JP7039415B2 - 軌道支持状態推定方法、そのプログラム及びシステム - Google Patents

軌道支持状態推定方法、そのプログラム及びシステム Download PDF

Info

Publication number
JP7039415B2
JP7039415B2 JP2018140385A JP2018140385A JP7039415B2 JP 7039415 B2 JP7039415 B2 JP 7039415B2 JP 2018140385 A JP2018140385 A JP 2018140385A JP 2018140385 A JP2018140385 A JP 2018140385A JP 7039415 B2 JP7039415 B2 JP 7039415B2
Authority
JP
Japan
Prior art keywords
track
support state
ballast
estimating
restored waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018140385A
Other languages
English (en)
Other versions
JP2020016094A (ja
Inventor
将之 楠田
博文 田中
麻美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2018140385A priority Critical patent/JP7039415B2/ja
Publication of JP2020016094A publication Critical patent/JP2020016094A/ja
Application granted granted Critical
Publication of JP7039415B2 publication Critical patent/JP7039415B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)

Description

本発明は、軌きょうの道床上における支持状態を推定するための方法、そのプログラム及びシステムに関し、特に、車上での測定データのみで軌道の支持状態を推定する方法、そのプログラム及びシステムに関する。
一対のレールに沿って複数のまくらぎを所定間隔で格子状に組み上げて与えられる軌きょうは、路盤上の砕石や砂利等からなるバラストを敷き詰めた道床によってその荷重を分散させて支持されている。そして、レール上を鉄道車両が走行すると、該車両を支持する反力としての荷重はレールからまくらぎへと伝達し、更に、バラスト層から路盤へと分散されていく。
このようなバラスト軌道において、鉄道車両からの荷重がレールを含む軌きょうに負荷されるたびに、その下側にあるバラストは個々に移動し、又、破砕されて沈下していく。一方、軌きょうはレールの弾性復元力によって元の高さ位置を維持しようとするため、バラストの沈下表面との間に空間が生じてしまう。このバラスト層の上面とまくらぎの下面との間の非接触の状態を、いわゆる「浮きまくらぎ」と称している。
例えば、特許文献1には、バラスト軌道の品質管理方法として、測定される軌道支持剛性の分布からバラツキの大きい箇所を不良箇所として特定して上記したような「浮きまくらぎ」を検出する方法が開示されている。軌道支持剛性の測定方法としては、載荷板上に重錘を自由落下させて衝撃荷重を加える小型FWD(Falling Weight Deflectometer)装置を用いて測定するとしている。
また、特許文献2には、列車荷重より小さな試験荷重をレールに載荷するFWDにおいて、載荷点の載荷荷重及びレールの変位を測定し、測定結果と推定式とに基づいて列車荷重が載荷されたときのレールの変位を推定し、列車通過時の軌道支持剛性を推定する方法を開示している。
更に、特許文献3では、線路脇に設けられて、軌道付近の磁界を検出し且つ該磁界を表すデータを生成するセンサによって軌道付近の磁界の変化を識別し、上記した「浮きまくらぎ」について、まくらぎが過度に上下動する軌道支持状態として検出する軌道変化測定システムを開示している。
特開2014-234693号公報 特開2018-66146号公報 特表2009-504501号公報
FWDを用いた軌道支持剛性の測定では、人手による煩雑な作業が必要となり、特に、長い測定区間では作業性が悪くなる。また、線路脇などの地上にセンサを設ける方法も、コスト面や測定区間を限定してしまうなどの障害がある。そこで鉄道車両の車上で軌道支持状態を測定できる方法が求められた。
本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、軌道検測機構を与えられた車両の如きを用いて車上での測定データのみで軌道の支持状態の推定を与える方法、そのプログラム及びシステムを提供することにある。
本発明者らは、従来のようなFWDを使用せず、軌道検測車等の軌道検測機構を与えられた車両の如きを用いて、レールに沿って下向きに荷重を付与した状態で上下方向の動的変位を測定する。この動的変位のデータを所定のフィルタ処理を行って、浮きまくらぎを含む軌道の支持状態の推定をすることに想到した。
