JP2014163914A - Accident point orientation device - Google Patents

Accident point orientation device Download PDF

Info

Publication number
JP2014163914A
JP2014163914A JP2013038096A JP2013038096A JP2014163914A JP 2014163914 A JP2014163914 A JP 2014163914A JP 2013038096 A JP2013038096 A JP 2013038096A JP 2013038096 A JP2013038096 A JP 2013038096A JP 2014163914 A JP2014163914 A JP 2014163914A
Authority
JP
Japan
Prior art keywords
surge
accident point
arrival time
underground cable
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013038096A
Other languages
Japanese (ja)
Other versions
JP6383523B2 (en
Inventor
Sachika Nishida
幸香 西田
Minoru Tanigochi
実 谷川内
Toshiharu Yamada
敏晴 山田
Eiji Itakura
英治 板倉
Yuki Shiino
有貴 椎野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Takaoka Toko Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Takaoka Toko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Takaoka Toko Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2013038096A priority Critical patent/JP6383523B2/en
Publication of JP2014163914A publication Critical patent/JP2014163914A/en
Application granted granted Critical
Publication of JP6383523B2 publication Critical patent/JP6383523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable highly accurate accident point orientation by reducing an orientation error caused by a bi-potential method.SOLUTION: An accident point orientation device includes: surge arrival clock-time detection parts 113, 114 for approximating, when a surge wave 104 detected at ends A, B of an underground cable 102 exceeds two different thresholds, an intersection between a zero level and a line passing through an intersection between the surge wave 104 and both of the thresholds to a clock-time when the surge wave 104 reaches the ends A, B. Further, an accident point position is oriented by: calculating an accident point position using a difference between surge wave arrival clock-times obtained by the surge arrival clock-time detection parts 113, 114 approximating and using a propagation speed of the surge wave 104 at the underground cable 102; and performing correction processing in accordance with a distance between the calculated accident point position and a given position.

Description

本発明は、電力搬送用地中ケーブルの事故点の標定を行う事故点標定装置に関する。   The present invention relates to an accident point locating device for locating an accident point of a power carrying underground cable.

従来から、電力を地中搬送するために地中ケーブルが利用されている。地中ケーブルは、洞道等に電力ケーブルを敷設し電力を地中搬送するもので、経年変化等による絶縁破壊によってケーブル事故が発生する場合がある。
そこで地中ケーブルの事故が発生した地点(事故点)を標定する機能を持つ事故点標定装置が開発されている。
Conventionally, underground cables have been used to carry electric power underground. The underground cable lays a power cable in a cave or the like and transports the power underground. A cable accident may occur due to dielectric breakdown due to secular change or the like.
Therefore, an accident point locating device having a function of locating a point where the underground cable accident occurs (accident point) has been developed.

従来の事故点標定装置においては、地中ケーブルの両端末部に配設した電流センサによって、地中ケーブルに絶縁破壊(地絡)が生じた際に発生するサージ電流を検出する手法が用いられている。
地中ケーブルに地絡事故が発生すると急峻な立ち上がりを持つサージ電流が事故点から地中ケーブルの両端末部に向かって伝搬していく。このサージ電流は地中ケーブルの構造及び材料から決まる速度で伝搬するため、両端末部に配設した電流センサによってサージ電流を検出することによって、サージ電流が地中ケーブルの両端末部に到達した時刻の差を検出し、事故点位置を標定することができる。
In conventional accident location systems, a technique is used to detect surge currents that are generated when dielectric breakdown (ground fault) occurs in the underground cable by means of current sensors arranged at both ends of the underground cable. ing.
When a ground fault occurs in the underground cable, a surge current having a steep rise propagates from the accident point toward both ends of the underground cable. Since this surge current propagates at a speed determined by the structure and material of the underground cable, the surge current reaches both ends of the underground cable by detecting the surge current with current sensors arranged at both ends. By detecting the time difference, the location of the accident point can be determined.

所定位置(例えば一方の端末部)から事故点までの距離Xは次式によって得られる(非特許文献1参照)。
X=(L−Vs・(T−T))/2 ・・・・・(1)
但し、Tはサージ電流が地中ケーブルの各端末部に到達するまでの時間差(サージ到達時間差)、Lは地中ケーブルの長さ、Vsは地中ケーブルにおけるサージ電流の伝搬速度、Tは地中ケーブルの両端末部に配設した光電流センサと事故点標定装置を結ぶ両光ファイバの伝送時間の差である。
The distance X from a predetermined position (for example, one terminal part) to the accident point is obtained by the following equation (see Non-Patent Document 1).
X = (L−Vs · (T−T L )) / 2 (1)
Where T is the time difference until the surge current reaches each end of the underground cable (surge arrival time difference), L is the length of the underground cable, Vs is the propagation speed of the surge current in the underground cable, and TL is This is the difference in transmission time between both optical fibers connecting the photocurrent sensor and the accident point locating device arranged at both ends of the underground cable.

サージ電流の到着時刻を正確に検出することが可能であれば上記(1)式を用いて正確な事故点の標定が可能である。しかしながら実際には、地中ケーブル中を伝搬するサージ電流の波形は、伝搬距離が長くなるに従って表皮効果の影響を受けて波形鈍りが生じる。
光電流センサが所定の閾値を超えるサージ電流を検出した時刻をサージ電流の到達時刻(サージ到達時刻)と認識するため、このような波形鈍りが生じるとサージ到達時刻を実際よりも遅れて認識することになり、標定精度が低下するという問題がある。
このような波形鈍りに対処すべくサージ到着時刻をより正確に検出する方法として、2つの閾値とサージ電流との両交点を結んだ直線と、零レベルとの交点をサージ到達時刻とすることによって事故点の標定を行う二電位法がある(特許文献1、非特許文献2参照)。
If it is possible to accurately detect the arrival time of the surge current, it is possible to accurately locate the accident point using the above equation (1). However, in practice, the waveform of the surge current propagating through the underground cable becomes dull due to the influence of the skin effect as the propagation distance increases.
Since the time when the photocurrent sensor detects a surge current exceeding a predetermined threshold is recognized as the surge current arrival time (surge arrival time), when such waveform dullness occurs, the surge arrival time is recognized later than the actual time. As a result, there is a problem that the orientation accuracy is lowered.
As a method of more accurately detecting the surge arrival time in order to cope with such waveform dullness, by setting the intersection of the two thresholds and the surge current and the zero level as the surge arrival time. There is a two-potential method for locating an accident point (see Patent Document 1 and Non-Patent Document 2).

