JP7039666B1 - Slurry recovery device - Google Patents

Slurry recovery device Download PDF

Info

Publication number
JP7039666B1
JP7039666B1 JP2020155628A JP2020155628A JP7039666B1 JP 7039666 B1 JP7039666 B1 JP 7039666B1 JP 2020155628 A JP2020155628 A JP 2020155628A JP 2020155628 A JP2020155628 A JP 2020155628A JP 7039666 B1 JP7039666 B1 JP 7039666B1
Authority
JP
Japan
Prior art keywords
chamber
slurry
end opening
air supply
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020155628A
Other languages
Japanese (ja)
Other versions
JP2022049427A (en
Inventor
高明 星野
孝典 森光
賢哲 ▲徳▼永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rix Corp
Original Assignee
Rix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rix Corp filed Critical Rix Corp
Priority to JP2020155628A priority Critical patent/JP7039666B1/en
Application granted granted Critical
Publication of JP7039666B1 publication Critical patent/JP7039666B1/en
Publication of JP2022049427A publication Critical patent/JP2022049427A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cyclones (AREA)

Abstract

【課題】構造が簡素であって、装置の大型化を回避可能であり、スラリ消失量を低減すること(スラリ回収率を向上させること)ができるスラリ回収装置を提供する。【解決手段】スラリ回収装置10は、軸心1cが直立状態に保持された円筒状のチャンバ1と、チャンバ1の上端開口部1aを閉塞する蓋体2と、チャンバ1の下部に設けられた漏斗状の回収部3と、チャンバ1の蓋体2の中心を貫通し、下方部4aがチャンバ1内に位置する状態に配設された排気経路4と、固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流を導入するため蓋体2を貫通し、下端開口部5aがチャンバ1内に位置する状態で配設された給気経路5と、を備え、給気経路5の下方部に、給気経路5を経由してチャンバ1内へ供給される気体流(空気流)をチャンバ1の軸心1cとねじれの位置関係をなす方向へ吹き出すエルボ5bを設けている。【選択図】図1PROBLEM TO BE SOLVED: To provide a slurry recovery device having a simple structure, capable of avoiding an increase in size of the device, and capable of reducing the amount of slurry disappearance (improving the slurry recovery rate). SOLUTION: A slurry collecting device 10 is provided in a cylindrical chamber 1 in which an axial center 1c is held in an upright state, a lid 2 for closing an upper end opening 1a of the chamber 1, and a lower portion of the chamber 1. A funnel-shaped recovery portion 3, an exhaust path 4 arranged so as to penetrate the center of the lid 2 of the chamber 1 and a lower portion 4a located in the chamber 1, and a slurry which is a liquid containing solid particles. It is provided with an air supply path 5 that penetrates the lid 2 and is arranged so that the lower end opening 5a is located in the chamber 1 in order to introduce a gas flow that is supplied in a mist-like mixed state. At the lower part of the air supply path 5, an elbow 5b that blows a gas flow (air flow) supplied into the chamber 1 via the air supply path 5 in a direction forming a twisting positional relationship with the axial center 1c of the chamber 1 is provided. It is provided. [Selection diagram] Fig. 1

Description

本発明は、固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流からスラリを分離して回収するスラリ回収装置に関する。 The present invention relates to a slurry recovery device that separates and recovers a slurry from a gas stream supplied in a state where the slurry, which is a liquid containing solid particles, is mixed in the form of mist.

固体粒子を含む液体を気体流によって加速して流動状態の微小液滴とし、この微小液滴を衝突させることにより固体粒子を微細粒子に微粒化する装置として、例えば、特許文献1に記載された「微粒化装置」などがある。特許文献1に記載された「微粒化装置」においては、衝突面への衝突により微粒化が行われた後の微小液滴をスラリとして回収する手段として、特許文献1中の図11並びに図12などに記載された回収構造が使用されていたが、回収工程におけるスラリ消失量の低減並びにスラリ回収率の向上を図るため、近年は、図5に示すようなスラリ回収装置101が使用されている。 Described in Patent Document 1, for example, as a device for accelerating a liquid containing solid particles by a gas flow to form fine droplets in a fluid state and colliding the fine droplets to atomize the solid particles into fine particles. There is a "micronization device" and the like. In the "atomization apparatus" described in Patent Document 1, FIGS. 11 and 12 in Patent Document 1 are used as means for collecting fine droplets after being atomized by collision with a collision surface as a slurry. However, in recent years, the slurry recovery device 101 as shown in FIG. 5 has been used in order to reduce the amount of slurry lost in the recovery process and improve the slurry recovery rate. ..

図5に示すスラリ回収装置101は、微粒化装置100より、固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流(空気流)からスラリを回収するために使用される。スラリ回収装置101は、下方に漏斗状の回収部102を有する円筒状のチャンバ103と、チャンバ103の上端開口部を覆うように配置された隔壁104b及び蓋体104aと、蓋体104aを貫通し、下端開口部105aが隔壁104bより下方のチャンバ103内に位置する状態で配設された給気管105と、給気管105の下端開口部105aの真下に配置された上ホッパー106及び下ホッパー107と、チャンバ103内において回収部102に向かって液体を噴出するスプレー108などを備えている。 The slurry recovery device 101 shown in FIG. 5 is used to recover the slurry from the gas flow (air flow) supplied from the atomizing device 100 in a state where the slurry, which is a liquid containing solid particles, is mixed in the form of mist. Will be done. The slurry recovery device 101 penetrates a cylindrical chamber 103 having a funnel-shaped recovery portion 102 below, a partition wall 104b and a lid 104a arranged so as to cover the upper end opening of the chamber 103, and a lid 104a. The air supply pipe 105 is arranged so that the lower end opening 105a is located in the chamber 103 below the partition wall 104b, and the upper hopper 106 and the lower hopper 107 are arranged directly under the lower end opening 105a of the air supply pipe 105. , A spray 108 or the like that ejects a liquid toward the recovery unit 102 in the chamber 103 is provided.

液体供給配管110を経由して供給される固体粒子を含む液体は、気体供給配管109を経由して供給される気体流によって加速され流動状態の微小液滴となって微細化処理部111に送り込まれ、微細化処理部111において微小液滴を衝突させることにより固体粒子は微細粒子に微粒化され、固体粒子を含む液体であるスラリがミスト状に交じり合った気体流となって給気管105を経由してスラリ回収装置101へ供給される。 The liquid containing solid particles supplied via the liquid supply pipe 110 is accelerated by the gas flow supplied via the gas supply pipe 109 and becomes fine droplets in a flowing state and sent to the micronization processing unit 111. Then, the solid particles are atomized into fine particles by colliding the fine droplets in the micronization processing unit 111, and the slurry, which is a liquid containing the solid particles, becomes a gas flow in which they are mixed in a mist shape to form the air supply pipe 105. It is supplied to the slurry collecting device 101 via the slurry collecting device 101.