詳細には、本発明による方法は、一対のレールに沿ってまくらぎを所定間隔で与えた軌きょうの道床上における支持状態推定方法であって、軌道検測機構を与えられた車両を走行させて測定される高低変位データから、前記道床上に設置された前記軌きょうのたわみに対応する第1の復元波形と、前記車両の走行時の前記レールの上面の近似形状に対応する第2の復元波形と、を第1の波長帯域とこれよりも短波長側にさらに広い第2の波長帯域とのそれぞれ異なる波長帯域でフィルタ処理して抽出し、これらを比較して前記軌きょうの前記道床上における支持状態を推定することを特徴とする。
また、本発明によるプログラムは、一対のレールに沿ってまくらぎを所定間隔で与えた軌きょうの道床上における支持状態を推定する動作をコンピュータに実行させるためのプログラムであって、軌道検測機構を与えられた車両を走行させて測定される高低変位データの入力を受け付ける入力ステップと、前記車両の走行時の前記レールの上面の近似形状に対応する第1の復元波形と、前記道床上に設置された前記軌きょうのたわみに対応する第2の復元波形と、をそれぞれ短長の異なる波長帯域でフィルタ処理して前記高低変位データから抽出する抽出ステップと、前記第1の復元波形と前記第2の復元波形とを比較して前記軌きょうの前記道床上における支持状態を推定する推定ステップと、を含むことを特徴とする。
さらに、本発明によるシステムは、上記した軌道支持状態推定プログラムを有することを特徴とする。
上記した発明によれば、軌道検測機構を与えられた車両により走行中に車上で測定されたデータのみで軌道の支持状態の推定を与え得るのである。
本発明による実施例における軌道の評価システムのブロック図である。 バラスト軌道の側面図である。 軌道の支持状態推定方法のフロー図である。 軌道の支持状態推定方法で実際に得られた各種波形を示すグラフである。 軌道の支持状態推定方法の変形例によるフロー図である。 軌道の支持状態推定方法の変形例においてまくらぎの浮き量を推定する動作の一例を示すグラフである。 浮き量においてFEM解析と本発明とによる結果の比較の一例を示すグラフである。
以下、本発明の代表的な一例による軌道の支持状態推定方法、その方法を実施させるプログラム及びシステムの具体的な実施態様について、図1~図5を用いて説明する。ここでは、代表例として、バラスト軌道の支持状態に関する実施例を述べるが、対象となる軌道は、一般的な、軌きょうをバラストで支持した軌道に限定されず、モルタルや樹脂材等でバラストを硬化させた軌道や、コンクリート道床上にゴム板のような弾性体を介して軌きょうを支持した軌道であっても同様に用い得る。
図1に示すように、バラスト軌道の評価システム60は、軌道検測車62及びこれに搭載された演算処理を行うコンピュータ74からなるが、軌道検測車62で計測したデータを別の場所に配置したコンピュータ74で演算処理するシステムであってもよい。軌道検測車62は、路盤10上に積層されたバラスト層20の上面に複数のまくらぎ30を介して載置された一対のレール40の上面を走行する。なお、実際のバラスト層には、まくらぎ30の下面よりも高い位置まで積層されたバラスト部分もあるが、ここではバラスト層20をまくらぎ30を支持する層として考えるため、まくらぎ30の下面に当接する面をバラスト層20の上面とする。そして、バラスト軌道50は、路盤10と、その上に砕石や砂利等の多数のバラスト22を敷き詰めて形成されたバラスト層20と、バラスト層20の上面に載置された複数のまくらぎ30と、まくらぎ30に固定されたレール40を含み、まくらぎ30及びレール40による軌きょうをバラスト層20による道床(バラスト道床)及び路盤10で支持している。
レール40の上面を走行する軌道検測車62は、複数の台車64と、台車64に取り付けられた複数の車輪66とを含み、計測ユニット70を与えられている。計測ユニット70は、レールの上面の高さ位置を非接触で計測する変位センサ72と、変位センサ72で計測された高さ位置のデータを受信するとともに、当該データを用いて演算処理を行うコンピュータ74と、変位センサ72及びコンピュータ74を電気的に接続する信号線76と、で構成される。
変位センサ72は、高さ位置を計測し、移動方向に沿ったレール上面40aの高低変位である生波形を得ることができるように備えられる。例えば、偏心矢法を用いるのであれば、変位センサ72はレール40の延びる方向に不等間隔で離間させるようにして3つ以上備えられることになるが、公知技術故、詳述しない。変位センサ72は、レーザセンサや渦電流センサ等の対象物との間の距離を測定できる非接触センサであり、レーザ距離センサである場合、レール上面40aに対向するように取り付けられ、センシング面72aからレーザビームをレール上面40aに向けて投光し、その反射光を受光して、投光から受光までの時間に基づいてレール上面40aとの間の距離(高さ位置)を計測するものである。