図5は、二電位法を説明するための説明図である。二電位法は図5に示すように、サージ電流104が所定の第1閾値L1を超えた後、そのまま上昇して次の第2閾値L2を超えた場合に、それら2つの閾値L1、L2とサージ電流104との交点K1、K2を結んで直線を引き、当該直線と零レベルとの交点trをサージ到達時刻と判定する方法である。二電位法によれば、第1閾値L1を超えた時刻をサージ到達時刻とするよりも誤差を小さくすることが可能になり、事故点の標定誤差を低減することが可能になる。
尚、非特許文献3には、地絡事故点で発生した方形波電圧が地中ケーブルを伝搬する際の挙動が解説されている。
FIG. 5 is an explanatory diagram for explaining the two-potential method. In the two-potential method, as shown in FIG. 5, when the surge current 104 exceeds a predetermined first threshold value L1 and then rises as it is and exceeds the next second threshold value L2, these two threshold values L1, L2 and In this method, the intersections K1 and K2 with the surge current 104 are connected to draw a straight line, and the intersection tr between the straight line and the zero level is determined as the surge arrival time. According to the two-potential method, it is possible to make the error smaller than when the time when the first threshold value L1 is exceeded is set as the surge arrival time, and it is possible to reduce the fault location error.
Non-Patent Document 3 describes the behavior when a square wave voltage generated at the ground fault point propagates through the underground cable.

特許第3527432号公報Japanese Patent No. 3527432

昭和46年10月発行の住友電気第105号第11頁〜第18頁「電力ケーブルの瞬時故障点標定法」Sumitomo Electric No.105, page 11-18, published in October 1971, “Instantaneous fault location method for power cables” 電気協同研究第34巻第6号第77頁「フォルトロケータ標定信頼度向上対策」Electric Cooperative Research Vol. 34, No. 6, p. 77 “Fault Locator Location Reliability Improvement Measures” 昭和30年4月電気書院発行の「進行波序説」第55頁Page 55, "Introduction to Progressive Waves" published by Denki Shoin in April 1955

事故点から地中ケーブルの一方の端末部Aまでの距離と他方の端末部Bまでの距離、即ちサージ電流が事故点から各端末部A、Bまで伝搬する距離は、事故点位置によって異なる。
サージ電流波形の鈍りの程度は伝搬距離に依存するため、図6に示すように両端末部A、Bでのサージ電流波形の鈍りの程度に差が生じると、これによって二電位法で求めた各端末部A、Bでのサージ到達時刻の誤差ε1(=tr1−t1)、ε2(=tr2−t2)の大きさが異なることになる。
The distance from the accident point to one terminal part A of the underground cable and the distance to the other terminal part B, that is, the distance by which the surge current propagates from the accident point to each terminal part A, B differs depending on the accident point position.
Since the degree of bluntness of the surge current waveform depends on the propagation distance, if there is a difference in the degree of blunting of the surge current waveform at both terminals A and B as shown in FIG. The magnitudes of the errors ε1 (= tr1−t1) and ε2 (= tr2−t2) of the surge arrival times at the terminal units A and B are different.

事故点標定を高精度に行うためには、(1)式のサージ到達時間差Tを高精度に検出する必要があるが、次式の(ε2―ε1)が誤差項になる。
T=tr2−tr1=t2−t1+(ε2―ε1) ・・・(2)
ここで、t1は端末部Aへのサージ電流の真の到達時刻、t2は端末部Bへのサージ電流の真の到達時刻、tr1は二電位法によって算出した端末部Aへのサージ電流の到達時刻、tr2は二電位法によって算出した端末部Bへのサージ電流の到達時刻、ε1は二電位法によって算出した端末部Aへのサージ到達時刻に含まれる誤差、ε2は二電位法によって算出した端末部Bへのサージ到達時刻に含まれる誤差である。
In order to perform the fault location with high accuracy, it is necessary to detect the surge arrival time difference T in the equation (1) with high accuracy, but (ε2−ε1) in the following equation becomes an error term.
T = tr2-tr1 = t2-t1 + (ε2-ε1) (2)
Here, t1 is the true arrival time of the surge current to the terminal part A, t2 is the true arrival time of the surge current to the terminal part B, tr1 is the arrival of the surge current to the terminal part A calculated by the two-potential method Time, tr2 is the surge current arrival time to the terminal B calculated by the two-potential method, ε1 is an error included in the surge arrival time to the terminal A calculated by the two-potential method, and ε2 is calculated by the two-potential method It is an error included in the surge arrival time at the terminal unit B.

両端末部A、Bで波形鈍りが相違することによって二電位法で生じるサージ電流到達時間差Tの誤差と事故点位置との関係及びサージ電流到達時間差Tの誤差が標定精度へ与える影響を図7に示す。
同図に示すように事故点が地中ケーブル102の端末部A近傍の場合、サージ電流波形の鈍りの程度は端末部A(A端)では小さいが、他方の端末部B(B端)では大きくなる。このため二電位法によって求められるサージ到達時間差Tにはプラス誤差が生じ、(1)式から標定距離にはマイナス誤差が生じる。
FIG. 7 shows the relationship between the error of the surge current arrival time difference T generated by the two-potential method and the fault point position due to the difference in waveform blunting at both terminals A and B, and the influence of the error of the surge current arrival time difference T on the orientation accuracy. Shown in
As shown in the figure, when the accident point is in the vicinity of the terminal portion A of the underground cable 102, the degree of blunting of the surge current waveform is small at the terminal portion A (A end), but at the other terminal portion B (B end). growing. For this reason, a positive error occurs in the surge arrival time difference T obtained by the two-potential method, and a negative error occurs in the orientation distance from the equation (1).

一方、事故点が地中ケーブル102の端末部B近傍の場合には、サージ電流波形の鈍りの程度は端末部Aでは大きくなるが端末部Bでは小さい。このため二電位法によって求められる到達時間差Tにはマイナス誤差が生じ、標定距離にプラス誤差が生じ、(1)式から標定距離にはプラス誤差が生じる。
事故点が地中ケーブル102の中央近傍の場合には、サージ電流波形の鈍りの程度は両端末部A、Bとも同程度である。このため、二電位法によって求められる到達時間差Tへの影響は相殺されて標定距離の誤差は小さい。
On the other hand, when the accident point is in the vicinity of the terminal part B of the underground cable 102, the degree of blunting of the surge current waveform is large in the terminal part A but small in the terminal part B. For this reason, a minus error occurs in the arrival time difference T obtained by the two-potential method, a plus error occurs in the orientation distance, and a plus error occurs in the orientation distance from the equation (1).
When the accident point is in the vicinity of the center of the underground cable 102, the degree of blunting of the surge current waveform is about the same for both terminal portions A and B. For this reason, the influence on the arrival time difference T obtained by the two-potential method is offset, and the error of the orientation distance is small.

本発明は、地中ケーブル102の端末部A、Bから事故点までの距離に応じて地中ケーブル102の両端末部A、Bにおけるサージ電流波形の鈍りの程度が異なることに着目して成されたもので、事故点を標定する際に二電位法によって生じる誤差(標定誤差)を低減するように補正することにより、高精度な事故点標定を可能にすることを課題としている。   The present invention is made by paying attention to the fact that the degree of blunting of the surge current waveform at both terminal portions A and B of the underground cable 102 differs depending on the distance from the terminal portions A and B of the underground cable 102 to the accident point. Therefore, an object of the present invention is to enable highly accurate accident location by correcting so as to reduce an error (location error) caused by the two-potential method when the accident point is localized.