スラリ回収装置101へ供給された前記気体流は、上ホッパー106及び下ホッパー107を通過して回収部102へ流下する際に圧力損失によって減速され、気体流に含まれる微小液滴(固体粒子を含む液体)は回収部102の内周面102aに落下してスラリ状態となり、スプレー108から吹き出す液体と共に内周面102aに沿って流下していき、回収管112を経由して所定の回収容器(図示せず)に回収される。上ホッパー106及び下ホッパー107を通過した後の気体流は回収部102の内周面102aに当接して上昇し、隔壁104bの貫通部104cを通過し、排気ダクト113を経由して所定の排気ユニット(図示せず)へ送給される。 The gas flow supplied to the slurry recovery device 101 is decelerated by pressure loss as it passes through the upper hopper 106 and the lower hopper 107 and flows down to the recovery unit 102, and fine droplets (solid particles) contained in the gas flow are removed. The liquid contained) falls on the inner peripheral surface 102a of the collecting unit 102 and becomes a slurry state, flows down along the inner peripheral surface 102a together with the liquid blown out from the spray 108, and flows down along the inner peripheral surface 102a, and is a predetermined collection container (containing liquid) via the collecting pipe 112. (Not shown). The gas flow after passing through the upper hopper 106 and the lower hopper 107 abuts on the inner peripheral surface 102a of the recovery unit 102, rises, passes through the penetration portion 104c of the partition wall 104b, and passes through the exhaust duct 113 to determine the predetermined exhaust gas. It is sent to the unit (not shown).

一方、分散粉体を含んだ気体流から分散粉体を連続して捕集可能な装置として、従来、サイクロン装置が知られているが、本発明に関連するものとして、例えば、特許文献2に記載された「サイクロン装置」などがある。 On the other hand, a cyclone device has been conventionally known as a device capable of continuously collecting dispersed powder from a gas stream containing the dispersed powder, but as a device related to the present invention, for example, in Patent Document 2. There is a described "cyclone device" and the like.

特許文献2に記載された「サイクロン装置」は、ほぼ直立円筒形のサイクロン胴体部と、分散粉体を含んだ空気流をサイクロン胴体部の内壁面に沿って水平方向に吹き込むために、そのサイクロン胴体部の一部を外周接線方向に延ばして設けられた粉体導入部と、サイクロン胴体部内の空気を上方向に排気するためにサイクロン胴体部の上部を覆う天部の中心部を貫通して設けられた排気部と、粉体導入部から45度~180度の位置でサイクロン胴体部の接線方向に2次空気を導入する2次空気導入部と、を備えている。 The "cyclone device" described in Patent Document 2 has a cyclone body portion having an almost upright cylindrical shape, and the cyclone for blowing an air flow containing dispersed powder in the horizontal direction along the inner wall surface of the cyclone body portion. It penetrates the powder introduction part provided by extending a part of the body part in the tangential direction of the outer circumference and the central part of the top covering the upper part of the cyclone body part in order to exhaust the air in the cyclone body part upward. It is provided with an exhaust unit provided and a secondary air introduction unit that introduces secondary air in the tangential direction of the cyclone body portion at a position of 45 to 180 degrees from the powder introduction unit.

特許第4447042号公報Japanese Patent No. 4447042 特許第4422972号公報Japanese Patent No. 44229772

図5に示すスラリ回収装置101は、上ホッパー106、下ホッパー107並びに隔壁104bの部分の部品点数が多く構造も複雑であるため、給気管105を経由してスラリ回収装置101へ供給された気体流に含まれるスラリがこれらの部品に多量に付着し、回収管112を経由して回収されるスラリの回収率を低下させる要因となっている。 Since the slurry recovery device 101 shown in FIG. 5 has a large number of parts in the upper hopper 106, the lower hopper 107, and the partition wall 104b and has a complicated structure, the gas supplied to the slurry recovery device 101 via the air supply pipe 105. A large amount of slurry contained in the flow adheres to these parts, which is a factor that lowers the recovery rate of the slurry collected via the recovery pipe 112.

また、図5に示すスラリ回収装置101は構造が複雑であることに起因して、スプレー108から噴出する液体が、チャンバ103及び回収部102の内部全体に隈なく届かないことがあるので、回収部102の内周面102aなどに付着したスラリ成分を残さず洗浄することができない。 Further, since the structure of the slurry recovery device 101 shown in FIG. 5 is complicated, the liquid ejected from the spray 108 may not reach the entire inside of the chamber 103 and the recovery unit 102, so that the liquid can be recovered. It is not possible to clean the inner peripheral surface 102a of the portion 102 without leaving any slurry component attached to the inner peripheral surface 102a or the like.

さらに、図5に示すスラリ回収装置101においては、スプレー108から真下に向かって液体が吹き出すので、チャンバ103内を流動する気体流に含まれる微小液滴が巻き上がってチャンバ103内の各種部材の表面に付着したり、巻き上がった微小液滴が排気と共にチャンバ103と連通する排気ダクト(図示せず)を経由して排出されたりして、スラリの消失量の増大を招いている。 Further, in the slurry recovery device 101 shown in FIG. 5, since the liquid is blown out from the spray 108 directly downward, minute droplets contained in the gas flow flowing in the chamber 103 are rolled up and various members in the chamber 103 are rolled up. The small droplets that adhere to the surface or are rolled up are discharged through an exhaust duct (not shown) that communicates with the chamber 103 together with the exhaust, which causes an increase in the amount of slurry disappeared.

一方、特許文献2に記載された「サイクロン装置」は、分散粉体を含んだ気体流から分散粉体を回収する技術分野においては好適に使用することができるが、固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流からスラリを分離して回収する技術分野には不向きである。 On the other hand, the "cyclone device" described in Patent Document 2 can be suitably used in the technical field of recovering dispersed powder from a gas stream containing dispersed powder, but is a liquid containing solid particles. It is not suitable for the technical field of separating and recovering a slurry from a gas flow supplied in a state where the slurry is mixed in the form of mist.

