JP7042046B2 - Tire simulation methods, equipment, and programs on snowy roads - Google Patents

Tire simulation methods, equipment, and programs on snowy roads Download PDF

Info

Publication number
JP7042046B2
JP7042046B2 JP2017164102A JP2017164102A JP7042046B2 JP 7042046 B2 JP7042046 B2 JP 7042046B2 JP 2017164102 A JP2017164102 A JP 2017164102A JP 2017164102 A JP2017164102 A JP 2017164102A JP 7042046 B2 JP7042046 B2 JP 7042046B2
Authority
JP
Japan
Prior art keywords
tire
model
length
ground contact
contact end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017164102A
Other languages
Japanese (ja)
Other versions
JP2019040559A (en
Inventor
勇人 余合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2017164102A priority Critical patent/JP7042046B2/en
Publication of JP2019040559A publication Critical patent/JP2019040559A/en
Application granted granted Critical
Publication of JP7042046B2 publication Critical patent/JP7042046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、積雪路面におけるタイヤのシミュレーション方法、装置、及びプログラムに関する。 The present invention relates to a tire simulation method, an apparatus, and a program on a snowy road surface.

近年、タイヤ周囲の流体(空気、水など)によるノイズ性能、排水性能などの性能を評価するために、タイヤ及び流体シミュレーションが提案されている。シミュレーション方法としては、コンピュータにおいてタイヤモデルを路面上で転動させ、タイヤモデルの物理量及びタイヤモデルの周囲の流体の物理量を計算し、物理量を用いて排水性能などの性能を評価する。関連する技術としては、特許文献1が開示されている。 In recent years, tire and fluid simulations have been proposed in order to evaluate performance such as noise performance and drainage performance due to fluid (air, water, etc.) around the tire. As a simulation method, the tire model is rolled on the road surface by a computer, the physical quantity of the tire model and the physical quantity of the fluid around the tire model are calculated, and the performance such as drainage performance is evaluated using the physical quantity. Patent Document 1 is disclosed as a related technique.

流体の挙動をシミュレーションするためには、流体が存在し得る空間にオイラー要素を配置する必要がある。しかし、オイラー要素を必要以上に多く配置すれば、計算コストが増大し、逆にオイラー要素が足りなければ、計算精度が悪化してしまう。 In order to simulate the behavior of a fluid, it is necessary to place the Euler element in the space where the fluid can exist. However, if more Euler elements are arranged than necessary, the calculation cost increases, and conversely, if the Euler elements are insufficient, the calculation accuracy deteriorates.

特許文献1には、解析対象の流体が水であるとして、水膜に覆われた路面を走行するタイヤのシミュレーション方法が開示されている。この解析では、タイヤが前方に弾いた水がオイラー要素の外側に出てしまうと、解析精度が悪化することを課題として、タイヤの加速度を考慮してオイラー要素の長さを算出している。 Patent Document 1 discloses a method of simulating a tire traveling on a road surface covered with a water film, assuming that the fluid to be analyzed is water. In this analysis, the length of the Euler element is calculated in consideration of the acceleration of the tire, with the problem that the analysis accuracy deteriorates when the water splashed forward by the tire goes out of the Euler element.

特許文献2には、雪や土上のタイヤについてスリップ率を考慮した駆動シミュレーション方法が開示されている。 Patent Document 2 discloses a drive simulation method in which a slip ratio is taken into consideration for a tire on snow or soil.

特許第6045898号公報Japanese Patent No. 6045898 特開2014-210488号公報Japanese Unexamined Patent Publication No. 2014-210488

特許文献1においては、水膜で覆われた路面に適切なシミュレーションを開示するものの、積雪路面における駆動又は制動をシミュレーションする場合には、更なる改善の余地が考えられる。 Although Patent Document 1 discloses an appropriate simulation for a road surface covered with a water film, there is room for further improvement when simulating driving or braking on a snow-covered road surface.

特許文献2では、タイヤの速度及びスリップ率に応じてタイヤが転動する領域の全てにオイラー要素を配置しており、計算コストが膨大になってしまう。 In Patent Document 2, Euler elements are arranged in all the regions where the tire rolls according to the speed and the slip ratio of the tire, and the calculation cost becomes enormous.

本発明は、このような課題に着目してなされたものであって、その目的は、積雪路面に適正化したタイヤのシミュレーション方法、装置、及びプログラムを提供することである。 The present invention has been made focusing on such a problem, and an object of the present invention is to provide a tire simulation method, an apparatus, and a program optimized for a snowy road surface.

本発明は、上記目的を達成するために、次のような手段を講じている。 The present invention takes the following measures in order to achieve the above object.