本発明によれば、地中ケーブルの一方の端末部で検出したサージ波が2つの異なる閾値をともに超えたとき、前記サージ波と各閾値との交点を通る直線と零レベルとの交点を前記一方の端末部へ前記サージ波が到達した時刻と近似する第1サージ到達時刻検出部と、前記地中ケーブルの他方の端末部で検出したサージ波が2つの異なる閾値をともに超えたとき、前記サージ波と各閾値との交点を通る直線と零レベルとの交点を前記他方の端末部へ前記サージ波が到達した時刻と近似する第2サージ到達時刻検出部と、前記第1サージ到達時刻検出部によって近似して得られたサージ波の到達時刻と前記第2サージ到達時刻検出部によって近似して得られたサージ波の到達時刻との差及び前記地中ケーブルにおけるサージ波の伝搬速度を用いて事故点位置を算出すると共に、前記算出した事故点位置と所定位置の距離に応じた補正処理を行うことによって事故点位置を標定する事故点標定部とを備えて成ることを特徴とする事故点標定装置が提供される。   According to the present invention, when the surge wave detected at one end of the underground cable exceeds two different thresholds, the intersection of the straight line passing through the intersection of the surge wave and each threshold and the zero level is When the first surge arrival time detection unit that approximates the time when the surge wave reaches one terminal unit and the surge wave detected by the other terminal unit of the underground cable both exceed two different thresholds, A second surge arrival time detection unit that approximates the point of time when the surge wave arrives at the other terminal unit, and the first surge arrival time detection; The difference between the arrival time of the surge wave obtained by approximation by the section and the arrival time of the surge wave obtained by approximation by the second surge arrival time detection section and the propagation speed of the surge wave in the underground cable are used. The Accident point characterized by comprising an accident point locating unit for calculating the dead point position and locating the accident point position by performing correction processing according to the distance between the calculated accident point position and the predetermined position An orientation device is provided.

本発明に係る事故点標定装置によれば、二電位法によって生じる標定誤差を低減して、高精度な事故点標定が可能になる。   According to the accident point locating apparatus according to the present invention, it is possible to reduce the locating error caused by the two-potential method, and to perform highly accurate accident point locating.

本発明の実施の形態に係る事故点標定装置のブロック図である。It is a block diagram of an accident point locating device according to an embodiment of the present invention. 本発明の実施の形態に係る事故点標定装置の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the accident point location apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る事故点標定装置の動作を説明するための特性図である。It is a characteristic view for demonstrating operation | movement of the accident point location apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る事故点標定装置の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the accident point location apparatus which concerns on embodiment of this invention. 二電位法を説明するための説明図である。It is explanatory drawing for demonstrating a two-potential method. 二電位法による標定誤差の発生を説明するための説明図である。It is explanatory drawing for demonstrating generation | occurrence | production of the orientation error by a two-potential method. 二電位法による標定誤差の発生を説明するための説明図である。It is explanatory drawing for demonstrating generation | occurrence | production of the orientation error by a two-potential method.

図1は、本発明の実施の形態に係る事故点標定装置のブロック図である。
図1において、発電機101の電力を搬送する電力搬送用ケーブルは、地中ケーブル102、地中ケーブル102の両側に接続された外部ケーブル103によって構成されている。
FIG. 1 is a block diagram of an accident point locating device according to an embodiment of the present invention.
In FIG. 1, a power carrying cable for carrying the power of the generator 101 is constituted by an underground cable 102 and an external cable 103 connected to both sides of the underground cable 102.

地中ケーブル102の両端末部A、B(地中ケーブル102のシースの両端末部に相当する。)からその長さ方向所定距離内側の位置には、1対の光電流センサ105、106が地中ケーブル102を周回するように配設されている。
各光電流センサ105、106は、ファラデー効果を利用して地中ケーブル102に流れる電流を検出するセンサである。
A pair of photocurrent sensors 105 and 106 are located at a position a predetermined distance in the longitudinal direction from both end portions A and B of the underground cable 102 (corresponding to both end portions of the sheath of the underground cable 102). It arrange | positions so that the underground cable 102 may be circulated.
Each of the photocurrent sensors 105 and 106 is a sensor that detects a current flowing through the underground cable 102 using the Faraday effect.

地中ケーブル102の一方の端末部Aのシースには接地線107の一端が接続され、接地線107の他端は光電流センサ105の内側を通って接地されている。
地中ケーブル102の他方の端末部Bのシースには接地線108の一端が接続され、接地線108の他端は光電流センサ106の内側を通って接地されている。
このように、各光電流センサ105、106には、当該光電流センサ105、106が周回する地中ケーブル102の端末部A、Bに一端が接続されると共に他端が接地された接地線107、108が通されている。
One end of the ground wire 107 is connected to the sheath of one end portion A of the underground cable 102, and the other end of the ground wire 107 is grounded through the inside of the photocurrent sensor 105.
One end of the ground wire 108 is connected to the sheath of the other end portion B of the underground cable 102, and the other end of the ground wire 108 is grounded through the inside of the photocurrent sensor 106.
In this way, each of the photocurrent sensors 105 and 106 has a ground wire 107 having one end connected to the terminal portions A and B of the underground cable 102 around which the photocurrent sensors 105 and 106 circulate and the other end grounded. , 108 are passed.

光電流センサ105、106は各々、光ファイバ伝送路109、110を介して、事故点標定装置本体100に接続されている。
事故点標定装置本体100は、第1光電変換部(0/E)111、第2光電変換部112、第1閾値部115、第2閾値部116、第1サージ到達時刻検出部113、第2サージ到達時刻検出部114、事故点標定部117を備えている。
The photocurrent sensors 105 and 106 are connected to the accident point locating apparatus main body 100 via optical fiber transmission lines 109 and 110, respectively.
The accident point locator main body 100 includes a first photoelectric conversion unit (0 / E) 111, a second photoelectric conversion unit 112, a first threshold unit 115, a second threshold unit 116, a first surge arrival time detection unit 113, a second A surge arrival time detection unit 114 and an accident point location unit 117 are provided.

複数の光電流センサ105、106、複数の光電流センサ105、106の出力信号を導く複数の光ファイバ伝送路109、110、及び、複数の光ファイバ伝送路109、110を介して入力される複数の光電流センサ105、106の出力信号に基づいて事故点の標定を行う事故点標定装置本体100によって事故点標定装置が構成されている。
光電流センサ105、106は、地中ケーブル102や接地線107、108に流れる電流を検出し、前記電流の大きさを表す光信号を出力する機能を有している。地中ケーブル102に地絡事故が発生した場合、光電流センサ105、106は、サージ電流104を検出し、対応する光信号に変換して光ファイバ伝送路109、110に出力する。
A plurality of optical current sensors 105 and 106, a plurality of optical fiber transmission lines 109 and 110 for guiding output signals of the plurality of photocurrent sensors 105 and 106, and a plurality of optical fiber transmission lines 109 and 110 that are inputted via the plurality of optical fiber transmission lines 109 and 110 The accident point locating device 100 is configured by the accident point locating device main body 100 for locating the accident point based on the output signals of the photocurrent sensors 105 and 106.
The photocurrent sensors 105 and 106 have a function of detecting a current flowing through the underground cable 102 and the ground lines 107 and 108 and outputting an optical signal representing the magnitude of the current. When a ground fault occurs in the underground cable 102, the photocurrent sensors 105 and 106 detect the surge current 104, convert it to a corresponding optical signal, and output it to the optical fiber transmission lines 109 and 110.