また、特許文献2に記載された「サイクロン装置」においては、分散粉体を含んだ空気流をサイクロン胴体部の内壁面に沿って水平方向に吹き込むための粉体導入部が、サイクロン胴体部の一部を外周接線方向に延ばして設けられているので、装置全体の大型化を招き易い。 Further, in the "cyclone device" described in Patent Document 2, the powder introduction portion for blowing the air flow containing the dispersed powder in the horizontal direction along the inner wall surface of the cyclone body portion is the cyclone body portion. Since a part of the device is extended in the tangential direction of the outer circumference, it is easy to increase the size of the entire device.

そこで、本発明が解決しようとする課題は、比較的簡素な構造であって、装置の大型化を回避可能であり、スラリ消失量を低減すること(スラリ回収率を向上させること)ができるスラリ回収装置を提供することにある。 Therefore, the problem to be solved by the present invention is a slurry having a relatively simple structure, avoiding an increase in the size of the device, and reducing the amount of slurry disappearance (improving the slurry recovery rate). To provide a recovery device.

本発明に係るスラリ回収装置は、
軸心が直立した状態に保持された筒状のチャンバと、
前記チャンバの上端開口部を閉塞する蓋体と、
前記チャンバの下方に設けられた漏斗状の回収部と、
前記チャンバの蓋体の中心を貫通し、下方部が前記チャンバ内に位置する状態に配設された排気経路と、
固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流を導入するため前記蓋体を貫通し、下端開口部が前記チャンバ内に位置する状態で配設された給気経路と、を備え、
前記給気経路の下方に、前記給気経路を経由して前記チャンバ内へ供給される前記気体流を前記チャンバの軸心とねじれの位置関係をなす方向へ吹き出して前記チャンバ及び前記回収部の内部に前記軸心の周りを螺旋状に回転する旋回流を発生させるエルボを設け
前記給気経路の下端開口部を形成する前記給気経路の周縁は、前記軸心と直交する仮想平面と一致する直交周縁部と、前記軸心と斜めに交差する仮想平面と一致する斜交周縁部とを有し、前記斜交周縁部を前記給気経路の下端開口部の周縁全体のうちの前記チャンバの内周面に近い方の半周部分に設け、前記直交周縁部を残りの半周部分に設け、
前記チャンバ内にて、前記チャンバの軸心とねじれの位置関係をなす方向へ液体を吹き出すスプレーを前記蓋体の下面側及び前記チャンバの周壁に設け、
前記蓋体の下面側に設けた前記スプレーは前記エルボの下端開口部の上方に配置され、前記下端開口部から吹き出す空気流が前記チャンバの内周面に衝突する領域の中心よりも前記旋回流の上流側に向かって液体を吹き出すことができ、
前記チャンバの周壁に設けた前記スプレーは、前記チャンバの内周面において前記回収部の内周面より上方であって前記スラリが付着する領域よりも前記旋回流の上流側に向かって液体を吹き出すことができ、
二つの前記スプレーは交互に運転することが可能であることを特徴する。
ここで、前記ねじれの位置関係とは、2本の直線が平行をなさず、且つ、交わらない位置関係にあることをいう。
The slurry recovery device according to the present invention is
A cylindrical chamber with its axis held upright, and
A lid that closes the upper end opening of the chamber and
A funnel-shaped collection section provided below the chamber,
An exhaust path that penetrates the center of the lid of the chamber and is arranged so that the lower portion is located in the chamber.
A supply disposed in such a state that the lower end opening is located in the chamber through the lid body in order to introduce a gas flow supplied in a state where the slurry which is a liquid containing solid particles is mixed in a mist shape. With an air passage,
Below the air supply path, the gas flow supplied into the chamber via the air supply path is blown out in a direction forming a twisted positional relationship with the axial center of the chamber, and the chamber and the recovery unit . An elbow that generates a swirling flow that rotates spirally around the axis is provided inside the chamber.
The peripheral edge of the air supply path forming the lower end opening of the air supply path is an oblique intersection that coincides with an orthogonal peripheral edge portion that coincides with a virtual plane orthogonal to the axis and a virtual plane that diagonally intersects the axis. It has a peripheral edge portion, the oblique peripheral edge portion is provided on the half peripheral portion of the entire peripheral edge of the lower end opening of the air supply path, which is closer to the inner peripheral surface of the chamber, and the orthogonal peripheral edge portion is provided on the remaining half circumference. Provided in the part
In the chamber, a spray that blows out a liquid in a direction forming a twisted positional relationship with the axis of the chamber is provided on the lower surface side of the lid and the peripheral wall of the chamber.
The spray provided on the lower surface side of the lid is arranged above the lower end opening of the elbow, and the swirling flow is located above the center of the region where the air flow blown from the lower end opening collides with the inner peripheral surface of the chamber. The liquid can be blown toward the upstream side of the
The spray provided on the peripheral wall of the chamber blows out liquid on the inner peripheral surface of the chamber toward the upstream side of the swirling flow from the region above the inner peripheral surface of the collecting portion and to which the slurry adheres. It is possible,
The two sprays are characterized in that they can be operated alternately .
Here, the positional relationship of the twist means that the two straight lines are not parallel to each other and do not intersect with each other.

前記スラリ回収装置においては、前記チャンバ内にて、前記チャンバの軸心とねじれの位置関係をなす方向へ液体を吹き出すスプレーを前記蓋体の下面側及び前記チャンバの周壁に設けているIn the slurry recovery device, in the chamber, a spray that blows out a liquid in a direction forming a positional relationship between the axis of the chamber and the twist is provided on the lower surface side of the lid and the peripheral wall of the chamber .

前記スラリ回収装置においては、
前記スラリに含まれる固体粒子の粒径が0.5μm以上、20μm以下であり、
前記スラリに含まれる固体粒子の質量濃度が5wt%以上、50wt%以下であり、
前記スラリに含まれる固体粒子の密度が3g/cm3以上、20g/cm3以下であり、
前記スラリの粘度が1mPa・S以上、1000mPa・S以下であることが望ましい。
In the slurry recovery device,
The particle size of the solid particles contained in the slurry is 0.5 μm or more and 20 μm or less.
The mass concentration of the solid particles contained in the slurry is 5 wt% or more and 50 wt% or less.
The density of solid particles contained in the slurry is 3 g / cm 3 or more and 20 g / cm 3 or less.
It is desirable that the viscosity of the slurry is 1 mPa · S or more and 1000 mPa · S or less.

前記スラリ回収装置においては、前記エルボから吹き出す前記気体流の気温15℃(標準大気状態)における体積流量(m3/S)を前記エルボの横断面積(m2)で除して得られる気体流速度が5m/sec以上、50m/sec以下であることが望ましい。 In the slurry recovery device, the gas flow obtained by dividing the volumetric flow rate (m 3 / S) of the gas flow blown out from the elbow at a temperature of 15 ° C. (standard atmospheric condition) by the cross-sectional area (m 2 ) of the elbow. It is desirable that the speed is 5 m / sec or more and 50 m / sec or less.