すなわち、本発明の積雪路面におけるタイヤのシミュレーション方法は、
所定荷重及び所定内圧を含む解析条件のもとで、タイヤを複数の要素で表現したタイヤモデルを路面モデルに静止状態で接触させ、荷重における変形後のタイヤモデルの最大接地長Lを算出するステップと、
タイヤの接地端から前方に向けて長さ0.5Lの領域及びタイヤの接地端から後方に向けて長さ0.5Lの領域を含む少なくとも長さ2Lの領域にオイラー要素モデルを設定するステップと、
前記所定荷重、前記所定内圧、スリップ率及び所定回転速度を含む解析条件のもとで、前記変形後のタイヤモデルを路面モデル上で転動させ、且つ転動するタイヤモデルの移動に応じてオイラー要素モデルを移動させる動的状態において、前記タイヤモデルの変形計算と前記オイラー要素モデル内の雪の挙動の計算を、動的陽解法により算出するステップと、
を含む。
That is, the method of simulating a tire on a snowy road surface of the present invention is
A step of contacting a tire model representing a tire with a plurality of elements in a stationary state with a road surface model under analysis conditions including a predetermined load and a predetermined internal pressure, and calculating the maximum contact length L of the tire model after deformation under load. When,
With the step of setting the oiler element model in a region of at least 2 L in length including a region of 0.5 L in length from the ground contact end of the tire to the front and a region of 0.5 L in length from the ground contact end of the tire to the rear. ,
Under analysis conditions including the predetermined load, the predetermined internal pressure, the slip ratio, and the predetermined rotation speed, the deformed tire model is rolled on the road surface model, and Euler responds to the movement of the rolling tire model. In the dynamic state where the element model is moved, the step of calculating the deformation calculation of the tire model and the calculation of the snow behavior in the Euler element model by the dynamic explicit method, and
including.

このように、最大接地長Lを算出し、タイヤの接地端から前方に向けて長さ0.5Lの領域及びタイヤの接地端から後方に向けて長さ0.5Lの領域にオイラー要素モデルが配置されているので、積雪路面における駆動又は制動時に最低限必要な領域がオイラー要素モデルでカバーされているので、解析精度を悪化させずに計算コストを低減することが可能となる。
また、タイヤの並進速度に併せてオイラー要素モデルも並進させるので、計算コストを低減することが可能となる。
したがって、積雪路面に適正化したタイヤのシミュレーション方法、装置を提供可能となる。
In this way, the maximum ground contact length L is calculated, and the Euler element model is located in the region of 0.5 L in length from the ground contact end of the tire to the front and the region of 0.5 L in length from the ground contact end of the tire to the rear. Since the tires are arranged, the minimum required area for driving or braking on a snowy road surface is covered by the Euler element model, so that the calculation cost can be reduced without deteriorating the analysis accuracy.
Moreover, since the Euler element model is also translated according to the translation speed of the tire, the calculation cost can be reduced.
Therefore, it is possible to provide a tire simulation method and device optimized for a snowy road surface.

本発明のタイヤのシミュレーション装置を示すブロック図。The block diagram which shows the simulation apparatus of the tire of this invention. タイヤモデル及びオイラー要素を示す斜視図。A perspective view showing a tire model and Euler elements. 静止状態での接地による変形解析、及び、接地変形と転動解析に関する説明図。Explanatory drawing about deformation analysis by grounding in a stationary state, and grounding deformation and rolling analysis. タイヤのシミュレーション方法を示すフローチャート。A flowchart showing a tire simulation method.

以下、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

[タイヤのシミュレーション装置]
本実施形態に係る装置1は、積雪路面におけるタイヤの挙動をシミュレーションする装置である。具体的に、図1に示すように、装置1は、記憶部11と、接地解析部12と、オイラー要素設定部13と、動的解析部14と、を有する。装置1は、更に、モデル生成部10を有してもよい。これら各部11~14は、CPU、メモリ、各種インターフェイス等を備えたパソコン等の情報処理装置においてCPUが予め記憶されている図4の処理ルーチンを実行することによりソフトウェア及びハードウェアが協働して実現される。
[Tire simulation device]
The device 1 according to the present embodiment is a device that simulates the behavior of a tire on a snowy road surface. Specifically, as shown in FIG. 1, the apparatus 1 includes a storage unit 11, a ground analysis unit 12, an Euler element setting unit 13, and a dynamic analysis unit 14. The device 1 may further include a model generation unit 10. In each of these parts 11 to 14, software and hardware cooperate by executing the processing routine of FIG. 4 in which the CPU is stored in advance in an information processing device such as a personal computer equipped with a CPU, a memory, various interfaces, and the like. It will be realized.