接地線107、108の引き戻し(端末部の接地線を光電流センサの内側を通して接地すること)効果により、接地線107、108に流れる電流を光電流センサ105、106によって検出できるため、光電流センサ105と端末部A間や、光電流センサ106と端末部B間のサージ電流や地絡電流を検出することが可能である。
光電流センサ105、106は、端末部A、B近傍に配設され又接地線107、108も短いため実質的に端末部A、Bに配設された構成となっている。これにより、光電流センサ105、106は端末部A、Bに配設され、地中ケーブル102全長に亘る電流検出が可能な構成となっている。
Since the current flowing through the ground lines 107 and 108 can be detected by the photocurrent sensors 105 and 106 due to the effect of pulling back the ground lines 107 and 108 (grounding the ground line of the terminal portion through the inside of the photocurrent sensor), the photocurrent sensor It is possible to detect a surge current or a ground fault current between the terminal 105 and the terminal unit A or between the photocurrent sensor 106 and the terminal unit B.
The photocurrent sensors 105 and 106 are arranged in the vicinity of the terminal portions A and B, and the ground wires 107 and 108 are short, so that the photocurrent sensors 105 and 106 are substantially arranged in the terminal portions A and B. As a result, the photocurrent sensors 105 and 106 are arranged in the terminal portions A and B, and are configured to be able to detect current over the entire length of the underground cable 102.

第1光電変換部111は、光ファイバ伝送路109を介して光電流センサ105の光出力信号を受け取り、前記光出力信号に対応する電気信号に変換して出力する機能を有している。第2光電変換部112は、光ファイバ伝送路110を介して光電流センサ106の光出力信号を受け取り、前記光出力信号に対応する電気信号に変換して出力する機能を有している。
第1閾値部115は、サージ電流104を検出する第1の基準レベルである第1閾値L1を記憶しており、第1閾値L1をサージ到達時刻検出部113、114に出力する機能を有している。第2閾値部116は、サージ電流104を検出する第2の基準レベルであり前記第1閾値L1よりも高い第2閾値L2を記憶しており、第2閾値L2をサージ到達時刻検出部113、114に出力する機能を有している。
The first photoelectric conversion unit 111 has a function of receiving an optical output signal of the photocurrent sensor 105 via the optical fiber transmission path 109, converting the received optical output signal into an electrical signal corresponding to the optical output signal, and outputting the electrical signal. The second photoelectric conversion unit 112 has a function of receiving the optical output signal of the photocurrent sensor 106 via the optical fiber transmission line 110, converting it to an electrical signal corresponding to the optical output signal, and outputting it.
The first threshold unit 115 stores a first threshold L1 that is a first reference level for detecting the surge current 104, and has a function of outputting the first threshold L1 to the surge arrival time detection units 113 and 114. ing. The second threshold value unit 116 is a second reference level for detecting the surge current 104 and stores a second threshold value L2 higher than the first threshold value L1, and the second threshold value L2 is stored in the surge arrival time detection unit 113, 114.

第1サージ到達時刻検出部113は、光電流センサ105が検出したサージ電流104が端末部Aに到達した時刻(サージ到達時刻)を2つの閾値L1、L2に基づいて二電位法によって算出する機能を有している。即ち、第1サージ到達時刻検出部113は、地中ケーブル102の一方の端末部Aで検出したサージ波104が2つの異なる閾値L1、L2をともに超えたとき、サージ波104と各閾値L1、L2の交点を通る直線と零レベルとの交点を一方の端末部Aへサージ波104が到達した時刻と近似する機能を有している。   The first surge arrival time detector 113 calculates the time (surge arrival time) when the surge current 104 detected by the photocurrent sensor 105 reaches the terminal part A based on the two threshold values L1 and L2 by the two-potential method. have. That is, the first surge arrival time detection unit 113, when the surge wave 104 detected at one terminal portion A of the underground cable 102 exceeds both of two different threshold values L1, L2, the surge wave 104 and each threshold value L1, It has a function of approximating the intersection of the straight line passing through the intersection of L2 and the zero level with the time when the surge wave 104 arrives at one terminal portion A.

第2サージ到達時刻検出部114は、光電流センサ106が検出したサージ電流104が端末部Bに到達したサージ到達時刻を2つの閾値L1、L2に基づいて二電位法によって算出する機能を有している。即ち、第2サージ到達時刻検出部114は、地中ケーブル102の他方の端末部Bで検出したサージ波104が2つの異なる閾値L1、L2をともに超えたとき、サージ波104と各閾値L1、L2の交点を通る直線と零レベルとの交点を他方の端末部Bへサージ波104が到達した時刻と近似する機能を有している。   The second surge arrival time detection unit 114 has a function of calculating the surge arrival time when the surge current 104 detected by the photocurrent sensor 106 reaches the terminal portion B by the two-potential method based on the two threshold values L1 and L2. ing. That is, when the surge wave 104 detected by the other terminal portion B of the underground cable 102 exceeds both of two different threshold values L1 and L2, the second surge arrival time detection unit 114 detects the surge wave 104 and each threshold value L1, It has a function of approximating the intersection of the straight line passing through the intersection of L2 and the zero level with the time when the surge wave 104 arrives at the other terminal portion B.

事故点標定部117は、第1サージ到達時刻検出部113及び第2サージ到達時刻検出部114によって近似して得られたサージ到達時刻の差及び地中ケーブル102におけるサージ電流104の伝搬速度に基づいて所定位置(本実施の形態では端末部A)を基準とする事故点位置を算出すると共に、前記算出した事故点位置と所定位置(例えば、地中ケーブル102の中央位置あるいは一方の端末部A又はB)の距離に応じた補正処理を行うことによって事故点位置を標定する機能を有している。
尚、第1、第2サージ到達時刻検出部113、114、第1、第2閾値部115、116及び事故点標定部117は、中央処理装置(CPU)、記憶部及びソフトウェアによって構成することができる。
The accident point location unit 117 is based on the difference in surge arrival times obtained by approximation by the first surge arrival time detection unit 113 and the second surge arrival time detection unit 114 and the propagation speed of the surge current 104 in the underground cable 102. Then, the accident point position with reference to a predetermined position (terminal portion A in the present embodiment) is calculated, and the calculated accident point position and the predetermined position (for example, the center position of the underground cable 102 or one terminal portion A) Or, it has a function of locating the accident point position by performing a correction process according to the distance of B).
The first and second surge arrival time detection units 113 and 114, the first and second threshold units 115 and 116, and the accident point location unit 117 can be configured by a central processing unit (CPU), a storage unit, and software. it can.

