇所のことである。例えば、引き上げる単結晶12がシリコン単結晶である場合には、当該箇所6a’、6b’は、酸化珪素の昇華点以下の温度となる箇所であり、この場合、該排出ガスは、当該箇所に堆積物16として酸化珪素の塊を生じさせる。 Here, the exhaust gas that has entered the exhaust port provided at the upper end of the exhaust gas pipes 6a and 6b is oxidized (for example, oxidized) at the locations 6a'and 6b'where the deposits in the exhaust gas pipes 6a and 6b are likely to be deposited. (Silver mass, etc.) 16 is generated. The locations 6a'and 6b'where deposits are likely to be deposited are locations where the temperature is equal to or lower than the sublimation point of the element or compound contained in the exhaust gas. For example, when the single crystal 12 to be pulled up is a silicon single crystal, the locations 6a'and 6b'are locations where the temperature is equal to or lower than the sublimation point of silicon oxide, and in this case, the exhaust gas is directed to the location. The deposit 16 gives rise to a mass of silicon oxide.

堆積物が堆積しやすい箇所6a’、6b’は、具体的には、メインチャンバー1の出口(排出ガスの出口)などのように排出ガスの温度が自然に低下する箇所でも、又は水冷、空冷などの所定の冷却機構により強制的に冷却を行う箇所でも、いずれでも構わない。 The locations 6a'and 6b'where deposits are likely to accumulate are, specifically, at locations where the temperature of the exhaust gas naturally drops, such as the outlet of the main chamber 1 (exhaust gas outlet), or water cooling or air cooling. It does not matter whether it is a place where cooling is forcibly performed by a predetermined cooling mechanism such as.

同図に示す例では、排ガス管6a、6bがメインチャンバー1から出るところを堆積物が堆積しやすい箇所6a’、6b’としている。これは、メインチャンバー1の底部は冷却されているため、堆積物が堆積しやすい箇所6a’、6b’として設定できるからである。すなわち、メインチャンバー1の冷却により、排ガス管6a、6bを容易に、例えば、酸化珪素の昇華点以下の温度にすることができるため、このようにメインチャンバー1から出るところを堆積物が堆積しやすい箇所6a’、6b’とすれば、装置の大きな変更なしに当該箇所6a’、6b’を設定できる。 In the example shown in the figure, the places where the exhaust gas pipes 6a and 6b exit from the main chamber 1 are the places 6a'and 6b' where deposits are likely to accumulate. This is because the bottom of the main chamber 1 is cooled, so that it can be set as locations 6a'and 6b' where deposits are likely to accumulate. That is, by cooling the main chamber 1, the exhaust gas pipes 6a and 6b can be easily set to a temperature equal to or lower than the sublimation point of silicon oxide, for example. If the easy points 6a'and 6b' are set, the points 6a'and 6b' can be set without major changes in the device.

なお、堆積物が堆積しやすい箇所6a’、6b’は、同図に示すように、メインチャンバー1の内部から外部に跨る区間とすることが好ましい。 As shown in the figure, it is preferable that the locations 6a'and 6b'where deposits are likely to be deposited are sections extending from the inside to the outside of the main chamber 1.

ここで、堆積物が堆積しやすい箇所6a’、6b’において、堆積物16が成長し、該堆積物16の塊が大きくなってくると、排出ガスの流れが妨げられ、圧力調整バルブ9を用いても所望の真空度が得られなくなり、不具合を生ずるようになる。 Here, when the deposit 16 grows and the mass of the deposit 16 becomes large at the locations 6a'and 6b' where the deposit is likely to be deposited, the flow of the exhaust gas is obstructed and the pressure adjusting valve 9 is pressed. Even if it is used, the desired degree of vacuum cannot be obtained, and problems will occur.

これを防ぐため、操業中に、排ガス管6a、6b内の堆積物を除去可能な堆積物除去機構8a、8bを設けた。堆積物除去機構8a、8bは、排ガス管6a、6bに対応して設けられる。同図の例では、2系統の排ガス管6a、6bが存在するため、これに対応して2つの堆積物除去機構8a、8bが設けられる。但し、排ガス管6a、6b及び堆積物除去機構8a、8bの数は、これに限られず、1つ以上であればよい。 In order to prevent this, a sediment removal mechanism 8a, 8b capable of removing the sediment in the exhaust gas pipes 6a, 6b was provided during the operation. The deposit removal mechanisms 8a and 8b are provided corresponding to the exhaust gas pipes 6a and 6b. In the example of the figure, since there are two systems of exhaust gas pipes 6a and 6b, two deposit removal mechanisms 8a and 8b are provided correspondingly. However, the number of the exhaust gas pipes 6a and 6b and the deposit removing mechanisms 8a and 8b is not limited to this, and may be one or more.

堆積物除去機構8a、8bは、回転しながら排ガス管6a、6b内を移動することで堆積物16を除去する掻き取り部7a、7bを有する。 The deposit removing mechanism 8a, 8b has scraping portions 7a, 7b for removing the deposit 16 by moving in the exhaust gas pipes 6a, 6b while rotating.