コンピュータ74は、後述するバラスト軌道の支持状態推定方法を実施するためのプログラムを内蔵しており、変位センサ72からの高低変位データの生波形を受信するとともに、上記プログラムに基づいて演算処理を実行する。また、プログラムは、コンピュータ74が読み取り可能な記録媒体に記録して複製や持ち運びが可能とされてもよい。
なお、図1では、軌道検測車62として2台車方式の軌道検測車を例示したが、例えば、営業車両に小型の計測ユニット70を搭載して、通常の営業運行中に測定を行うようにしてもよい。つまり、軌道検測車62に限定されず、レール40に沿って下向きに車両相当の比較的大きな荷重を付与してレール40をバラスト層20に押し付けて高低変位の計測を得られれば、各種車両を用い得るのである。
次に、バラスト軌道の支持状態推定方法について、図2~図4を用いて説明する。
図2(a)に示すように、バラスト軌道50において、バラスト層20の沈下が生じていない場合では、複数のまくらぎ30の下面はそれぞれバラスト層20の上面と接触し、バラスト層20によって支持されている。
これに対して、図2(b)に示すように、個々のバラスト22は、車両の走行などによってまくらぎ30からの力を繰り返し受けるなどして互いに移動(変位)し、バラスト層20の上面を沈下させていく。このとき、複数のまくらぎ30とレール40とは、通常、締結装置(図示せず)により固定されてレール40の弾性復元力によって元の位置(高さ)に戻ろうとするため、まくらぎ30及びレール40の自重による下方への撓みがあるとしても、まくらぎ30の下面とバラスト層20の上面との間に空隙Gを生じる、いわゆる「浮きまくらぎ」の状態となることがある。
図2(c)に示すように、このような浮きまくらぎの状態で車両等が走行すると、レール40の上面40aを走行する車輪66から車両の重量に相当する下向きの荷重Fを受けるため、レール40は空隙Gに相当する分だけ撓む(弾性変形する)ことができる。このとき、荷重Fによるたわみ量を空隙Gよりも大とする場合には、個々のまくらぎ30の下面はバラスト層20の上面と接触して反力Rを負荷される。
なお、このような浮きまくらぎの状態では、車両の走行に伴ってレール40を撓ませてバラスト22にまくらぎ30を衝突させるなどして、バラスト22を破砕させ、バラスト軌道の支持状態をさらに悪化させてしまうことがある。そのため、バラスト軌道の支持状態において、特に、浮きまくらぎ位置を推定することは重要である。
次に、このような浮きまくらぎを含めたバラスト軌道の支持状態を評価システム60によって推定する方法の代表的な一例について、図3に沿って図4を併せて参照しつつ説明する。
図3に示すように、コンピュータ74は、軌道検測車62(バラスト軌道の評価システム60を含む)を走行させながらレール40に沿って下向きの荷重を付与することによってレール上面40aの動的な高低変位を得て、これに基づいてレール上面の高低変位データの生波形WR(図4(a)参照)を得る(入力ステップ:S1)。ここで、レール上面の高低変位は、上記したように変位センサ72で計測された高さ位置から、例えば、2次差分法によって求められる。また、2次差分法としては、正矢法や偏心矢法を用い得る。
このとき、高低変位は、軌道上の所定の計測開始位置から軌道検測車62が走行した走行距離と関連付けて取得される。レール40には走行する軌道検測車62の重量が負荷されるため、得られた生波形WRは、バラスト層20に対するまくらぎ30の隙間に応じてレール40がたわんだ状態(図2(c)参照)で、レール40の上面位置が軌道検測車62から受ける振動やレール40自体の歪み、あるいはレール40の継ぎ目による変動等の様々な変動因子を含んだ波形となる。
続いて、計測ユニット70のコンピュータ74は、生波形WRに対して所定の波長範囲におけるフィルタ処理を行い、第1の波長帯域による第1の復元波形W1(図4(b)参照)を抽出する。また、この第1の波長帯域よりも短波長側に広い第2の波長帯域による第2の復元波形W2(図4(c)参照)を抽出する(抽出ステップ:ステップS2)。
このとき、フィルタ処理する波長範囲の一例として、第1の波長帯域の範囲を10~50m、これよりも短波長側に広い第2の波長帯域の範囲を3~50mとする場合が例示できる。なお、上記した第1の波長帯域の範囲及び第2の波長帯域の範囲は、軌きょうの剛性やまくらぎ重量、あるいは測定に適用される軌道検測機構の構成等を勘案することにより、適宜変更し得る。
ここで、フィルタ処理後の第1の復元波形W1には、長尺の梁として模擬されるレール40の上下方向のたわみによる高低変位等が含まれる。一方、第2の復元波形W2には、まくらぎ30がバラスト層20に接触支持された状態で、台車64を介して車輪66からレール40に伝わる軌道検測車62の振動等による高低変位等が含まれる。これにより、第1の復元波形W1には軌道検測車62が走行中のレール40自体のたわみ形状が模擬され、第2の復元波形W2にはバラスト層20の表面形状が模擬され得ることとなる。