上記のように構成された事故点標定装置が事故点位置を標定する原理を説明する。
先ず、二電位法によって求められるサージ到達時間差Tの誤差項(前記(2)式の(ε2−ε1)と事故点位置との関係を解析する。
(1)サージ電流波形解析
地絡事故点で発生した方形波電圧Eが図2に示すように、導線とシースとによって構成された同軸ケーブル中をX(m)伝搬した後の電圧eは次式となる(非特許文献3参照)。

Figure 2014163914

但し、eは方形波電圧EがX(m)伝搬した後の電圧進行波の電圧値、Eは方形波電圧進行波の電圧値、vは進行波の伝搬速度、tは時間(但し、t>X/v)、erfは誤差関数である。 The principle by which the accident point locating apparatus configured as described above locates the accident point position will be described.
First, the relationship between the error term of the surge arrival time difference T obtained by the two-potential method ((ε2−ε1) in the equation (2) and the accident point position is analyzed.
(1) Surge current waveform analysis As shown in FIG. 2, the voltage e after propagating X (m) through the coaxial cable composed of the conducting wire and the sheath is as follows. (See Non-Patent Document 3).
Figure 2014163914

Where e is the voltage value of the traveling wave after the square wave voltage E has propagated X (m), E is the voltage value of the traveling wave of the square wave voltage, v is the propagation speed of the traveling wave, and t is the time (however, t > X / v), erf is the error function.

また、変歪定数σは次式となる。

Figure 2014163914

但し、Zはサージインピーダンス、aは導線半径(m)、hは導線の地上高(m)、σcは導線の固有抵抗(Ω・m)、σeはシースの固有抵抗(Ω・m)、μcは導線の透磁率(μc=1)、μeはシースの透磁率(μe=1)である。 Further, the distortion constant σ is expressed by the following equation.
Figure 2014163914

Where Z is the surge impedance, a is the conductor radius (m), h is the ground clearance (m), σc is the conductor resistivity (Ω · m), σe is the sheath resistivity (Ω · m), μc Is the magnetic permeability of the conducting wire (μc = 1), and μe is the magnetic permeability of the sheath (μe = 1).

(3)式は、進行波がX点に到達した時刻(t=X/v)を起点にした経過時間をt’とすると次式となる。

Figure 2014163914
Equation (3) is expressed by the following equation, where t ′ is the elapsed time starting from the time when the traveling wave reaches point X (t = X / v).
Figure 2014163914

また、電流進行波の電流値iはサージインピーダンスZで(3)式の電圧eを除して次式となる。

Figure 2014163914
Further, the current value i of the traveling current wave is obtained by dividing the voltage e in the expression (3) by the surge impedance Z, as follows:
Figure 2014163914

さらに、E/Zを電流値I(=E/Z)に置き換えると、次式となる。

Figure 2014163914
Further, when E / Z is replaced with a current value I (= E / Z), the following equation is obtained.
Figure 2014163914

同様に、電流iはサージインピーダンスZで(5)式の電圧eを除して次式となる。

Figure 2014163914
Similarly, the current i is obtained by dividing the voltage e of the equation (5) by the surge impedance Z and the following equation.
Figure 2014163914

Figure 2014163914
Figure 2014163914

(9)式から所定距離伝搬後のサージ電流波形が得られる。伝搬距離が長くなるに従って、サージ電流波形の立ち上がりの鈍りの程度が大きくなる。尚、変歪定数σは、地中ケーブルの構造及び材料によって決まる定数であり、例えば275kV単心CVケーブル(2000sq)の場合、構造や材料から、(4)式により、6.93×10−8とすることができる。 The surge current waveform after propagation for a predetermined distance can be obtained from the equation (9). As the propagation distance increases, the degree of the dull rise of the surge current waveform increases. The distortion constant σ is a constant determined by the structure and material of the underground cable. For example, in the case of a 275 kV single-core CV cable (2000 sq), from the structure and material, 6.93 × 10 − 8 can be used.

(2)二電位法による到達時刻誤差の解析
事故点から両端末部A、Bまでの伝搬距離の相違によって二電位法により得られる各端末部A、Bにおける到達時刻の誤差ε1、ε2が異なる。
X(m)伝搬後のサージ電流波形が閾値Lに到達するまでの時間tは次式で表すことができる。但し、erf−1はerfの逆関数である。
(2) Analysis of arrival time error by the two-potential method The arrival time errors ε1 and ε2 at the terminal portions A and B obtained by the two-potential method differ depending on the difference in propagation distance from the accident point to both terminal portions A and B. .
The time t until the surge current waveform after propagation of X (m) reaches the threshold value L can be expressed by the following equation. However, erf −1 is an inverse function of erf.

Figure 2014163914
Figure 2014163914

ここで、2つの閾値をL1、L2(L1<L2)とすると、サージ電流が閾値L1、L2に到達するまでの時間tL1、tL2は次式により表すことができる。

Figure 2014163914
Here, when the two threshold values are L1 and L2 (L1 <L2), the times t L1 and t L2 until the surge current reaches the threshold values L1 and L2 can be expressed by the following equations.
Figure 2014163914

Figure 2014163914
Figure 2014163914

よって、2つの閾値L1、L2とサージ波形との交点(L1,tL1),(L2,tL2)を通る直線は次式で表すことができる。
i=P・t+Q ・・・・(13)
但し、傾きPと切片Qは次式で表される。
P=(L2−L1)/(tL2−tL1
Q=L2−P・tL2
Therefore, a straight line passing through the intersections (L1, t L1 ) and (L2, t L2 ) of the two threshold values L1, L2 and the surge waveform can be expressed by the following equation.
i = P · t + Q (13)
However, the slope P and the intercept Q are expressed by the following equations.
P = (L2-L1) / (t L2 -t L1)
Q = L2-P · t L2

この直線の零レベルとの交点が二電位法によって求められるサージ電流到達時刻の誤差εであり、次式となる。

Figure 2014163914
The point of intersection of this straight line with the zero level is the error ε of the surge current arrival time obtained by the two-potential method, and is given by the following equation.
Figure 2014163914

(14)式により地中ケーブルの端末部A、Bにおける各サージ電流の到達時刻の誤差ε1、ε2を求めると以下となる。

Figure 2014163914
When the errors ε1 and ε2 of the arrival times of the respective surge currents at the terminal portions A and B of the underground cable are obtained by the equation (14), the following is obtained.
Figure 2014163914

Figure 2014163914
Figure 2014163914

尚、地中ケーブル長=L(m)において、上記(15)式のt1L1、t1L2は、事故点から端末部Aまでの距離をX(m)として、前記(11)式、(12)式により求めたものである。また、(16)式のt2L1、t2L2は、事故点から端末部Bまでの距離を(L−X)(m)として、(11)式、(12)式により求めたものである。 In the case of underground cable length = L (m), t1 L1 and t1 L2 in the above formula (15) are the above formulas (11), (12), where the distance from the accident point to the terminal portion A is X (m). ). Further, t2 L1 and t2 L2 in the equation (16) are obtained from the equations (11) and (12), where the distance from the accident point to the terminal part B is (L−X) (m).