図1に示す記憶部11は、図2に示すタイヤモデルM1を記憶する。タイヤモデルM1は、タイヤを複数の要素で表現したデータであり、有限要素法による数値計算に用いられる。タイヤの接地面には、タイヤ周方向に延びる主溝と、タイヤ幅方向に延びて主溝と共にブロックを形成する横溝が形成されている。必要に応じてサイプ(細溝)をブロックに形成してもよい。記憶部11は、流体解析に必要となるオイラー要素モデルM3を記憶可能である。 The storage unit 11 shown in FIG. 1 stores the tire model M1 shown in FIG. The tire model M1 is data representing a tire with a plurality of elements, and is used for numerical calculation by the finite element method. A main groove extending in the tire circumferential direction and a lateral groove extending in the tire width direction to form a block together with the main groove are formed on the ground contact surface of the tire. If necessary, sipes (thin grooves) may be formed in the block. The storage unit 11 can store the Euler element model M3 required for fluid analysis.

本実施形態では、モデル生成部10を設けている。図2に示す一般的なタイヤモデルM1を生成又は外部から取得して、記憶部11に記憶するようにしてもよい。なお、本実施形態では、モデル生成部10を設けているが、タイヤモデルM1が得られれば、モデル生成部10は省略可能である。 In this embodiment, the model generation unit 10 is provided. The general tire model M1 shown in FIG. 2 may be generated or acquired from the outside and stored in the storage unit 11. In this embodiment, the model generation unit 10 is provided, but if the tire model M1 is obtained, the model generation unit 10 can be omitted.

図1に示す接地解析部12は、所定の解析条件のもとで、図2に示すタイヤモデルM1を路面モデルroに静止状態で接触させ(図3参照)、荷重による変形後のタイヤモデルM1’の最大接地長Lを静的陰解法により算出する。具体的には、タイヤモデルM1をリム組みして、内圧を付与し、路面モデルroに押しつける。所定の解析条件は、所定荷重、及び所定内圧が挙げられる。このシミュレーションは、特許文献1に記載の手法と同じであるため、詳細な説明を省略する。変形後のタイヤモデルM1’のうち路面モデルとの接触領域を特定し、タイヤの転動方向(前後方向)に沿った接地長を算出する。接地長は、タイヤ幅方向における位置に応じて異なるため、最大接地長Lを特定する。 The ground contact analysis unit 12 shown in FIG. 1 brings the tire model M1 shown in FIG. 2 into contact with the road surface model ro in a stationary state under predetermined analysis conditions (see FIG. 3), and the tire model M1 after deformation due to a load. 'The maximum ground contact length L is calculated by the static implicit method. Specifically, the tire model M1 is assembled on the rim, internal pressure is applied, and the tire model M1 is pressed against the road surface model ro. Predetermined analysis conditions include a predetermined load and a predetermined internal pressure. Since this simulation is the same as the method described in Patent Document 1, detailed description thereof will be omitted. The contact area with the road surface model of the deformed tire model M1'is specified, and the contact length along the rolling direction (front-back direction) of the tire is calculated. Since the ground contact length differs depending on the position in the tire width direction, the maximum ground contact length L is specified.

なお、本実施形態では、接地解析を静的陰解法で実行しているが、計算コストが増大するものの、動的陽解法を用いてもよい。勿論、動的陽解法よりも静的陰解法を用いた方が計算コストを低減することができる。 In this embodiment, the ground analysis is performed by the static implicit method, but the dynamic explicit method may be used although the calculation cost increases. Of course, the calculation cost can be reduced by using the static implicit method rather than the dynamic explicit method.

図1に示すオイラー要素設定部13は、図3に示すように、接地解析部12が算出した接地解析の結果に基づき、タイヤの接地端から前方に向けて長さ0.5Lの領域Ar1およびタイヤの接地端から後方に向けて長さ0.5Lの領域Ar2を含む少なくとも長さ2Lの領域にオイラー要素モデルM3を設定する。領域Ar1は、タイヤ接地端がタイヤ幅方向に応じて位置が異なるため、タイヤ接地端のうち最も前方にある接地端から前方に向けて長さ0.5Lの領域を意味する。領域Ar2は、タイヤ接地端のうち最も後方にある接地端から後方に向けて長さ0.5Lの領域を意味する。 As shown in FIG. 3, the oiler element setting unit 13 shown in FIG. 1 has a region Ar1 having a length of 0.5 L and a length of 0.5 L from the ground contact end of the tire toward the front based on the ground contact analysis result calculated by the ground contact analysis unit 12. The oiler element model M3 is set in a region having a length of at least 2 L including a region Ar2 having a length of 0.5 L from the ground contact end of the tire toward the rear. The region Ar1 means a region having a length of 0.5 L from the frontmost ground contact end of the tire ground contact ends to the front because the position of the tire ground contact end differs depending on the tire width direction. The region Ar2 means a region having a length of 0.5 L from the rearmost ground contact end of the tire ground contact ends toward the rear.