本発明により、比較的簡素な構造であって、装置の大型化を回避可能であり、スラリ消失量を低減すること(スラリ回収率を向上させること)ができるスラリ回収装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a slurry recovery device having a relatively simple structure, which can avoid an increase in size of the device and can reduce the amount of slurry disappearance (improve the slurry recovery rate). ..

本発明の実施形態であるスラリ回収装置を示す一部省略垂直断面図である。It is a partially omitted vertical sectional view which shows the slurry recovery apparatus which is an embodiment of this invention. 図1に示すスラリ回収装置の一部省略拡大図である。It is a partially omitted enlarged view of the slurry recovery device shown in FIG. 図1中のA-A線における一部省略水平断面図である。It is a partially omitted horizontal sectional view in line AA in FIG. 図3中の矢線X方向から見た一部省略図である。It is a partially omitted view seen from the arrow X direction in FIG. 従来の微粒化装置に使用されたスラリ回収装置を示す一部省略垂直断面図である。It is a partially omitted vertical sectional view which shows the slurry recovery apparatus used in the conventional atomization apparatus.

以下、図1~図4に基づいて、本発明の実施形態であるスラリ回収装置10について説明する。図1に示すように、スラリ回収装置10は、スラリ回収装置10の上方に配置された微粒化装置50より、固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流からスラリを回収するために使用される。 Hereinafter, the slurry collecting device 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, the slurry recovery device 10 is a gas supplied from a atomization device 50 arranged above the slurry recovery device 10 in a state where slurries, which are liquids containing solid particles, are mixed in a mist shape. Used to retrieve slurry from the stream.

図1~図4に示すように、スラリ回収装置10は、チャンバ1、蓋体2、回収部3、排気経路4、給気経路5、エルボ5b、スプレー6,7などを備えている。チャンバ1は円筒形状をなし、その軸心1cが直立した状態に保持されている。チャンバ1の上端開口部1aは開閉可能な蓋体2で閉塞され、チャンバ1の下部には漏斗状の回収部3が着脱可能に取り付けられている。チャンバ1の下端開口部1bの内径と回収部3の上端開口部3aの内径は同等である。回収部3の内周面は下方に向かって連続的に縮径しており、回収部3の下端開口部3bは排液管8に接続されている。 As shown in FIGS. 1 to 4, the slurry recovery device 10 includes a chamber 1, a lid 2, a recovery unit 3, an exhaust path 4, an air supply path 5, an elbow 5b, sprays 6, 7, and the like. The chamber 1 has a cylindrical shape, and its axis 1c is held in an upright state. The upper end opening 1a of the chamber 1 is closed by a lid 2 that can be opened and closed, and a funnel-shaped collecting portion 3 is detachably attached to the lower portion of the chamber 1. The inner diameter of the lower end opening 1b of the chamber 1 and the inner diameter of the upper end opening 3a of the recovery portion 3 are the same. The inner peripheral surface of the collection unit 3 is continuously reduced in diameter downward, and the lower end opening 3b of the collection unit 3 is connected to the drainage pipe 8.

排気経路4は、チャンバ1の蓋体2の中心を貫通し、下方部4aがチャンバ1内に位置する状態で配設されている。排気経路4は円筒形状をなし、その軸心4cがチャンバ1の軸心1cと一致するように配置されている。排気経路4の上方部は、気体吸引機能を有する排気ユニット9に接続されている。 The exhaust path 4 is arranged so as to penetrate the center of the lid 2 of the chamber 1 and the lower portion 4a is located in the chamber 1. The exhaust path 4 has a cylindrical shape, and its axis 4c is arranged so as to coincide with the axis 1c of the chamber 1. The upper portion of the exhaust path 4 is connected to an exhaust unit 9 having a gas suction function.

給気経路5は、固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される空気流Sをチャンバ1内へ導入するための円筒形状の部材である。給気経路5は、チャンバ1の蓋体2を貫通し、下端開口部5aがチャンバ1内に位置する状態で配設され、給気経路5の下方部にエルボ5bが設けられている。図4に示すように、エルボ5bはL字状に湾曲しており、下端開口部5a寄りに位置する水平部分5hの軸心5cはチャンバ1の軸心1cとねじれの位置関係をなしているので、給気経路5を経由してチャンバ1内へ供給される気体流(空気流S)はチャンバ1の軸心1cとねじれの位置関係をなす方向(本実施形態においては水平方向)へ吹き出される。 The air supply path 5 is a cylindrical member for introducing the air flow S supplied in a state where the slurry, which is a liquid containing solid particles, is mixed in a mist shape into the chamber 1. The air supply path 5 penetrates the lid 2 of the chamber 1, is arranged in a state where the lower end opening 5a is located in the chamber 1, and an elbow 5b is provided in the lower portion of the air supply path 5. As shown in FIG. 4, the elbow 5b is curved in an L shape, and the axial center 5c of the horizontal portion 5h located near the lower end opening 5a has a twisted positional relationship with the axial center 1c of the chamber 1. Therefore, the gas flow (air flow S) supplied into the chamber 1 via the air supply path 5 is blown out in a direction (horizontal direction in the present embodiment) having a twisted positional relationship with the axial center 1c of the chamber 1. Will be done.

図3,図4に示すように、給気経路5の下端開口部5aを形成する給気経路5の周縁は、軸心5cと直交する仮想平面と一致する直交周縁部5dと、軸心5cと斜めに交差する仮想平面と一致する斜交周縁部5eとを有している。斜交周縁部5eは、給気経路5の下端開口部の周縁全体のうちチャンバ1の内周面1dに近い方の半周部分に設けられ、直交周縁部5eは残りの半周部分に設けられている。 As shown in FIGS. 3 and 4, the peripheral edges of the air supply path 5 forming the lower end opening 5a of the air supply path 5 are an orthogonal peripheral edge portion 5d that coincides with a virtual plane orthogonal to the axial center 5c and an axial center 5c. It has an oblique peripheral edge portion 5e that coincides with a virtual plane that intersects diagonally. The oblique peripheral edge portion 5e is provided on the half peripheral portion of the entire peripheral edge of the lower end opening of the air supply path 5 closer to the inner peripheral surface 1d of the chamber 1, and the orthogonal peripheral edge portion 5e is provided on the remaining half peripheral portion. There is.