よって、サージ到達時間差Tの誤差分εTは次式となる。

Figure 2014163914
Therefore, the error εT of the surge arrival time difference T is expressed by the following equation.
Figure 2014163914

(17)式の誤差分εTを用いると(1)式の事故点距離Xは次式となり、(−Vs・εT/2)が二電位法に起因した誤差項になる。

Figure 2014163914
When the error εT in the equation (17) is used, the accident point distance X in the equation (1) becomes the following equation, and (−Vs · εT / 2) becomes an error term due to the two-potential method.
Figure 2014163914

図3は、端末部Aからの事故点距離Xと標定誤差項(−Vs・εT/2)の関係を示す一例である。同図に示した例は、ケーブル長20km、2000sqの各種CVケーブルにおける事故点距離と標定誤差項(−Vs・εT/2)の関係を示している。
図3に示すように二電位法による標定誤差は、地中ケーブル中央点から事故点までの距離に比例する。
FIG. 3 is an example showing the relationship between the accident point distance X from the terminal part A and the orientation error term (−Vs · εT / 2). The example shown in the figure shows the relationship between the accident point distance and the orientation error term (−Vs · εT / 2) in various CV cables having a cable length of 20 km and 2000 sq.
As shown in FIG. 3, the orientation error by the two-potential method is proportional to the distance from the center point of the underground cable to the accident point.

したがって、図4に示すように、従来の二電位法によって得られた事故点位置の地中ケーブル中央位置からの距離に応じたサージ波形鈍りによって生じる二電位法の誤差を相殺するような補正値(標定誤差)を、前記事故点距離に加算することにより、高精度な事故点標定が可能になる。
即ち、事故点が中央よりも端末部A寄りの場合には、前記事故点距離に応じた補正値を加算(プラス補正)することにより標定誤差を低減することができる。また、事故点が中央よりも端末部B寄りの場合には、前記事故点距離に応じた補正値を減算(マイナス補正)することにより標定誤差を低減することが可能になる。
Therefore, as shown in FIG. 4, a correction value that cancels out the error of the two-potential method caused by the blunting of the surge waveform according to the distance from the center position of the underground cable at the accident point position obtained by the conventional two-potential method. By adding (location error) to the accident point distance, highly accurate accident point location becomes possible.
That is, when the accident point is closer to the terminal part A than the center, the orientation error can be reduced by adding a correction value corresponding to the accident point distance (plus correction). In addition, when the accident point is closer to the terminal part B than the center, it is possible to reduce the orientation error by subtracting (minus correction) the correction value corresponding to the accident point distance.

また、補正処理は(18)式の標定誤差項(−Vs・εT/2)を低減(好ましくは零に)する処理であるが、サージ電流104の速度Vsは地中ケーブルの構造及び材料によって決まる定数であり、又、εTは(17)式にも示すように2つの閾値L1、L2に関係する値である。したがって、標定誤差を低減するための前記補正処理は、地中ケーブル102の構造及び材料によって決まる定数と2つの異なる閾値L1、L2とに基づいて行うことになる。   The correction process is a process for reducing (preferably zero) the orientation error term (−Vs · εT / 2) in the equation (18), but the speed Vs of the surge current 104 depends on the structure and material of the underground cable. Further, εT is a value related to the two threshold values L1 and L2, as shown in the equation (17). Therefore, the correction processing for reducing the orientation error is performed based on a constant determined by the structure and material of the underground cable 102 and two different threshold values L1 and L2.

尚、前記補正値は、図4に示すように、地中ケーブル中央距離から事故点までの距離を複数の区間に区分すると共に各区分に対応する補正値を予め事故点標定部117内の記憶部に記憶しておき、二電位法によって算出した事故点位置に該当する区間の補正値を求め、当該補正値を前記事故点位置に加算又は減算することにより、当該補正値で前記事故点位置を補正(段階補正)するように構成してもよい。また、二電位法によって算出した事故点距離と補正値とを関係付けた関係式(例えば図3の直線の式)を事故点標定部117内の記憶部に予め記憶しておき、二電位法によって得られた事故点位置に対応する補正値を前記式を用いて算出し、当該補正値を前記事故点位置に加算又は減算することにより、当該補正値で前記事故点位置を補正するように構成してもよい。   As shown in FIG. 4, the correction value divides the distance from the underground cable center distance to the accident point into a plurality of sections and stores correction values corresponding to the respective sections in the accident point locating unit 117 in advance. The correction value of the section corresponding to the accident point position calculated by the two-potential method is obtained, and the correction value is added to or subtracted from the accident point position, whereby the accident point position is calculated with the correction value. May be corrected (step correction). Further, a relational expression (for example, a straight line expression in FIG. 3) relating the accident point distance calculated by the two-potential method and the correction value is stored in advance in the storage unit in the accident point locating unit 117, and the two-potential method The correction value corresponding to the accident point position obtained by the above is calculated using the above equation, and the correction value is added to or subtracted from the accident point position, thereby correcting the accident point position with the correction value. It may be configured.

上述した事故点標定処理を本発明の実施の形態に係る事故点標定装置が行う際の動作を図1に従って説明する。
図1において、地中ケーブル102において地絡事故が発生すると、事故点から両端末部A、Bに向かってサージ電流104が進行する。
サージ電流104は、両端末部A、Bに配設された光電流センサ105、106によって検出される。光電流センサ105、106は、サージ電流104の大きさを表す光信号を光出力信号として出力する。
The operation when the accident point locating process described above is performed by the accident point locating apparatus according to the embodiment of the present invention will be described with reference to FIG.
In FIG. 1, when a ground fault occurs in the underground cable 102, a surge current 104 proceeds from the point of the accident toward both terminal portions A and B.
The surge current 104 is detected by photocurrent sensors 105 and 106 disposed at both terminal portions A and B. The photocurrent sensors 105 and 106 output an optical signal indicating the magnitude of the surge current 104 as an optical output signal.

第1光電変換部111は、光ファイバ伝送路109を介して光電流センサ105からの光出力信号を受け取り、前記光出力信号に対応する電気信号に変換して出力する。
第2光電変換部112は、光ファイバ伝送路110を介して光電流センサ106からの光出力信号を受け取り、前記光出力信号に対応する電気信号に変換して出力する。
The first photoelectric conversion unit 111 receives an optical output signal from the photocurrent sensor 105 via the optical fiber transmission path 109, converts the optical output signal into an electrical signal corresponding to the optical output signal, and outputs the electrical signal.
The second photoelectric conversion unit 112 receives the optical output signal from the photocurrent sensor 106 via the optical fiber transmission line 110, converts it into an electrical signal corresponding to the optical output signal, and outputs it.

第1サージ到達時刻検出部113は、図5、図6に示すように、サージ電流104の端末部Aへのサージ到達時刻を第1閾値L1及び第2閾値L2に基づいて二電位法によって近似し、サージ到達時刻tr1を得る。即ち、第1サージ到達時刻検出部113は、光電流センサ105が検出したサージ電流104と第1閾値L1、第2閾値L2との交点K1、K2を求め、交点K1、K2を通る直線と零レベルとの交点をサージ到達時刻tr1として算出する。   As shown in FIG. 5 and FIG. 6, the first surge arrival time detection unit 113 approximates the surge arrival time of the surge current 104 to the terminal part A by the two-potential method based on the first threshold value L1 and the second threshold value L2. The surge arrival time tr1 is obtained. That is, the first surge arrival time detection unit 113 obtains the intersections K1 and K2 between the surge current 104 detected by the photocurrent sensor 105 and the first threshold value L1 and the second threshold value L2, and the straight line passing through the intersection points K1 and K2 is zero. The intersection with the level is calculated as the surge arrival time tr1.