図1に示す動的解析部14は、所定荷重、所定内圧、スリップ率及び所定回転速度を含む解析条件のもとで、変形後のタイヤモデルM1’を路面モデルro上で転動させ、且つ転動するタイヤモデルM1’の移動に応じてオイラー要素モデルM3を移動させる動的状態において、タイヤモデルM1’の変形計算とオイラー要素モデルM3内の雪の挙動の計算を、動的陽解法により算出する。具体的に、動的解析部14は、図2に示すように、変形後のタイヤモデルM1’と、オイラー要素モデルM3とを組み合わせる。その後、図3に示すように、タイヤモデルM1’を所定の加速度で並進運動するように転動させると共に、そのタイヤモデルM1’の移動に伴って同じ加速度でオイラー要素モデルM3を移動させながら、タイヤモデルM1’の変形計算とオイラー要素モデルM3内の雪の挙動計算を行う。タイヤの回転速度(加速度)とタイヤの並進速度は、スリップ率により定まる。動的解析部14による演算が完了すれば、タイヤ及び雪の物理量が算出される。このシミュレーションは、水の代わりに雪(弾塑性モデル)が設定されること以外は、特許文献1に記載の手法と同じであるため、詳細な説明を省略する。 The dynamic analysis unit 14 shown in FIG. 1 rolls the deformed tire model M1'on the road surface model ro under analysis conditions including a predetermined load, a predetermined internal pressure, a slip ratio, and a predetermined rotation speed, and In the dynamic state where the Euler element model M3 is moved according to the movement of the rolling tire model M1', the deformation calculation of the tire model M1'and the calculation of the snow behavior in the Euler element model M3 are calculated by the dynamic explicit method. do. Specifically, as shown in FIG. 2, the dynamic analysis unit 14 combines the deformed tire model M1'and the Euler element model M3. After that, as shown in FIG. 3, the tire model M1'is rotated so as to translate at a predetermined acceleration, and the oiler element model M3 is moved at the same acceleration as the tire model M1'moves. The deformation of the tire model M1'and the behavior of the snow in the oiler element model M3 are calculated. The tire rotation speed (acceleration) and the tire translation speed are determined by the slip ratio. When the calculation by the dynamic analysis unit 14 is completed, the physical quantities of the tire and the snow are calculated. Since this simulation is the same as the method described in Patent Document 1 except that snow (elasto-plastic model) is set instead of water, detailed description thereof will be omitted.

[タイヤのシミュレーション方法]
上記装置1を用いたタイヤのシミュレーション方法を、図4を用いて説明する。
[Tire simulation method]
A tire simulation method using the device 1 will be described with reference to FIG.

まず、ステップS100において、接地解析部12は、所定荷重及び所定内圧を含む解析条件のもとで、タイヤを複数の要素で表現したタイヤモデルM1を路面モデルroに静止状態で接触させ、荷重における変形後のタイヤモデルM1’の最大接地長Lを算出する。本実施形態では、変形後のタイヤモデルM1’の算出は、静的陰解法を用いる。 First, in step S100, the ground contact analysis unit 12 brings the tire model M1 representing the tire with a plurality of elements into contact with the road surface model ro in a stationary state under analysis conditions including a predetermined load and a predetermined internal pressure, and the load is applied. The maximum contact length L of the deformed tire model M1'is calculated. In the present embodiment, the static implicit method is used for the calculation of the tire model M1'after deformation.

次のステップS101において、オイラー要素設定部13は、タイヤの接地端から前方に向けて長さ0.5Lの領域Ar1及びタイヤの接地端から後方に向けて長さ0.5Lの領域Ar2を含む少なくとも長さ2Lの領域にオイラー要素モデルM3を設定する。 In the next step S101, the Euler element setting unit 13 includes a region Ar1 having a length of 0.5 L from the ground contact end of the tire toward the front and a region Ar2 having a length of 0.5 L from the ground contact end of the tire toward the rear. The Euler element model M3 is set in a region having a length of at least 2 L.

次のステップS102において、動的解析部14は、所定荷重、所定内圧、スリップ率及び所定回転速度を含む解析条件のもとで、変形後のタイヤモデルM1’を路面モデルro上で転動させ、且つ転動するタイヤモデルM1’の移動に応じてオイラー要素モデルM3を移動させる動的状態において、タイヤモデルM1’の変形計算とオイラー要素モデルM3内の雪の挙動の計算を、動的陽解法により算出する。 In the next step S102, the dynamic analysis unit 14 rolls the deformed tire model M1'on the road surface model ro under analysis conditions including a predetermined load, a predetermined internal pressure, a slip ratio, and a predetermined rotation speed. In a dynamic state in which the Euler element model M3 is moved according to the movement of the rolling tire model M1', the deformation calculation of the tire model M1'and the calculation of the snow behavior in the Euler element model M3 are performed by a dynamic explicit method. Calculated by

本発明の効果を具体的に示すために、下記実施例について下記の評価を行った。 In order to specifically show the effect of the present invention, the following evaluations were carried out for the following examples.