図1~図4に示すように、スラリ回収装置10においては、チャンバ1の蓋体2の下面側にスプレー6が設けられ、チャンバ1の周壁1wにスプレー7が設けられている。チャンバ1内において、スプレー6は、チャンバ1の軸心1cとねじれの位置関係をなす方向(チャンバ1の内周面1dに向かう方向6s)へ液体(例えば、水や溶剤など)を吹き出す機能を有している。スプレー7は、チャンバ1の軸心1cとねじれの位置関係をなす方向または軸心1cと平行をなす方向(回収部3の内周面3dに直行する方向7sを含む複数方向)へ液体を吹き出す機能を有している。スプレー6,7の液体吹出方向はそれぞれ変更可能である。 As shown in FIGS. 1 to 4, in the slurry recovery device 10, the spray 6 is provided on the lower surface side of the lid 2 of the chamber 1, and the spray 7 is provided on the peripheral wall 1w of the chamber 1. In the chamber 1, the spray 6 has a function of blowing out a liquid (for example, water, a solvent, etc.) in a direction forming a twisted positional relationship with the axial center 1c of the chamber 1 (direction 6s toward the inner peripheral surface 1d of the chamber 1). Have. The spray 7 blows out the liquid in a direction in which the axial center 1c of the chamber 1 is twisted or in a direction parallel to the axial center 1c (a plurality of directions including a direction 7s orthogonal to the inner peripheral surface 3d of the recovery unit 3). It has a function. The liquid ejection directions of the sprays 6 and 7 can be changed respectively.

スプレー6,7は同時に運転したり、交互に運転したりすることが可能であるが、本実施形態ではスプレー6,7を交互に運転する。スプレー6,7の運転間隔は3秒~20秒間隔であり、運転時間は1秒~2秒であるが、これに限定するものではない。 The sprays 6 and 7 can be operated simultaneously or alternately, but in the present embodiment, the sprays 6 and 7 are operated alternately. The operation interval of the sprays 6 and 7 is 3 to 20 seconds, and the operation time is 1 to 2 seconds, but the operation time is not limited to this.

図1に示すように、スラリ回収装置10においては、チャンバ1の内径1Dと高さ1Hの比率を1:1とし、排気経路4の内径4Dとチャンバ1の内径1Dとの比率を1:4とし、回収部3の内周面における円錐頂角3Vを70度としているが、これらの数値に限定するものではないので、スラリの種類や作業条件に応じて、チャンバ1の内径1Dと高さ1Hの比率は1:1~1:2の範囲、排気経路4の内径4Dとチャンバ1の内径1Dとの比率は1:3~1:8の範囲、回収部3の内周面における円錐頂角3Vは45度~120度の範囲で変更することができる。 As shown in FIG. 1, in the slurry recovery device 10, the ratio of the inner diameter 1D of the chamber 1 to the height 1H is 1: 1, and the ratio of the inner diameter 4D of the exhaust path 4 to the inner diameter 1D of the chamber 1 is 1: 4. However, the cone apex angle 3V on the inner peripheral surface of the recovery unit 3 is set to 70 degrees, but it is not limited to these values. The ratio of 1H is in the range of 1: 1 to 1: 2, the ratio of the inner diameter 4D of the exhaust path 4 to the inner diameter 1D of the chamber 1 is in the range of 1: 3 to 1: 8, and the cone apex on the inner peripheral surface of the recovery unit 3. The angle 3V can be changed in the range of 45 degrees to 120 degrees.

次に、図1~図4に基づいて、スラリ回収装置10の使い方、機能などについて説明する。図1に示すように、排気ユニット9を作動させ、微粒化装置50において気体供給配管52を経由して気体流(空気流)を供給するとともに、液体供給配管51を経由して固体粒子を含む液体を供給すると、液体供給配管51を経由して供給される固体粒子を含む液体は、気体供給配管52を経由して供給される気体流によって加速され流動状態の微小液滴となって微細化処理部53に送り込まれる。 Next, the usage, functions, and the like of the slurry collecting device 10 will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, the exhaust unit 9 is operated to supply a gas flow (air flow) via the gas supply pipe 52 in the atomizing device 50, and also contains solid particles via the liquid supply pipe 51. When the liquid is supplied, the liquid containing the solid particles supplied via the liquid supply pipe 51 is accelerated by the gas flow supplied via the gas supply pipe 52 and becomes fine particles in a flowing state. It is sent to the processing unit 53.

微細化処理部53においては、送り込まれた微小液滴を衝突部材(図示せず)衝突させることにより固体粒子が微細粒子に微粒化され、固体粒子を含む液体であるスラリがミスト状に交じり合った空気流Sとなって気体流動空間54を経由してスラリ回収装置10の給気経路5へ供給される。 In the micronization processing unit 53, the solid particles are atomized into fine particles by colliding the sent fine droplets with a collision member (not shown), and the slurry, which is a liquid containing the solid particles, is mixed in a mist shape. The air flow S is supplied to the air supply path 5 of the slurry recovery device 10 via the gas flow space 54.

図4に示すように、給気経路5へ供給された空気流Sは、エルボ5bによって進行方向が90度曲げられ、チャンバ1の軸心1cとねじれの位置関係をなす方向へ吹き出し、チャンバ1の内周面1dに衝突するので、図2,図3に示すように、チャンバ1及び回収部3の内部には軸心1cの周りを螺旋状に回転する旋回流Tが発生し、サイクロン効果が生じる。 As shown in FIG. 4, the air flow S supplied to the air supply path 5 is bent 90 degrees in the traveling direction by the elbow 5b, and blows out in a direction forming a twisting positional relationship with the axial center 1c of the chamber 1 to form the chamber 1. As shown in FIGS. 2 and 3, a swirling flow T that spirally rotates around the axis 1c is generated inside the chamber 1 and the recovery unit 3 because it collides with the inner peripheral surface 1d of the cyclone effect. Occurs.

このサイクロン効果により、空気流Sに含まれている固体粒子を含む液体であるスラリは遠心力でチャンバ1の内周面1dに接近する方向へ移動して内周面1dに付着した後、重力により内周面1dに沿って回収部3の内周面3dに向かって下降し、内周面3dに到達した後は内周面3dに沿って下降して排液管8に流れ込み、所定の回収容器(図示せず)に回収される。 Due to this cyclone effect, the slurry, which is a liquid containing solid particles contained in the air flow S, moves in a direction approaching the inner peripheral surface 1d of the chamber 1 by centrifugal force, adheres to the inner peripheral surface 1d, and then gravity. As a result, it descends toward the inner peripheral surface 3d of the recovery unit 3 along the inner peripheral surface 1d, and after reaching the inner peripheral surface 3d, descends along the inner peripheral surface 3d and flows into the drainage pipe 8, and is determined. Collected in a collection container (not shown).

