JP7039149B2 - Failure point distance detector - Google Patents
Failure point distance detector Download PDFInfo
- Publication number
- JP7039149B2 JP7039149B2 JP2020020255A JP2020020255A JP7039149B2 JP 7039149 B2 JP7039149 B2 JP 7039149B2 JP 2020020255 A JP2020020255 A JP 2020020255A JP 2020020255 A JP2020020255 A JP 2020020255A JP 7039149 B2 JP7039149 B2 JP 7039149B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- power
- failure
- circuit
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Locating Faults (AREA)
Description
本発明は、電力線における事故点を送電端から故障点までの距離として検出する故障点距離検出装置に関する。 The present invention relates to a fault point distance detecting device that detects a fault point in a power line as a distance from a power transmission end to a fault point.
屋内配電線、屋外配電線、地中配電線における低圧、高圧、特別高圧の交流の電力回路や直流の電力回路のケーブル、電線(以下電力線という)の絶縁性能の維持、監視、保全は重要な業務である。電気事業法において、これらの設備の維持監理が保安規定により定められ、電気事業者および自家用電気設備の設置者において電力線の維持監理が実施されている。 It is important to maintain, monitor, and maintain the insulation performance of low-voltage, high-voltage, and extra-high-voltage AC power circuits and DC power circuit cables and wires (hereinafter referred to as power lines) in indoor distribution lines, outdoor distribution lines, and underground distribution lines. It is a business. In the Electricity Business Law, the maintenance and supervision of these facilities is stipulated by the safety regulations, and the maintenance and supervision of electric power lines is carried out by the electric power companies and the installers of private electric facilities.
交流の電力回路の配線方式には三相3線式、三相4線式、単相2線式、単相3線式などがあり、直流の電力回路には直流2線式がある。これらの電力回路のうち交流の電力回路においては、電力線の絶縁性能の低下、不良、地絡事故(以下故障という)が発生した場合には、零相分が発生するので零相を監視することにより、電力回路のいずれかの系統で故障が発生していることを検出できる。そして、電力回路のうちのいずれの相で故障しているかの判定は、絶縁抵抗計にて電力回路の各相に対して個別に絶縁抵抗を測定することにより故障相を求めることができる。また、本出願人が先に出願した特願2019-141054号を用いることにより故障相を求めることができる。 The wiring method of the AC power circuit includes a three-phase three-wire system, a three-phase four-wire system, a single-phase two-wire system, a single-phase three-wire system, and the like, and a DC power circuit includes a DC two-wire system. Of these power circuits, in the AC power circuit, if the insulation performance of the power line deteriorates, is defective, or a ground fault (hereinafter referred to as a failure) occurs, the zero phase component will occur, so monitor the zero phase. Therefore, it is possible to detect that a failure has occurred in any system of the power circuit. Then, in order to determine which phase of the power circuit is out of order, the failure phase can be obtained by individually measuring the insulation resistance of each phase of the power circuit with an insulation resistance tester. Further, the failure phase can be obtained by using Japanese Patent Application No. 2019-141054 previously filed by the present applicant.
直流の電力回路においては、直流漏電検出器により故障を検出でき、交流の電力回路と同様に絶縁抵抗計にて電力回路の各相に対して個別に絶縁抵抗を測定することにより故障相を求めることができる。 In a DC power circuit, a failure can be detected by a DC leakage detector, and the failure phase is obtained by individually measuring the insulation resistance of each phase of the power circuit with an insulation resistance tester in the same way as an AC power circuit. be able to.
図13は、三相3線式の電力回路の三相の各相に対して絶縁抵抗計にて個別に絶縁抵抗を測定することにより故障相を求める場合の三相3線式の電力回路の回路図である。この三相の電力回路は送電端11から終端12まで三相のRST相の電力線で構成されている。いま、三相のRST相のうちのT相に故障が発生していたとする。すなわち、R相S相は健全相でありT相が故障相であるとする。RrはR相の電力線の直流抵抗、RsはS相の電力線の直流抵抗、RtはT相の電力線の直流抵抗である。T相の電力線の直流抵抗Rtのうち、Rt1は送電端11から故障点Gまでの直流抵抗、Rt2は終端12から故障点Gまでの直流抵抗であり、Rt=Rt1+Rt2である。
FIG. 13 shows a three-phase three-wire power circuit in which a faulty phase is obtained by individually measuring the insulation resistance of each of the three phases of the three-phase three-wire power circuit with an insulation resistance tester. It is a circuit diagram. This three-phase power circuit is composed of three-phase RST-phase power lines from the
RST相のいずれかに故障が発生すると三相のRST相に零相分が発生する。そこで、三相のRST相に零相分が検出されると三相の電力回路を停止し、三相の各相に順次絶縁抵抗計13を接続して故障電流Ig及び故障抵抗Rgを求める。この場合、三相の電力回路の途中に分岐の電力回路がある場合は、その分岐の電力回路の終端を開放しておく。
If a failure occurs in any of the RST phases, a zero phase component is generated in the three RST phases. Therefore, when the zero-phase component is detected in the three-phase RST phase, the three-phase power circuit is stopped, and the
故障抵抗Rgの対地絶縁抵抗値は、通常約0Ωから数十MΩと考えられる。図13の電力回路において対地絶縁抵抗値の低下は集中定数であり、対地静電容量は分布定数であるが、絶縁抵抗計13を用いて故障抵抗を測定する回路は直流回路であるので対地静電容量は除外することができる。 The fault resistance Rg to ground insulation resistance value is usually considered to be about 0Ω to several tens of MΩ. In the power circuit of FIG. 13, the decrease in the insulation resistance value to the ground is a lumped constant, and the capacitance to the ground is a distribution constant. Capacitance can be excluded.
図13において、いま、故障相であるT相に絶縁抵抗計13を接続して故障電流Ig及び故障抵抗Rgを求める。この場合、絶縁抵抗計13の電流計14の電流値を監視しながら、絶縁抵抗計13の直流電流を徐々に大きくする。これは、プラス端子が接地されている直流電源装置15の出力電流を可変抵抗16で変化させて行う。なお、可変抵抗16ではなく直接直流電源装置15の出力電圧を可変させて絶縁抵抗計13の直流電流を徐々に大きくするようにしてもよい。この場合、直流電圧は0Vから10kV程度まで調整できるものが好ましい。故障点電圧をEgとすると、故障抵抗RgはRg=Eg/Igで求められる。
In FIG. 13, the
このようにして、故障点Gの故障抵抗Rg、故障電流Ig、故障点電圧Egを求めることができるが、故障点Gの位置は分からない。そこで、故障相の故障点Gの位置を検知することが要請される。 In this way, the failure resistance Rg, the failure current Ig, and the failure point voltage Eg of the failure point G can be obtained, but the position of the failure point G is unknown. Therefore, it is required to detect the position of the failure point G in the failure phase.
ここで、故障相の故障点Gの位置を検知するものとして、電力ケーブルの一端の導体に直流電圧を加え、電力ケーブルの一端の導体に伝搬した第1パルス波を処理をしたものを第1信号波形とし、電力ケーブルの他端の導体に伝搬した第2パルス波を処理したものを第2信号波形とし、第1信号波形と第2信号波形との周波数ごとの位相差を求め、求めた位相差に基づいて高精度で故障点を検出できるようにしたものがある(特許文献1参照)。また、シールド層を有したケーブルの絶縁不良をホイートストンブリッジの原理により検出するようにしたものもある(非特許文献1参照)。 Here, as a device for detecting the position of the failure point G in the failure phase, a DC voltage is applied to the conductor at one end of the power cable, and the first pulse wave propagated to the conductor at one end of the power cable is processed. The signal waveform was obtained by processing the second pulse wave propagated to the conductor at the other end of the power cable as the second signal waveform, and the phase difference between the first signal waveform and the second signal waveform was obtained for each frequency. There is one that can detect the fault point with high accuracy based on the phase difference (see Patent Document 1). In addition, there is also one in which insulation failure of a cable having a shield layer is detected by the principle of Wheatstone bridge (see Non-Patent Document 1).
しかし、特許文献1のものでは、故障点を検出するにあたり、電力ケーブルの端部に伝搬したパルス信号を処理する演算や処理した第1信号波と第2信号波との位相差を求める演算が必要となり、高度な演算処理装置が必要となる。また、非特許文献1のものでは、シールド層を有したケーブルの絶縁不良を対象としており、ホイートストンブリッジ回路を有していることから高価絡である。
However, in
屋内配線の低圧電力回路はビルや工場に多数設置されており、敷設から50年以上経過しているものや、敷設経路に多数の電力線が重ねて敷設されている場合や、床から高い天井位置に敷設されていることが多い。また、建物外や屋上などにおいては、電力線が配管に収められているため、電力線の中間位置に絶縁不良が生じても、その位置を検知し特定することは現実的に不可能に近い。そのため、絶縁性異常の電力線を特定した場合、その電力線全体を撤去交換するか、電力線の途中を切り分けて調査することで、故障区間を調査しているのが実情である。そのため、電力線における事故点の位置を高精度に簡易な構成で安価に検知することが要請されている。 Many low-voltage power circuits for indoor wiring are installed in buildings and factories, and those that have been laid for more than 50 years, when many power lines are laid on the laying route, or where the ceiling is high from the floor. It is often laid in. Further, since the power line is housed in the pipe outside the building or on the roof, it is practically impossible to detect and specify the position even if the insulation failure occurs at the intermediate position of the power line. Therefore, when a power line with abnormal insulation is identified, the failure section is investigated by removing and replacing the entire power line or by cutting and investigating the middle of the power line. Therefore, it is required to detect the position of the accident point on the power line with high accuracy and at low cost with a simple configuration.
本発明の目的は、三相3線式、三相4線式、単相2線式、単相3線式、直流2線式等の電力回路の電力線を対象として、簡易な構成で安価に電力線における事故点を送電端から故障点までの距離として検出できる故障点距離検出装置を提供することである。 An object of the present invention is to target the power lines of a power circuit such as a three-phase three-wire system, a three-phase four-wire system, a single-phase two-wire system, a single-phase three-wire system, and a DC two-wire system, with a simple configuration and at low cost. It is an object of the present invention to provide a fault point distance detecting device capable of detecting a fault point in a power line as a distance from a power transmission end to a fault point.
請求項1の発明に係る故障点距離検出装置は、
電力回路の電力線と大地との間に故障が発生したことが検出されたとき、故障が発生した電力線を故障相とし、故障が発生していない電力線を健全相とし、前記電力回路が三相3線式である場合は、前記三相3線式の電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相のうちのいずれか1相の終端を短絡し、前記電力回路が三相4線式である場合は、前記三相4線式の前記電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相及び中性線のうちのいずれかの1相の終端を短絡し、前記電力回路が単相2線式または直流2線式である場合は、前記単相2線式または前記直流2線式の前記電力回路を停止した状態で前記故障相と前記健全相の終端を短絡し、前記電力回路が単相3線式である場合は、前記単相3線式の前記電力回路を停止した状態で前記故障相と前記健全相及び前記中性線のうちのいずれかの1相の終端を短絡する短絡装置と、
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路に流れる故障相電流I1を検出する故障相電流検出器と、
前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路に流れる健全相電流I2を検出する健全相電流検出器と、
前記故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記故障相電流検出器及び前記健全相電流検出器は内部抵抗が前記電力線の抵抗値より小さい電流計であり、
前記故障相電流I1/前記合計電流I3を第1指標値E1、前記健全相電流I2/前記合計電流I3を第2指標値E2、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記の(a)式及び(b)式でそれぞれ別個に計算し、
x11=2L・(1-E1)…(a)、x12=2L・E2…(b)
前記送電端から前記故障点までの距離x1を計算値x11と計算値x12との平均値として求め、
前記終端から前記故障点までの距離x2を下記の(c)式及び(d)式でそれぞれ別個に計算し、
x21=L・(2E1-1)…(c)、x22=L・(1-2E2)…(d)
前記終端から前記故障点までの距離x2を計算値x21と計算値x22との平均値として求めることを特徴とする。
The fault point distance detecting device according to the invention of
When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the DC power supply device passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the failure phase, and passes through the confluence point on the transmission end side. A fault phase current detector that detects the fault phase current I1 flowing through the first ground fault circuit that returns to the negative terminal of
From the positive terminal of the DC power supply device, the DC power supply passes through the failure point, branches at the failure point, passes through the termination of the failure phase and the short-circuit device, passes through the healthy phase, and passes through the confluence point on the transmission end side. A healthy phase current detector that detects the healthy phase current I2 flowing through the second ground fault circuit that returns to the negative terminal of the device, and
A total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The faulty phase current detector and the healthy phase current detector are ammeters whose internal resistance is smaller than the resistance value of the power line.
The faulty phase current I1 / the total current I3 is defined as the first index value E1, the healthy phase current I2 / the total current I3 is defined as the second index value E2, and the distance of the power line from the transmission end to the end is L. When
The distance x1 from the power transmission end to the failure point is calculated separately by the following equations (a) and (b), respectively.
x11 = 2L · (1-E1) ... (a), x12 = 2L · E2 ... (b)
The distance x1 from the power transmission end to the failure point is obtained as the average value of the calculated value x11 and the calculated value x12.
The distance x2 from the end point to the failure point is calculated separately by the following equations (c) and (d), respectively.
x21 = L · (2E1-1) ... (c), x22 = L · (1-2E2) ... (d)
It is characterized in that the distance x2 from the end point to the failure point is obtained as an average value of the calculated value x21 and the calculated value x22.
請求項2の発明に係る故障点距離検出装置は、
電力回路の電力線と大地との間に故障が発生したことが検出されたとき、故障が発生した電力線を故障相とし、故障が発生していない電力線を健全相とし、前記電力回路が三相3線式である場合は、前記三相3線式の電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相のうちのいずれか1相の終端を短絡し、前記電力回路が三相4線式である場合は、前記三相4線式の前記電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相及び中性線のうちのいずれかの1相の終端を短絡し、前記電力回路が単相2線式または直流2線式である場合は、前記単相2線式または前記直流2線式の前記電力回路を停止した状態で前記故障相と前記健全相の終端を短絡し、前記電力回路が単相3線式である場合は、前記単相3線式の前記電力回路を停止した状態で前記故障相と前記健全相及び前記中性線のうちのいずれかの1相の終端を短絡する短絡装置と、
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路と前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路とを前記電力線の送電端において切り替える切替装置と、
前記切替装置での前記第1地絡回路と前記第2地絡回路との切り替えにより前記第1地絡回路に接続されたときは前記第1地絡回路に流れる故障相電流I1を検出し前記第2地絡回路に接続されたときは前記第2地絡回路に流れる健全相電流I2を検出する兼用電流検出器と、
前記兼用電流検出器は内部抵抗が前記電力線の抵抗値より小さい電流計であり、
前記故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記故障相電流I1/前記合計電流I3を第1指標値E1、前記健全相電流I2/前記合計電流I3を第2指標値E2、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記の(a)式及び(b)式でそれぞれ別個に計算し、
x11=2L・(1-E1)…(a)、x12=2L・E2…(b)
前記送電端から前記故障点までの距離x1を計算値x11と計算値x12との平均値として求め、
前記終端から前記故障点までの距離x2を下記の(c)式及び(d)式でそれぞれ別個に計算し、
x21=L・(2E1-1)…(c)、x22=L・(1-2E2)…(d)
前記終端から前記故障点までの距離x2を計算値x21と計算値x22との平均値として求めることを特徴とする。
The fault point distance detecting device according to the invention of claim 2 is
When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the DC power supply device passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the failure phase, and passes through the confluence point on the power transmission end side. The first ground fault circuit returning to the negative terminal and the positive terminal of the DC power supply device pass through the failure point, branch at the failure point, pass through the termination of the failure phase and the short circuit device, and pass through the healthy phase. A switching device that switches the second ground fault circuit that passes through the confluence on the power transmission end side and returns to the negative terminal of the DC power supply device at the power transmission end of the power line.