(1)解析精度
比較例1を100として指数化した。数値が高ければ解析精度がよい。
(1) Analysis accuracy Indexed with Comparative Example 1 as 100. The higher the value, the better the analysis accuracy.

(2)計算コスト
比較例1を100として指数化した。数値が低ければ計算コストが低い。
(2) Calculation cost The comparative example 1 was set as 100 and indexed. The lower the number, the lower the calculation cost.

実施例1
車体速度を10km/hとし、オイラー要素の前後方向の長さを300mmとし、車体速度に応じた並進速度に合わせてオイラー要素を並進移動させた。スリップ率が0%から300%まで増加するよう車輪速度を増加した。最大接地長Lは150mmである。タイヤ接地端の前方に向けて長さ0.5Lの領域及びタイヤ接地端の後方に向けて長さ0.5Lの領域にオイラー要素が配置されている。
Example 1
The vehicle body speed was set to 10 km / h, the length of the Euler element in the front-rear direction was set to 300 mm, and the Euler element was translated and moved according to the translational speed according to the vehicle body speed. The wheel speed was increased so that the slip ratio increased from 0% to 300%. The maximum ground contact length L is 150 mm. The Euler element is arranged in a region having a length of 0.5 L toward the front of the tire contact end and a region having a length of 0.5 L toward the rear of the tire contact end.

実施例2
車体速度を30km/hとした。それ以外は、実施例1と同じである。
Example 2
The vehicle body speed was set to 30 km / h. Other than that, it is the same as that of the first embodiment.

比較例1
車体速度を10km/hとした。オイラー要素は並進移動させず、車体速度及びスリップ率に応じて必要となるオイラー要素の長さは1300mmである。それ以外は、実施例1と同じである。
Comparative Example 1
The vehicle body speed was set to 10 km / h. The Euler element is not moved in translation, and the length of the Euler element required according to the vehicle body speed and the slip ratio is 1300 mm. Other than that, it is the same as that of the first embodiment.

比較例2
車体速度を30km/hとした。オイラー要素は並進移動させず、車体速度及びスリップ率に応じて必要となるオイラー要素の長さは2800mmである。それ以外は、実施例1と同じである。
Comparative Example 2
The vehicle body speed was set to 30 km / h. The Euler element is not moved in translation, and the length of the Euler element required according to the vehicle body speed and the slip ratio is 2800 mm. Other than that, it is the same as that of the first embodiment.

比較例3
車体速度を10km/hとし、オイラー要素の前後方向の長さを150mmとし、車体速度に応じた並進速度に合わせてオイラー要素を並進移動させた。スリップ率は300%とした。最大接地長Lは150mmである。実施例1に比べてオイラー要素が不足している例である。それ以外は、実施例1と同じである。
Comparative Example 3
The vehicle body speed was set to 10 km / h, the length of the Euler element in the front-rear direction was set to 150 mm, and the Euler element was translated and moved according to the translational speed according to the vehicle body speed. The slip rate was set to 300%. The maximum ground contact length L is 150 mm. This is an example in which the Euler element is insufficient as compared with the first embodiment. Other than that, it is the same as that of the first embodiment.

Figure 0007042046000001
Figure 0007042046000001

表1にて、オイラー要素を並進移動させない比較例1、2に比べて、オイラー要素を並進移動させる比較例3、実施例1,2は、計算コストが著しく低減している。 In Table 1, the calculation costs of Comparative Examples 3 and 1 and 2 in which the Euler element is translated are significantly reduced as compared with Comparative Examples 1 and 2 in which the Euler element is not moved in translation.

比較例3と実施例1を比較すれば、最大接地長Lの2倍のオイラー要素がなければ、解析精度が損なわれることが分かる。 Comparing Comparative Example 3 and Example 1, it can be seen that the analysis accuracy is impaired if there is no Euler element having twice the maximum contact length L.