また、サイクロン効果により、チャンバ1内の軸心1c近傍の旋回流Tはスラリの含有量が著しく低下した状態となった後、排気経路4の下端開口部4bから排気経路4内へ吸い込まれ、排気経路4を経由して排気ユニット9へ流入する。 Further, due to the cyclone effect, the swirling flow T near the axis 1c in the chamber 1 is sucked into the exhaust path 4 from the lower end opening 4b of the exhaust path 4 after the slurry content is significantly reduced. It flows into the exhaust unit 9 via the exhaust path 4.

一方、図1,図2に示すように、スプレー6はエルボ5bの下端開口部5a(図3,図4参照)の上方に配置され、下端開口部5aから吹き出す空気流Sがチャンバ1の内周面1dに衝突する領域の中心よりも旋回流Tの上流側に向かって液体を吹き出すことができる。また、スプレー7は、チャンバ1の内周面1dにおいて回収部3の内周面3dより上方であってスラリが付着する領域よりも旋回流Tの上流側に向かって液体を吹き出すことができる。 On the other hand, as shown in FIGS. 1 and 2, the spray 6 is arranged above the lower end opening 5a (see FIGS. 3 and 4) of the elbow 5b, and the air flow S blown out from the lower end opening 5a is inside the chamber 1. The liquid can be blown toward the upstream side of the swirling flow T from the center of the region that collides with the peripheral surface 1d. Further, the spray 7 can blow out the liquid on the inner peripheral surface 1d of the chamber 1 toward the upstream side of the swirling flow T from the region above the inner peripheral surface 3d of the recovery unit 3 and to which the slurry adheres.

前述したように、スプレー6,7を、3秒~60秒の間隔で、1秒~2秒ずつ交互に運転させることにより、チャンバ1の内周面1d並びに回収部3の内周面3dに付着するスラリを速やかに排液管8に向かって流下させることができる。 As described above, by alternately operating the sprays 6 and 7 at intervals of 3 to 60 seconds for 1 to 2 seconds, the inner peripheral surface 1d of the chamber 1 and the inner peripheral surface 3d of the recovery unit 3 are operated. The attached slurry can be swiftly flowed down toward the drainage pipe 8.

このように、スラリ回収装置10においては、チャンバ1内に旋回流Tを発生させることによりサイクロン効果が生じ、スラリ、液滴、固体粒子の大きな粒子が排気へ混入することを回避することができ、チャンバ1の内周面1d並びに回収部3の内周面3dへのスラリなどの付着を減らすことができるので、スラリ消失量を低減すること(スラリ回収率を向上させること)ができる。 As described above, in the slurry recovery device 10, the cyclone effect is generated by generating the swirling flow T in the chamber 1, and it is possible to prevent large particles such as slurry, droplets, and solid particles from being mixed into the exhaust gas. Since the adhesion of slurry and the like to the inner peripheral surface 1d of the chamber 1 and the inner peripheral surface 3d of the recovery unit 3 can be reduced, the amount of slurry disappearance can be reduced (the slurry recovery rate can be improved).

図1に示すスラリ回収装置10並びに図5に示す従来のスラリ回収装置101を同一の条件で稼働させたところ、スラリ回収装置10においては、排気中に混入して消失する固体粒子及びスラリ回収装置10内に付着堆積するスラリが減少し、スラリ回収装置101に比べ、固体粒子を含むスラリの消失量を40%以上低減することができた。 When the slurry recovery device 10 shown in FIG. 1 and the conventional slurry recovery device 101 shown in FIG. 5 are operated under the same conditions, in the slurry recovery device 10, the solid particles and the slurry recovery device that are mixed and disappear in the exhaust gas. The amount of slurry adhering and accumulating in 10 was reduced, and the amount of slurries containing solid particles disappeared by 40% or more as compared with the slurry recovery device 101.

スラリ回収装置10は、従来のスラリ回収装置101よりも簡素な構造であるため、部品点数が低減され、製作コストを削減することができ、また、スラリ回収装置10を稼動させた後の洗浄時間も短縮され、メンテナンス性が格段に向上した。また、スラリ回収装置10はチャンバ1や回収部3の構造が簡素な形状であるため、チャンバ1の内周面1dの下方部分や回収部3の内周面3dなどに付着したスラリは、スプレー7から吹き出す液体によって簡単に洗い流され、効率良く回収することができる。 Since the slurry recovery device 10 has a simpler structure than the conventional slurry recovery device 101, the number of parts can be reduced, the manufacturing cost can be reduced, and the cleaning time after operating the slurry recovery device 10 can be reduced. Has also been shortened, and maintainability has improved dramatically. Further, since the slurry recovery device 10 has a simple structure of the chamber 1 and the recovery unit 3, the slurry adhering to the lower portion of the inner peripheral surface 1d of the chamber 1 and the inner peripheral surface 3d of the recovery unit 3 is sprayed. It can be easily washed away by the liquid blown out from No. 7 and can be efficiently recovered.

前述したように、スラリ回収装置10においては、液体供給配管51を経由して供給される、固体粒子を含む液体であるスラリがミスト状に交じり合った状態の空気流Sに含まれるスラリを効率的に回収することができ、様々な種類、性状のスラリ回収作業に対応可能であるが、例えば、
スラリに含まれる固体粒子の粒径が0.5μm以上、20μm以下であり、
前記スラリに含まれる固体粒子の質量濃度が5wt%以上、50wt%以下であり、
前記スラリに含まれる固体粒子の密度が3g/cm3以上、20g/cm3以下であり、
前記スラリの粘度が1mPa・S以上、1000mPa・S以下であることが望ましい。
As described above, in the slurry recovery device 10, the efficiency of the slurry contained in the air flow S in which the slurry, which is a liquid containing solid particles, supplied via the liquid supply pipe 51 is mixed in a mist shape is efficient. It is possible to collect various types and properties of slurry, but for example,
The particle size of the solid particles contained in the slurry is 0.5 μm or more and 20 μm or less.
The mass concentration of the solid particles contained in the slurry is 5 wt% or more and 50 wt% or less.
The density of solid particles contained in the slurry is 3 g / cm 3 or more and 20 g / cm 3 or less.
It is desirable that the viscosity of the slurry is 1 mPa · S or more and 1000 mPa · S or less.