When connected to the first ground fault circuit by switching between the first ground fault circuit and the second ground fault circuit in the switching device, the fault phase current I1 flowing in the first ground fault circuit is detected and said. A combined current detector that detects the healthy phase current I2 flowing in the second ground fault circuit when connected to the second ground fault circuit, and
The combined current detector is an ammeter whose internal resistance is smaller than the resistance value of the power line.
A total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The faulty phase current I1 / the total current I3 is defined as the first index value E1, the healthy phase current I2 / the total current I3 is defined as the second index value E2, and the distance of the power line from the transmission end to the end is L. When
The distance x1 from the power transmission end to the failure point is calculated separately by the following equations (a) and (b), respectively.
x11 = 2L · (1-E1) ... (a), x12 = 2L · E2 ... (b)
The distance x1 from the power transmission end to the failure point is obtained as the average value of the calculated value x11 and the calculated value x12.
The distance x2 from the end point to the failure point is calculated separately by the following equations (c) and (d), respectively.
x21 = L · (2E1-1) ... (c), x22 = L · (1-2E2) ... (d)
It is characterized in that the distance x2 from the end point to the failure point is obtained as an average value of the calculated value x21 and the calculated value x22.
請求項3の発明に係る故障点距離検出装置は、
請求項1または請求項2の発明において、前記送電端から前記故障点までの距離x1を計算値x12とし、前記終端から前記故障点までの距離x2を計算値x22として求めることを特徴とする。
The fault point distance detecting device according to the invention of
The invention according to
請求項4の発明に係る故障点距離検出装置は、
電力回路の電力線と大地との間に故障が発生したことが検出されたとき、故障が発生した電力線を故障相とし、故障が発生していない電力線を健全相とし、前記電力回路が三相3線式である場合は、前記三相3線式の電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相のうちのいずれか1相の終端を短絡し、前記電力回路が三相4線式である場合は、前記三相4線式の前記電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相及び中性線のうちのいずれかの1相の終端を短絡し、前記電力回路が単相2線式または直流2線式である場合は、前記単相2線式または前記直流2線式の前記電力回路を停止した状態で前記故障相と前記健全相の終端を短絡し、前記電力回路が単相3線式である場合は、前記単相3線式の前記電力回路を停止した状態で前記故障相と前記健全相及び前記中性線のうちのいずれかの1相の終端を短絡する短絡装置と、
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路に流れる健全相電流I2を検出する健全相電流検出器と、
前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路に流れる故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記健全相電流検出器は内部抵抗が前記電力線の抵抗値より小さい電流計であり、
前記健全相電流I2/前記合計電流I3を第2指標値E2、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記(b)式で計算し、
x12=2L・E2…(b)
前記送電端から前記故障点までの距離x1を計算値x12として求め、
前記終端から前記故障点までの距離x2を下記(d)式で計算し、
x22=L・(1-2E2)…(d)
前記終端から前記故障点までの距離x2を計算値x22として求めることを特徴とする。
The failure point distance detecting device according to the invention of
When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the power transmission passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the termination of the failure phase and the short-circuit device, and passes through the healthy phase. A healthy phase current detector that detects the healthy phase current I2 flowing through the second ground fault circuit that passes through the confluence on the end side and returns to the negative terminal of the DC power supply unit.
A first ground fault circuit that passes from the positive terminal of the DC power supply device, passes through the failure point, branches at the failure point, passes through the failure phase, passes through the confluence point on the transmission end side, and returns to the minus terminal of the DC power supply device. The total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The healthy phase current detector is an ammeter whose internal resistance is smaller than the resistance value of the power line.
When the healthy phase current I2 / the total current I3 is the second index value E2 and the distance of the power line from the transmission end to the end is L.
The distance x1 from the power transmission end to the failure point is calculated by the following equation (b).
x12 = 2L ・ E2 ... (b)
The distance x1 from the power transmission end to the failure point is obtained as a calculated value x12.
The distance x2 from the end point to the failure point is calculated by the following equation (d).
x22 = L · (1-2E2) ... (d)
It is characterized in that the distance x2 from the end point to the failure point is obtained as a calculated value x22.
請求項5の発明に係る故障点距離検出装置は、
電力回路の電力線と大地との間に故障が発生したことが検出されたとき、故障が発生した電力線を故障相とし、故障が発生していない電力線を健全相とし、前記電力回路が三相3線式である場合は、前記三相3線式の電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相のうちのいずれか1相の終端を短絡し、前記電力回路が三相4線式である場合は、前記三相4線式の前記電力回路を停止した状態で三相の電力線のうちの前記故障相と前記健全相及び中性線のうちのいずれかの1相の終端を短絡し、前記電力回路が単相2線式または直流2線式である場合は、前記単相2線式または前記直流2線式の前記電力回路を停止した状態で前記故障相と前記健全相の終端を短絡し、前記電力回路が単相3線式である場合は、前記単相3線式の前記電力回路を停止した状態で前記故障相と前記健全相及び前記中性線のうちのいずれかの1相の終端を短絡する短絡装置と、
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路に流れる故障相電流I1と前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路に流れる健全相電流I2との差電流I12を検出する差電流検出器と、
前記故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記差電流検出器は前記故障相電流I1と前記健全相電流I2とを逆向きに入力して前記故障相電流I1と前記健全相電流I2との差電流I12を検出する差動式磁場検出型の電流検出器であり、
前記差電流I12/前記合計電流I3を第3指標値E3、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記(e)式で計算し、
x1=L・(1-E3)…(e)
前記終端から前記故障点までの距離x2を下記(f)式で計算し、
x2=L・E3…(f)
前記送電端から前記故障点までの距離x1及び前記終端から前記故障点までの距離x2を求めることを特徴とする。
The fault point distance detecting device according to the invention of claim 5 is
When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the DC power supply device passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the failure phase, and passes through the confluence point on the transmission end side. The faulty phase current I1 flowing through the first ground fault circuit returning to the negative terminal of the current and the positive terminal of the DC power supply device pass through the fault point, branch at the fault point, and pass through the termination of the fault phase and the short circuit device to be sound. A differential current detector that detects the differential current I12 from the healthy phase current I2 that flows through the second ground fault circuit that passes through the confluence point on the transmission end side via the phase and returns to the negative terminal of the DC power supply device.
A total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The differential current detector is a differential magnetic field detection type that detects the difference current I12 between the faulty phase current I1 and the healthy phase current I2 by inputting the faulty phase current I1 and the healthy phase current I2 in opposite directions. Current detector,
When the difference current I12 / the total current I3 is the third index value E3 and the distance of the power line from the transmission end to the end is L.
The distance x1 from the power transmission end to the failure point is calculated by the following equation (e).
x1 = L · (1-E3) ... (e)
The distance x2 from the end point to the failure point is calculated by the following equation (f).
x2 = L ・ E3 ... (f)
It is characterized in that the distance x1 from the power transmission end to the failure point and the distance x2 from the end to the failure point are obtained.
請求項6の発明に係る故障点距離検出装置は、請求項1乃至請求項4に記載の故障点距離検出装置において、請求項1乃至請求項4で求めた前記送電端から前記故障点までの距離x1と前記終端から前記故障点までの距離x2との和(x1+x2)が送電端11から終端12までの電力線の距離Lよりα1だけ大きいときは、α1/2だけ計算値x1及び計算値x2より引き算して送電端11から故障点Gまでの距離x1及び終端12から故障点までの距離x2を求め、一方、送電端11から故障点Gまでの距離x1と終端12から故障点Gまでの距離x2との和(x1+x2)が送電端11から終端12までの電力線の距離Lよりα2だけ小さいときは、α2/2だけ計算値x1及び計算値x2に足し算して送電端11から故障点Gまでの距離x1及び終端12から故障点Gまでの距離x2を求めることを特徴とする。
The failure point distance detecting device according to the invention of claim 6 is the failure point distance detecting device according to
請求項1の発明によれば、内部抵抗が前記電力線の抵抗値より小さい故障相電流検出器や健全相電流検出器で検出した故障相電流I1、全相電流I2を用いて、第1指標値E1、第2指標値E2、送電端から終端までの電力線の距離Lで表される計算式(a)式~(d)式で電力線の送電端また終端から故障点までの距離x1、x2を求めるので、故障点までの距離の精度が向上し、また、簡易な構成で安価に故障点までの距離を求めることができる。さらに、2つの別個の計算式(a)式及び(b)式で電力線の送電端から故障点までの距離x1を計算値x11と計算値x12として求め、また、2つの別個の計算式(c)式及び(d)式で電力線の終端から故障点までの距離x2を計算値x21と計算値x22として求め、送電端から故障点までの距離x1を計算値x11と計算値x12との平均値として求め、終端から故障点までの距離x2を計算値x21と計算値x22との平均値として求めるので故障点までの距離の精度がさらに向上する。
According to the invention of
請求項2の発明によれば、故障相電流I1と健全相電流I2とを内部抵抗が前記電力線の抵抗値より小さい兼用電流検出器で検出できるので、電流検出器は合計電流検出器と兼用電流検出器との2つでよく電流検出器を節約でき装置を簡素化でき、請求項1と同様な効果を得ることができる。
According to the invention of claim 2, since the faulty phase current I1 and the healthy phase current I2 can be detected by the combined current detector whose internal resistance is smaller than the resistance value of the power line , the current detector can be used as the total current detector and the combined current. The current detector can be often saved and the device can be simplified by using the two together with the detector, and the same effect as that of
請求項3の発明によれば、請求項1または請求項2の発明において、検出誤差の影響を受けにくい健全相電流検出器で検出した健全相電流I2を用いて、送電端から故障点までの距離x1を計算値x12として求め、終端から故障点までの距離x2を計算値x22として求めるので、健全相電流検出器や故障相電流検出器に検出誤差がある場合には、より精度よく故障点までの距離を計算できる。
According to the invention of
請求項4の発明によれば、検出誤差の影響を受け易い故障相電流検出器を設けることなく、健全相電流検出器で検出した健全相電流I2を用いて、送電端から故障点までの距離x1を計算値x12として求め、終端から故障点までの距離x2を計算値x22として求めるので、電流検出器の節約ができる。また、請求項3と同等の精度で故障点までの距離を計算できる。
According to the invention of
請求項5の発明によれば、差電流検出器は差動式磁場検出型の電流検出器であり内部抵抗が事実上ゼロであるので、差電流検出器で検出した故障相電流I1と健全相電流I2との差電流I12は精度良く検出できる。故障相電流I1と健全相電流I2との検出精度の高い差電流I12を用いて故障点までの距離を計算するので、精度よく故障点までの距離を計算できる。 According to the invention of claim 5, since the differential current detector is a differential magnetic field detection type current detector and the internal resistance is practically zero, the faulty phase current I1 and the healthy phase detected by the differential current detector The difference current I12 from the current I2 can be detected with high accuracy. Since the distance to the failure point is calculated using the difference current I12 having high detection accuracy between the failure phase current I1 and the healthy phase current I2, the distance to the failure point can be calculated accurately.
請求項6の発明によれば、請求項1乃至請求項4の発明において、送電端から故障点までの距離x1の計算値と終端から故障点までの距離x2の計算値との和が送電端から終端までの電力線の距離Lに対して過不足する場合には、送電端から故障点までの距離x1と終端から故障点までの距離x2との和が送電端から終端までの電力線の距離Lとなるように補正計算するので、故障点までの距離の精度が向上する。
According to the invention of claim 6, in the inventions of
以下、本発明の実施形態を説明する。本発明の実施形態に係る故障点距離検出装置は、電力回路のうちのいずれの相で故障しているかを絶縁抵抗計で判定した後に、その故障相の故障点Gの位置を検知するものである。
<第1実施形態>
図1は本発明の第1実施形態に係る故障点距離検出装置を三相3線式の電力回路に適用した一例の構成図である。図13に示した三相3線式の電力回路の回路図に対し、同一要素には同一符号を付し重複する説明は省略する。
Hereinafter, embodiments of the present invention will be described. The fault point distance detecting device according to the embodiment of the present invention detects the position of the fault point G of the fault phase after determining which phase of the power circuit is faulty with an insulation resistance tester. be.
<First Embodiment>
FIG. 1 is a configuration diagram of an example in which the failure point distance detection device according to the first embodiment of the present invention is applied to a three-phase three-wire power circuit. With respect to the circuit diagram of the three-phase three-wire power circuit shown in FIG. 13, the same elements are designated by the same reference numerals and overlapping description will be omitted.