また、第2サージ到達時刻検出部114も同様にして、サージ電流104の端末部Bへのサージ到達時刻を第1閾値L1及び第2閾値L2に基づいて二電位法によって近似し、サージ到達時刻tr2を得る。即ち、第2サージ到達時刻検出部114は、光電流センサ106が検出したサージ電流104と第1閾値L1、第2閾値L2との交点K1、K2を求め、交点K1、K2を通る直線と零レベルとの交点をサージ到達時刻tr2として算出する。   Similarly, the second surge arrival time detection unit 114 approximates the surge arrival time of the surge current 104 to the terminal portion B by the two-potential method based on the first threshold value L1 and the second threshold value L2, and the surge arrival time. Obtain tr2. That is, the second surge arrival time detection unit 114 obtains the intersections K1 and K2 between the surge current 104 detected by the photocurrent sensor 106 and the first threshold value L1 and the second threshold value L2, and the straight line passing through the intersection points K1 and K2 is zero. The intersection with the level is calculated as the surge arrival time tr2.

事故点標定部117は、第1サージ到達時刻検出部113及び第2サージ到達時刻検出部114によって近似して得られたサージ到達時刻tr1、tr2の差及び前記地中ケーブル102におけるサージ電流104の伝搬速度に基づいて所定位置(例えば一方の端末部A)を基準とする事故点位置を算出すると共に、前記サージ到達時刻の時間差及びサージ電流104の伝搬速度に基づいて前記事故点位置を算出すると共に、予めその内部に記憶されている補正用データ(例えば図4の段階的な補正値、あるいは、補正用の関係式)を用いて、算出した事故点位置と所定位置(例えば地中ケーブル102の中央位置)の距離に応じた補正処理を行うことによって事故点位置を標定する。事故点標定部117は、事故点位置を表す情報を事故点情報として、表示装置あるいはリレー等に出力する。これにより、サージ電流の伝送距離に応じた波形鈍りに起因する標定誤差が低減される。   The accident point locating unit 117 calculates the difference between the surge arrival times tr1 and tr2 obtained by approximation by the first surge arrival time detection unit 113 and the second surge arrival time detection unit 114 and the surge current 104 in the underground cable 102. An accident point position is calculated based on a predetermined position (for example, one terminal portion A) based on the propagation speed, and the accident point position is calculated based on the time difference between the surge arrival times and the propagation speed of the surge current 104. At the same time, using the correction data (for example, the stepwise correction values in FIG. 4 or the relational expression for correction) stored in advance, the calculated accident point position and the predetermined position (for example, the underground cable 102). The position of the accident point is determined by performing a correction process according to the distance of the center position. The accident point location unit 117 outputs information indicating the accident point position to the display device or relay as accident point information. As a result, the orientation error due to the waveform dullness corresponding to the transmission distance of the surge current is reduced.

以上述べたように本発明の実施の形態に係る事故点標定装置は、地中ケーブル102の一方の端末部Aで検出したサージ波104が2つの異なる閾値L1、L2をともに超えたとき、サージ波104と各閾値L1、L2との交点を通る直線と零レベルとの交点を一方の端末部Aへサージ波104が到達した時刻tr1と近似する第1サージ到達時刻検出部113と、地中ケーブル102の他方の端末部Bで検出したサージ波104が2つの異なる閾値L1、L2をともに超えたとき、サージ波104と各閾値L1、L2との交点を通る直線と零レベルとの交点を他方の端末部Bへサージ波104が到達した時刻tr2と近似する第2サージ到達時刻検出部114と、第1サージ到達時刻検出部113によって近似して得られたサージ波104の到達時刻tr1と第2サージ到達時刻検出部114によって近似して得られたサージ波104の到達時刻tr2との差及び地中ケーブル102におけるサージ波104の伝搬速度Vsを用いて事故点位置を算出すると共に、前記算出した事故点位置と所定位置(例えば、地中ケーブル102の中央位置又は端末部)の距離に応じた補正処理を行うことによって事故点位置を標定することを特徴としている。
ここで、前記補正処理は、地中ケーブル102の構造及び材料によって決まる定数と前記2つの異なる閾値L1、L2に基づいて得られるサージ波形の鈍りにより生じる誤差を相殺する補正値によって行う処理であるように構成することができる。
As described above, the accident point locating device according to the embodiment of the present invention is capable of generating a surge when the surge wave 104 detected at one terminal portion A of the underground cable 102 exceeds two different thresholds L1 and L2. A first surge arrival time detection unit 113 that approximates the time tr1 at which the surge wave 104 arrives at one terminal portion A at the intersection of the straight line passing through the intersection of the wave 104 and each of the threshold values L1 and L2 and the zero level; When the surge wave 104 detected at the other terminal portion B of the cable 102 exceeds two different thresholds L1 and L2, the intersection of the straight line passing through the intersection of the surge wave 104 and each of the thresholds L1 and L2 and the zero level The surge wave 104 obtained by approximating the second surge arrival time detection unit 114 that approximates the time tr2 when the surge wave 104 arrives at the other terminal B and the first surge arrival time detection unit 113. The accident point position is calculated using the difference between the arrival time tr1 and the arrival time tr2 of the surge wave 104 obtained by approximation by the second surge arrival time detection unit 114 and the propagation velocity Vs of the surge wave 104 in the underground cable 102. In addition, the accident point position is determined by performing correction processing according to the distance between the calculated accident point position and a predetermined position (for example, the central position of the underground cable 102 or the terminal portion).
Here, the correction process is a process performed by a correction value that cancels out an error caused by a bluntness of a surge waveform obtained based on a constant determined by the structure and material of the underground cable 102 and the two different threshold values L1 and L2. It can be constituted as follows.

このように、本発明の実施の形態に係る事故点標定装置は、地中ケーブル102の端末部A、Bから事故点までの距離に応じて地中ケーブル102の両端末部A、Bにおけるサージ電流104波形の鈍りの程度が異なることに着目して、事故点を標定する際に二電位法によって生じる標定誤差を低減するように補正しているので、高精度な事故点標定が可能になる。
尚、本実施の形態ではサージ波としてサージ電流の例を説明したが、サージ電圧の場合も同様に補正処理することによって高精度な事故点標定が可能になる。
As described above, the accident point locating device according to the embodiment of the present invention has a surge in both terminal portions A and B of the underground cable 102 according to the distance from the terminal portions A and B of the underground cable 102 to the accident point. Focusing on the fact that the current 104 waveform has a different degree of dullness, correction is made so as to reduce the orientation error caused by the two-potential method when the accident point is located, so highly accurate accident point location is possible. .
In the present embodiment, an example of a surge current as a surge wave has been described. However, in the case of a surge voltage as well, highly accurate accident location can be performed by performing correction processing in the same manner.

地中ケーブルの事故点位置を二電位法によって標定する事故点標定装置に適用可能である。   The present invention is applicable to an accident point locating device for locating an accident point position of an underground cable by a two-potential method.