また、給気経路5のエルボ5bから吹き出す空気流Sの速度についても任意に設定することができるが、例えば、エルボ5bから吹き出す空気流Sの気温15℃(標準大気状態)における体積流量(m3/S)を前記エルボの横断面積(m2)で除して得られる空気流速度が5m/sec以上、50m/sec以下であることが望ましい。 Further, the velocity of the air flow S blown out from the elbow 5b of the air supply path 5 can be arbitrarily set. For example, the volumetric flow rate (m) of the air flow S blown out from the elbow 5b at a temperature of 15 ° C. (standard atmospheric state). It is desirable that the air flow velocity obtained by dividing 3 / S) by the cross-sectional area (m 2 ) of the elbow is 5 m / sec or more and 50 m / sec or less.

なお、図1~図4に基づいて説明したスラリ回収装置10は、本発明に係るスラリ回収装置の一例を示すものであり、本発明に係るスラリ回収装置は、前述したスラリ回収装置10に限定されるものではない。 The slurry recovery device 10 described with reference to FIGS. 1 to 4 shows an example of the slurry recovery device according to the present invention, and the slurry recovery device according to the present invention is limited to the above-mentioned slurry recovery device 10. It is not something that will be done.

本発明に係るスラリ回収装置は、固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流からスラリを分離して回収する作業を必要とする様々な産業分野において広く利用することができる。 The slurry recovery device according to the present invention is widely used in various industrial fields that require the work of separating and recovering a slurry from a gas stream supplied in a state where the slurry, which is a liquid containing solid particles, is mixed in a mist form. It can be used.

1 チャンバ
1a,3a 上端開口部
1b,4b,5a 下端開口部
1c,4c,5c 軸心
1d,3d 内周面
1D チャンバの内径
1H チャンバの高さ
2 蓋体
3 回収部
3V 円錐頂角
4 排気経路
4a 下方部
4D 排気経路の内径
5 給気経路
5b エルボ
5d 直交周縁部
5e 斜交周縁部
5h 水平部分
6,7 スプレー
8 排液管
9 排気ユニット
10 スラリ回収装置
50 微粒化装置
51 液体供給配管
52 気体供給配管
53 微細化処理部
54 気体流動空間
S 空気流(気体流)
T 旋回流
1 Chamber 1a, 3a Upper end opening 1b, 4b, 5a Lower end opening 1c, 4c, 5c Axis center 1d, 3d Inner peripheral surface 1D Chamber inner diameter 1H Chamber height 2 Lid 3 Recovery part 3V Conical apex angle 4 Exhaust Path 4a Lower part 4D Inner diameter of exhaust path 5 Air supply path 5b Elbow 5d Orthogonal peripheral part 5e Oblique peripheral part 5h Horizontal part 6,7 Spray 8 Drainage pipe 9 Exhaust unit 10 Slurry recovery device 50 Slurry recovery device 51 Liquid supply piping 52 Gas supply pipe 53 Miniaturization processing unit 54 Gas flow space S Air flow (gas flow)
T swirl flow

Claims (3)

軸心が直立した状態に保持された筒状のチャンバと、
前記チャンバの上端開口部を閉塞する蓋体と、
前記チャンバの下方に設けられた漏斗状の回収部と、
前記チャンバの蓋体の中心を貫通し、下方部が前記チャンバ内に位置する状態に配設された排気経路と、
固体粒子を含む液体であるスラリがミスト状に交じり合った状態で供給される気体流を導入するため前記蓋体を貫通し、下端開口部が前記チャンバ内に位置する状態で配設された給気経路と、を備え、
前記給気経路の下方に、前記給気経路を経由して前記チャンバ内へ供給される前記気体流を前記チャンバの軸心とねじれの位置関係をなす方向へ吹き出して前記チャンバ及び前記回収部の内部に前記軸心の周りを螺旋状に回転する旋回流を発生させるエルボを設け
前記給気経路の下端開口部を形成する前記給気経路の周縁は、前記軸心と直交する仮想平面と一致する直交周縁部と、前記軸心と斜めに交差する仮想平面と一致する斜交周縁部とを有し、前記斜交周縁部を前記給気経路の下端開口部の周縁全体のうちの前記チャンバの内周面に近い方の半周部分に設け、前記直交周縁部を残りの半周部分に設け、
前記チャンバ内にて、前記チャンバの軸心とねじれの位置関係をなす方向へ液体を吹き出すスプレーを前記蓋体の下面側及び前記チャンバの周壁に設け、
前記蓋体の下面側に設けた前記スプレーは前記エルボの下端開口部の上方に配置され、前記下端開口部から吹き出す空気流が前記チャンバの内周面に衝突する領域の中心よりも前記旋回流の上流側に向かって液体を吹き出すことができ、
前記チャンバの周壁に設けた前記スプレーは、前記チャンバの内周面において前記回収部の内周面より上方であって前記スラリが付着する領域よりも前記旋回流の上流側に向かって液体を吹き出すことができ、
二つの前記スプレーは交互に運転することが可能であるスラリ回収装置。
A cylindrical chamber with its axis held upright, and
A lid that closes the upper end opening of the chamber and
A funnel-shaped collection section provided below the chamber,
An exhaust path that penetrates the center of the lid of the chamber and is arranged so that the lower portion is located in the chamber.
A supply disposed in such a state that the lower end opening is located in the chamber through the lid body in order to introduce a gas flow supplied in a state where the slurry which is a liquid containing solid particles is mixed in a mist shape. With an air passage,
Below the air supply path, the gas flow supplied into the chamber via the air supply path is blown out in a direction forming a twisted positional relationship with the axial center of the chamber, and the chamber and the recovery unit . An elbow that generates a swirling flow that rotates spirally around the axis is provided inside the chamber.
The peripheral edge of the air supply path forming the lower end opening of the air supply path is an oblique intersection that coincides with an orthogonal peripheral edge portion that coincides with a virtual plane orthogonal to the axis and a virtual plane that diagonally intersects the axis. It has a peripheral edge portion, the oblique peripheral edge portion is provided on the half peripheral portion of the entire peripheral edge of the lower end opening of the air supply path, which is closer to the inner peripheral surface of the chamber, and the orthogonal peripheral edge portion is provided on the remaining half circumference. Provided in the part
In the chamber, a spray that blows out a liquid in a direction forming a twisted positional relationship with the axis of the chamber is provided on the lower surface side of the lid and the peripheral wall of the chamber.
The spray provided on the lower surface side of the lid is arranged above the lower end opening of the elbow, and the swirling flow is located above the center of the region where the air flow blown from the lower end opening collides with the inner peripheral surface of the chamber. The liquid can be blown toward the upstream side of the
The spray provided on the peripheral wall of the chamber blows out liquid on the inner peripheral surface of the chamber toward the upstream side of the swirling flow from the region above the inner peripheral surface of the collecting portion and to which the slurry adheres. It is possible,
A slurry recovery device in which the two sprays can be operated alternately .
前記スラリに含まれる固体粒子の粒径が0.5μm以上、20μm以下であり、
前記スラリに含まれる固体粒子の質量濃度が5wt%以上、50wt%以下であり、
前記スラリに含まれる固体粒子の密度が3g/cm3以上、20g/cm3以下であり、
前記スラリの粘度が1mPa・S以上、1000mPa・S以下である、請求項1記載のスラリ回収装置。
The particle size of the solid particles contained in the slurry is 0.5 μm or more and 20 μm or less.
The mass concentration of the solid particles contained in the slurry is 5 wt% or more and 50 wt% or less.
The density of solid particles contained in the slurry is 3 g / cm 3 or more and 20 g / cm 3 or less.
The slurry recovery device according to claim 1 , wherein the viscosity of the slurry is 1 mPa · S or more and 1000 mPa · S or less.
前記エルボから吹き出す前記気体流の気温15℃(標準大気状態)における体積流量(m3/S)を前記エルボの横断面積(m2)で除して得られる気体流速度が5m/sec以上、50m/sec以下である請求項1または2記載のスラリ回収装置。 The gas flow rate obtained by dividing the volumetric flow rate (m 3 / S) of the gas flow blown out from the elbow at a temperature of 15 ° C. (standard atmospheric condition) by the cross-sectional area (m 2 ) of the elbow is 5 m / sec or more. The slurry collecting device according to claim 1 or 2 , wherein the speed is 50 m / sec or less.
JP2020155628A 2020-09-16 2020-09-16 Slurry recovery device Active JP7039666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020155628A JP7039666B1 (en) 2020-09-16 2020-09-16 Slurry recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020155628A JP7039666B1 (en) 2020-09-16 2020-09-16 Slurry recovery device