本発明の第1実施形態に係る故障点距離検出装置は、短絡装置17と、直流電源装置15と、故障相電流検出器18と、健全相電流検出器19と、合計電流検出器20と、距離計算装置21とから構成される。
The fault point distance detection device according to the first embodiment of the present invention includes a
短絡装置17は、三相の電力回路を停止した状態、すなわち、RST相の電力線への三相交流の印加を停止した状態で、三相電力線の終端12において、三相電力線のうちの故障相と2相の健全相のうちのいずれか1相の健全相の終端を短絡するものである。図1では故障相はT相、健全相はR相及びS相であり、故障相であるT相と健全相であるS相とを短絡装置17で短絡した場合を示している。短絡装置17で故障相であるT相と健全相であるS相とを短絡するのは、直流電源装置15から直流電流を供給して故障点位置を検出するための直流回路を形成するためである。
The short-
直流電源装置15は、三相電力線の終端12において、短絡装置17で故障相のT相と健全相のS相とが短絡された状態で、三相電力線の送電端11において故障相のT相及び健全相のS相にマイナスの直流電圧を印加するものである。すなわち、直流電源装置15のプラス端子は接地されており、直流電源装置15から大地及び故障点Gを経由して、故障相のT相及び健全相のS相に直流電圧が印加される。この場合、三相の電力回路の途中に分岐の電力回路がある場合は、その分岐の電力回路の終端を開放しておく。
In the DC
故障相のT相への直流電源装置15の直流電圧の印加により、直流電源装置15のプラス端子から大地及び故障点Gの故障抵抗Rgを経由して故障電流Igが流れ、故障電流Igは故障点Gで分岐して故障相のT相を通る故障相電流I1と健全相のS相を通る健全相電流I2とに分流する。故障相のT相を通る故障相電流I1は送電端11側の合流点Bを経由して直流電源装置15のマイナス端子に戻る。一方、健全相のS相を通る健全相電流I2は、故障相のT相の終端12及び短絡装置17を経由して健全相のS相を通り送電端11側の合流点Bを経由して直流電源装置15のマイナス端子に戻る。
By applying the DC voltage of the DC
すなわち、直流電源装置15のプラス端子から大地及び故障点Gの故障抵抗Rgを通り、故障相のT相及び送電端11側の合流点Bを経由して直流電源装置15のマイナス端子に戻る第1地絡回路が形成されるとともに、直流電源装置15のプラス端子から大地及び故障点Gの故障抵抗Rgを通り、故障相のT相の終端12及び短絡装置17を経由して健全相のS相を通り送電端11側の合流点Bを経由して直流電源装置15のマイナス端子に戻る第2地絡回路が形成される。
That is, the positive terminal of the DC
送電端側に設けられた故障相電流検出器18は第1地絡回路に流れる故障相電流I1を検出するものであり、送電端側に設けられた健全相電流検出器19は第2地絡回路に流れる健全相電流I2を検出するものである。また、送電端側に設けられた合計電流検出器20は、故障相電流I1と健全相電流I2との和の合計電流I3を検出するものである。
The faulty phase
ここで、故障相電流検出器18及び健全相電流検出器19としては内部抵抗が小さい電流計を使用する。これは、故障相電流検出器18は第1地絡回路の故障点Gと送電端11側の合流点Bとの間に形成される第1分流回路に接続され、健全相電流検出器19は第2地絡回路の故障点Gと送電端11側の合流点Bとの間に形成される第2分流回路に接続され、これら並列に形成された第1分流回路と第2分流回路とに流れる分流電流が故障相電流検出器18や健全相電流検出器19の内部抵抗の大きさにより影響を受けるからである。
Here, an ammeter having a small internal resistance is used as the faulty phase
第1分流回路や第2分流回路を形成する電力回路の電力線の抵抗は、通常0.05[mΩ/m]~数[mΩ/m]であるが、アナログ式のmA電流計の内部抵抗はそれに比較してかなり大きく数10Ωである。また、第1分流回路と第2分流回路は並列に形成されていることから、故障相電流検出器18や健全相電流検出器19の内部抵抗の大きさにより第1分流回路や第2分流回路に流れる電流の分流比が影響を受ける。
The resistance of the power line of the power circuit forming the first shunt circuit and the second shunt circuit is usually 0.05 [mΩ / m] to several [mΩ / m], but the internal resistance of the analog mA ammeter is Compared to that, it is considerably larger and is several tens of Ω. Further, since the first shunt circuit and the second shunt circuit are formed in parallel, the first shunt circuit and the second shunt circuit depend on the magnitude of the internal resistance of the faulty phase
すなわち、合計電流I3は第1分流回路に流れる故障相電流I1と第2分流回路に流れる健全相電流I2とに分流するが、故障相電流検出器18や健全相電流検出器19の内部抵抗の大きさにより第1分流回路や第2分流回路に流れる電流の分流比が影響を受けることになると、第1分流回路及び第2分流回路に流れる電流を精度よく検出できない。
That is, the total current I3 is divided into the faulty phase current I1 flowing in the first diversion circuit and the healthy phase current I2 flowing in the second diversion circuit, but the internal resistance of the faulty phase
そこで、本発明の第1実施形態では、故障相電流検出器18及び健全相電流検出器19として内部抵抗の小さい電流検出器、例えば、デジタル型電流検出器、オペアンプ(演算増幅器)型電流検出器、磁場検出型電流検出器などを用いる。以下に述べる第2実施形態、第3実施形態、第3実施形態においても、第1分流回路や第2分流回路に接続する電流検出器には内部抵抗の小さい電流検出器を用いる。なお、合計電流検出器20は分流回路に接続されるものではないので分流比に影響を与えない。従って、内部抵抗の小さい電流検出器を採用しなくてもよい。
Therefore, in the first embodiment of the present invention, the fault phase
次に、距離計算装置21は、例えば一般的なコンピュータで構成され、ソフトウェアプログラムがインストールされた記憶装置、ソフトウェアプログラムを演算する演算制御装置、演算制御装置に情報を入力する入力装置、演算制御装置の演算結果を出力する出力装置を有する。距離計算装置21は、故障相電流検出器18で検出された故障相電流I1、健全相電流検出器19で検出された健全相電流I2、合計電流検出器20で検出された合計電流I3を入力し、これらの電流に基づいて、三相電力線の送電端11から故障点Gまでの距離x1、三相電力線の終端12から故障点までの距離x2を計算する。
Next, the
故障相電流検出器18で検出された故障相電流I1、健全相電流検出器19で検出された健全相電流I2、合計電流検出器20で検出された合計電流I3との関係は、下記(1)式で示される。
The relationship between the faulty phase current I1 detected by the faulty phase
I3=I1+I2…(1)
また、故障相のT相の電力線の直流抵抗Rtは、三相電力線の送電端11から故障点Gまでの直流抵抗Rt1と終端12から故障点Gまでの直流抵抗Rt2との和であるから、下記(2)式が成り立つ。
I3 = I1 + I2 ... (1)
Further, the DC resistance Rt of the T-phase power line of the fault phase is the sum of the DC resistance Rt1 from the
Rt=Rt1+Rt2…(2)
送電端11から終端12までの電力線の距離をL、送電端11から故障点Gまでの距離をx1、終端12から故障点Gまでの距離をx2とすると、下記(3)式が成り立つ。
Rt = Rt1 + Rt2 ... (2)
Assuming that the distance of the power line from the
L=x1+x2 …(3)
また、RST相の電力線の単位長抵抗値をrとすると、R相の電力線の直流抵抗Rr、S相の電力線の直流抵抗Rs、T相の電力線の直流抵抗Rtは通常は同じ値であるので、RST相の電力線の直流抵抗Rr、Rs、Rtは下記(4)式で示される。また、三相電力線の送電端11から故障点Gまでの直流抵抗Rt1、終端12から故障点Gまでの直流抵抗Rt2は、下記(5)式、下記(6)式で示される。
L = x1 + x2 ... (3)
Further, assuming that the unit length resistance value of the RST phase power line is r, the DC resistance Rr of the R phase power line, the DC resistance Rs of the S phase power line, and the DC resistance Rt of the T phase power line are usually the same values. , RST phase DC resistances Rr, Rs, Rt of the power line are represented by the following equation (4). Further, the DC resistance Rt1 from the
Rr、Rs、Rt=r・L…(4)
Rt1=r・x1…(5)
Rt2=r・x2…(6)
第1地絡回路及び第2地絡回路における故障点Gと合流点Bとの間の電位差は等しいので、下記(7)式が成立する。
Rr, Rs, Rt = r · L ... (4)
Rt1 = r · x1 ... (5)
Rt2 = r · x2 ... (6)
Since the potential difference between the failure point G and the confluence point B in the first ground fault circuit and the second ground fault circuit is equal, the following equation (7) holds.
I1・Rt1=I2・(Rt2+Rs) …(7)
(7)式から故障相電流I1は下記(8)式で示され、健全相電流I2は下記(9)式で示される。
I1 ・ Rt1 = I2 ・ (Rt2 + Rs)… (7)
From the equation (7), the faulty phase current I1 is represented by the following equation (8), and the healthy phase current I2 is represented by the following equation (9).
I1={(Rt2+Rs)/Rt1}・I2 …(8)
I2={Rt1/(Rt2+Rs)}・I1 …(9)
(9)式の健全相電流I2を(1)式に代入して故障相電流I1と合計電流I3との関係式を求めると、下記の(10)式が得られる。
I1 = {(Rt2 + Rs) / Rt1} ・ I2 ... (8)
I2 = {Rt1 / (Rt2 + Rs)} ・ I1 ... (9)
By substituting the healthy phase current I2 in the equation (9) into the equation (1) to obtain the relational expression between the faulty phase current I1 and the total current I3, the following equation (10) is obtained.
I1={(Rt2+Rs)/(Rt1+Rt2+Rs)}・I3 …(10)
(8)式の故障相電流I1を(1)式に代入して健全相電流I2と合計電流I3との関係式を求めると、下記の(11)式が得られる。
I1 = {(Rt2 + Rs) / (Rt1 + Rt2 + Rs)} · I3 ... (10)
By substituting the faulty phase current I1 of the equation (8) into the equation (1) to obtain the relational expression between the healthy phase current I2 and the total current I3, the following equation (11) is obtained.
I2={Rt1/(Rt1+Rt2+Rs)}・I3 …(11)
次に、これらの(1)式乃至(11)式を用いて、電力回路の送電端11から故障点Gまでの距離x1、電力回路の終端12から故障点Gまでの距離x2の計算の仕方について説明する。
I2 = {Rt1 / (Rt1 + Rt2 + Rs)} · I3 ... (11)
Next, using these equations (1) to (11), how to calculate the distance x1 from the
送電端11から故障点Gまでの距離x1は、(10)式から求める場合と、(11)式から求める場合との2通りがあり、これらの2通りで別個に計算する。
The distance x1 from the
(10)式から送電端11から故障点Gまでの距離x1を求める場合は以下のようにして求める。まず、(10)式に、(4)式、(5)式、(6)式を代入すると(12)式が得られる。
When the distance x1 from the
I1={(r・x2+r・L)/(r・x1+r・x2+r・L)}・I3
={(x2+L)/(x1+x2+L)}・I3 …(12)
そして、(12)式のx2に、(3)式から得られるx2=L-x1を代入すると、(13)式が得られる。
I1 = {(r ・ x2 + r ・ L) / (r ・ x1 + r ・ x2 + r ・ L)} ・ I3
= {(X2 + L) / (x1 + x2 + L)} ・ I3 ... (12)
Then, by substituting x2 = L−x1 obtained from the equation (3) into x2 of the equation (12), the equation (13) is obtained.
I1={(2L-x1)/2L}・I3 …(13)
いま、I1/I3を第1指標値E1とする。そして、(13)式に(I1/I3)=E1を代入し、距離x1について解くと(14)式が得られる。この(14)式で得られた故障点Gまでの距離x1を計算値x11とする。
I1 = {(2L-x1) / 2L} ・ I3 ... (13)
Now, let I1 / I3 be the first index value E1. Then, by substituting (I1 / I3) = E1 into the equation (13) and solving for the distance x1, the equation (14) is obtained. The distance x1 to the failure point G obtained by the equation (14) is set as the calculated value x11.
x1=2L・(1-E1)=x11 …(14)
また、(11)式から送電端11から故障点Gまでの距離x1を求める場合は以下のようにして求める。まず、(11)式に、(4)式、(5)式、(6)式を代入して(15)式を求める。
x1 = 2L · (1-E1) = x11 ... (14)
Further, when the distance x1 from the
I2={r・x1/(r・x1+r・x2+r・L)}・I3
={x1/(x1+x2+L)}・I3 …(15)
そして、(15)式のx2に、(3)式から得られるx2=L-x1を代入すると、(16)式が得られる。
I2 = {r ・ x1 / (r ・ x1 + r ・ x2 + r ・ L)} ・ I3
= {X1 / (x1 + x2 + L)} ・ I3 ... (15)
Then, by substituting x2 = L−x1 obtained from the equation (3) into x2 of the equation (15), the equation (16) is obtained.
I2={x1/2L}・I3 …(16)
いま、I2/I3を第2指標値E2とする。そして、(16)式に(I2/I3)=E2を代入し、距離x1について解くと(17)式が得られる。この(17)式で得られた故障点Gまでの距離x1を計算値x12とする。
I2 = {x1 / 2L} ・ I3 ... (16)
Now, let I2 / I3 be the second index value E2. Then, by substituting (I2 / I3) = E2 into the equation (16) and solving for the distance x1, the equation (17) is obtained. The distance x1 to the failure point G obtained by the equation (17) is set as the calculated value x12.
x1=2L・E2=x12 …(17)
これにより、計算値x11は下記の(18)式で示され、計算値x12は下記の(19)式で示される。
x1 = 2L · E2 = x12 ... (17)
As a result, the calculated value x11 is represented by the following formula (18), and the calculated value x12 is represented by the following formula (19).
x11=2L・(1-E1) …(18)
x12=2L・E2 …(19)
電力線の送電端11から故障点Gまでの距離x1は、(18)式で得られた計算値x11と(19)式で得られた計算値x12との平均値として求め、故障点Gの位置を求める。
x11 = 2L ・ (1-E1)… (18)
x12 = 2L ・ E2 ... (19)
The distance x1 from the
次に、電力回路の終端12から故障点Gまでの距離x2は、電力回路の送電端11から故障点Gまでの距離x1を求める場合と同様に、(10)式から求める場合と、(11)式から求める場合との2通りがあり、これらの2通りで別個に計算する。
Next, the distance x2 from the
(10)式から終端12から故障点Gまでの距離x2を求める場合は以下のようにして求める。まず、(10)式に、(4)式、(5)式、(6)式を代入して(12)式を求める。(12)式を求めるまでは送電端11から故障点Gまでの距離x1を求める場合と同じである。
When the distance x2 from the terminal 12 to the failure point G is obtained from the equation (10), it is obtained as follows. First, the equation (4), the equation (5), and the equation (6) are substituted into the equation (10) to obtain the equation (12). Until the equation (12) is obtained, it is the same as the case where the distance x1 from the
そして、(12)式のx1に、(3)式から得られるx1=L-x2を代入する。この点が異なる。(12)式のx1にx1=L-x2を代入すると(20)式が得られる。 Then, x1 = L−x2 obtained from the equation (3) is substituted into x1 of the equation (12). This point is different. By substituting x1 = L−x2 for x1 of the equation (12), the equation (20) is obtained.
I1={(L+x2)/2L}・I3 …(20)
第1指標値E1はI1/I3で示されるから、(20)式を距離x2について解くと(21)式が得られる。この(21)式で求めた故障点Gまでの距離x2を計算値x21とする。
I1 = {(L + x2) / 2L} ・ I3 ... (20)
Since the first index value E1 is represented by I1 / I3, the equation (21) can be obtained by solving the equation (20) with respect to the distance x2. The distance x2 to the failure point G obtained by the equation (21) is set as the calculated value x21.
x2=L・(2E1-1)=x21…(21)
次に、(11)式から終端12から故障点Gまでの距離x2を求める場合は以下のようにして求める。まず、(11)式に、(4)式、(5)式、(6)式を代入して(15)式を求める。(15)式を求めるまでは送電端11から故障点Gまでの距離x1を求める場合と同じである。
x2 = L · (2E1-1) = x21 ... (21)
Next, when the distance x2 from the terminal 12 to the failure point G is obtained from the equation (11), it is obtained as follows. First, the equation (4), the equation (5), and the equation (6) are substituted into the equation (11) to obtain the equation (15). Until the equation (15) is obtained, it is the same as the case where the distance x1 from the
そして、(15)式のx1に、(3)式から得られるx1=L-x2を代入する。この点が異なる。
(15)式のx1にx1=L-x2を代入すると(22)式が得られる。
Then, x1 = L−x2 obtained from the equation (3) is substituted into x1 of the equation (15). This point is different.