堆積物を除去する掻き取り部7a、7bの例を図2に示す。
掻き取り部7a、7bは、支柱18に取り付けられた板状部材であり、支柱18を回転軸として回転可能である。そして、堆積物除去機構8a、8b内の駆動装置(図示せず)を用いて、支柱18の昇降動作(図1のAに示す上下方向の動作)及び回転動作を制御することで、掻き取り部7a、7bの支柱18に平行な一辺19を排ガス管6a、6bの内面に沿って、螺旋状に、すなわち、図2のBに示すように移動させることができる。
An example of the scraping portions 7a and 7b for removing the deposit is shown in FIG.
The scraping portions 7a and 7b are plate-shaped members attached to the columns 18, and can rotate around the columns 18 as a rotation axis. Then, by using a drive device (not shown) in the deposit removal mechanisms 8a and 8b to control the elevating operation (up and down operation shown in A of FIG. 1) and the rotational operation of the support column 18, scraping is performed. One side 19 parallel to the column 18 of the portions 7a and 7b can be moved spirally, that is, as shown in B of FIG. 2, along the inner surface of the exhaust gas pipes 6a and 6b.

このように、掻き取り部7a、7bを図2に示すような形状とすることで、確実に堆積物16を除去できるとともに、排ガス管6a、6b内で掻き取り部7a、7bが回転駆動した場合であっても、排出ガスの流れに対する抵抗を小さくし、単結晶の製造中でも堆積物除去機構8a、8bを動作させることが可能となる。なお、掻き取り部7a、7bの形状は、図2に示すような板状部材に限定されず、堆積物を除去できる形状であればどのような形状であっても構わない。例えば、掻き取り部7a、7bの形状は、ブラシ状の形状とすることもできる。また、掻き取り部7a、7bの材質は、例えば、ステンレス鋼とすることができる。 By forming the scraping portions 7a and 7b in the shape as shown in FIG. 2 in this way, the deposit 16 can be reliably removed, and the scraping portions 7a and 7b are rotationally driven in the exhaust gas pipes 6a and 6b. Even in this case, the resistance to the flow of the exhaust gas can be reduced, and the deposit removal mechanisms 8a and 8b can be operated even during the production of the single crystal. The shapes of the scraped portions 7a and 7b are not limited to the plate-shaped members as shown in FIG. 2, and may be any shape as long as the deposits can be removed. For example, the shape of the scraping portions 7a and 7b may be a brush-like shape. Further, the material of the scraping portions 7a and 7b can be, for example, stainless steel.

掻き取り部7a、7bは、動作させないときは排出ガス流を妨げない位置に設けた待機部に待機させることが好ましい。図1の例では、右側の排ガス管6a内を移動可能な掻き取り部7aが排ガス管6aの待機部に位置している。なお、待機部は、縦方向に延びる排ガス管6aのうち、縦方向から横方向に排ガス管6aが曲げられた分岐点よりも下になる位置に設けることが好ましい。 When the scraping portions 7a and 7b are not operated, it is preferable that the scraping portions 7a and 7b are made to stand by by a standby portion provided at a position that does not obstruct the exhaust gas flow. In the example of FIG. 1, the scraping portion 7a that can move in the exhaust gas pipe 6a on the right side is located in the standby portion of the exhaust gas pipe 6a. It is preferable that the standby portion is provided at a position of the exhaust gas pipe 6a extending in the vertical direction below the branch point where the exhaust gas pipe 6a is bent in the vertical direction to the horizontal direction.

そして、堆積物を除去する動作を行う場合は、堆積物除去機構8a、8bの駆動装置(図示せず)を用いて、掻き取り部7a、7bを排ガス管6a、6bの上部に繰り出し、回転動作を行いながら昇降動作を繰り返すことで排ガス管6a、6b内の堆積物16を掻き落とす。なお、図1の例では、左側の排ガス管6b内を移動可能な掻き取り部7bが排ガス管6b内において堆積物16の掻き取りを行っている。 Then, when the operation of removing the deposit is performed, the scraping portions 7a and 7b are fed out to the upper part of the exhaust gas pipes 6a and 6b by using the drive device (not shown) of the deposit removal mechanism 8a and 8b and rotated. By repeating the ascending / descending operation while performing the operation, the deposit 16 in the exhaust gas pipes 6a and 6b is scraped off. In the example of FIG. 1, the scraping portion 7b that can move in the exhaust gas pipe 6b on the left side scrapes the deposit 16 in the exhaust gas pipe 6b.