そこで、図4(d)に示すように、フィルタ処理された第1の復元波形W1と第2の復元波形W2を重ね合わせると、2つの波形の高低変位に正方向あるいは負方向の差異が生じる。このとき、上述のとおり、第1の復元波形W1はレール40の上下方向のたわみが模擬されたものであるため、この第1の復元波形W1に対して第2の復元波形W2が正方向に差異を生じている領域A1は、バラスト層20がまくらぎ30に接触している、すなわち、まくらぎ30がバラスト層20に支持された状態であると判別することができる。
一方、第1の復元波形W1に対して第2の復元波形W2が負方向に差異を生じている領域A2(図4(d)において斜線で示した領域)では、バラスト層20がまくらぎ30に対して離間している、すなわち、まくらぎ30とバラスト層20との間に所定の隙間Gが形成されていると判別することができる。したがって、図4(d)に示すように、復元波形WRから抽出された第1の復元波形W1と第2の復元波形W2とを比較して、まくらぎ30及びレール40による軌きょうのバラスト層20によるバラスト道床上における支持状態を推定する(推定ステップ:S3)ことで、例えば、横軸の走行距離における位置P1~P8において「浮きまくらぎ」の状態が生じているものと判別できるのである。
以上のように、上記したバラスト軌道の支持状態推定方法によれば、軌道検測車を走行させるなどして下向きの荷重を付与しながら得られる上下方向の高低変位データの生波形を取得するだけで、軌道検測車62が走行した距離内の所定位置毎における「浮きまくらぎ」状態を検出してバラスト軌道の支持状態を推定できるため、従来のようにまくらぎ毎の支持力の測定や、複雑な定義式による追加的な演算を行う必要がないのである。
次に、上記したバラスト軌道の支持状態推定方法の変形例について、図5~図7を併せて参照しつつ説明する。
図5に示すように、本発明によるバラスト軌道の支持状態推定方法の変形例においては、浮きまくらぎ状態を検出した場合に、図3で示したステップS1~S3に続いて、上記した第1の復元波形と第2の復元波形との差分から、その浮きまくらぎ状態が発生した位置におけるまくらぎ30とバラスト層20との間の隙間Gを推定する(浮き量演算ステップ:S4)。
すなわち、図6に示すように、ステップS3で第1の復元波形W1と第2の復元波形W2とを重ね合わせた後、ステップS4では、まず第1の復元波形W1と第2の復元波形W2との差分を演算する。ここで、図6においては、走行距離をキロ程に変換し、上述のとおり「浮きまくらぎ」状態となっている領域A2における差分Dのみを示している。
ここで差分Dは、第1の復元波形W1に対する第2の復元波形W2の差異の絶対値を示すことから、この差分Dが大きい方がよりまくらぎ30の浮き量(隙間G)が大きいと推定される。そこで例えば、予め実際の軌道上でまくらぎ30の浮き量を測定して、その実測値と上記差分Dとの対応関係の対比テーブルを作成しておく、あるいは差分Dと実測値との関係から差分Dと浮き量Gとの関係式を定義しておくことにより、軌道検測車62が走行した距離(又は、キロ程)の所定位置におけるまくらぎ30の浮き量Gを推定することが可能となる。
図7は、本発明による方法として所定の区間の浮き量Gを算出した一例に対して、同じ区間について、第1の復元波形W1についてFEM解析で演算し第2の復元波形W2と比較して浮き量を算出した場合の比較のグラフである。つまり、図4(b)に示すようなバラスト層20の表面性状を模擬した第1の復元波形W2を取得する一方で、レール40の長手方向且つ鉛直方向に二次元断面モデルを設定し、鉄道車両の重量を模擬した下向き荷重を与えたときのたわみ量をFEM解析により浮き量の実測値を模擬的に演算することができる。
図7に示すように、両者には強い相関関係があることがわかる。すなわち、本発明の1つの実施例としてのバラスト軌道の支持状態推定方法によれば、複雑で時間がかかり且つ演算装置への負荷も高いFEM解析と同程度の「浮き量」の推定精度を得られることが判る。
なお、図6に示すように、第1の復元波形W1と第2の復元波形W2との差分Dに対して所定の閾値Thを定めておき、差分Dがこの閾値Thを超えたか否かにより、「浮きまくらぎ」状態の程度を把握してもよい。これにより、例えば、次回の測定までの間にさらに「浮きまくらぎ」状態が進行する可能性がある軌道上の位置を予め予測し、優先的に補修する位置として特定することも可能となる。
以上のように、上記したバラスト軌道の支持状態推定方法の変形例によれば、従来のようにまくらぎ毎の測定やFEM解析等の負荷の高い追加的な演算を行う必要がなく、車上で得られるデータだけから精度の高い浮き量の推定が可能となる。つまり、例えば、軌道の座屈安定性について検討するための情報を簡易な測定のみで行うことが出来るのである。
以上、本発明による代表的な実施例及びこれに伴う変形例について述べたが、本発明は必ずしもこれに限定されるものではなく、適宜、当業者によって変更され得る。すなわち、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。
10 路盤
20 バラスト層
22 バラスト
30 まくらぎ
40 レール
50 バラスト軌道
60 評価システム
62 軌道検測車
64 台車
66 車輪
70 計測ユニット
72 変位センサ
74 コンピュータ