100・・・事故点標定装置本体
101・・・発電機
102・・・地中ケーブル
103・・・外部ケーブル
104・・・サージ電流
105、106・・・光電流センサ
107、108・・・接地線
109、110・・・光ファイバ伝送路
111・・・第1光電変換部
112・・・第2光電変換部
113・・・第1サージ到達時刻検出部
114・・・第2サージ到達時刻検出部
115・・・第1閾値部
116・・・第2閾値部
117・・・事故点標定部
DESCRIPTION OF SYMBOLS 100 ... Accident point location apparatus main body 101 ... Generator 102 ... Underground cable 103 ... External cable 104 ... Surge current 105, 106 ... Photocurrent sensor 107, 108 ... Grounding Lines 109, 110 ... Optical fiber transmission line 111 ... First photoelectric conversion unit 112 ... Second photoelectric conversion unit 113 ... First surge arrival time detection unit 114 ... Second surge arrival time detection Unit 115... First threshold unit 116... Second threshold unit 117.

Claims (2)

地中ケーブルの一方の端末部で検出したサージ波が2つの異なる閾値をともに超えたとき、前記サージ波と各閾値との交点を通る直線と零レベルとの交点を前記一方の端末部へ前記サージ波が到達した時刻と近似する第1サージ到達時刻検出部と、
前記地中ケーブルの他方の端末部で検出したサージ波が2つの異なる閾値をともに超えたとき、前記サージ波と各閾値との交点を通る直線と零レベルとの交点を前記他方の端末部へ前記サージ波が到達した時刻と近似する第2サージ到達時刻検出部と、
前記第1サージ到達時刻検出部によって近似して得られたサージ波の到達時刻と前記第2サージ到達時刻検出部によって近似して得られたサージ波の到達時刻との差及び前記地中ケーブルにおけるサージ波の伝搬速度を用いて事故点位置を算出すると共に、前記算出した事故点位置と所定位置の距離に応じた補正処理を行うことによって事故点位置を標定する事故点標定部とを備えて成ることを特徴とする事故点標定装置。
When the surge wave detected at one terminal part of the underground cable exceeds both two different threshold values, the intersection of the straight line passing through the intersection of the surge wave and each threshold value and the zero level is sent to the one terminal part. A first surge arrival time detector that approximates the time when the surge wave arrives;
When the surge wave detected at the other end of the underground cable exceeds two different thresholds, the intersection of the straight line passing through the intersection of the surge wave and each threshold and the zero level is sent to the other end. A second surge arrival time detector that approximates the time at which the surge wave arrives;
The difference between the arrival time of the surge wave obtained by approximation by the first surge arrival time detection unit and the arrival time of the surge wave obtained by approximation by the second surge arrival time detection unit, and the underground cable An accident point position is calculated by calculating the accident point position using the propagation speed of the surge wave, and performing the correction process according to the distance between the calculated accident point position and the predetermined position. Accident location device characterized by comprising.
前記補正処理は、前記地中ケーブルの構造及び材料によって決まる定数と前記2つの異なる閾値に基づいて得られるサージ波形の鈍りにより生じる誤差を相殺する補正値によって行う処理であることを特徴とする請求項1記載の事故点標定装置。   The correction process is a process performed by a correction value that cancels an error caused by a dullness of a surge waveform obtained based on a constant determined by the structure and material of the underground cable and the two different threshold values. Item 1. The accident location system.
JP2013038096A 2013-02-28 2013-02-28 Accident point locator Active JP6383523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038096A JP6383523B2 (en) 2013-02-28 2013-02-28 Accident point locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038096A JP6383523B2 (en) 2013-02-28 2013-02-28 Accident point locator

Publications (2)

Publication Number Publication Date
JP2014163914A true JP2014163914A (en) 2014-09-08
JP6383523B2 JP6383523B2 (en) 2018-08-29

Family

ID=51614629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038096A Active JP6383523B2 (en) 2013-02-28 2013-02-28 Accident point locator

Country Status (1)

Country Link
JP (1) JP6383523B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217917A (en) * 2017-06-30 2019-01-15 中兴通讯股份有限公司 The location determining method and device of failure optical fiber, storage medium, processor
JP2021056203A (en) * 2019-09-30 2021-04-08 株式会社和田電業社 Fault point distance detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196166B (en) * 2018-01-11 2020-02-21 武汉三相电力科技有限公司 Double-end traveling wave distance measurement method based on fault waveform starting point arrival time difference

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815362A (en) * 1993-12-28 1996-01-19 Tohoku Electric Power Co Inc Surge location system for transmission line

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815362A (en) * 1993-12-28 1996-01-19 Tohoku Electric Power Co Inc Surge location system for transmission line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217917A (en) * 2017-06-30 2019-01-15 中兴通讯股份有限公司 The location determining method and device of failure optical fiber, storage medium, processor
JP2021056203A (en) * 2019-09-30 2021-04-08 株式会社和田電業社 Fault point distance detector
JP7039149B2 (en) 2019-09-30 2022-03-22 株式会社和田電業社 Failure point distance detector

Also Published As

Publication number Publication date
JP6383523B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
Livani et al. A machine learning and wavelet-based fault location method for hybrid transmission lines
CN109031021B (en) High-voltage single-core cable short-circuit fault positioning method, device and system
EP1739441A1 (en) Method and system for determining location of phase-to-earth fault
JP6383523B2 (en) Accident point locator
CN102590704A (en) After-test simulation method for internal and external failure recognition of double-circuit transmission line region based on Bergeron model
RU2668336C1 (en) Method of determining short circuit location on electric transmission lines
WO2019097312A1 (en) Parameter free traveling wave based fault location for power transmission lines
US11038342B2 (en) Traveling wave identification using distortions for electric power system protection
Hamidi et al. A travelling wave-based fault location method for hybrid three-terminal circuits
CN110726905A (en) Method and system for determining cable position based on cable length
CN109564256B (en) Travelling wave based method for locating a fault in a transmission line and device for the method
CN112526283A (en) Fault positioning method for high-voltage direct-current transmission line
CN106771843A (en) A kind of fault travelling wave ranging method of single-core power cables
JP7304783B2 (en) Power system monitoring apparatus and method
CN111999598A (en) Fault positioning method for hybrid line
CN116629131A (en) Cable main insulation fault positioning method and system based on neural network algorithm
RU2653583C1 (en) Method of determining of cable line failure point
CN116989842A (en) Equipment fault diagnosis method and device based on big data and storage medium
KR20080056596A (en) Analytic method for fault location of underground power cable
CN110196376B (en) High speed protection of power transmission lines
KR101527942B1 (en) Device For Measuring A Distance About Grounding Point Of The Control Cable In Railway Substation And Method Therefore
KR20220131704A (en) Apparatus for detecting partial discharge and method thereof
KR102016828B1 (en) Noise Source Analysis Method
Albano et al. Computation of the electromagnetic coupling of parallel untransposed power lines
EP4257988A1 (en) Method for locating a fault point on a high-voltage three-phase ac cable, and system for locating a fault point

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6383523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250