掻き取り部7a、7bによって掻き取られた堆積物16は、重力により自然落下し、例えば、堆積物除去機構8a、8b内に設けられた収容部(図示せず)に収容される。このため、該掻き取られた堆積物16が圧力調整バルブ9や、真空ポンプ10の内部などに再び堆積し、詰まりなどの不都合を発生させることがなくなる。また、収容部が着脱可能な構造となっていれば、収容部に収容された堆積物を容易に回収することができる。 The deposit 16 scraped by the scraping portions 7a and 7b naturally falls due to gravity and is housed in, for example, a storage portion (not shown) provided in the deposit removing mechanisms 8a and 8b. Therefore, the scraped deposit 16 is not deposited again in the pressure adjusting valve 9, the inside of the vacuum pump 10, or the like, and causes inconvenience such as clogging. Further, if the accommodating portion has a detachable structure, the deposits accommodating in the accommodating portion can be easily recovered.

堆積物16を除去する動作が終了した後は、掻き取り部7bは、縦方向に延びる排ガス管6bのうち、縦方向から横方向に排ガス管6bが曲げられた分岐点よりも下になる位置に設けられた待機部に配置させる。 After the operation of removing the deposit 16 is completed, the scraping portion 7b is located at a position below the branch point where the exhaust gas pipe 6b is bent from the vertical direction to the horizontal direction among the exhaust gas pipes 6b extending in the vertical direction. It is arranged in the standby part provided in.

なお、2箇所に設けた排ガス管6a、6b及び堆積物除去機構8a、8bは、例えば、それぞれの動作タイミングをずらして、すなわち、一方の掻き取り動作が完了してからもう一方の掻き取り動作を行うようにしたり、又は一方が掻き取り動作を行っているときは、もう一方は掻き取り動作を停止してメインチャンバー1からの排出ガスを排出する動作を行う様にしてもよい。 The exhaust gas pipes 6a and 6b and the deposit removal mechanisms 8a and 8b provided at the two locations are, for example, staggered from each other in operation timing, that is, after one scraping operation is completed, the other scraping operation is completed. Or, when one of them is performing the scraping operation, the other may stop the scraping operation and perform an operation of discharging the exhaust gas from the main chamber 1.

また、排ガス管6a、6bに堆積した堆積物16の除去は、単結晶12の成長途中ではなく、単結晶製造工程以外の、例えば、種結晶を原料融液13に着液する前までに実施することが好ましい。また、単結晶12の育成中の、排ガス管6a、6bでの詰まり進行状況は、メインチャンバー1の真空度を制御している圧力調整バルブ9のバルブ開度情報を電気的に取得することで検知することが可能である。すなわち、圧力調整バルブ9が全開となる前、例えば、単結晶12の育成を開始する前の所定の時点において堆積物除去機構8a、8bを動作させ、排ガス管6a、6bに堆積した酸化物や珪素などの堆積物16の除去を行うことができる。 Further, the removal of the deposit 16 deposited on the exhaust gas pipes 6a and 6b is performed not during the growth of the single crystal 12, but before the seed crystal is landed on the raw material melt 13, for example, other than the single crystal manufacturing process. It is preferable to do so. Further, the progress of clogging in the exhaust gas pipes 6a and 6b during the growth of the single crystal 12 can be checked by electrically acquiring the valve opening information of the pressure adjusting valve 9 that controls the degree of vacuum in the main chamber 1. It is possible to detect. That is, the deposit removal mechanisms 8a and 8b are operated at a predetermined time point before the pressure adjusting valve 9 is fully opened, for example, before the growth of the single crystal 12 is started, and the oxides deposited on the exhaust gas pipes 6a and 6b are generated. The deposit 16 such as silicon can be removed.

この様にすることで、排ガス管6a、6bに堆積した堆積物16が除去された状態で、単結晶12の育成を開始する事が可能となり、単結晶12の育成中に排ガス管6a、6bでの堆積物16の詰まりによる真空度制御の不具合の発生を効果的に抑制する事ができる。さらに、予想より早く排ガス管6a、6bに堆積物16が堆積した場合でも、真空度制御に不具合が発生する前に、排ガス管6a、6bに堆積した堆積物16の除去が行われるので、真空度制御の不具合による単結晶12の品質不良の発生が抑制される。 By doing so, it becomes possible to start the growth of the single crystal 12 in a state where the deposit 16 deposited on the exhaust gas pipes 6a and 6b is removed, and the exhaust gas pipes 6a and 6b can be started during the growth of the single crystal 12. It is possible to effectively suppress the occurrence of a defect in the degree of vacuum control due to the clogging of the deposit 16 in the above. Further, even if the deposit 16 is deposited on the exhaust gas pipes 6a and 6b earlier than expected, the deposit 16 deposited on the exhaust gas pipes 6a and 6b is removed before the vacuum degree control becomes defective, so that the vacuum is obtained. The occurrence of quality defects in the single crystal 12 due to a defect in degree control is suppressed.