Claims (7)

  1. 一対のレールに沿ってまくらぎを所定間隔で与えた軌きょうの道床上における支持状態推定方法であって、
    軌道検測機構を与えられた車両を走行させて測定される高低変位データから、前記道床上に設置されて自重を支持されている前記軌きょうのたわみに対応する第1の復元波形と、前記道床の上面の形状に対応する第2の復元波形と、を第1の波長帯域とこれよりも短波長側にさらに広い第2の波長帯域とのそれぞれ異なる波長帯域でフィルタ処理して抽出し、これらを比較して前記軌きょうの前記道床上における支持状態を推定することを特徴とする軌道支持状態推定方法。
  2. 前記軌きょうはバラストを介して支持され、浮きまくらぎ状態にある前記まくらぎの位置を推定することを特徴とする請求項1記載の軌道支持状態推定方法。
  3. 前記第1の復元波形と前記第2の復元波形との差分から、前記まくらぎの浮き量を推定することを特徴とする請求項2記載の軌道支持状態推定方法。
  4. 一対のレールに沿ってまくらぎを所定間隔で与えた軌きょうの道床上における支持状態を推定する動作をコンピュータに実行させるためのプログラムであって、
    軌道検測機構を与えられた車両を走行させて測定される高低変位データの入力を受け付ける入力ステップと、
    前記道床上に設置されて自重を支持されている前記軌きょうのたわみに対応する第1の復元波形と、前記道床の上面の形状に対応する第2の復元波形と、を第1の波長帯域とこれよりも短波長側にさらに広い第2の波長帯域とのそれぞれ異なる波長帯域でフィルタ処理して前記高低変位データから抽出する抽出ステップと、
    前記第1の復元波形と前記第2の復元波形とを比較して前記軌きょうの前記道床上における支持状態を推定する推定ステップと、を含むことを特徴とする軌道支持状態推定プログラム。
  5. 前記推定ステップは、前記軌きょうはバラストを介して支持され、浮きまくらぎ状態にある前記まくらぎの位置を推定する動作を含むことを特徴とする請求項4記載の軌道支持状態推定プログラム。
  6. 前記推定ステップは、前記第1の復元波形と前記第2の復元波形との差分から、前記まくらぎの浮き量を推定する動作をさらに含むことを特徴とする請求項5記載の軌道支持状態推定プログラム。
  7. 請求項4~6のうちの1つに記載の軌道支持状態推定プログラムに基づいて演算処理をするコンピュータとこれを搭載した前記車両とからなることを特徴とする軌道支持状態推定システム。
JP2018140385A 2018-07-26 2018-07-26 軌道支持状態推定方法、そのプログラム及びシステム Active JP7039415B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018140385A JP7039415B2 (ja) 2018-07-26 2018-07-26 軌道支持状態推定方法、そのプログラム及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018140385A JP7039415B2 (ja) 2018-07-26 2018-07-26 軌道支持状態推定方法、そのプログラム及びシステム