Substituting x1 = L−x2 for x1 in equation (15) gives equation (22).
I2={(L-x2)/2L}・I3 …(22)
第2指標値E2はI2/I3で示されるから、(22)式を距離x2について解くと(23)式が得られる。この(23)式で得られた故障点Gまでの距離x2を計算値x22とする。
I2 = {(L-x2) / 2L} · I3 ... (22)
Since the second index value E2 is represented by I2 / I3, the equation (23) can be obtained by solving the equation (22) for the distance x2. The distance x2 to the failure point G obtained by the equation (23) is set as the calculated value x22.
x2=L・(1-2E2)=x22 …(23)
これにより、計算値x21は下記の(24)式で示され、計算値x22は下記の(25)式で示される。
x2 = L · (1-2E2) = x22 ... (23)
As a result, the calculated value x21 is represented by the following formula (24), and the calculated value x22 is represented by the following formula (25).
x21=L・(2E1-1)…(24)
x22=L・(1-2E2)…(25)
電力線の終端12から故障点Gまでの距離x2は、(24)式で得られた計算値x21と(25)式で得られた計算値x22との平均値として求め、故障点Gの位置を求める。
x21 = L · (2E1-1) ... (24)
x22 = L · (1-2E2) ... (25)
The distance x2 from the
以上の説明では、故障相がT相であり健全相がR相S相である場合に、故障相のT相と健全相のS相とを用いて、三相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算する場合について説明したが、図2に示すように、健全相のS相に代えて健全相のR相を用い、故障相のT相と健全相のR相とを用いて距離x1及び距離x2を計算するようにしても良い。
In the above description, when the faulty phase is the T phase and the healthy phase is the R phase and the S phase, the fault point is from the
さらには、故障相のT相と健全相のR相とを用いて計算した距離x1、x2、故障相のT相と健全相のS相とを用いて計算した距離x1、x2をそれぞれ計算し、これらの平均値を取るようにしても良い。1つの健全相だけでなく2つの健全相に対して、距離x1、x2を計算するので、R相の電力線の直流抵抗Rr、S相の電力線の直流抵抗Rs、T相の電力線の直流抵抗Rtの直流抵抗値にばらつきがある場合に、そのばらつきを補正できる。 Furthermore, the distances x1 and x2 calculated using the T phase of the faulty phase and the R phase of the healthy phase, and the distances x1 and x2 calculated using the T phase of the faulty phase and the S phase of the healthy phase are calculated, respectively. , You may try to take the average value of these. Since the distances x1 and x2 are calculated for not only one healthy phase but also two healthy phases, the DC resistance Rr of the R phase power line, the DC resistance Rs of the S phase power line, and the DC resistance Rt of the T phase power line. If there is a variation in the DC resistance value of, the variation can be corrected.
また、以上の説明では、三相3線式の電力回路に適用した場合について説明したが、三相4線式の電力回路にも適用できる。三相4線式の電力回路はRST相の3本の電力線に加え、RST相の電力線と同仕様の中性線が1本追加された電力回路である。図3は、本発明の第1実施形態に係る故障点距離検出装置を三相4線式の電力回路に適用した一例の構成図である。図3では、故障相がT相であり健全相がR相S相である場合に、故障相のT相と中性線のN相とを用いて、三相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算するようにしたものである。すなわち、健全相であるR相またはS相に代えて中性線のN相を用いるようにしたものである。
Further, in the above description, the case where it is applied to a three-phase three-wire system power circuit has been described, but it can also be applied to a three-phase four-wire system power circuit. The three-phase four-wire power circuit is a power circuit in which one neutral wire having the same specifications as the RST phase power line is added in addition to the three RST phase power lines. FIG. 3 is a configuration diagram of an example in which the failure point distance detection device according to the first embodiment of the present invention is applied to a three-phase four-wire power circuit. In FIG. 3, when the faulty phase is the T phase and the healthy phase is the R phase and the S phase, the fault point is from the
もちろん、三相4線式の電力回路であっても、三相3線式の電力回路の場合と同様に、三相の電力線のうちの故障相と健全相のうちのいずれかの1相を用いて、三相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算するようにしてもよい。
Of course, even in a three-phase four-wire power circuit, as in the case of a three-phase three-wire power circuit, one of the faulty phase and the healthy phase of the three-phase power lines can be used. It may be used to calculate the distance x1 from the
このように、電力回路が三相4線式である場合は、三相4線式の電力回路を停止した状態で、三相の電力線のうちの故障相と健全相及び中性線のうちのいずれかの1相の終端12を短絡し、三相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算して故障相の故障点Gの位置を求める。
In this way, when the power circuit is a three-phase four-wire system, with the three-phase four-wire system power circuit stopped, the faulty phase of the three-phase power lines and the healthy phase and the neutral line are included. Short-circuit the
三相4線式の電力回路は、RST相の電力線と同仕様の中性線が1本追加された電力回路であるので、中性線を用いて計算した故障点Gまでの距離x1、x2、健全相であるR相やS相を用いて計算した故障点Gまでの距離x1、x2の平均値を取るようにしても良い。 Since the three-phase four-wire power circuit is a power circuit in which one neutral wire having the same specifications as the RST phase power wire is added, the distance to the failure point G calculated using the neutral wire x1 and x2. , The average value of the distances x1 and x2 to the failure point G calculated using the R phase and the S phase, which are healthy phases, may be taken.
さらには、単相2線式や直流2線式の電力回路にも適用できる。図4は本発明の第1実施形態に係る故障点距離検出装置を単相2線式または直流2線式の電力回路に適用した一例の構成図である。便宜上、単相2線または直流2線式の電力線をST相で示しており、故障相がT相で健全相がS相として示している。三相3線式や三相4線式の電力回路の場合と同様にして、単相2線式または直流2線式の電力回路を停止した状態で、故障相と健全相との終端を短絡し、送電端11から故障点Gまでの距離x1、及び終端12から故障点Gまでの距離x2を求め、故障点Gの位置を求める。
Furthermore, it can be applied to a single-phase two-wire system or a DC two-wire system. FIG. 4 is a configuration diagram of an example in which the failure point distance detection device according to the first embodiment of the present invention is applied to a single-phase two-wire system or a DC two-wire system power circuit. For convenience, the single-phase two-wire or DC two-wire power line is shown as the ST phase, the faulty phase is shown as the T phase, and the healthy phase is shown as the S phase. As in the case of a three-phase three-wire system or a three-phase four-wire system power circuit, the termination of the faulty phase and the healthy phase is short-circuited with the single-phase two-wire system or DC two-wire system power circuit stopped. Then, the distance x1 from the
また、単相3線式の電力回路に適用する場合は、単相3線式の電力回路は2本の電力線に加え、これらと同仕様の中性線が1本追加された電力回路であるので、図4に示した単相2線式の電力回路に中性線が1本追加された電力回路である。従って、故障相のT相と中性線のN相(または健全相であるS相)とを用いて、単相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算する。すなわち、単相3線式の電力回路を停止した状態で、故障相と健全相及び中性線のうちのいずれかの1相と用いて、単相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算する。
When applied to a single-phase three-wire power circuit, the single-phase three-wire power circuit is a power circuit in which one neutral wire having the same specifications as these is added in addition to the two power lines. Therefore, it is a power circuit in which one neutral wire is added to the single-phase two-wire power circuit shown in FIG . Therefore, using the T phase of the faulty phase and the N phase of the neutral line (or the S phase which is the healthy phase), the distance x1 from the
単相3線式の電力回路は、2本の電力線と同仕様の中性線が1本追加された電力回路であるので、中性線を用いて計算した故障点Gまでの距離x1、x2、健全相であるS相を用いて計算した故障点Gまでの距離x1、x2の平均値を取るようにしても良い。 Since the single-phase three-wire power circuit is a power circuit in which one neutral wire having the same specifications as the two power wires is added, the distance to the failure point G calculated using the neutral wire x1 and x2. , The average value of the distances x1 and x2 to the failure point G calculated using the S phase, which is a healthy phase, may be taken.
第1実施形態によれば、三相3線式、三相4線式、単相2線式、直流2線式、単相3線式等の電力回路の送電端11において、直流電源装置15から故障点Gを通り故障点Gで分岐して故障相を経由して送電端11側の合流点Bを通り直流電源装置15に戻る第1地絡回路に流れる故障相電流I1を故障相電流検出器18で検出し、直流電源装置15から故障点Gを通り故障点Gで分岐して故障相の終端12及び短絡装置17を通り健全相を経由して送電端11側の合流点Bを通り直流電源装置15に戻る第2地絡回路に流れる健全相電流I2を健全相電流検出器19で検出し、故障相電流I1と健全相電流I2との和の合計電流I3を合計電流検出器20で検出し、第1指標値E1(故障相電流I1/合計電流I3)、第2指標値E2(健全相電流I2/合計電流I3)を求め、第1指標値E1、第2指標値E2、送電端11から終端12までの電力線の距離Lで表される計算式で電力線の送電端11から故障点Gまでの距離x1及び電力線の終端12から故障点までの距離x2を求めるので、簡易な構成で安価に故障点Gまでの距離を求めることができる。
According to the first embodiment, the DC
さらに、2つの別個の計算式(18)式及び(19)式で電力線の送電端から故障点までの距離x1を計算値x11と計算値x12として求め、また、2つの別個の計算式(24)式及び(25)式で電力線の終端から故障点までの距離x2を計算値x21と計算値x22として求め、送電端から故障点までの距離x1を計算値x11と計算値x12との平均値として求め、終端から故障点までの距離x2を計算値x21と計算値x22との平均値として求めるので故障点までの距離の精度が向上する。 Further, the distance x1 from the transmission end of the power line to the failure point is obtained as the calculated value x11 and the calculated value x12 by the two separate calculation formulas (18) and (19) , and the two separate calculation formulas (24 ) are obtained. ) And (25) , the distance x2 from the end of the power line to the failure point is calculated as the calculated value x21 and the calculated value x22, and the distance x1 from the transmission end to the failure point is the average value of the calculated value x11 and the calculated value x12. Since the distance x2 from the end to the failure point is obtained as the average value of the calculated value x21 and the calculated value x22, the accuracy of the distance to the failure point is improved.
このように、電力回路の電力線に絶縁性能の低下や地絡故障が検出された場合、容易に故障点Gの位置を特定できるので、故障に対する対応時間と対応人員とを大幅に小さくすることが可能になる。故障点Gの位置を特定できるので、絶縁不良が発生した電力線を全体にわたり撤去交換することに比較し、部分的な保全対応が可能になり、電線材料と保全時間を大幅に小さくできる。 In this way, when a deterioration in insulation performance or a ground fault is detected in the power line of the power circuit, the position of the failure point G can be easily identified, so that the response time and personnel for the failure can be significantly reduced. It will be possible. Since the position of the failure point G can be specified, partial maintenance can be performed and the wire material and maintenance time can be significantly reduced as compared with removing and replacing the power line in which the insulation failure has occurred.
また、電力回路の絶縁性能が低下した故障相、対地絶縁抵抗値、対地静電容量を常時検知することができる技術(本出願人が先に出願した特願2019-141054号)と組み合わせることにより、負荷機器を含めた電力回路の絶縁性能の高いレベルの保全維持ができる。さらに、電力回路に絶縁性能の低下や地絡故障が発生した場合、その位置を短時間内に特定して、電力回路の仮復旧と電源の復電、設備の再稼働が可能となり、電源停止に伴う経済的損失を最小限に抑制することに役立つとともに、その後の計画的な修復と保全が可能となるので、設備の安全性の向上と生産性の向上に役立つ。
<第2実施形態>
次に、本発明の第2実施形態を説明する。図5は本発明の第2実施形態に係る故障点距離検出装置を三相3線式の電力回路に適用した一例の構成図である。この第2実施形態の一例は図1に示した第1実施形態に対し、第1地絡回路と第2地絡回路とを送電端11と合流点Bとの間で切り替える切替装置22を設けるとともに、故障相電流検出器18及び健全相電流検出器19に代えて兼用電流検出器23を設けたものである。図5では、図1の場合と同様に、故障相はT相、健全相はR相及びS相であり、故障相であるT相と健全相であるS相とを短絡装置17で短絡した場合を示している。図1と同一要素には同一符号を付し重複する説明は省略する。また、第1実施形態で述べたように、この兼用電流検出器23は第1分流回路や第2分流回路に接続されることになるので、内部抵抗の小さい電流検出器を用いる。
In addition, by combining it with a technology that can constantly detect the fault phase in which the insulation performance of the power circuit has deteriorated, the ground insulation resistance value, and the ground capacitance (Japanese Patent Application No. 2019-141054 previously filed by the present applicant). It is possible to maintain a high level of insulation performance of power circuits including load equipment. Furthermore, if the insulation performance of the power circuit deteriorates or a ground fault occurs, the position can be identified within a short time, and the power circuit can be temporarily restored, the power supply can be restored, and the equipment can be restarted, and the power supply is stopped. It helps to minimize the economic loss associated with the equipment, and it also enables the subsequent planned repair and maintenance, which helps to improve the safety and productivity of the equipment.