Publications (2)

Publication Number Publication Date
JP7039666B1 true JP7039666B1 (en) 2022-03-22
JP2022049427A JP2022049427A (en) 2022-03-29

Family

ID=80853863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020155628A Active JP7039666B1 (en) 2020-09-16 2020-09-16 Slurry recovery device

Country Status (1)

Country Link
JP (1) JP7039666B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395691B1 (en) 2022-10-24 2023-12-11 リックス株式会社 Deposit removal device, deposit removal method, and slurry recovery device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288426A (en) 1999-01-29 2000-10-17 Boc Group Plc:The Gas cleaning device
JP2002210455A (en) 2001-01-18 2002-07-30 Nippon Pisuko:Kk Apparatus for treating oil-containing waste water
JP2004321896A (en) 2003-04-23 2004-11-18 Matsushita Electric Ind Co Ltd Apparatus for separating foreign matter
JP2009090268A (en) 2007-10-09 2009-04-30 Yoshitsugu Inoue Cyclone type filter device
CN102963941A (en) 2012-11-26 2013-03-13 平桂管理区望高湘桂造纸厂 Treatment method for papermaking wastewater
JP2015506837A (en) 2012-02-10 2015-03-05 アンリツ エナジー アンド エンヴァイロメント ゲゼルシャフト ミット ベシュレンクテル ハフツングANDRITZ Energy & Environment GmbH Liquid cyclone to reduce fine substances in cyclone underflow

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1473654A (en) * 1973-08-22 1977-05-18 Ranks Hovis Mcdougall Ltd Separation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288426A (en) 1999-01-29 2000-10-17 Boc Group Plc:The Gas cleaning device
JP2002210455A (en) 2001-01-18 2002-07-30 Nippon Pisuko:Kk Apparatus for treating oil-containing waste water
JP2004321896A (en) 2003-04-23 2004-11-18 Matsushita Electric Ind Co Ltd Apparatus for separating foreign matter
JP2009090268A (en) 2007-10-09 2009-04-30 Yoshitsugu Inoue Cyclone type filter device
JP2015506837A (en) 2012-02-10 2015-03-05 アンリツ エナジー アンド エンヴァイロメント ゲゼルシャフト ミット ベシュレンクテル ハフツングANDRITZ Energy & Environment GmbH Liquid cyclone to reduce fine substances in cyclone underflow
CN102963941A (en) 2012-11-26 2013-03-13 平桂管理区望高湘桂造纸厂 Treatment method for papermaking wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395691B1 (en) 2022-10-24 2023-12-11 リックス株式会社 Deposit removal device, deposit removal method, and slurry recovery device
JP2024062201A (en) * 2022-10-24 2024-05-09 リックス株式会社 Deposit removal device and deposit removal method as well as slurry recovery device

Also Published As

Publication number Publication date
JP2022049427A (en) 2022-03-29

Similar Documents

Publication Publication Date Title
CN110787597B (en) Gas-liquid separation equipment
CN103381398A (en) Inside-mixing atomizing nozzle device
CN106823646A (en) A kind of multistage bundled tube dedusting demister
JP7039666B1 (en) Slurry recovery device
CN209997390U (en) dust removing device
CN206508793U (en) A kind of following current tower flue gas dust arrester
CN106621637A (en) Dry fog box
CN105642067A (en) Device and method for carrying out dust removing treatment on dust-containing steam in steel slag treating and rolling zone
CN105536418A (en) Dust purification device of coal bed methane gathering and transportation pipeline
CN206168143U (en) Wet classification dust collector
CN102228872B (en) Cyclone water-powder-air separator
CN209287530U (en) A kind of turbine separates and collects the device of nanometer powder and is made from it powder manufacturing apparatus
CN206152504U (en) Gas vortex separator
JP3799508B2 (en) Negative ion generator
CN206970550U (en) A kind of high-efficiency rotating ash handling equipment
CN206751747U (en) A kind of polynary efficient ash handling equipment of gasification furnace exit gas
CN107189824B (en) A kind of efficient ash handling equipment of polynary gasification furnace exit gas and technique
CN218047827U (en) Aerosol generator for generating aerosol with uniform small particle size
CN106377961A (en) Wet type grading dust removal device and application
RU2372972C1 (en) Device for dust and gas catching from smoke and aggressive gases
CN105251751B (en) Mine dust emission and collection device and method
JPS6095B2 (en) Method and separator for separating and removing droplets in airflow
CN206508792U (en) A kind of dust arrester of utilization dry fog technology
US1024784A (en) Dry cleaner for gas.
KR102280593B1 (en) Cyclone device for removing microparticles and treating harmful gases using ultrasonic waves, and method for removing microparticles and treating harmful gases using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7039666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150