Publications (2)

Publication Number Publication Date
JP2020016094A JP2020016094A (ja) 2020-01-30
JP7039415B2 true JP7039415B2 (ja) 2022-03-22

Family

ID=69580147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018140385A Active JP7039415B2 (ja) 2018-07-26 2018-07-26 軌道支持状態推定方法、そのプログラム及びシステム

Country Status (1)

Country Link
JP (1) JP7039415B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504501A (ja) 2005-08-18 2009-02-05 ゼネラル・エレクトリック・カンパニイ 鉄道軌道の変化又は障害物を測定するためのシステム及び方法
US20140180609A1 (en) 2011-05-19 2014-06-26 Eber Dynamics Method of establishing the deflection and/or the stiffness of a supporting structure
JP2014234693A (ja) 2013-06-05 2014-12-15 公益財団法人鉄道総合技術研究所 バラスト軌道の品質管理方法
JP2018066146A (ja) 2016-10-18 2018-04-26 公益財団法人鉄道総合技術研究所 軌道支持剛性推定方法及びシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624390B2 (ja) * 1996-03-29 2005-03-02 西日本旅客鉄道株式会社 鉄道用軌道の異常検知方法および異常検知装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504501A (ja) 2005-08-18 2009-02-05 ゼネラル・エレクトリック・カンパニイ 鉄道軌道の変化又は障害物を測定するためのシステム及び方法
US20140180609A1 (en) 2011-05-19 2014-06-26 Eber Dynamics Method of establishing the deflection and/or the stiffness of a supporting structure
JP2014234693A (ja) 2013-06-05 2014-12-15 公益財団法人鉄道総合技術研究所 バラスト軌道の品質管理方法
JP2018066146A (ja) 2016-10-18 2018-04-26 公益財団法人鉄道総合技術研究所 軌道支持剛性推定方法及びシステム

Also Published As

Publication number Publication date
JP2020016094A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
Haigermoser et al. Road and track irregularities: measurement, assessment and simulation
Kouroussis et al. Railway-induced ground vibrations–a review of vehicle effects
US9628762B2 (en) System for imaging and measuring rail deflection
US7755774B2 (en) Method and apparatus for noncontact relative rail displacement, track modulus and stiffness measurement by a moving rail vehicle
US9347864B2 (en) System and methods for determining structure stiffness
Picoux et al. Diagnosis and prediction of vibration from railway trains
US20120245908A1 (en) Method for determining the stress free temperature of the rail and/or the track resistance
JP7195221B2 (ja) バラスト軌道におけるレール座屈の発生箇所の予測方法、そのプログラム及び予測システム
Ma et al. Modelling and experimental validation of dynamic impact in 1: 9 railway crossing panel
JP5508172B2 (ja) 枕木変位計測システム
Ju 3D analysis of high-speed trains moving on bridges with foundation settlements
JP2018017620A (ja) 変状検出装置及び変状検出プログラム
Tong et al. Track vertical stiffness–value, measurement methods, effective parameters and challenges: A review
JP7039415B2 (ja) 軌道支持状態推定方法、そのプログラム及びシステム
Rapp et al. Measuring rail seat pressure distribution in concrete crossties: Experiments with matrix-based tactile surface sensors
JP7189095B2 (ja) レール破断の検知装置及びレール破断の検知方法
Ganesh Babu et al. Track modulus analysis of railway track system using finite element model
Machelski et al. Corrugated shell displacements during the passage of a vehicle along a soil-steel structure
JP7039380B2 (ja) バラスト軌道支持状態推定方法、そのプログラム及びシステム
JP7000362B2 (ja) 軌道支持状態の推定方法、そのプログラム及び推定システム
RU2239574C1 (ru) Способ определения продольно-напряженного состояния рельсовых плетей бесстыкового железнодорожного пути
Xiang et al. Research on track damage identification based on the response of vehicle-rail contact point
Auersch et al. Slab Track Behaviour under Train Passage and Hammer Impact--Measurements at Different Sites and Calculated Track Interaction with Continuous Soils.
Hegmon Some results from ongoing research on road roughness
Arcos Villamarín et al. RECYTRACK Project: Elastomeric eco-friendly material based on end-of-life tires blended with organic bind resin for railway applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7039415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150