以上、説明したように、本発明によれば、排ガス管6a、6bに堆積物16が堆積し、これが進行することによりメインチャンバー1の真空度の制御に支障をきたすという問題を、堆積物除去機構8a、8bの動作で効果的に抑制する事ができる。この為、連続操業時間を安定的に延長する事ができ、装置のダウンタイムロスの低減を図ることができる。 As described above, according to the present invention, the problem that the deposit 16 is deposited on the exhaust gas pipes 6a and 6b and the progress thereof interferes with the control of the vacuum degree of the main chamber 1 is solved. It can be effectively suppressed by the operation of the mechanisms 8a and 8b. Therefore, the continuous operation time can be stably extended, and the downtime loss of the device can be reduced.

また、排ガス管6a、6b内での堆積物16の堆積の進行速度が早いドーパントの高濃度ドープが必要な単結晶12の製造を行う操業において、仮に、操業状況のバラつきで予定より早く排ガス管6a、6b内に該堆積物16による詰まりを生じたとしても、メインチャンバー1の真空度の制御に支障が発生する前に該状況を検知し、かつ堆積物除去機構8a、8bの動作で該堆積物16を除去することで、効果的に操業の中断を防止でき、原材料ロスや品質不良の回避を図ることができる。 Further, in the operation of manufacturing the single crystal 12 which requires a high concentration doping of the dopant whose deposition progress rate of the deposit 16 in the exhaust gas pipes 6a and 6b is fast, it is assumed that the exhaust gas pipe is earlier than planned due to the variation of the operation situation. Even if the deposits 16 cause clogging in 6a and 6b, the situation is detected before the control of the degree of vacuum of the main chamber 1 is hindered, and the sediment removal mechanisms 8a and 8b operate. By removing the deposit 16, it is possible to effectively prevent the interruption of the operation, and it is possible to avoid the loss of raw materials and the quality defect.

以下に本発明の実施例を挙げて、本発明を詳細に説明するが、これらは、本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to examples of the present invention, but these are not intended to limit the present invention.

(実施例1)
実施例1では、図1の単結晶引上げ装置を用いて、以下の条件で堆積物除去機構8a、8bにより排ガス管6a、6b内に付着した堆積物を除去しながら単結晶の製造を繰り返し行い、該繰り返し回数とメインチャンバー1の真空度との関係を検証した。
(Example 1)
In Example 1, the single crystal pulling device of FIG. 1 is used to repeatedly manufacture a single crystal while removing the deposits adhering to the exhaust gas pipes 6a and 6b by the deposit removing mechanisms 8a and 8b under the following conditions. , The relationship between the number of repetitions and the degree of vacuum in the main chamber 1 was verified.

単結晶引上げ装置は、図1に示すように、メインチャンバー1の底部に2系統の排ガス管6a、6bを有し、該単結晶引上げ装置により製造する単結晶は、シリコン単結晶とした。そして、排ガス管6a、6bに、メインチャンバー1内のガスに含まれる酸化物(酸化珪素ガス)の昇華点以下の温度になる箇所6a’、6b’を設けた。該箇所6a’、6b’の上端は、水冷されたメインチャンバー1の底部(排ガス管6a、6bと接触する位置)から上方(炉内)側に4cmのところとし、その下端は、該底部から下方(炉外)側に10cmのところとした。すなわち、該酸化物が堆積する箇所6a’、6b’は、メインチャンバー1の内部から外部に跨る14cmの区間とした。 As shown in FIG. 1, the single crystal pulling device has two systems of exhaust gas pipes 6a and 6b at the bottom of the main chamber 1, and the single crystal produced by the single crystal pulling device is a silicon single crystal. Then, the exhaust gas pipes 6a and 6b are provided with locations 6a'and 6b' whose temperature is below the sublimation point of the oxide (silicon oxide gas) contained in the gas in the main chamber 1. The upper ends of the locations 6a'and 6b'are 4 cm above (inside the furnace) from the bottom of the water-cooled main chamber 1 (positions where they come into contact with the exhaust gas pipes 6a and 6b), and the lower end thereof is from the bottom. It was set to 10 cm on the lower (outside the furnace) side. That is, the locations 6a'and 6b'where the oxide is deposited are 14 cm sections extending from the inside to the outside of the main chamber 1.