<Second Embodiment>
Next, a second embodiment of the present invention will be described. FIG. 5 is a configuration diagram of an example in which the failure point distance detection device according to the second embodiment of the present invention is applied to a three-phase three-wire power circuit. An example of this second embodiment is provided with a
図5(a)、(b)において、三相電力線の送電端11には切替装置22が設けられている。切替装置22は、直流電源装置15から故障点Gを通り故障点Gで分岐して故障相を経由して送電端11側の合流点Bを通り直流電源装置15に戻る第1地絡回路と、直流電源装置15から故障点G1を通り故障点G1で分岐して故障相の終端12及び短絡装置17を通り健全相を経由して送電端11側の合流点Bを通り直流電源装置15に戻る第2地絡回路とを送電端11と合流点Bとの間で切り替える。
In FIGS. 5A and 5B, a
図5(a)では、切換装置22の切り替えにより、第1地絡回路に兼用電流検出器23が接続された状態となっている。つまり、この状態では、兼用電流検出器23は第1地絡回路に流れる故障相電流I1を検出している。合計電流検出器20は第1地絡回路に流れる故障相電流I1と第2地絡回路に流れる健全相電流I2との和を合計電流I3として検出している。
In FIG. 5A, the combined
図5(b)では、切換装置22の切り替えにより、第2地絡回路に兼用電流検出器23が接続された状態となっている場合を示している。つまり、この状態では、兼用電流検出器23は第2地絡回路に流れる健全相電流I2を検出している。合計電流検出器20は第1地絡回路に流れる故障相電流I1と第2地絡回路に流れる健全相電流I2との和を合計電流I3として検出している。
FIG. 5B shows a case where the combined
このように、切替装置22で第1地絡回路と第2地絡回路との切り替えにより、兼用電流検出器23は、第1地絡回路に接続されたときは、第1地絡回路に流れる故障相電流I1を検出し、第2地絡回路に接続されたときは第2地絡回路に流れる健全相電流I2を検出する。
In this way, by switching between the first ground fault circuit and the second ground fault circuit in the
そして、第1の実施の形態と同様に、故障相電流I1、健全相電流I2、合計電流I3に基づいて、第1指標値E1(故障相電流I1/合計電流I3)、第2指標値E2(健全相電流I2/合計電流I3)を求め、第1指標値E1、第2指標値E2、送電端11から終端12までの電力線の距離Lで表される計算式で電力線の送電端11から故障点Gまでの距離x1及び電力線の終端12から故障点までの距離x2を求める。
Then, as in the first embodiment, the first index value E1 (failure phase current I1 / total current I3) and the second index value E2 are based on the fault phase current I1, the healthy phase current I2, and the total current I3. (Healthy phase current I2 / total current I3) is obtained, and is expressed by the first index value E1, the second index value E2, and the distance L of the power line from the
以上の説明では、故障相がT相であり健全相がR相S相である場合に、故障相のT相と健全相のS相とを用いて、三相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算する場合について説明したが、図6に示すように、健全相のS相に代えて健全相のR相を用い、故障相のT相と健全相のR相とを用いて距離x1及び距離x2を計算するようにしても良い。
In the above description, when the faulty phase is the T phase and the healthy phase is the R phase and the S phase, the fault point is from the
図6(a)では、切替装置22の切り替えにより、第1地絡回路に兼用電流検出器23が接続され、兼用電流検出器23は第1地絡回路に流れる故障相電流I1を検出している状態であり、一方、図6(b)では、切替装置22の切り替えにより、第2地絡回路に兼用電流検出器23が接続された状態である。
In FIG. 6A, the combined
また、故障相のT相と健全相のR相とを用いて計算した距離x1、x2、故障相のT相と健全相のS相とを用いて計算した距離x1、x2との平均値を取るようにしても良い。1つの健全相だけでなく2つの健全相に対して、距離x1、x2を計算するので、R相の電力線の直流抵抗Rr、S相の電力線の直流抵抗Rs、T相の電力線の直流抵抗Rtの直流抵抗値にばらつきがある場合に、そのばらつきを補正できる。 Further, the average values of the distances x1 and x2 calculated using the T phase of the faulty phase and the R phase of the healthy phase and the distances x1 and x2 calculated using the T phase of the faulty phase and the S phase of the healthy phase are calculated. You may try to take it. Since the distances x1 and x2 are calculated for not only one healthy phase but also two healthy phases, the DC resistance Rr of the R phase power line, the DC resistance Rs of the S phase power line, and the DC resistance Rt of the T phase power line. If there is a variation in the DC resistance value of, the variation can be corrected.
また、以上の説明では、三相3線式の電力回路に適用した場合について説明したが、三相4線式の電力回路、単相2線式の電力回路、単相3線式の電力回路、直流2線式の電力回路にも適用できる。三相4線式の電力回路、単相2線式の電力回路、単相3線式の電力回路、直流2線式の電力回路への適用は第1実施形態の場合と同様であるので説明は省略する。 Further, in the above description, the case where it is applied to a three-phase three-wire power circuit has been described, but a three-phase four-wire power circuit, a single-phase two-wire power circuit, and a single-phase three-wire power circuit have been described. It can also be applied to a DC 2-wire power circuit. The application to a three-phase four-wire power circuit, a single-phase two-wire power circuit, a single-phase three-wire power circuit, and a DC two-wire power circuit is the same as in the case of the first embodiment. Is omitted.
第2実施形態によれば、兼用電流検出器23は、図1に示した第1実施形の故障相電流検出器18と健全相電流検出器19とを兼用することができるので、1つの電流検出器を節約できる。また、故障相電流検出器18と健全相電流検出器19との個体誤差を無くすることができる。
<第3実施形態>
次に、本発明の第3実施形態を説明する。第3実施形態は、第1実施形態及び第2実施形態に対し、送電端11から故障点Gまでの距離x1を計算値x11と計算値x12との平均値とし、終端12から故障点Gまでの距離x2を計算値x21と計算値x22との平均値として求めることに代えて、送電端から故障点までの距離x1を計算値x12とし、終端12から故障点Gまでの距離x2を計算値x22として求めるようにしたものである。
According to the second embodiment, since the combined
<Third Embodiment>
Next, a third embodiment of the present invention will be described. In the third embodiment, with respect to the first embodiment and the second embodiment, the distance x1 from the
図7は本発明の第3実施形態に係る故障点距離検出装置を単相2線式の電力回路に適用した一例の構成図である。図7では、第1実施形態における図4に示した単相2線式の電力回路に本発明の第3実施形態に係る故障点距離検出装置を適用した一例を示している。 FIG. 7 is a configuration diagram of an example in which the failure point distance detection device according to the third embodiment of the present invention is applied to a single-phase two-wire power circuit. FIG. 7 shows an example in which the failure point distance detection device according to the third embodiment of the present invention is applied to the single-phase two-wire power circuit shown in FIG. 4 in the first embodiment.
図7において、いま、故障相電流検出器18の検出誤差をε1%、健全相電流検出器19の検出誤差をε2%、合計電流検出器20の検出誤差を0%とする。また、故障相電流検出器18の検出誤差がないときに検出される故障相電流をI1、健全相電流検出器19の検出誤差がないときに検出される健全相電流をI2とする。
In FIG. 7, the detection error of the faulty phase
まず、故障相電流検出器18で検出される検出誤差を含んだ故障相電流I1aは、故障相電流検出器18の検出誤差がε1%であることから、下記の(26)式で示される。
First, the faulty phase current I1a including the detection error detected by the faulty phase
I1a=I1・(1+ε1/100) …(26)
(14)式のE1にE1=I1/I3を代入し、さらにI1に(26)式のI1aを代入すると、誤差分を含んだ距離x1aの計算値x11aは、下記の(27)式で示される。
I1a = I1 · (1 + ε1 / 100) ... (26)
Substituting E1 = I1 / I3 for E1 in Eq. (14) and further substituting I1a in Eq. (26) for I1, the calculated value x11a of the distance x1a including the error is shown by Eq. (27) below. Is done.
x11a=2L・{1-(I1・(1+ε1/100)/I3)} …(27)
計算値x11aの誤差分Δx11は、下記の(28)式で示される。
x11a = 2L · {1- (I1 · (1 + ε1 / 100) / I3)} ... (27)
The error portion Δx11 of the calculated value x11a is expressed by the following equation (28).
Δx11=2L・(I1・(ε1/100)/I3) …(28)
(1)式からI1+12=I3であるからI1≦I3であり、(28)式から分かるように、誤差分Δx11が最大となるのは、I1=I3のとき、つまり故障点Gが送電端11であるときであり、Δx11の最大値Δx11maxは、Δx11max=2L・(ε1/100)である。一方、誤差分Δx11が最小となるのは、I1=I3/2のとき、つまり故障点Gが終端12であるときであり、Δx11の最小値Δx11minは、Δx11min=L・(ε1/100)である。故障相電流検出器18で検出した故障相電流I1aを用いて計算した距離xの誤差分Δx11は纏めると以下のようになる。
Δx11 = 2L · (I1 · (ε1 / 100) / I3) ... (28)
Since I1 + 12 = I3 from the equation (1), I1 ≦ I3, and as can be seen from the equation (28), the error component Δx11 becomes maximum when I1 = I3, that is, the failure point G is the
(A1)誤差分Δx11の最大値は2L・(ε1/100)
故障点Gが送電端11であるとき(I1=I3のとき)、
(A2)誤差分Δx11の最小値はL・(ε1/100)
故障点Gが終端12であるとき(I1=I3/2のとき)
次に、健全相電流検出器19で検出される検出誤差を含んだ健全相電流I2aは、健全相電流検出器19の検出誤差がε2%であることから、下記の(29)式で示される。
(A1) The maximum value of the error amount Δx11 is 2L · (ε1 / 100).
When the failure point G is the power transmission end 11 (when I1 = I3),
(A2) The minimum value of the error amount Δx11 is L · (ε1 / 100).
When the failure point G is the terminal 12 (when I1 = I3 / 2)
Next, the healthy phase current I2a including the detection error detected by the healthy phase
I2a=I2・(1+ε2/100) …(29)
(12)式のE2にE2=I2/I3を代入し、さらにI2に(29)式のI2aを代入すると、誤差分を含んだ距離x1aの計算値x12aは、下記の(30)式で示される。
I2a = I2 ・ (1 + ε2 / 100)… (29)
Substituting E2 = I2 / I3 for E2 in Eq. (12) and further substituting I2a in Eq. (29) for I2, the calculated value x12a of the distance x1a including the error is shown by Eq. (30) below. Is done.
x12a=2L・(I2・(1+ε2/100)/I3) …(30)
計算値x12aの誤差分Δx12は、下記の(31)式で示される。
x12a = 2L ・ (I2 ・ (1 + ε2 / 100) / I3)… (30)
The error amount Δx12 of the calculated value x12a is expressed by the following equation (31).
Δx12=2L・(I2・(ε2/100)/I3) …(31)
(1)式からI1+12=I3であるからI2≦I3/2であり、(31)式から分かるように、誤差分Δx12が最大となるのは、I2=I3/2のとき、つまり故障点Gが終端12であるときであり、Δx12の最大値Δx12maxは、Δx12max=L・(1+ε2/100)である。
一方、誤差分Δx12が最小となるのは、I2=0のとき、つまり故障点Gが送電端11であるときであり、Δx12の最小値Δx12minは、Δx12min=0である。健全相電流検出器19で検出した健全相相電流I2aを用いて計算した距離xの誤差分Δx12は纏めると以下のようになる。
Δx12 = 2L ・ (I2 ・ (ε2 / 100) / I3)… (31)
Since I1 + 12 = I3 from the equation (1), I2 ≦ I3 / 2, and as can be seen from the equation (31), the error component Δx12 is maximized when I2 = I3 / 2, that is, the failure point G. Is the terminal 12, and the maximum value Δx12max of Δx12 is Δx12max = L · (1 + ε2 / 100).
On the other hand, the error amount Δx12 is minimized when I2 = 0, that is, when the failure point G is the
(B1)誤差分Δx12の最大値はL・(1+ε2/100)
故障点Gが終端12であるとき(I2=I3/2のとき)、
(B2)誤差分Δx12の最小値は0
故障点Gが送電端11であるとき(I2=0のとき)
以上のことから、送電端11から故障点Gまでの距離x1の計算にあたっては、故障相電流検出器18の検出誤差ε1%、健全相電流検出器19の検出誤差ε2%を考慮した場合は、(18)式で計算した計算値x11より、(19)式で計算した計算値x12の方が誤差が少ないことが分かる。
(B1) The maximum value of the error amount Δx12 is L · (1 + ε2 / 100).
When the failure point G is the terminal 12 (when I2 = I3 / 2),
(B2) The minimum value of the error amount Δx12 is 0.
When the failure point G is the power transmission end 11 (when I2 = 0)
From the above, when calculating the distance x1 from the
以上の説明では、(18)式及び(19)式を用いて送電端11から故障点Gまでの距離x1を計算する場合について説明したが、(24)式及び(25)式を用いて終端12から故障点Gまでの距離x2を計算する場合についても、計算式は省略するが、同様に、(24)式で計算した計算値x21より、(25)式で計算した計算値x22の方が誤差が少ない。
In the above description, the case where the distance x1 from the
従って、第3実施形態に係る故障点距離検出装置の一例では、送電端11から故障点Gまでの距離x1を計算値x12とし、終端12から故障点Gまでの距離x2を計算値x22として求める。
Therefore, in an example of the failure point distance detecting device according to the third embodiment, the distance x1 from the
図8は本発明の第3実施形態に係る故障点距離検出装置を単相2線式の電力回路に適用した他の一例の構成図であり、図7に示した本発明の第3実施形態に係る故障点距離検出装置に対し、送電端11と合流点Bとの間に切替装置22を設けるとともに、故障相電流検出器18及び健全相電流検出器19に代えて兼用電流検出器23を設けたものである。図7と同一要素については同一符号を付し重複する説明は省略する。
FIG. 8 is a configuration diagram of another example in which the failure point distance detection device according to the third embodiment of the present invention is applied to a single-phase two-wire power circuit, and is a configuration diagram of another example, which is the third embodiment of the present invention shown in FIG. A switching
切替装置22は、直流電源装置から故障点を通り故障点で分岐して故障相を経由して送電端側の合流点を通り直流電源装置に戻る第1地絡回路と、直流電源装置15から故障点G1を通り故障点G1で分岐して故障相の終端12及び短絡装置17を通り健全相を経由して送電端11側の合流点Bを通り直流電源装置15に戻る第2地絡回路とを切り替える。兼用電流検出器23は、切替装置22により第1地絡回路に切り替えられたときは第1地絡回路を流れる故障相電流I1を検出し、切替装置22により第2地絡回路に切り替えられたときは第2地絡回路を流れる故障相電流I2を検出する。
The switching
図8において、いま、兼用電流検出器23の検出誤差をε4%、健全相電流検出器20の検出誤差を0%とする。また、兼用電流検出器23の検出誤差がないときに検出される故障相電流をI1、健全相電流をI2とする。
In FIG. 8, the detection error of the combined
兼用電流検出器23が検出した故障相電流I1を用いて計算した距離xの誤差分Δx11は、第3実施形態に係る故障点距離検出装置の一例の場合と同様に計算し纏めると以下のようになる。
The error portion Δx11 of the distance x calculated by using the fault phase current I1 detected by the combined
(C1)誤差分Δx11の最大値は2L・(ε4/100)
故障点Gが送電端11であるとき(I1=I3のとき)、
(C2)誤差分Δx11の最小値はL・(ε4/100)
故障点Gが終端12であるとき(I1=I3/2のとき)
兼用電流検出器23が検出した故障相電流I1を用いて計算した距離xの誤差分Δx12は、第3実施形態に係る故障点距離検出装置の一例の場合と同様に計算し纏めると以下のようになる。
(C1) The maximum value of the error amount Δx11 is 2L · (ε4 / 100).