以上のように、本実施形態の積雪路面におけるタイヤのシミュレーション方法は、
所定荷重及び所定内圧を含む解析条件のもとで、タイヤを複数の要素で表現したタイヤモデルM1を路面モデルroに静止状態で接触させ、荷重における変形後のタイヤモデルM1’の最大接地長Lを算出するステップ(S100)と、
タイヤの接地端から前方に向けて長さ0.5Lの領域Ar1及びタイヤの接地端から後方に向けて長さ0.5Lの領域Ar2を含む少なくとも長さ2Lの領域にオイラー要素モデルM3を設定するステップ(S101)と、
所定荷重、所定内圧、スリップ率及び所定回転速度を含む解析条件のもとで、変形後のタイヤモデルM1’を路面モデルro上で転動させ、且つ転動するタイヤモデルM1’の移動に応じてオイラー要素モデルM3を移動させる動的状態において、タイヤモデルM1’の変形計算とオイラー要素モデルM3内の雪の挙動の計算を、動的陽解法により算出するステップ(S102)と、
を含む。
As described above, the method of simulating a tire on a snowy road surface of the present embodiment is
Under the analysis conditions including the predetermined load and the predetermined internal pressure, the tire model M1 representing the tire by a plurality of elements is brought into contact with the road surface model ro in a stationary state, and the maximum contact length L of the tire model M1'after deformation under the load is L. Step (S100) to calculate
The oiler element model M3 is set in a region of at least 2 L including a region Ar1 having a length of 0.5 L from the ground contact end of the tire toward the front and a region Ar2 having a length of 0.5 L from the ground contact end of the tire toward the rear. Step (S101) and
Under analysis conditions including a predetermined load, a predetermined internal pressure, a slip ratio, and a predetermined rotation speed, the deformed tire model M1'is rolled on the road surface model ro and responds to the movement of the rolling tire model M1'. In the dynamic state of moving the Euler element model M3, the deformation calculation of the tire model M1'and the calculation of the snow behavior in the Euler element model M3 are calculated by the dynamic explicit method (S102).
including.

本実施形態の積雪路面におけるタイヤのシミュレーション装置1は、
所定荷重及び所定内圧を含む解析条件のもとで、タイヤを複数の要素で表現したタイヤモデルM1を路面モデルroに静止状態で接触させ、荷重における変形後のタイヤモデルM1’の最大接地長Lを算出する接地解析部12と、
タイヤの接地端から前方に向けて長さ0.5Lの領域Ar1及びタイヤの接地端から後方に向けて長さ0.5Lの領域Ar2を含む少なくとも長さ2Lの領域にオイラー要素モデルM3を設定するオイラー要素設定部13と、
所定荷重、所定内圧、スリップ率及び所定回転速度を含む解析条件のもとで、変形後のタイヤモデルM1’を路面モデルro上で転動させ、且つ転動するタイヤモデルM1’の移動に応じてオイラー要素モデルM3を移動させる動的状態において、タイヤモデルM1’の変形計算とオイラー要素モデルM3内の雪の挙動の計算を、動的陽解法により算出する動的解析部14と、
を備える。
The tire simulation device 1 on a snow-covered road surface of the present embodiment is
Under the analysis conditions including a predetermined load and a predetermined internal pressure, the tire model M1 representing the tire by a plurality of elements is brought into contact with the road surface model ro in a stationary state, and the maximum contact length L of the tire model M1'after deformation under the load is L. The grounding analysis unit 12 that calculates
Euler element model M3 is set in a region of at least 2 L including a region Ar1 having a length of 0.5 L from the ground contact end of the tire toward the front and a region Ar2 having a length of 0.5 L from the ground contact end of the tire toward the rear. Euler element setting unit 13 and
Under analysis conditions including a predetermined load, a predetermined internal pressure, a slip ratio, and a predetermined rotation speed, the deformed tire model M1'is rolled on the road surface model ro and responds to the movement of the rolling tire model M1'. In the dynamic state of moving the Euler element model M3, the dynamic analysis unit 14 calculates the deformation calculation of the tire model M1'and the calculation of the snow behavior in the Euler element model M3 by the dynamic explicit method.
To prepare for.

このように、最大接地長Lを算出し、タイヤの接地端から前方に長さ0.5Lの領域Ar1及びタイヤの接地端から後方に対して長さ0.5Lの領域Ar2にオイラー要素モデルM3が配置されているので、積雪路面における駆動又は制動時に最低限必要な領域がオイラー要素モデルM3でカバーされているので、解析精度を悪化させずに計算コストを低減することが可能となる。
また、タイヤの並進速度に併せてオイラー要素モデルM3も並進させるので、計算コストを低減することが可能となる。
したがって、積雪路面に適正化したタイヤのシミュレーション方法、装置を提供可能となる。
In this way, the maximum ground contact length L is calculated, and the Euler element model M3 is located in the region Ar1 having a length of 0.5 L forward from the ground contact end of the tire and the region Ar2 having a length 0.5 L from the ground contact end of the tire to the rear. Is arranged, the minimum required area for driving or braking on a snowy road surface is covered by the Euler element model M3, so that the calculation cost can be reduced without deteriorating the analysis accuracy.
Further, since the Euler element model M3 is also translated according to the translation speed of the tire, the calculation cost can be reduced.
Therefore, it is possible to provide a tire simulation method and device optimized for a snowy road surface.