また、各々の排ガス管6a、6bの直下に堆積物を除去する掻き取り部7a、7bを有する堆積物除去機構8a、8bを取り付けた。堆積物除去機構8a、8bは、堆積物を除去する掻き取り部7a、7bが少なくとも上記堆積物が堆積する箇所6a’、6b’をカバーするように、該掻き取り部7a、7bを排ガス管6a、6b内で移動させることができる様にした。本例では、堆積物掻き取り部7a、7bの上端が、排ガス管6a、6bが縦方向から横方向に曲げられた位置よりも下の箇所から、水冷されたメインチャンバー1の底部よりも5cm上までの区間を移動できる様にした。また、掻き取り部7a、7bは、ステンレス鋼の材質からなる図2に示すような構造を有するものとし、該掻き取り部7a、7bの移動(昇降)に合わせて、該掻き取り部7a、7bが支柱(回転軸)18を軸に所定の回転数で回転する様にした。 Further, deposit removal mechanisms 8a and 8b having scraping portions 7a and 7b for removing deposits were attached directly under the exhaust gas pipes 6a and 6b, respectively. The deposit removal mechanism 8a, 8b has an exhaust gas pipe for the scraping portions 7a, 7b so that the scraping portions 7a, 7b cover at least the locations 6a', 6b'where the deposits are deposited. It was made possible to move within 6a and 6b. In this example, the upper ends of the sediment scraping portions 7a and 7b are 5 cm from the bottom of the water-cooled main chamber 1 from a position below the position where the exhaust gas pipes 6a and 6b are bent from the vertical direction to the horizontal direction. Made it possible to move the section up to the top. Further, the scraping portions 7a and 7b are made of a stainless steel material and have a structure as shown in FIG. 2, and the scraping portions 7a and 7b are moved (elevated) according to the movement (elevation) of the scraping portions 7a and 7b. The 7b is configured to rotate around the support column (rotational shaft) 18 at a predetermined rotation speed.

さらに、堆積物除去機構8a、8bを動作させるタイミング、すなわち、排ガス管6a、6b内に堆積した堆積物を除去するタイミングは、石英ルツボ3a内で多結晶シリコンの融解が完了したタイミングで実施した。なお、排ガス管6a、6bが横方向に延びる区間、すなわち、排ガス管6a、6bが縦方向から横方向に曲げられた位置から、真空ポンプまでの区間の清掃を実施せずに、上記条件でP型(ボロンドープ)及びN型(リンドープ)の通常抵抗率のシリコン単結晶の製造を繰り返して行い、該繰り返し回数とメインチャンバー1の真空度との関係を検証した。 Further, the timing of operating the deposit removal mechanisms 8a and 8b, that is, the timing of removing the deposits deposited in the exhaust gas pipes 6a and 6b was carried out at the timing when the melting of the polysilicon in the quartz crucible 3a was completed. .. Under the above conditions, the section from the exhaust gas pipes 6a and 6b extending in the lateral direction, that is, the section from the position where the exhaust gas pipes 6a and 6b are bent in the vertical direction to the vacuum pump is not cleaned. The production of P-type (boron-doped) and N-type (phosphorus-doped) silicon single crystals having normal resistivity was repeated, and the relationship between the number of repetitions and the degree of vacuum in the main chamber 1 was verified.

また、各シリコン単結晶を製造した後に、メインチャンバー1内にArガスを流量100L/minで導入し、かつ圧力調整バルブ9を全開とした状態で該メインチャンバー1内の真空度を測定し、各系統の排ガス管6a、6b全体の詰まり具合を確認した。 Further, after manufacturing each silicon single crystal, Ar gas was introduced into the main chamber 1 at a flow rate of 100 L / min, and the degree of vacuum in the main chamber 1 was measured with the pressure adjusting valve 9 fully open. The degree of clogging of the entire exhaust gas pipes 6a and 6b of each system was confirmed.

(比較例1)
比較例1では、図3の単結晶引上げ装置を用いて、上記実施例1と同じ条件(但し、操業中に堆積物を除去する動作を行わない)で単結晶の製造を繰り返し行い、該繰り返し回数とメインチャンバー1の真空度との関係を検証した。なお、図3の単結晶引上げ装置において、図1の単結晶引上げ装置の構成要素と同じ構成要素には、同じ符号を付してある。
(Comparative Example 1)
In Comparative Example 1, the single crystal pulling device of FIG. 3 is used to repeatedly produce a single crystal under the same conditions as in Example 1 (however, the operation of removing deposits during operation is not performed), and the process is repeated. The relationship between the number of times and the degree of vacuum in the main chamber 1 was verified. In the single crystal pulling device of FIG. 3, the same components as the components of the single crystal pulling device of FIG. 1 are designated by the same reference numerals.

実施例1と比較例1の測定結果を図4にまとめて示す。
高品質なシリコン単結晶を製造するために必要なメインチャンバー1の真空度(メインチャンバー1内の圧力)の上限値は、50hPaであるものとする。
The measurement results of Example 1 and Comparative Example 1 are summarized in FIG.
It is assumed that the upper limit of the degree of vacuum (pressure in the main chamber 1) of the main chamber 1 required for producing a high-quality silicon single crystal is 50 hPa.

同図から明らかなように、メインチャンバー1内の圧力が上限値(50hPa)に達するまでのシリコン単結晶製造の繰り返し回数は、比較例1では5回であったが、実施例1では40回でも該上限値に達する事は無かった。すなわち、実施例1では、比較例1に比べて、連続操業時間を8倍以上に延長することができた。これは、実施例1では、比較例1と比べて、8倍以上の期間に渡り排ガス管系統の清掃(操業を停止し、排ガス管内の堆積物を除去する作業)が不要であることを意味する。 As is clear from the figure, the number of repetitions of silicon single crystal production until the pressure in the main chamber 1 reaches the upper limit value (50 hPa) was 5 times in Comparative Example 1, but 40 times in Example 1. However, the upper limit was never reached. That is, in Example 1, the continuous operation time could be extended by 8 times or more as compared with Comparative Example 1. This means that in Example 1, cleaning of the exhaust gas pipe system (work of stopping the operation and removing the deposits in the exhaust gas pipe) is not required for a period of 8 times or more as compared with Comparative Example 1. do.