When the failure point G is the power transmission end 11 (when I1 = I3),
(C2) The minimum value of the error amount Δx11 is L · (ε4 / 100)
When the failure point G is the terminal 12 (when I1 = I3 / 2)
The error portion Δx12 of the distance x calculated by using the fault phase current I1 detected by the combined
(D1)誤差分Δx12の最大値はL・(1+ε4/100)
故障点Gが終端12であるとき(I2=I3/2のとき)、
(D2)誤差分Δx12の最小値は0
故障点Gが送電端11であるとき(I2=0のとき)
以上のことから、送電端11から故障点Gまでの距離x1の計算にあたっては、兼用電流検出器23の検出誤差ε4%を考慮した場合は、(18)式で計算した計算値x11より、(19)式で計算した計算値x12の方が誤差が少ないことが分かる。
(D1) The maximum value of the error amount Δx12 is L · (1 + ε4 / 100).
When the failure point G is the terminal 12 (when I2 = I3 / 2),
(D2) The minimum value of the error amount Δx12 is 0.
When the failure point G is the power transmission end 11 (when I2 = 0)
From the above, when the detection error ε4% of the combined
以上の説明では、(18)式及び(19)式を用いて送電端11から故障点Gまでの距離x1を計算する場合について説明したが、(24)式及び(25)式を用いて終端12から故障点Gまでの距離x2を計算する場合についても、計算式は省略するが、同様に、(24)式で計算した計算値x21より、(25)式で計算した計算値x22の方が誤差が少ない。
In the above description, the case where the distance x1 from the
従って、第3実施形態に係る故障点距離検出装置の他の一例においても、送電端11から故障点Gまでの距離x1を計算値x12とし、終端12から故障点Gまでの距離x2を計算値x22として求める。
Therefore, also in another example of the failure point distance detecting device according to the third embodiment, the distance x1 from the
図9は本発明の第3実施形態に係る故障点距離検出装置を単相2線式の電力回路に適用した別の他の一例の構成図ある。図9では、図7に示した第3実施形態の一例に対し、故障相電流検出器18を削除したものである。図7と同一要素については同一符号を付し重複する説明は省略する。
FIG. 9 is a configuration diagram of another example in which the failure point distance detecting device according to the third embodiment of the present invention is applied to a single-phase two-wire power circuit. In FIG. 9, the fault phase
第3実施形態では、送電端11から故障点Gまでの距離x1を計算値x12とし、終端12から故障点Gまでの距離x2を計算値x22として求める。すなわち、故障相電流検出器18で検出した電流I1を用いることなく、健全相電流検出器19で検出した健全相電流I2を用いて(19)式及び(25)式により、計算値x12及び計算値x22を求めるので、故障相電流検出器18を設ける必要がない。そこで、図7に示した第3実施形態の一例に対し故障相電流検出器18を削除した。これにより、電流検出器の軽減が図れる。
In the third embodiment, the distance x1 from the
以上の第3実施形態の説明では、単相2線式の電力回路に適用した場合について説明したが、第1実施形態や第2実施形態の場合と同様に、三相3線式、三相4線式、単相3線式、直流2線式にも適用できる。 In the above description of the third embodiment, the case where it is applied to the single-phase two-wire system power circuit has been described, but as in the case of the first embodiment and the second embodiment, the three-phase three-wire system and the three-phase system have been described. It can also be applied to a 4-wire system, a single-phase 3-wire system, and a DC 2-wire system.
第3実施形態によれば、検出誤差の影響を受けにくい健全相電流I2を用いて、送電端11から故障点Gまでの距離x1の計算値x12、終端12から故障点Gまでの距離x2の計算値x22を求めるので、より精度よく故障点Gまでの距離を計算できる。
<第4実施形態>
次に、本発明の第4実施形態を説明する。第1実施形態乃至第3実施形態では、故障相電流検出器18、健全相電流検出器19、兼用電流検出器23として、内部抵抗が小さい電流検出器を採用した。これにより、故障相電流検出器18や健全相電流検出器19の内部抵抗の大きさにより第1分流回路や第2分流回路に流れる電流の分流比が影響を受けることがなく、故障相電流I1と健全相電流I2とを検出できる。しかし、内部抵抗が小さい電流検出器として、例えばフラックスゲート型電流検出器を用いた場合、フラックスゲート型電流検出器には検出精度に限界があり、個体差による検出誤差がある。そこで、本発明の第4実施形態では、差動式フラックスゲート型電流検出器を採用することにした。
According to the third embodiment, the calculated value x12 of the distance x1 from the
<Fourth Embodiment>
Next, a fourth embodiment of the present invention will be described. In the first to third embodiments, a current detector having a small internal resistance is adopted as the faulty phase
図10は本発明の第4実施形態に係る故障点距離検出装置を三相3線式の電力回路に適用した一例の構成図である。この第4実施形態の一例は図1に示した第1実施形態に対し、故障相電流検出器(内部抵抗が小さい電流検出器)18及び健全相電流検出器(内部抵抗が小さい電流検出器)19に代えて差電流検出器(差動式フラックスゲート型電流検出器)24を設けたものである。図10では、図1の場合と同様に、故障相はT相、健全相はR相及びS相であり、故障相であるT相と健全相であるS相とを短絡装置17で短絡した場合を示している。図1と同一要素には同一符号を付し重複する説明は省略する。
FIG. 10 is a configuration diagram of an example in which the failure point distance detection device according to the fourth embodiment of the present invention is applied to a three-phase three-wire power circuit. An example of this fourth embodiment is a fault phase current detector (current detector with a small internal resistance) 18 and a healthy phase current detector (current detector with a small internal resistance) with respect to the first embodiment shown in FIG. Instead of 19, a differential current detector (differential flux gate type current detector) 24 is provided. In FIG. 10, as in the case of FIG. 1, the faulty phase is the T phase, the healthy phase is the R phase and the S phase, and the faulty phase T phase and the healthy phase S phase are short-circuited by the short-
図10において、差電流検出器24は差動式磁場検出型の電流検出器(差動式フラックスゲート型電流検出器)であり、微小直流電流を検出できるものである。すなわち、差電流検出器24は内部抵抗が事実上ゼロである電流検出器であり、故障相電流I1と健全相電流I2とを逆向きに入力して、故障相電流I1と健全相電流I2との差電流I12を検出する。差電流I12は下記(32)式で示される。
In FIG. 10, the differential
I12=I1-I2 …(32)
差電流検出器24は内部抵抗が事実上ゼロであることから微少な電流であっても精度良く検出できる。故障相電流I1は、直流電源装置15から故障点Gを通り故障点Gで分岐して故障相を通り直流電源装置15に戻る第1地絡回路に流れる電流であり、健全相電流I2は、直流電源装置15から故障点Gを通り故障点Gで分岐して健全相を通り直流電源装置15に戻る第2地絡回路に流れる電流である。従って、故障点Gの故障抵抗Rgが大きい場合は故障相電流I1及び健全相電流I2は微少な電流であるが、差電流検出器24は故障相電流I1と健全相電流I2との差電流I12を精度良く検出できる。
I12 = I1-I2 ... (32)
Since the difference
合計電流検出器20は差電流検出器24を通過した故障相電流I1と健全相電流I2とを入力し、故障相電流I1と健全相電流I2との和の合計電流I3を検出する。合計電流検出器20は直流電源装置15に直列に入っており、第1分流回路や第2分流回路に接続されるものではないので分流比が問題になることがない。
The total
距離計算装置21は、差電流検出器24で検出された差電流I12と合計電流検出器20で検出された合計電流I3とを入力し、これらの電流に基づいて、三相電力線の送電端11から故障点Gまでの距離x1、三相電力線の終端12から故障点までの距離x2を計算する。
The
(32)式のI1に(10)式で示されるI1を代入し、I2に(11)式で示されるI1を代入すると、差電流I12は下記(33)式で示される。 Substituting I1 represented by the formula (10) into I1 of the formula (32) and substituting I1 represented by the formula (11) into I2, the difference current I12 is represented by the following formula (33).
I12={(Rt2+Rs-Rt1)/(Rt1+Rt2+Rs)}・I3 …(33)
ここで、Rsは(4)式よりr・L、Rt1は(5)式よりr・x1、Rt2は(6)式よりr・x2、r・x1+r・x2は(3)式よりr・Lであるので、これらを(33)式に代入すると(34)式が得られる。
I12 = {(Rt2 + Rs-Rt1) / (Rt1 + Rt2 + Rs)} · I3 ... (33)
Here, Rs is r · L from the formula (4), Rt1 is r · x1 from the formula (5), Rt2 is r · x2 from the formula (6), and r · x1 + r · x2 is r · L from the formula (3). Therefore, by substituting these into the equation (33), the equation (34) is obtained.
I12={L+(x2-x1)/2L}・I3 …(34)
(3)式よりx2=L-x1であるので、これを(34)式に代入すると(35)式が得られる。
I12 = {L + (x2-x1) / 2L} ・ I3 ... (34)
Since x2 = L-x1 from the equation (3), the equation (35) can be obtained by substituting this into the equation (34).
I12=(1-x1/L)}・I3 …(35)
いま、差電流I12/合計電流I3を第3指標値E3とする。そして、(35)式に(I12/I3)=E3を代入し、送電端から故障点までの距離x1について解くと(36)式が得られる。この(36)式で得られた計算値x1を送電端から故障点Gまでの距離x1とする。
I12 = (1-x1 / L)} ・ I3 ... (35)
Now, let the difference current I12 / total current I3 be the third index value E3. Then, by substituting (I12 / I3) = E3 into the equation (35) and solving the distance x1 from the power transmission end to the failure point, the equation (36) is obtained. The calculated value x1 obtained by the equation (36) is defined as the distance x1 from the power transmission end to the failure point G.
x1=L・(1-E3)…(36)
次に、電力回路の終端12から故障点Gまでの距離x2は、電力回路の送電端11から故障点Gまでの距離x1を求める場合の(34)式を得るまでは同じである。(34)式に(3)式より得られるx1=L-x2を代入すると(37)式が得られる。
x1 = L · (1-E3) ... (36)
Next, the distance x2 from the
I12=(x2/L)・I3 …(37)
そして、(37)式に(I12/I3)=E3を代入し、電力回路の終端12から故障点までの距離x2について解くと(38)式が得られる。この(38)式で得られた計算値x2を電力回路の終端12から故障点Gまでの距離x2とする。
I12 = (x2 / L) ・ I3 ... (37)
Then, by substituting (I12 / I3) = E3 into the equation (37) and solving the distance x2 from the
x2=L・E3…(38)
以上の説明では、故障相がT相であり健全相がR相S相である場合に、故障相のT相と健全相のS相とを用いて、三相電力線の送電端11から故障点Gまでの距離x1及び三相電力線の終端12から故障点Gまでの距離x2を計算する場合について説明したが、図11に示すように、健全相のS相に代えて健全相のR相を用い、故障相のT相と健全相のR相とを用いて距離x1及び距離x2を計算するようにしても良い。
x2 = L ・ E3 ... (38)
In the above description, when the faulty phase is the T phase and the healthy phase is the R phase and the S phase, the fault point is from the
さらには、故障相のT相と健全相のR相とを用いて計算した距離x1、x2、故障相のT相と健全相のS相とを用いて計算した距離x1、x2をそれぞれ計算し、これらの平均値を取るようにしても良い。1つの健全相だけでなく2つの健全相に対して、距離x1、x2を計算するので、R相の電力線の直流抵抗Rr、S相の電力線の直流抵抗Rs、T相の電力線の直流抵抗Rtの直流抵抗値にばらつきがある場合に、そのばらつきを補正できる。 Furthermore, the distances x1 and x2 calculated using the T phase of the faulty phase and the R phase of the healthy phase, and the distances x1 and x2 calculated using the T phase of the faulty phase and the S phase of the healthy phase are calculated, respectively. , You may try to take the average value of these. Since the distances x1 and x2 are calculated for not only one healthy phase but also two healthy phases, the DC resistance Rr of the R phase power line, the DC resistance Rs of the S phase power line, and the DC resistance Rt of the T phase power line. If there is a variation in the DC resistance value of, the variation can be corrected.
また、以上の説明では、三相3線式の電力回路に適用した場合について説明したが、三相4線式の電力回路、単相2線式の電力回路、単相3線式の電力回路、直流2線式の電力回路にも適用できる。三相4線式の電力回路、単相2線式の電力回路、単相3線式の電力回路、直流2線式の電力回路への適用は第1実施形態の場合と同様であるので説明は省略する。 Further, in the above description, the case where it is applied to a three-phase three-wire power circuit has been described, but a three-phase four-wire power circuit, a single-phase two-wire power circuit, and a single-phase three-wire power circuit have been described. It can also be applied to a DC 2-wire power circuit. The application to a three-phase four-wire power circuit, a single-phase two-wire power circuit, a single-phase three-wire power circuit, and a DC two-wire power circuit is the same as in the case of the first embodiment. Is omitted.
図12は合計電流検出器20と差電流検出器24との試験調整と精度のマッチングを行う整合試験回路の回路図である。図12では、本発明の第4実施形態に係る故障点距離検出装置を単相2線式の電力回路に適用した場合を示しており、故障点距離検出の対象の電力回路の送電端11より先の終端側の図示を省略している。
FIG. 12 is a circuit diagram of a matching test circuit for performing test adjustment and accuracy matching between the total
図12に示すように、整合試験回路は単相2線式の電力回路に対し、差電流検出器24を通った故障相電流I1が合流点Bを経由して直流電源装置15のマイナス端子に戻る経路の合流点Bの手前にスイッチS1を設ける。また、故障相電流I1とは逆向きに健全相電流I2を差電流検出器24に導く経路から分岐してスイッチS1及び合流点Bを経由して直流電源装置15のマイナス端子に戻る経路のスイッチS1の手前にスイッチS2を設ける。さらに、直流電源装置15と送電端11の手前の故障相との間にスイッチS3を設け、直流電源装置15と送電端11の手前の健全相との間にスイッチS4を設ける。
As shown in FIG. 12, in the matching test circuit, the faulty phase current I1 passing through the difference
そして、合計電流検出器20と差電流検出器24との試験調整と精度の整合試験は、故障点距離検出の対象の電力回路の送電端11の故障相と健全相とを開放した状態で行う。図12では送電端11の故障相と健全相とを開放したことを×印で示している。表1に整合試験及び実測時のスイッチS1~S4の開閉状態のパターンを示す。
Then, the test adjustment and the accuracy matching test between the total
パターン1は、スイッチS1、S2、S3が開、スイッチS4が閉である状態であり、差電流検出器(A12)24には直流電源装置15から直接試験用の健全相電流I2がマイナス方向(故障相電流I1とは逆向き方向)から流れ込む状態を示している。すなわち、差電流検出器(A12)24にはI2(-)が流れ、差電流検出器(A12)24が検出する電流はI2であり、故障電流I1は差電流検出器(A12)24には流れないことから、合計電流検出器(A3)20が検出する電流もI2であることを示している。
In
測定誤差e21=測定値A12-真値A3であり、差電流検出器(A12)24が検出する電流はI2(-)、合計電流検出器(A3)20が検出する電流はI3であるから、差電流検出器(A12)24の誤差e21は、{e21=A12-A3=I2(-)-I3}である。従って、差電流検出器(A12)24が検出する電流I2(-)と合計電流検出器(A3)20が検出する電流I3とが等しくI2である場合、つまり(-A12=A3=I2)である場合には、差電流検出器(A12)24の誤差e21は0である。 Since the measurement error e21 = the measured value A12-the true value A3, the current detected by the difference current detector (A12) 24 is I2 (-), and the current detected by the total current detector (A3) 20 is I3. The error e21 of the difference current detector (A12) 24 is {e21 = A12-A3 = I2 (-)-I3}. Therefore, when the current I2 (-) detected by the difference current detector (A12) 24 and the current I3 detected by the total current detector (A3) 20 are equal to I2, that is, (-A12 = A3 = I2). In some cases, the error e21 of the difference current detector (A12) 24 is zero.