本実施形態では、変形後のタイヤモデルの算出は、静的陰解法を用いる。 In the present embodiment, the static implicit method is used to calculate the tire model after deformation.

このようにすれば、動的陽解法に比べて、計算コストを低減することが可能となる。 In this way, it is possible to reduce the calculation cost as compared with the dynamic explicit method.

本実施形態に係るプログラムは、上記方法をコンピュータに実行させるプログラムである。
これらプログラムを実行することによっても、上記方法の奏する作用効果を得ることが可能となる。
The program according to this embodiment is a program that causes a computer to execute the above method.
By executing these programs, it is possible to obtain the effects of the above method.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, it should be considered that the specific configuration is not limited to these embodiments. The scope of the present invention is shown not only by the description of the above-described embodiment but also by the scope of claims, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 It is possible to adopt the structure adopted in each of the above embodiments in any other embodiment. The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

M1…タイヤモデル
M3…オイラー要素モデル
12…接地解析部
13…オイラー要素設定部
14…動的解析部
M1 ... Tire model M3 ... Euler element model 12 ... Ground analysis unit 13 ... Euler element setting unit 14 ... Dynamic analysis unit

Claims (5)

コンピュータが実行する方法であって、
所定荷重及び所定内圧を含む解析条件のもとで、タイヤを複数の要素で表現したタイヤモデルを路面モデルに静止状態で接触させ、荷重における変形後のタイヤモデルの最大接地長Lを算出するステップと、
タイヤの接地端のうち最も前方にある接地端から前方の領域の長さ0.5Lであり且つタイヤの接地端のうち最も後方にある接地端から後方の領域の長さ0.5Lである、長さ2Lの領域にオイラー要素モデルを設定するステップと、
前記所定荷重、前記所定内圧、スリップ率及び所定回転速度を含む解析条件のもとで、前記変形後のタイヤモデルを路面モデル上で転動させ、且つ転動するタイヤモデルの移動に応じてオイラー要素モデルを移動させる動的状態において、前記タイヤモデルの変形計算と前記オイラー要素モデル内の雪の挙動の計算を、動的陽解法により算出するステップと、
を含む、積雪路面におけるタイヤのシミュレーション方法。
The way the computer does
A step of contacting a tire model representing a tire with a plurality of elements in a stationary state with a road surface model under analysis conditions including a predetermined load and a predetermined internal pressure, and calculating the maximum contact length L of the tire model after deformation under load. When,
The length of the region from the frontmost ground contact end of the tire ground contact end to the front is 0.5 L , and the length of the rearmost ground contact end to the rear region of the tire ground contact end is 0.5 L. A step to set an oiler element model in a 2L long area,
Under analysis conditions including the predetermined load, the predetermined internal pressure, the slip ratio, and the predetermined rotation speed, the deformed tire model is rolled on the road surface model, and Euler responds to the movement of the rolling tire model. In the dynamic state where the element model is moved, the step of calculating the deformation calculation of the tire model and the calculation of the snow behavior in the Euler element model by the dynamic explicit method, and
How to simulate tires on snowy roads, including.
前記変形後のタイヤモデルの算出は、静的陰解法を用いる、請求項1に記載の方法。 The method according to claim 1, wherein the calculation of the tire model after the deformation uses a static implicit method. 所定荷重及び所定内圧を含む解析条件のもとで、タイヤを複数の要素で表現したタイヤモデルを路面モデルに静止状態で接触させ、荷重における変形後のタイヤモデルの最大接地長Lを算出する接地解析部と、
タイヤの接地端のうち最も前方にある接地端から前方の領域の長さ0.5Lであり且つタイヤの接地端のうち最も後方にある接地端から後方の領域の長さ0.5Lである、長さ2Lの領域にオイラー要素モデルを設定するオイラー要素設定部と、
前記所定荷重、前記所定内圧、スリップ率及び所定回転速度を含む解析条件のもとで、前記変形後のタイヤモデルを路面モデル上で転動させ、且つ転動するタイヤモデルの移動に応じてオイラー要素モデルを移動させる動的状態において、前記タイヤモデルの変形計算と前記オイラー要素モデル内の雪の挙動の計算を、動的陽解法により算出する動的解析部と、
を備える、積雪路面におけるタイヤのシミュレーション装置。
Under analysis conditions including a predetermined load and a predetermined internal pressure, a tire model representing a tire with a plurality of elements is brought into contact with the road surface model in a stationary state, and the maximum contact length L of the tire model after deformation under load is calculated. Analysis department and
The length of the region from the frontmost ground contact end of the tire ground contact end to the front is 0.5 L , and the length of the rearmost ground contact end to the rear region of the tire ground contact end is 0.5 L. An oiler element setting unit that sets an oiler element model in a certain area of 2 L in length,
Under analysis conditions including the predetermined load, the predetermined internal pressure, the slip ratio, and the predetermined rotation speed, the deformed tire model is rolled on the road surface model, and Euler responds to the movement of the rolling tire model. In the dynamic state where the element model is moved, the dynamic analysis unit that calculates the deformation calculation of the tire model and the calculation of the snow behavior in the Euler element model by the dynamic explicit method,
A tire simulation device on a snowy road surface.
前記変形後のタイヤモデルの算出は、静的陰解法を用いる、請求項3に記載の装置。 The device according to claim 3, wherein the calculation of the tire model after the deformation uses a static implicit method. 請求項1又は2に記載の方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the method according to claim 1 or 2.
JP2017164102A 2017-08-29 2017-08-29 Tire simulation methods, equipment, and programs on snowy roads Active JP7042046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017164102A JP7042046B2 (en) 2017-08-29 2017-08-29 Tire simulation methods, equipment, and programs on snowy roads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017164102A JP7042046B2 (en) 2017-08-29 2017-08-29 Tire simulation methods, equipment, and programs on snowy roads