なお、各系統の排ガス管6a、6b全体の詰まり具合についても、実施例1では、シリコン単結晶製造の繰り返し回数によらず、堆積物が少ない状態を安定して維持していたのに対し、比較例1では、該繰り返し回数に比例して堆積物が急激に増えていたことが確認できた。 Regarding the degree of clogging of the exhaust gas pipes 6a and 6b of each system as a whole, in Example 1, the state where the amount of deposits was small was stably maintained regardless of the number of repetitions of silicon single crystal production. In Comparative Example 1, it was confirmed that the deposits increased rapidly in proportion to the number of repetitions.

(実施例2)
実施例2では、図1の単結晶引上げ装置を用いて、上記実施例1と同じ条件(但し、育成する単結晶は高濃度のリンがドープされたシリコン単結晶とした)で、堆積物除去機構8a、8bにより排ガス管6a、6b内に付着した堆積物を除去しながら単結晶の製造を繰り返し行い、該繰り返し回数とメインチャンバー1の真空度との関係を検証した。また、実施例1と同様に、各シリコン単結晶を製造した後に、各系統の排ガス管6a、6b全体の詰まり具合を確認した。
(Example 2)
In Example 2, the single crystal pulling device of FIG. 1 was used to remove deposits under the same conditions as in Example 1 above (however, the single crystal to be grown was a silicon single crystal doped with a high concentration of phosphorus). The single crystal was repeatedly produced while removing the deposits adhering to the exhaust gas pipes 6a and 6b by the mechanisms 8a and 8b, and the relationship between the number of repetitions and the degree of vacuum in the main chamber 1 was verified. Further, as in Example 1, after manufacturing each silicon single crystal, the degree of clogging of the entire exhaust gas pipes 6a and 6b of each system was confirmed.

(比較例2)
比較例2では、図3の単結晶引上げ装置を用いて、上記実施例2と同じ条件(但し、操業中に堆積物を除去する動作を行わない)で単結晶の製造を繰り返し行い、該繰り返し回数とメインチャンバー1の真空度との関係を検証した。
(Comparative Example 2)
In Comparative Example 2, the single crystal pulling device of FIG. 3 is used to repeatedly produce a single crystal under the same conditions as in Example 2 above (however, the operation of removing deposits during operation is not performed), and the process is repeated. The relationship between the number of times and the degree of vacuum in the main chamber 1 was verified.

実施例2と比較例2の測定結果を図5にまとめて示す。
高品質なシリコン単結晶を製造するために必要なメインチャンバー1の真空度(メインチャンバー1内の圧力)の上限値は、100hPaであるものとする。
The measurement results of Example 2 and Comparative Example 2 are summarized in FIG.
It is assumed that the upper limit of the degree of vacuum (pressure in the main chamber 1) of the main chamber 1 required for producing a high-quality silicon single crystal is 100 hPa.

同図から明らかなように、メインチャンバー1内の圧力が上限値(100hPa)に達するまでのシリコン単結晶製造の繰り返し回数は、比較例2では2回であったが、実施例2では7回であった。すなわち、実施例2では、比較例2に比べて、連続操業時間を3.5倍に延長することができた。これは、実施例2では、比較例2と比べて、3.5倍の期間に渡り排ガス管系統の清掃が不要であることを意味する。 As is clear from the figure, the number of repetitions of silicon single crystal production until the pressure in the main chamber 1 reaches the upper limit value (100 hPa) was 2 times in Comparative Example 2, but 7 times in Example 2. Met. That is, in Example 2, the continuous operation time could be extended 3.5 times as compared with Comparative Example 2. This means that in Example 2, cleaning of the exhaust gas pipe system is unnecessary for a period of 3.5 times that of Comparative Example 2.

なお、各系統の排ガス管6a、6b全体の詰まり具合についても、実施例2では、該繰り返し回数の増加に対する堆積物の増加の割合が緩やかであったのに対し、比較例2では、該繰り返し回数の増加に対する堆積物の増加の割合が急激であったことが確認できた。 Regarding the degree of clogging of the exhaust gas pipes 6a and 6b of each system as a whole, in Example 2, the ratio of the increase in sediment to the increase in the number of repetitions was gradual, whereas in Comparative Example 2, the repetition was repeated. It was confirmed that the ratio of the increase in sediment to the increase in the number of times was rapid.

以上の結果から分かるように、実施例1及び実施例2では、それぞれ比較例1及び比較例2に比べて、排ガス管系統の清掃間隔を延長することができた。すなわち、実施例1及び実施例2では、連続操業時間を安定的に延長できることが立証された。 As can be seen from the above results, in Example 1 and Example 2, the cleaning interval of the exhaust gas pipe system could be extended as compared with Comparative Example 1 and Comparative Example 2, respectively. That is, in Example 1 and Example 2, it was proved that the continuous operation time can be stably extended.

以上、説明したように、本発明によれば、排ガス管に酸化物が堆積し、これが進行することによりメインチャンバーの真空度の制御に支障をきたすという問題を、堆積物除去機構の動作で効果的に抑制する事ができる。この為、連続操業時間を安定的に延長する事ができ、ダウンタイムロスの低減を図ることができる。 As described above, according to the present invention, the problem that oxides are deposited on the exhaust gas pipe and the progress of the oxides interferes with the control of the vacuum degree of the main chamber is effective in the operation of the deposit removal mechanism. Can be suppressed. Therefore, the continuous operation time can be stably extended, and the downtime loss can be reduced.

また、排ガス管内での酸化物や珪素などの堆積物の堆積の進行速度が早いドーパントの高濃度ドープが必要な単結晶の製造を行う操業において、仮に、操業状況のバラつきで予定より早く排ガス管内に該堆積物による詰まりを生じたとしても、メインチャンバーの真空度の制御に支障が発生する前に該状況を検知し、かつ堆積物除去機構の動作で該堆積物を除去することで、効果的に操業の中断を防止でき、原材料ロスや品質不良の回避を図ることができる。 In addition, in the operation of producing a single crystal that requires high-concentration doping of a dopant whose deposition rate of deposits such as oxides and silicon is fast in the exhaust gas pipe, it is assumed that the operation status varies and the inside of the exhaust gas pipe is earlier than planned. Even if the sediment is clogged, it is effective to detect the situation before the control of the vacuum degree of the main chamber is disturbed and to remove the sediment by the operation of the sediment removal mechanism. It is possible to prevent interruption of operations and avoid loss of raw materials and quality defects.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and the present invention can be anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Is included in the technical scope of.

1…メインチャンバー、 2…プルチャンバー、 3a…石英ルツボ、 3b…外ルツボ、 4…保温筒、 5…ヒーター、 6a、6b…排ガス管、 6a’、6b’…堆積物が堆積しやすい箇所、 7a、7b…掻き取り部、 8a、8b…堆積物除去機構、 9…圧力調整バルブ、 10…真空ポンプ、 11…シードワイヤー、 12…単結晶、 13…原料融液、 14…回転支持体(ルツボ軸)、 15…ルツボ駆動部、 16…堆積物、 17…ガス導入管、 18…支柱(回転軸)、 19…掻き取り部7a、7bの一辺。 1 ... main chamber, 2 ... pull chamber, 3a ... quartz pump, 3b ... outer pump, 4 ... heat insulation tube, 5 ... heater, 6a, 6b ... exhaust pipe, 6a', 6b' ... where deposits are likely to accumulate, 7a, 7b ... scraping part, 8a, 8b ... deposit removal mechanism, 9 ... pressure adjustment valve, 10 ... vacuum pump, 11 ... seed wire, 12 ... single crystal, 13 ... raw material melt, 14 ... rotary support ( Rutsubo shaft), 15 ... Rutsubo drive unit, 16 ... Sediment, 17 ... Gas introduction pipe, 18 ... Strut (rotary shaft), 19 ... One side of scraping part 7a, 7b.

Claims (5)

メインチャンバーと、前記メインチャンバー内のガスを排出する排ガス管とを備えたCZ法による単結晶引上げ装置であって、
該単結晶引上げ装置には堆積物除去機構が具備されており、
該堆積物除去機構は、単結晶の製造を継続しながら、前記単結晶を引き上げている期間以外、又は前記メインチャンバーの真空度を制御する圧力調整バルブが全開となる前の時点で、前記排ガス管内の堆積物を除去可能なものであることを特徴とする単結晶引上げ装置。
A single crystal pulling device by the CZ method including a main chamber and an exhaust gas pipe for discharging gas in the main chamber.
The single crystal pulling device is equipped with a deposit removing mechanism.
The sediment removal mechanism is used to continue the production of the single crystal, but at a time other than the period during which the single crystal is being pulled up, or before the pressure adjusting valve for controlling the degree of vacuum in the main chamber is fully opened, the exhaust gas is discharged. A single crystal pulling device characterized in that deposits in a tube can be removed.
前記堆積物除去機構は、前記堆積物が堆積する箇所に設置され、自動的に作動されるものであることを特徴とする請求項1に記載の単結晶引上げ装置。 The single crystal pulling device according to claim 1 , wherein the deposit removing mechanism is installed at a place where the deposit is deposited and is automatically operated. 前記堆積物除去機構は、回転しながら前記排ガス管内を移動することで前記堆積物を除去する掻き取り部を有するものであることを特徴とする請求項1又は請求項2に記載の単結晶引上げ装置。 The single crystal pulling mechanism according to claim 1 or 2, wherein the deposit removing mechanism has a scraping portion for removing the deposit by moving in the exhaust gas pipe while rotating. Device. 前記排ガス管は、前記堆積物が選択的に堆積するように、前記堆積物の昇華点以下の温度になる箇所を局所的に有することを特徴とする請求項1から請求項のいずれか1項に記載の単結晶引上げ装置。 Any one of claims 1 to 3 , wherein the exhaust gas pipe locally has a portion having a temperature equal to or lower than the sublimation point of the deposit so that the deposit is selectively deposited. The single crystal pulling device according to the section. 前記堆積物は、酸化珪素であることを特徴とする請求項1から請求項のいずれか1項に記載の単結晶引上げ装置。
The single crystal pulling device according to any one of claims 1 to 4 , wherein the deposit is silicon oxide.
JP2019050166A 2019-03-18 2019-03-18 Single crystal pulling device Active JP7047803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050166A JP7047803B2 (en) 2019-03-18 2019-03-18 Single crystal pulling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050166A JP7047803B2 (en) 2019-03-18 2019-03-18 Single crystal pulling device

Publications (2)

Publication Number Publication Date
JP2020152588A JP2020152588A (en) 2020-09-24
JP7047803B2 true JP7047803B2 (en) 2022-04-05

Family

ID=72557653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050166A Active JP7047803B2 (en) 2019-03-18 2019-03-18 Single crystal pulling device

Country Status (1)

Country Link
JP (1) JP7047803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976379B2 (en) * 2020-11-04 2024-05-07 Globalwafers Co., Ltd. Crystal pulling systems having fluid-filled exhaust tubes that extend through the housing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007034A (en) 1999-06-24 2001-01-12 Sumitomo Metal Ind Ltd Epitaxial wafer processing system
JP2002316889A (en) 2001-04-18 2002-10-31 Sumitomo Mitsubishi Silicon Corp Method for removing deposit in waste gas piping and single crystal puller
JP2010059028A (en) 2008-09-05 2010-03-18 Sumco Techxiv株式会社 Evacuation member for apparatus for manufacturing semiconductor single crystal
JP2012144379A (en) 2011-01-06 2012-08-02 Shin Etsu Handotai Co Ltd Method for producing single crystal
WO2012131888A1 (en) 2011-03-29 2012-10-04 株式会社Sumco Apparatus for cleaning exhaust passage for semiconductor crystal manufacturing device and method for cleaning same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045489A (en) * 1996-07-31 1998-02-17 Sumitomo Sitix Corp Apparatus for producing single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007034A (en) 1999-06-24 2001-01-12 Sumitomo Metal Ind Ltd Epitaxial wafer processing system
JP2002316889A (en) 2001-04-18 2002-10-31 Sumitomo Mitsubishi Silicon Corp Method for removing deposit in waste gas piping and single crystal puller
JP2010059028A (en) 2008-09-05 2010-03-18 Sumco Techxiv株式会社 Evacuation member for apparatus for manufacturing semiconductor single crystal
JP2012144379A (en) 2011-01-06 2012-08-02 Shin Etsu Handotai Co Ltd Method for producing single crystal
WO2012131888A1 (en) 2011-03-29 2012-10-04 株式会社Sumco Apparatus for cleaning exhaust passage for semiconductor crystal manufacturing device and method for cleaning same

Also Published As

Publication number Publication date
JP2020152588A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US9217208B2 (en) Apparatus for producing single crystal
EP1158076B1 (en) Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
JP3724571B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
TWI596241B (en) Method of fabricating single-crystalline silicon
JP7047803B2 (en) Single crystal pulling device
CN114318500B (en) Crystal pulling furnace and method for pulling monocrystalline silicon rod and monocrystalline silicon rod
JPH1081596A (en) Production of single crystal and apparatus therefor
JP4349493B2 (en) Single crystal silicon pulling apparatus, silicon melt contamination prevention method, and silicon melt contamination prevention apparatus
JP4423805B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
JP4650520B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JP4151474B2 (en) Method for producing single crystal and single crystal
JP2012101980A (en) Apparatus for producing silicon single crystal, method for producing silicon single crystal, and method for processing induction heating coil
JP4862836B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2007204332A (en) Device and method for manufacturing single crystal
JP2007031235A (en) Apparatus for manufacturing single crystal
US8691013B2 (en) Feed tool for shielding a portion of a crystal puller
JP5428608B2 (en) Method for growing silicon single crystal
JP4499178B2 (en) Silicon melt contamination prevention device
WO2013125161A1 (en) Device for producing single crystal and method for producing single crystal
JP2006169016A (en) Method for producing silicon single crystal
KR102656097B1 (en) Ingot growing apparatus
JP7359241B2 (en) Manufacturing method of silicon single crystal
JP7285197B2 (en) Single crystal pulling method and single crystal pulling apparatus
KR100749937B1 (en) Continuous Crystal Growing Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7047803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150