パターン2は、スイッチS1、S3が閉、スイッチS2、S4が開である状態であり、差電流検出器(A12)24には直流電源装置15から直接試験用の故障相電流I1がプラス方向(逆向きの健全相電流I2とは逆向き方向、つまり順方向)から流れ込む状態を示している。すなわち、差電流検出器(A12)24にはI1(+)が流れ、差電流検出器(A12)24が検出する電流はI1であり、健全相電流I2は差電流検出器(A12)24には流れないことから、合計電流検出器(A3)20が検出する電流もI1であることを示している。
In the pattern 2, the switches S1 and S3 are closed and the switches S2 and S4 are open, and the fault phase current I1 for the test is directly connected to the difference current detector (A12) 24 from the DC
測定誤差e21=測定値A12-真値A3であり、差電流検出器(A12)24が検出する電流はI1(+)、合計電流検出器(A3)20が検出する電流はI3であるから、差電流検出器(A12)24の誤差e12は、{e12=A12-A3=I1(+)-I3}である。従って、差電流検出器(A12)24が検出する電流値I(+)と合計電流検出器(A3)20が検出する電流I3とが等しくI1である場合、つまり、(A12=A3=I1)である場合には、差電流検出器(A12)24の誤差e12は0である。 Since the measurement error e21 = the measured value A12-the true value A3, the current detected by the difference current detector (A12) 24 is I1 (+), and the current detected by the total current detector (A3) 20 is I3. The error e12 of the difference current detector (A12) 24 is {e12 = A12-A3 = I1 (+)-I3}. Therefore, when the current value I (+) detected by the difference current detector (A12) 24 and the current I3 detected by the total current detector (A3) 20 are equal to I1, that is, (A12 = A3 = I1). If, the error e12 of the difference current detector (A12) 24 is 0.
パターン3は、スイッチS1、S4が開、スイッチS2、S3が閉である状態であり、差電流検出器(A12)24には直流電源装置15から直接試験用の故障相電流I1がプラス方向から流れ込み、かつ、スイッチS2を通り逆方向の健全相電流I2(-)となって差電流検出器(A12)24に流れ込む状態を示している。すなわち、差電流検出器(A12)24にはI1(+)及びI2(-)が流れ、差電流検出器(A12)24が検出する電流はI1(+)+I2(-)=0であり、合計電流検出器(A3)20が検出する電流はI1(=12)であることを示している。
In the
差電流検出器(A12)24の誤差e1221は、測定誤差e1221=測定値A12-真値A3であり、差電流検出器(A12)24が検出する電流はI1(+)+I2(-)、合計電流検出器(A3)20が検出する電流はI3であるから、[e1221=A3-A12=I3-{I2(-)+I(+)}]である。従って、差電流検出器(A12)24が検出する電流値{I2(-)+I(+)}が0である場合、つまり、(A12=0)である場合には、差電流検出器(A12)24の誤差e1221は0である。 The error e1221 of the difference current detector (A12) 24 is the measurement error e1221 = measured value A12-true value A3, and the current detected by the difference current detector (A12) 24 is I1 (+) + I2 (-), total. Since the current detected by the current detector (A3) 20 is I3, it is [e1221 = A3-A12 = I3- {I2 (−) + I (+)}]. Therefore, when the current value {I2 (−) + I (+)} detected by the difference current detector (A12) 24 is 0, that is, when (A12 = 0), the difference current detector (A12) The error e1221 of) 24 is 0.
パターン4は、図12に示した送電端11の故障相と健全相とを電力回路に接続し、スイッチS1が閉、スイッチS2、S3、S4が開である状態であり、差電流検出器(A12)24には、直流電源装置15から故障点Gを経由した実際の故障相電流I1がプラス方向から流れ込み、かつ、直流電源装置15から故障点Gを経由した実際の健全相電流I2がマイナス方向から流れ込む状態を示している。すなわち、差電流検出器(A12)24には実際のI1(+)及びI2(-)が流れ、差電流検出器(A12)24が検出する電流はI1(+)+I2(-)であり、合計電流検出器(A3)20が検出する電流はI1(+)+12(-)であることを示している。
In
差電流検出器(A12)24の検出精度のマッチングは、差電流検出器(A12)24の誤差e1221に対しては、(36)式のE3(=I12/I3)のI12に、I12から誤差e1221を減算した(I12-e1221)を代入して得られる(39)式で送電端11から故障点Gまでの距離x1を算出して求めることにより行う。
The matching of the detection accuracy of the difference current detector (A12) 24 is an error from I12 to I12 of E3 (= I12 / I3) in Eq. (36) for the error e1221 of the difference current detector (A12) 24. It is performed by calculating and obtaining the distance x1 from the
x1=L・{1-(I12-e1221)/I3}…(39)
同様に、終端12から故障点Gまでの距離x2は、(38)式のE3(=I12/I3)のI12に、I12から誤差e1221を減算した(I12-e1221)を代入して得られる(40)式で算出して求めることにより、差電流検出器(A12)24の検出精度のマッチングを図る。
x1 = L · {1- (I12-e1221) / I3} ... (39)
Similarly, the distance x2 from the terminal 12 to the failure point G is obtained by substituting (I12-e1221), which is obtained by subtracting the error e1221 from I12, into I12 of E3 (= I12 / I3) in the equation (38). By calculating and obtaining by the formula 40), the detection accuracy of the difference current detector (A12) 24 is matched.
x2=L・(I12-e1221)/I3…(40)
これにより、合計電流検出器(A3)20は、故障点Gを経由した実際の故障相電流I1及び故障点Gを経由した実際の健全相電流I2の合計電流I3を精度よく検出できる。
x2 = L · (I12-e1221) / I3 ... (40)
As a result, the total current detector (A3) 20 can accurately detect the total current I3 of the actual fault phase current I1 via the fault point G and the actual healthy phase current I2 via the fault point G.
以上の説明では、単相2線式の電力回路に適用した整合試験回路を示したが、三相3線式の電力回路、三相4線式の電力回路、単相3線式の電力回路、直流2線式回路についても同様に整合試験回路を適用できる。
In the above explanation, the matching test circuit applied to the single-phase two-wire type power circuit is shown, but the three-phase three-wire type power circuit, the three-phase four-wire type power circuit, and the single-phase three-wire type power circuit are shown. Similarly, the matching test circuit can be applied to the DC 2-wire circuit.
本発明の第4実施形態によれば、差電流検出器24の電流検出の原理が磁場検出による非接触形であるから内部抵抗が無い。また、本発明の第4実施形態では第1実施形態の故障相電流検出器18、健全相電流検出器19に代えて、故障相電流検出器18、健全相電流検出器19を単純に1台ごと2台の磁場検出型の電流検出器(フラックスゲート型電流検出器)に代えるのではなくて、1台の差動式磁場検出型の電流検出器(差動式フラックスゲート型電流検出器)とし、故障相電流I1と健全相電流I2との差電流I12を検出するので電流検出器の各々の個体誤差がない。
According to the fourth embodiment of the present invention, since the principle of current detection of the differential
つまり、1台の差電流検出器24で検出される故障相電流I1と健全相電流I2との差電流I12を使用して、故障相の送電端11から故障点Gまでの距離x1と終端12から故障点Gまでの距離x2を算出するので、精度よく故障点Gまでの距離x1、x2を計算できる。合計電流検出器20は分流回路に接続されるものではないので分流比に影響を与えず問題になることがない。従って、内部抵抗の小さい電流検出器を採用しなくてもよい。
<第5実施形態>
次に、本発明の第5実施形態を説明する。第5実施形態は第1実施形態乃至第3実施形態で計算した送電端11から故障点Gまでの距離x1の計算値と、終端12から故障点Gまでの距離x2の計算値を補正演算するようにしたものである。
That is, the distance x1 from the
<Fifth Embodiment>
Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, the calculated value of the distance x1 from the
第1実施形態及び第2実施形態では、送電端11から故障点Gまでの距離x1を計算値x11と計算値x12との平均値として求め、終端12から故障点Gまでの距離x2を計算値x21と計算値x22との平均値として求め、第3実施形態では送電端11から故障点Gまでの距離x1を計算値x12として求め、終端12から故障点Gまでの距離x2を計算値x22として求めたが、送電端11から故障点Gまでの距離x1の計算値と、終端12から故障点Gまでの距離x2の計算値との和が送電端11から終端12までの電力線の距離Lに対して過不足する場合には、送電端11から故障点Gまでの距離x1と終端12から故障点Gまでの距離x2との和が送電端11から終端12までの電力線の距離Lとなるように補正計算する。
In the first embodiment and the second embodiment, the distance x1 from the
すなわち、送電端11から故障点Gまでの距離x1と終端12から故障点Gまでの距離x2との和(x1+x2)が送電端11から終端12までの電力線の距離Lよりα1だけ大きいときは、α1/2だけ、計算値x1及び計算値x2より引き算して送電端11から故障点Gまでの距離x1及び終端12から故障点までの距離x2を求める。これにより、距離x1と距離x2との和が電力線の距離Lと等しくなり、故障点までの距離の精度が向上する。
That is, when the sum (x1 + x2) of the distance x1 from the
一方、送電端11から故障点Gまでの距離x1と終端12から故障点Gまでの距離x2との和(x1+x2)が送電端11から終端12までの電力線の距離Lよりα2だけ小さいときは、α2/2だけ、計算値x1及び計算値x2に足し算して送電端11から故障点Gまでの距離x1及び終端12から故障点Gまでの距離x2を求める。これにより、距離x1と距離x2との和が電力線の距離Lと等しくなり、故障点までの距離の精度が向上する。
On the other hand, when the sum (x1 + x2) of the distance x1 from the
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
11…送電端、12…終端、13…絶縁抵抗計、14…電流計、15…直流電源装置、16…可変抵抗、17…短絡装置、18…故障相電流検出器、19…健全相電流検出器、20…合計電流検出器、21…距離計算装置、22…切替装置、23…兼用電流検出器、24…差電流検出器 11 ... Transmission end, 12 ... Termination, 13 ... Insulation resistance tester, 14 ... Ammeter, 15 ... DC power supply device, 16 ... Variable resistance, 17 ... Short circuit device, 18 ... Failure phase current detector, 19 ... Sound phase current detection Instrument, 20 ... Total current detector, 21 ... Distance calculation device, 22 ... Switching device, 23 ... Combined current detector, 24 ... Difference current detector
Claims (6)
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路に流れる故障相電流I1を検出する故障相電流検出器と、
前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路に流れる健全相電流I2を検出する健全相電流検出器と、
前記故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記故障相電流検出器及び前記健全相電流検出器は内部抵抗が前記電力線の抵抗値より小さい電流計であり、
前記故障相電流I1/前記合計電流I3を第1指標値E1、前記健全相電流I2/前記合計電流I3を第2指標値E2、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記の(a)式及び(b)式でそれぞれ別個に計算し、
x11=2L・(1-E1)…(a)、x12=2L・E2…(b)
前記送電端から前記故障点までの距離x1を計算値x11と計算値x12との平均値として求め、
前記終端から前記故障点までの距離x2を下記の(c)式及び(d)式でそれぞれ別個に計算し、
x21=L・(2E1-1)…(c)、x22=L・(1-2E2)…(d)
前記終端から前記故障点までの距離x2を計算値x21と計算値x22との平均値として求めることを特徴とする故障点距離検出装置。 When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-phase 3 In the case of the linear system, the end of one of the failed phase and the healthy phase of the three-phase power lines is short-circuited with the three-phase three-wire system power circuit stopped, and the power is short-circuited. When the circuit is a three-phase four-wire system, the faulty phase of the three-phase power lines and one of the healthy phase and the neutral wire are used with the three-phase four-wire system power circuit stopped. When the end of one phase of the above is short-circuited and the power circuit is a single-phase two-wire system or a DC two-wire system, the power circuit of the single-phase two-wire system or the DC two-wire system is stopped. When the faulty phase and the end of the healthy phase are short-circuited and the power circuit is a single-phase three-wire system, the faulty phase, the healthy phase, and the sound phase are described while the power circuit of the single-phase three-wire system is stopped. A short-circuit device that short-circuits the end of one of the neutral wires, and
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the DC power supply device passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the failure phase, and passes through the confluence point on the transmission end side. A fault phase current detector that detects the fault phase current I1 flowing through the first ground fault circuit that returns to the negative terminal of
From the positive terminal of the DC power supply device, the DC power supply passes through the failure point, branches at the failure point, passes through the termination of the failure phase and the short-circuit device, passes through the healthy phase, and passes through the confluence point on the transmission end side. A healthy phase current detector that detects the healthy phase current I2 flowing through the second ground fault circuit that returns to the negative terminal of the device, and
A total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The faulty phase current detector and the healthy phase current detector are ammeters whose internal resistance is smaller than the resistance value of the power line.
The faulty phase current I1 / the total current I3 is defined as the first index value E1, the healthy phase current I2 / the total current I3 is defined as the second index value E2, and the distance of the power line from the transmission end to the end is L. When
The distance x1 from the power transmission end to the failure point is calculated separately by the following equations (a) and (b), respectively.
x11 = 2L · (1-E1) ... (a), x12 = 2L · E2 ... (b)
The distance x1 from the power transmission end to the failure point is obtained as the average value of the calculated value x11 and the calculated value x12.
The distance x2 from the end point to the failure point is calculated separately by the following equations (c) and (d), respectively.
x21 = L · (2E1-1) ... (c), x22 = L · (1-2E2) ... (d)
A failure point distance detecting device, characterized in that the distance x2 from the end to the failure point is obtained as an average value of a calculated value x21 and a calculated value x22.