Publications (2)

Publication Number Publication Date
JP2019040559A JP2019040559A (en) 2019-03-14
JP7042046B2 true JP7042046B2 (en) 2022-03-25

Family

ID=65726960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017164102A Active JP7042046B2 (en) 2017-08-29 2017-08-29 Tire simulation methods, equipment, and programs on snowy roads

Country Status (1)

Country Link
JP (1) JP7042046B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141509A (en) 1998-09-07 2000-05-23 Bridgestone Corp Method for predicting tire performance, method for fluid simulation, method for designing tire, method for designing tire vulcanizing mold, manufacture of tire vulcanizing mold, manufacture of pneumatic tire and recording medium for recording tire performance predicting program
JP2004338660A (en) 2003-05-19 2004-12-02 Yokohama Rubber Co Ltd:The Simulation method for tire, tire performance prediction method, method for manufacturing tire, tire and program
JP2014113982A (en) 2012-12-12 2014-06-26 Toyo Tire & Rubber Co Ltd Tire simulation apparatus, its method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141509A (en) 1998-09-07 2000-05-23 Bridgestone Corp Method for predicting tire performance, method for fluid simulation, method for designing tire, method for designing tire vulcanizing mold, manufacture of tire vulcanizing mold, manufacture of pneumatic tire and recording medium for recording tire performance predicting program
JP2004338660A (en) 2003-05-19 2004-12-02 Yokohama Rubber Co Ltd:The Simulation method for tire, tire performance prediction method, method for manufacturing tire, tire and program
JP2014113982A (en) 2012-12-12 2014-06-26 Toyo Tire & Rubber Co Ltd Tire simulation apparatus, its method and program

Also Published As

Publication number Publication date
JP2019040559A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
KR20100100877A (en) Method for simulating tire noise performance and method for manufacturing tire
JP5098711B2 (en) Tire model creation method and tire model creation computer program
JP6561854B2 (en) Tire simulation method
JP4639912B2 (en) Tire performance prediction method, tire performance prediction computer program, and tire / wheel assembly model creation method
JP4050133B2 (en) Structure model creation method, tire performance prediction method, tire manufacturing method, tire and program
JP3431818B2 (en) Simulation method of tire performance
JP6045898B2 (en) Tire simulation apparatus, method and program thereof
JP7042046B2 (en) Tire simulation methods, equipment, and programs on snowy roads
JP2005271661A (en) Simulation method for tire
JP4592431B2 (en) Tire performance prediction device
JP2006076404A (en) Tire model, tire behavior simulation method, program, and recording medium
JP4372498B2 (en) Tire performance prediction method, tire performance prediction computer program, and tire / wheel model creation method
JP4080931B2 (en) Tire simulation method
JP6415951B2 (en) Tire performance evaluation method, tire performance evaluation apparatus, and tire performance evaluation program
JP2003220808A (en) Tire characteristics predicting method, tire manufacturing method, and program for executing pneumatic tire and tire characteristics predicting method
JP5304093B2 (en) Method and apparatus for simulating tire rolling resistance
JP5841767B2 (en) Analysis apparatus, method thereof and program thereof
JP7348832B2 (en) Method and device for calculating sipe length of pneumatic tires
JP6006576B2 (en) Tire simulation method
JP6872462B2 (en) Tire simulation methods, equipment, and programs
JP6000893B2 (en) Calculation method of tire snow and snow performance value, tire snow and snow performance value calculation device, and computer program
JP5636776B2 (en) Tire shape prediction method, tire shape prediction apparatus, and program
JP6424543B2 (en) Tire simulation method and tire performance evaluation method
JP4525263B2 (en) Physical quantity acquisition method in tire contact state
JP2022090512A (en) Tire evaluation method for acquiring parameter available for tire design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7042046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150