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路と前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路とを前記電力線の送電端において切り替える切替装置と、
前記切替装置での前記第1地絡回路と前記第2地絡回路との切り替えにより前記第1地絡回路に接続されたときは前記第1地絡回路に流れる故障相電流I1を検出し前記第2地絡回路に接続されたときは前記第2地絡回路に流れる健全相電流I2を検出する兼用電流検出器と、
前記兼用電流検出器は内部抵抗が前記電力線の抵抗値より小さい電流計であり、
前記故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記故障相電流I1/前記合計電流I3を第1指標値E1、前記健全相電流I2/前記合計電流I3を第2指標値E2、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記の(a)式及び(b)式でそれぞれ別個に計算し、
x11=2L・(1-E1)…(a)、x12=2L・E2…(b)
前記送電端から前記故障点までの距離x1を計算値x11と計算値x12との平均値として求め、
前記終端から前記故障点までの距離x2を下記の(c)式及び(d)式でそれぞれ別個に計算し、
x21=L・(2E1-1)…(c)、x22=L・(1-2E2)…(d)
前記終端から前記故障点までの距離x2を計算値x21と計算値x22との平均値として求めることを特徴とする故障点距離検出装置。 When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-phase 3 In the case of the linear system, the end of one of the failed phase and the healthy phase of the three-phase power lines is short-circuited with the three-phase three-wire system power circuit stopped, and the power is short-circuited. When the circuit is a three-phase four-wire system, the faulty phase of the three-phase power lines and one of the healthy phase and the neutral wire are used with the three-phase four-wire system power circuit stopped. When the end of one phase of the above is short-circuited and the power circuit is a single-phase two-wire system or a DC two-wire system, the power circuit of the single-phase two-wire system or the DC two-wire system is stopped. When the faulty phase and the end of the healthy phase are short-circuited and the power circuit is a single-phase three-wire system, the faulty phase, the healthy phase, and the sound phase are described while the power circuit of the single-phase three-wire system is stopped. A short-circuit device that short-circuits the end of one of the neutral wires, and
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the DC power supply device passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the failure phase, and passes through the confluence point on the power transmission end side. The first ground fault circuit returning to the negative terminal and the positive terminal of the DC power supply device pass through the failure point, branch at the failure point, pass through the termination of the failure phase and the short circuit device, and pass through the healthy phase. A switching device that switches the second ground fault circuit that passes through the confluence on the power transmission end side and returns to the negative terminal of the DC power supply device at the power transmission end of the power line.
When connected to the first ground fault circuit by switching between the first ground fault circuit and the second ground fault circuit in the switching device, the fault phase current I1 flowing in the first ground fault circuit is detected and said. A combined current detector that detects the healthy phase current I2 flowing in the second ground fault circuit when connected to the second ground fault circuit, and
The combined current detector is an ammeter whose internal resistance is smaller than the resistance value of the power line.
A total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The faulty phase current I1 / the total current I3 is defined as the first index value E1, the healthy phase current I2 / the total current I3 is defined as the second index value E2, and the distance of the power line from the transmission end to the end is L. When
The distance x1 from the power transmission end to the failure point is calculated separately by the following equations (a) and (b), respectively.
x11 = 2L · (1-E1) ... (a), x12 = 2L · E2 ... (b)
The distance x1 from the power transmission end to the failure point is obtained as the average value of the calculated value x11 and the calculated value x12.
The distance x2 from the end point to the failure point is calculated separately by the following equations (c) and (d), respectively.
x21 = L · (2E1-1) ... (c), x22 = L · (1-2E2) ... (d)
A failure point distance detecting device, characterized in that the distance x2 from the end to the failure point is obtained as an average value of a calculated value x21 and a calculated value x22.
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路に流れる健全相電流I2を検出する健全相電流検出器と、
前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路に流れる故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記健全相電流検出器は内部抵抗が前記電力線の抵抗値より小さい電流計であり、
前記健全相電流I2/前記合計電流I3を第2指標値E2、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記(b)式で計算し、
x12=2L・E2…(b)
前記送電端から前記故障点までの距離x1を計算値x12として求め、
前記終端から前記故障点までの距離x2を下記(d)式で計算し、
x22=L・(1-2E2)…(d)
前記終端から前記故障点までの距離x2を計算値x22として求めることを特徴とする故障点距離検出装置。 When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-phase 3 In the case of the linear system, the end of one of the failed phase and the healthy phase of the three-phase power lines is short-circuited with the three-phase three-wire system power circuit stopped, and the power is short-circuited. When the circuit is a three-phase four-wire system, the faulty phase of the three-phase power lines and one of the healthy phase and the neutral wire are used with the three-phase four-wire system power circuit stopped. When the end of one phase of the above is short-circuited and the power circuit is a single-phase two-wire system or a DC two-wire system, the power circuit of the single-phase two-wire system or the DC two-wire system is stopped. When the faulty phase and the end of the healthy phase are short-circuited and the power circuit is a single-phase three-wire system, the faulty phase, the healthy phase, and the sound phase are described while the power circuit of the single-phase three-wire system is stopped. A short-circuit device that short-circuits the end of one of the neutral wires, and
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the power transmission passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the termination of the failure phase and the short-circuit device, and passes through the healthy phase. A healthy phase current detector that detects the healthy phase current I2 flowing through the second ground fault circuit that passes through the confluence on the end side and returns to the negative terminal of the DC power supply unit.
A first ground fault circuit that passes from the positive terminal of the DC power supply device, passes through the failure point, branches at the failure point, passes through the failure phase, passes through the confluence point on the transmission end side, and returns to the minus terminal of the DC power supply device. The total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The healthy phase current detector is an ammeter whose internal resistance is smaller than the resistance value of the power line.
When the healthy phase current I2 / the total current I3 is the second index value E2 and the distance of the power line from the transmission end to the end is L.
The distance x1 from the power transmission end to the failure point is calculated by the following equation (b).
x12 = 2L ・ E2 ... (b)
The distance x1 from the power transmission end to the failure point is obtained as a calculated value x12.
The distance x2 from the end point to the failure point is calculated by the following equation (d).
x22 = L · (1-2E2) ... (d)
A failure point distance detecting device, characterized in that the distance x2 from the end point to the failure point is obtained as a calculated value x22.
プラス端子が大地に接地されマイナス端子が前記電力線の終端において前記短絡装置で短絡された電力線の送電端に接続され前記電力線の送電端からマイナスの直流電圧を印加する直流電源装置と、
前記直流電源装置のプラス端子から前記故障が発生した電力線の故障位置である故障点を通り前記故障点で分岐して前記故障相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第1地絡回路に流れる故障相電流I1と前記直流電源装置のプラス端子から前記故障点を通り前記故障点で分岐して前記故障相の終端及び前記短絡装置を通り前記健全相を経由して前記送電端側の合流点を通り前記直流電源装置のマイナス端子に戻る第2地絡回路に流れる健全相電流I2との差電流I12を検出する差電流検出器と、
前記故障相電流I1と前記健全相電流I2との和の合計電流I3を検出する合計電流検出器とを備え、
前記差電流検出器は前記故障相電流I1と前記健全相電流I2とを逆向きに入力して前記故障相電流I1と前記健全相電流I2との差電流I12を検出する差動式磁場検出型の電流検出器であり、
前記差電流I12/前記合計電流I3を第3指標値E3、前記送電端から前記終端までの前記電力線の距離をLとしたとき、
前記送電端から前記故障点までの距離x1を下記(e)式で計算し、
x1=L・(1-E3)…(e)
前記終端から前記故障点までの距離x2を下記(f)式で計算し、
x2=L・E3…(f)
前記送電端から前記故障点までの距離x1及び前記終端から前記故障点までの距離x2を求めることを特徴とする故障点距離検出装置。 When it is detected that a failure has occurred between the power line of the power circuit and the ground, the power line in which the failure has occurred is set as the failure phase, the power line in which the failure has not occurred is set as the healthy phase, and the power circuit is three-phase 3 In the case of the linear system, the end of one of the failed phase and the healthy phase of the three-phase power lines is short-circuited with the three-phase three-wire system power circuit stopped, and the power is short-circuited. When the circuit is a three-phase four-wire system, the faulty phase of the three-phase power lines and one of the healthy phase and the neutral wire are used with the three-phase four-wire system power circuit stopped. When the end of one phase of the above is short-circuited and the power circuit is a single-phase two-wire system or a DC two-wire system, the power circuit of the single-phase two-wire system or the DC two-wire system is stopped. When the faulty phase and the end of the healthy phase are short-circuited and the power circuit is a single-phase three-wire system, the faulty phase, the healthy phase, and the sound phase are described while the power circuit of the single-phase three-wire system is stopped. A short-circuit device that short-circuits the end of one of the neutral wires, and
A DC power supply device in which the positive terminal is grounded to the ground and the negative terminal is connected to the power transmission end of the power line short-circuited by the short-circuit device at the end of the power line to apply a negative DC voltage from the power transmission end of the power line.
From the positive terminal of the DC power supply device, the DC power supply device passes through the failure point, which is the failure position of the power line in which the failure occurred , branches at the failure point, passes through the failure phase, and passes through the confluence point on the transmission end side. The faulty phase current I1 flowing through the first ground fault circuit returning to the negative terminal of the current and the positive terminal of the DC power supply device pass through the fault point, branch at the fault point, and pass through the termination of the fault phase and the short circuit device to be sound. A differential current detector that detects the differential current I12 from the healthy phase current I2 that flows through the second ground fault circuit that passes through the confluence point on the transmission end side via the phase and returns to the negative terminal of the DC power supply device.
A total current detector for detecting the total current I3, which is the sum of the faulty phase current I1 and the healthy phase current I2, is provided.
The differential current detector is a differential magnetic field detection type that detects the difference current I12 between the faulty phase current I1 and the healthy phase current I2 by inputting the faulty phase current I1 and the healthy phase current I2 in opposite directions. Current detector,
When the difference current I12 / the total current I3 is the third index value E3 and the distance of the power line from the transmission end to the end is L.
The distance x1 from the power transmission end to the failure point is calculated by the following equation (e).
x1 = L · (1-E3) ... (e)
The distance x2 from the end point to the failure point is calculated by the following equation (f).
x2 = L ・ E3 ... (f)
A failure point distance detecting device for obtaining a distance x1 from the power transmission end to the failure point and a distance x2 from the end to the failure point.
In the failure point distance detecting device according to any one of claims 1 to 4, the sum of the distance x1 from the transmission end to the failure point and the distance x2 from the end to the failure point (x1 + x2). Is greater than the distance L of the power line from the transmission end 11 to the terminal 12 by α1. The distance x2 to the failure point is obtained, while the sum (x1 + x2) of the distance x1 from the transmission end 11 to the failure point G and the distance x2 from the end point 12 to the failure point G is the power line from the transmission end 11 to the end point 12. When it is smaller than the distance L by α2, add only α2 / 2 to the calculated value x1 and the calculated value x2 to obtain the distance x1 from the transmission end 11 to the failure point G and the distance x2 from the terminal 12 to the failure point G. A featured failure point distance detector.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019178158 | 2019-09-30 | ||
JP2019178158 | 2019-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021056203A JP2021056203A (en) | 2021-04-08 |
JP7039149B2 true JP7039149B2 (en) | 2022-03-22 |
Family
ID=75270525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020020255A Active JP7039149B2 (en) | 2019-09-30 | 2020-02-10 | Failure point distance detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7039149B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021196334A (en) * | 2020-06-12 | 2021-12-27 | 希望 田中 | High-speed and high-precision exploration system for cable leakage point |
CN114047402A (en) * | 2021-07-08 | 2022-02-15 | 国网浙江省电力有限公司双创中心 | Phase current phase difference-based power distribution network single-phase earth fault line selection method |
CN115117861A (en) * | 2021-10-27 | 2022-09-27 | 保定钰鑫电气科技有限公司 | Method for processing interphase short circuit of dual-power three-phase power system |
CN117872031A (en) * | 2023-03-07 | 2024-04-12 | 王正洲 | Method for determining 10KV line fault by using direct-current single-arm bridge |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163914A (en) | 2013-02-28 | 2014-09-08 | Kansai Electric Power Co Inc:The | Accident point orientation device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5470033U (en) * | 1977-10-28 | 1979-05-18 | ||
JPS5626267A (en) * | 1979-08-11 | 1981-03-13 | Sumitomo Electric Ind Ltd | Detecting method of cable defect point |
JPS5744865A (en) * | 1980-08-28 | 1982-03-13 | Showa Electric Wire & Cable Co Ltd | Sensing method for fault point in cable |
JPS59218970A (en) * | 1983-05-28 | 1984-12-10 | Japanese National Railways<Jnr> | Method for ranging earthing point in high voltage distribution line of ac voltage superposing type |
JPS6413472A (en) * | 1987-07-08 | 1989-01-18 | Mitsubishi Cable Ind Ltd | Method for measuring accident point of cable |
JPH0354486A (en) * | 1989-07-24 | 1991-03-08 | Kansai Tec:Kk | Method and instrument for locating accident point |
JPH071297B2 (en) * | 1990-11-30 | 1995-01-11 | 津田電気計器株式会社 | Fault location method for high voltage distribution lines |
-
2020
- 2020-02-10 JP JP2020020255A patent/JP7039149B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163914A (en) | 2013-02-28 | 2014-09-08 | Kansai Electric Power Co Inc:The | Accident point orientation device |
Also Published As
Publication number | Publication date |
---|---|
JP2021056203A (en) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7039149B2 (en) | Failure point distance detector | |
CN109643890B (en) | Method and system for locating faults in hybrid transmission line | |
US3248646A (en) | Location of cable faults by comparing a section of the faulted cable with a part of the section | |
JP5743296B1 (en) | Leakage location exploration method and apparatus | |
CN110231540B (en) | Be used for false bipolar direct current transmission and distribution lines unipolar earth fault positioning system | |
JP4693564B2 (en) | Fault location device for AC AT feeder circuit | |
JP2007071774A (en) | Insulation measuring method and apparatus therefor | |
CN110402396A (en) | Detect leakage current detection device, method and the program of leakage current | |
CN107636481A (en) | The method and apparatus for debugging the voltage sensor and branch current sensor for branch road monitoring system | |
Pillai et al. | A review on testing and evaluating substation grounding systems | |
US4410850A (en) | Water-compensated open fault locator | |
JPS59135377A (en) | Method for evaluating grounding fault point of three- phase power transmission distribution line | |
EP0843823B1 (en) | Detection and location of current leakage paths | |
KR101954924B1 (en) | Uninterruptible insulation resistance measurement system and method | |
JP5636698B2 (en) | DC accident point inspection device | |
JP2010060329A (en) | Apparatus and method for measuring leakage current of electrical path and electric instrument | |
CN107957568A (en) | Secondary Circuit of Potential Transformer multipoint earthing Quick positioning instrument and lookup method | |
JP7155841B2 (en) | Exploration method | |
JPH07122651B2 (en) | Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line | |
KR101336860B1 (en) | Detecting apparatus for fault location of power line | |
JP6969079B2 (en) | Forced installation device, ground fault investigation device and method using it | |
Sun et al. | Fault location analysis of ungrounded distribution system based on residual voltage distribution | |
JP2609331B2 (en) | Accident point locator for parallel two-circuit power system | |
Kletsel et al. | The device for determining the distance to single phase fault on the power line | |
JP2005221404A (en) | Grounding accident detector and grounding accident detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220308 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7039149 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |