JP7038621B2 - 位置測定装置および位置測定方法 - Google Patents

位置測定装置および位置測定方法 Download PDF

Info

Publication number
JP7038621B2
JP7038621B2 JP2018136764A JP2018136764A JP7038621B2 JP 7038621 B2 JP7038621 B2 JP 7038621B2 JP 2018136764 A JP2018136764 A JP 2018136764A JP 2018136764 A JP2018136764 A JP 2018136764A JP 7038621 B2 JP7038621 B2 JP 7038621B2
Authority
JP
Japan
Prior art keywords
light
straight line
emitted
incident
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018136764A
Other languages
English (en)
Other versions
JP2020012785A5 (ja
JP2020012785A (ja
Inventor
吉平 杉田
健治 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2018136764A priority Critical patent/JP7038621B2/ja
Priority to US16/516,481 priority patent/US11513194B2/en
Publication of JP2020012785A publication Critical patent/JP2020012785A/ja
Publication of JP2020012785A5 publication Critical patent/JP2020012785A5/ja
Application granted granted Critical
Publication of JP7038621B2 publication Critical patent/JP7038621B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本開示は、位置測定装置および位置測定方法に関する。
半導体基板がプラズマ処理されるチャンバの内部に配置される対象物の位置を検出する位置測定装置が知られている(特許文献1参照)。
特開2018-54500号公報
本開示は、チャンバの内部空間に配置される対象の位置を容易に測定する位置測定装置および位置測定方法を提供する。
本開示の一態様による位置測定装置は、内部空間が形成されるチャンバに形成される窓を介してチャンバの外部から内部空間に出射光を出射するチャンバ外装置と、内部空間に配置される載置台に載置されるベースウェハと、光回路とを備えている。光回路は、ベースウェハに固定され、出射光が沿う第1直線と平行でない第2直線に沿う入射光に出射光を変換し、入射光が入射された対象を反射した反射光を、第1直線に沿う測定光に変換する。チャンバ外装置は、窓を介して測定光を受光する。
本開示によれば、チャンバの内部空間に配置される対象の位置を容易に測定することができる。
図1は、実施形態の位置測定装置の一例を示す斜視図である。 図2は、実施形態の位置測定装置の垂直フォーカサの一例を示す断面図である。 図3は、実施形態の位置測定装置の測定器の一例を示すブロック図である。 図4は、実施形態の位置測定装置が利用される基板処理装置の一例を示す断面図である。 図5は、実施形態の位置測定装置のチャンバ内装置が基板処理装置の内部空間に搬入されるときのチャンバの一例を示す断面図である。 図6は、実施形態の位置測定装置のチャンバ内装置が載置台に適切に載置されたときのチャンバの一例を示す断面図である。 図7は、垂直フォーカサに伝送された光の光路の一例を示す断面図である。 図8は、プリズムのプリズム上面と上部電極の載置台対向面と裏面とを反射して測定器に伝送された光における波長に対する強度の分布の一例を示すグラフである。 図9は、波長掃引型光源から出力される光における波長に対する強度の分布の一例を示すグラフである。 図10は、測定器5に伝送された光を解析して得られた1/2光路長に対する強度の分布の一例を示すグラフである。 図11は、距離測定試験における測定長と上部電極駆動距離との関係の一例を示すグラフである。
以下に、開示する位置測定装置および位置測定方法の実施例について、図面に基づいて詳細に説明する。
[位置測定装置1の構成]
図1は、実施形態の位置測定装置1の一例を示す斜視図である。位置測定装置1は、図1に示されているように、チャンバ外装置2とチャンバ内装置3とを備えている。チャンバ外装置2は、測定器5と複数のコリメータ6-1~6-3と複数の光ファイバ7-1~7-3とを備えている。複数のコリメータ6-1~6-3のうちのコリメータ6-1は、複数の光ファイバ7-1~7-3のうちの光ファイバ7-1を介して測定器5に接続されている。
コリメータ6-1は、出射受光口8-1が形成されている。コリメータ6-1は、光ファイバ7-1を介して測定器5から伝送される光を平行光線に変換し、その変換された平行光線を出射受光口8-1から出射する。コリメータ6-1は、さらに、出射受光口8-1に入射する光を、光ファイバ7-1を介して測定器5に伝送する。
複数のコリメータ6-1~6-3のうちのコリメータ6-2は、複数の光ファイバ7-1~7-3のうちの光ファイバ7-2を介して測定器5に接続されている。コリメータ6-2は、出射受光口8-2が形成され、光ファイバ7-2を介して測定器5から伝送される光を平行光線に変換し、その変換された平行光線を出射受光口8-2から出射する。コリメータ6-2は、さらに、出射受光口8-2に入射する光を、光ファイバ7-2を介して測定器5に伝送する。コリメータ6-2は、出射受光口8-2から出射される平行光線が沿う直線10-2が、出射受光口8-1から出射される平行光線が沿う直線10-1に平行になるように、配置され、コリメータ6-1に固定されている。
複数のコリメータ6-1~6-3のうちのコリメータ6-3は、複数の光ファイバ7-1~7-3のうちの光ファイバ7-3を介して測定器5に接続されている。コリメータ6-3は、出射受光口8-3が形成され、光ファイバ7-3を介して測定器5から伝送される光を平行光線に変換し、その変換された平行光線を出射受光口8-3から出射する。コリメータ6-3は、さらに、出射受光口8-3に入射する光を、光ファイバ7-3を介して測定器5に伝送する。コリメータ6-3は、出射受光口8-3から出射される平行光線が沿う直線10-3が直線10-1に平行になるように、かつ、直線10-2が直線10-1と直線10-3との間に配置されるように、配置されている。コリメータ6-3は、さらに、コリメータ6-1とコリメータ6-2とに固定されている。
チャンバ内装置3は、ベースウェハ11と複数の光回路12-1~12-3とを備えている。ベースウェハ11は、単結晶シリコンから形成され、円板状に形成されている。ベースウェハ11は、その円板の周縁にノッチ14が形成されている。複数の光回路12-1~12-3のうちの1つの光回路12-1は、コリメータ15-1と垂直フォーカサ16-1と光ファイバ17-1とを備えている。コリメータ15-1は、受光出射口18-1が形成されている。コリメータ15-1は、受光出射口18-1に入射した光を、光ファイバ17-1を介して垂直フォーカサ16-1に伝送する。コリメータ15-1は、さらに、光ファイバ17-1を介して垂直フォーカサ16-1から伝送された光を平行光線に変換し、その変換された平行光線を受光出射口18-1から出射する。コリメータ15-1は、受光出射口18-1から出射された平行光線に沿う直線が、ベースウェハ11が沿う平面に平行である直線に沿うように、ベースウェハ11のうちの一方の面上に配置され、ベースウェハ11に固定されている。
垂直フォーカサ16-1は、出射受光口22-1が形成されている。垂直フォーカサ16-1は、出射受光口22-1が直線24-1に交差するように、ベースウェハ11のうちのコリメータ15-1が配置される面上に配置されている。直線24-1は、ベースウェハ11に沿う平面に垂直であり、ベースウェハ11の中心23から直線24-1までの距離が所定値に等しくなるように、配置されている。
複数の光回路12-1~12-3のうちの光回路12-2は、コリメータ15-2と垂直フォーカサ16-2と光ファイバ17-2とを備えている。コリメータ15-2は、受光出射口18-2が形成されている。コリメータ15-2は、受光出射口18-2に入射した光を、光ファイバ17-2を介して垂直フォーカサ16-2に伝送する。コリメータ15-2は、さらに、光ファイバ17-2を介して垂直フォーカサ16-2から伝送された光を平行光線に変換し、その変換された平行光線を受光出射口18-2から出射する。コリメータ15-2は、受光出射口18-2から出射された平行光線に沿う直線が、コリメータ15-1から出射された平行光線に沿う直線に平行であるように、ベースウェハ11のうちのコリメータ15-1が配置される面上に配置されている。コリメータ15-2は、さらに、受光出射口18-1から出射する平行光線が直線10-1に沿うときに、受光出射口18-2から出射する平行光線が直線10-2に沿うように、配置されている。コリメータ15-2は、ベースウェハ11に固定されている。
垂直フォーカサ16-2は、出射受光口22-2が形成されている。垂直フォーカサ16-2は、出射受光口22-2が直線24-2に交差するように、ベースウェハ11のうちのコリメータ15-2が配置される面上に配置されている。直線24-2は、直線24-1に平行であり、中心23から直線24-2までの距離が中心23から直線24-1までの距離と等しくなるように、配置されている。直線24-2は、さらに、ベースウェハ11のうちの直線24-2に交差する点と中心23とを結ぶ直線25-2がベースウェハ11のうちの直線24-1に交差する点と中心23とを結ぶ直線25-1と120度で交差するように配置されている。
複数の光回路12-1~12-3のうちの光回路12-3は、コリメータ15-3と垂直フォーカサ16-3と光ファイバ17-3とを備えている。コリメータ15-3は、受光出射口18-3が形成されている。コリメータ15-3は、受光出射口18-3に入射した光を、光ファイバ17-3を介して垂直フォーカサ16-3に伝送する。コリメータ15-3は、さらに、光ファイバ17-3を介して垂直フォーカサ16-3から伝送された光を平行光線に変換し、その変換された平行光線を受光出射口18-3から出射する。コリメータ15-3は、受光出射口18-3から出射された平行光線に沿う直線が、コリメータ15-1から出射された平行光線に沿う直線に平行であるように、ベースウェハ11のうちのコリメータ15-1が配置される面上に配置されている。コリメータ15-3は、さらに、コリメータ15-1から出射する光が直線10-1に沿い、かつ、コリメータ15-2から出射する光が直線10-2に沿うときに、受光出射口18-3から出射する光が直線10-3に沿うように、配置されている。コリメータ15-3は、ベースウェハ11に固定されている。
垂直フォーカサ16-3は、出射受光口22-3が形成されている。垂直フォーカサ16-3は、出射受光口22-3が直線24-3に交差するように、ベースウェハ11のうちのコリメータ15-3が配置される面上に配置されている。直線24-3は、直線24-1に平行であり、中心23から直線24-3までの距離が中心23から直線24-1までの距離と等しくなるように、配置されている。直線24-3は、さらに、ベースウェハ11のうちの直線24-3に交差する点と中心23とを結ぶ直線25-3が直線25-1と120度で交差するように、かつ、直線25-3が直線25-2と120度で交差するように、配置されている。
図2は、実施形態の位置測定装置1の垂直フォーカサ16-1の一例を示す断面図である。垂直フォーカサ16-1は、ケース61とフェルール62とプリズム63と集光レンズ64とを備えている。ケース61は、出射受光口22-1が形成されている。フェルール62は、ケース61の内部に配置され、ケース61に固定されている。フェルール62は、光ファイバ17-1のうちの垂直フォーカサ16-1の側の一端の端面65がケース61の内部のうちの所定の位置に配置されるように、光ファイバ17-1の一端を固定している。
プリズム63は、プリズム側面66とプリズム上面67と全反射面68とが形成されている。プリズム63は、プリズム側面66から入射して全反射面68を全反射した光がプリズム上面67から出射するように、かつ、プリズム上面67から入射して全反射面68を全反射した光がプリズム側面66から出射するように、形成されている。プリズム63は、プリズム側面66が光ファイバ17-1の端面65に対向するように、かつ、プリズム上面67が出射受光口22-1に対向するように、ケース61の内部に配置され、ケース61に固定されている。このため、プリズム63のプリズム上面67から出射した光は、出射受光口22-1を介してケース61の外部に出射する。このとき、ケース61は、出射受光口22-1から出射した光が直線24-1に沿うように、配置され、ベースウェハ11に固定されている。
集光レンズ64は、ケース61の内部のうちの光ファイバ17-1の端面65とプリズム63のプリズム側面66との間に配置され、ケース61に固定されている。集光レンズ64は、光ファイバ17-1の端面65から出射された光を集光し、その集光された光をプリズム63のプリズム側面66に入射する。集光レンズ64は、さらに、プリズム63のプリズム側面66から出射された光を集光し、その集光された光を光ファイバ17-1の端面65に入射する。
垂直フォーカサ16-2は、垂直フォーカサ16-1と同様に形成されている。すなわち、垂直フォーカサ16-2は、光ファイバ17-2を介してコリメータ15-2から伝送された光を出射受光口22-2から出射し、出射受光口22-2に入射した光を、光ファイバ17-2を介してコリメータ15-2に伝送する。垂直フォーカサ16-2は、さらに、出射受光口22-2から出射した光が直線24-2に沿うように、配置され、ベースウェハ11に固定されている。
垂直フォーカサ16-3は、垂直フォーカサ16-1と同様に形成されている。すなわち、垂直フォーカサ16-3は、光ファイバ17-3を介してコリメータ15-3から伝送された光を出射受光口22-3から出射し、出射受光口22-3に入射した光を、光ファイバ17-3を介してコリメータ15-3に伝送する。垂直フォーカサ16-3は、さらに、出射受光口22-3から出射した光が直線24-3に沿うように、配置され、ベースウェハ11に固定されている。
図3は、実施形態の位置測定装置1の測定器5の一例を示すブロック図である。測定器5は、図3に示されているように、波長掃引型光源26とサーキュレータ27と光スイッチ28と受光器29と演算装置30とを備えている。波長掃引型光源26は、波長が時間とともに変化する光をサーキュレータ27に出力する。その光は、ケイ素Si、石英ガラスを透過する赤外線である。波長掃引型光源26は、さらに、クロック信号を演算装置30に出力する。サーキュレータ27は、波長掃引型光源26からサーキュレータ27に出力される光を光スイッチ28に出力する。サーキュレータ27は、さらに、光スイッチ28からサーキュレータ27に出力される光を受光器29に出力する。
光スイッチ28は、複数のモードのうちの1つのモードに切り替えられる。光スイッチ28は、第1モードに切り替えられたときに、サーキュレータ27から光スイッチ28に出力された光を、光ファイバ7-1を介してコリメータ6-1に伝送する。光スイッチ28は、第1モードに切り替えられたときに、さらに、光ファイバ7-1を介してコリメータ6-1から伝送された光をサーキュレータ27に出力する。光スイッチ28は、第2モードに切り替えられたときに、サーキュレータ27から光スイッチ28に出力された光を、光ファイバ7-2を介してコリメータ6-2に伝送する。光スイッチ28は、第2モードに切り替えられたときに、さらに、光ファイバ7-2を介してコリメータ6-2から伝送された光をサーキュレータ27に出力する。光スイッチ28は、第3モードに切り替えられたときに、サーキュレータ27から光スイッチ28に出力された光を、光ファイバ7-3を介してコリメータ6-3に伝送する。光スイッチ28は、第3モードに切り替えられたときに、さらに、光ファイバ7-3を介してコリメータ6-3から伝送された光をサーキュレータ27に出力する。
受光器29は、サーキュレータ27から受光器29に出力された光を受光し、光強度データを作成し、光強度データを演算装置30に出力する。光強度データは、複数の波長に対応する複数の強度を示している。複数の強度のうちのある波長に対応する強度は、受光器29が受光した光のうちのその波長の光の強度を示している。
演算装置30は、波長掃引型光源26から出力されたクロック信号と受光器29から出力された光強度データとに基づいて、光の干渉状態を算出し、光の信号強度の分布を算出する。光の信号強度の分布は、複数の光路長に対応する複数の信号強度を示している。複数の信号強度のうちのある光路長に対応する信号強度は、その光路長の光の強度を示している。演算装置30は、さらに、光の信号強度の分布に基づいて複数の対象の相互距離を算出する。
位置測定装置1は、図4に示されているように、基板処理装置31とともに利用される。図4は、実施形態の位置測定装置1が利用される基板処理装置31の一例を示す断面図である。基板処理装置31は、チャンバ32と載置台33と上部電極34と上部電極駆動部44とを備えている。チャンバ32の内部には、内部空間35が形成されている。チャンバ32は、内部空間35をチャンバ32の外部の雰囲気から隔離している。チャンバ32には、搬出入口36が形成されている。搬出入口36は、チャンバ32の側壁に形成されている。内部空間35は、搬出入口36を介して、図示されていないロードロックチャンバに接続されている。搬出入口36は、図示されていないゲートバルブを介して開放されたり、閉鎖されたりする。チャンバ32は、このようなロードロックチャンバが設けられることにより、チャンバ32の内部空間35が大気解放されることなく、内部空間35にウェハが搬入されたり、内部空間35からウェハが搬出されたりされることができる。チャンバ32は、窓37を備えている。窓37は、石英ガラスから形成され、チャンバ32の側壁に配置されている。ユーザは、窓37を介して内部空間35の様子を確認することができる。なお、窓37を形成する材料は、石英ガラスと異なる他の材料に置換されることができる。その材料は、赤外光を透過する材料であり、その材料としては、サファイヤ、単結晶シリコンが例示される。
載置台33は、内部空間35の下部に配置され、チャンバ32の底部に設置されている。載置台33は、支持台38と静電チャック39と基台40とを備えている。支持台38は、絶縁体から形成され、チャンバ32に支持されている。基台40は、導体から形成され、支持台38の上側に配置され、チャンバ32から電気的に絶縁されるように、支持台38を介してチャンバ32に支持されている。静電チャック39は、基台40が支持台38と静電チャック39との間に配置されるように、基台40の上側に配置され、支持台38と基台40とを介してチャンバ32に支持されている。静電チャック39は、載置台33に適切に載置されるウェハをクーロン力により保持する。このとき、窓37は、載置台33のうちのウェハが載置される面に沿う平面に重なるように、配置されている。
上部電極34は、シリコンに例示される導電性部材により形成され、円板状に形成されている。上部電極34は、載置台対向面41と裏面42とが形成されている。上部電極34は、載置台対向面41が載置台33に対向するように、内部空間35の上部に配置されている。上部電極34は、チャンバ32から電気的に絶縁されるように、上部電極駆動部44を介して、チャンバ32に支持されている。上部電極駆動部44は、上部電極34が載置台33に接近したり、上部電極34が載置台33から遠ざかったりするように、チャンバ32に対して上部電極34を上下方向に移動させる。このとき、基台40は、上部電極34に対する下部電極として利用される。
基板処理装置31は、プラズマエッチング処理に例示される基板処理に利用される。たとえば、被処理体となるウェハは、搬出入口36が開放されているときに、搬出入口36を介してロードロックチャンバからチャンバ32の内部空間35に搬入され、載置台33に載置され、クーロン力により静電チャック39に保持される。ウェハが静電チャック39に保持された後に、搬出入口36は、閉鎖され、内部空間35は、所定の雰囲気になるように調整される。内部空間35が所定の雰囲気に調整された後に、載置台33の支持台38と上部電極34との間には、高周波が供給される。内部空間35には、支持台38と上部電極34との間に高周波が供給されることにより、プラズマが発生する。載置台33に載置されているウェハは、内部空間35に発生したプラズマによりエッチングされる。窓37は、たとえば、内部空間35で処理されるウェハの状態をチャンバ32の外部から確認することに利用される。ウェハがエッチングされた後に、搬出入口36が開放され、搬出入口36を介してウェハが内部空間35からロードロックチャンバに搬出される。
[位置測定方法]
実施形態の位置測定方法は、既述の位置測定装置1を用いて実行される。位置測定方法では、まず、搬出入口36が開放されているときに、図5に示されているように、ロードロックチャンバに設けられるロボットハンド51により、ロードロックチャンバからチャンバ32の内部空間35にチャンバ内装置3が搬入される。図5は、実施形態の位置測定装置1のチャンバ内装置3が基板処理装置31の内部空間35に搬入されるときのチャンバ32の一例を示す断面図である。ロボットハンド51は、基板処理装置31により基板処理されるウェハをロードロックチャンバから内部空間35に搬出入することにも利用される。
チャンバ内装置3は、内部空間35に搬入された後に、図6に示されているように、載置台33に載置される。図6は、実施形態の位置測定装置1のチャンバ内装置3が載置台33に適切に載置されたときのチャンバ32の一例を示す断面図である。このとき、チャンバ内装置3は、ベースウェハ11のノッチ14が所定の位置に配置されるように、載置台33に適切に載置される。複数のコリメータ15-1~15-3は、チャンバ内装置3が載置台33に適切に載置されることにより、窓37を介して、複数の受光出射口18-1~18-3からそれぞれ出射する複数の光をチャンバ32の外部に出射することができる。チャンバ内装置3は、載置台33に適切に載置された状態で、静電チャック39に保持される。
さらに、チャンバ外装置2の複数のコリメータ6-1~6-3は、適切に配置され、チャンバ32に固定される。複数のコリメータ6-1~6-3が適切に配置されるときに、コリメータ6-1から出射される光は、窓37を介して、コリメータ15-1の受光出射口18-1に入射することができる。このとき、さらに、コリメータ6-2から出射される光は、窓37を介して、コリメータ15-2の受光出射口18-2に入射することができる。さらに、コリメータ6-3から出射される光は、窓37を介して、コリメータ15-3の受光出射口18-3に入射することができる。
複数のコリメータ6-1~6-3とチャンバ内装置3とが適切に配置された後に、測定器5は、光ファイバ7-1を介してコリメータ6-1に光を出力する。測定器5からコリメータ6-1に出力された光は、コリメータ6-1により、平行光線に変換され、出射受光口8-1から出射される。コリメータ6-1から出射された光は、窓37を透過し、コリメータ15-1の受光出射口18-1に入射する。受光出射口18-1に入射した光は、光ファイバ17-1を介して垂直フォーカサ16-1に伝送される。
図7は、垂直フォーカサ16-1に伝送された光の光路の一例を示す断面図である。光ファイバ17-1を介して垂直フォーカサ16-1に伝送された光は、集光レンズ64により集光され、プリズム63のプリズム側面66に入射する。プリズム63のプリズム側面66に入射した光は、全反射面68を全反射し、全反射面68からプリズム上面67に入射する。全反射面68からプリズム上面67に入射した光の一部は、プリズム上面67を反射して、測定器5からプリズム上面67までの経路を遡って、測定器5に伝送される。全反射面68からプリズム上面67に入射した光のうちの他の一部は、プリズム上面67から垂直フォーカサ16-1の出射受光口22-1に出射され、出射受光口22-1から直線24-1に沿って上部電極34に向かって出射される。
出射受光口22-1から出射した光は、上部電極34の載置台対向面41のうちの直線24-1と交差する領域に入射する。上部電極34の載置台対向面41に入射した光の一部は、載置台対向面41で反射して、測定器5から載置台対向面41までの経路を遡って、測定器5に伝送される。載置台対向面41に入射した光のうちの他の一部は、上部電極34を透過して、上部電極34の裏面42に入射する。上部電極34の裏面42に入射した光の一部は、裏面42で反射して、測定器5から裏面42までの経路を遡って、測定器5に伝送される。上部電極34の裏面42に入射した光のうちの他の一部は、裏面42からさらに上部に向かって出射する。
測定器5の受光器29は、プリズム63のプリズム上面67と上部電極34の載置台対向面41と裏面42とを反射した光が測定器5に伝送されると、その光における波長に対する強度の分布を測定する。図8は、プリズム63のプリズム上面67と上部電極34の載置台対向面41と裏面42とを反射して測定器5に伝送された光における波長に対する強度の分布の一例を示すグラフである。測定器5の演算装置は、所定の部位を反射して測定器5に伝送された光の強度の分布と、波長掃引型光源26から出力される光の強度の分布とに基づいて、1/2光路長に対する信号強度の分布を算出する。図9は、波長掃引型光源26から出力される光における波長に対する強度の分布の一例を示すグラフである。図10は、測定器5に伝送された光を解析して得られた1/2光路長に対する信号強度の分布の一例を示すグラフである。図10のグラフは、信号強度の分布に複数のピークが形成されていることを示している。複数のピークは、複数の測定対象に対応している。複数の測定対象の各々は、2つの反射面に挟まれた部分を示している。測定対象としては、プリズム63のプリズム上面67と上部電極34の載置台対向面41との間の距離、上部電極34のうちの載置台対向面41と裏面42との間の距離が例示される。測定器5の演算装置30は、信号強度の分布に形成される複数のピークに対応する複数の1/2光路長を算出する。
演算装置30は、さらに、複数の1/2光路長に複数の測定対象を対応付ける。複数の1/2光路長のうちのある測定対象に対応付けられた1/2光路長は、その測定対象を往復する光の光路長の半分を示している。測定器5の演算装置30は、さらに、ある測定対象に対応付けられた1/2光路長と、その測定対象の屈折率とに基づいて、その測定対象の距離(厚さ)を算出する。その測定対象の距離は、その測定対象に対応する1/2光路長を、その測定対象の屈折率で除算した値に等しい。たとえば、上部電極34の厚さd1は、上部電極34のうちの載置台対向面41と裏面42との間に対応付けられた1/2光路長d1n1を、上部電極34の屈折率n1で除算することにより算出される。プリズム63のプリズム上面67と上部電極34の載置台対向面41との間の距離d2は、その間に対応付けられた1/2光路長を、その間に充填される気体の屈折率(≒1)で除算することにより算出される。演算装置30は、このようにして、プリズム63のプリズム上面67と上部電極34の載置台対向面41との間の距離を算出する。演算装置30は、さらに、上部電極34のうちの載置台対向面41と裏面42との間の距離、すなわち、上部電極34のうちの直線24-1に交差する部分の厚さを算出する。
次いで、測定器5は、出射受光口8-2から平行光線を出射し、出射受光口8-2に入射した光に基づいて複数の測定対象の距離を算出する。その複数の測定対象は、垂直フォーカサ16-2のプリズム63のプリズム上面67と上部電極34の載置台対向面41のうちの直線24-2に交差する部分との間の距離と、上部電極34のうちの直線24-2に交差する部分の厚さとを含んでいる。次いで、測定器5は、出射受光口8-3から平行光線を出射し、出射受光口8-3に入射した光に基づいて複数の測定対象の距離を算出する。その複数の測定対象は、垂直フォーカサ16-3のプリズム63のプリズム上面67と上部電極34の載置台対向面41のうちの直線24-3に交差する部分との間の距離と、上部電極34のうちの直線24-3に交差する部分の厚さとを含んでいる。
チャンバ内装置3は、これらの測定対象の距離が測定された後に、搬出入口36を介してロボットハンド51によりチャンバ32の内部空間35からロードロックチャンバにチャンバ内装置3が搬出される。チャンバ外装置2は、これらの距離が測定された後に、複数のコリメータ6-1~6-3がチャンバ32から取り外される。
このような位置測定方法によれば、チャンバ32の内部空間35を大気解放することなく、上部電極34のうちの複数の所定の部位の位置を容易に測定することができる。ユーザは、その測定された複数の距離に基づいて載置台33と上部電極34との間の距離を算出することができる。ユーザは、その測定された複数の距離に基づいて、さらに、載置台33のうちのチャンバ内装置3が載置される載置面が沿う平面と上部電極34の載置台対向面41または裏面42が沿う平面との平行度を算出することができる。ユーザは、その測定された複数の距離に基づいて、さらに、上部電極34のうちの複数の部位の厚さを算出することができる。ユーザは、このような位置測定方法を間欠的に実行することにより、上部電極34の厚さの経時変化を算出することができ、上部電極34の摩耗量を算出することができる。
図11は、距離測定試験における測定長と上部電極駆動距離との関係の一例を示すグラフである。距離測定試験では、上部電極駆動部44を用いて上部電極34が複数の位置に配置される毎に、既述の位置測定方法により、垂直フォーカサ16-1のプリズム上面67から、載置台対向面41のうちの直線24-1に交差する部分までの距離が測定される。図11のグラフは、複数の上部電極駆動距離を複数の測定長に対応付けている。複数の上部電極駆動距離の各々は、上部電極駆動部44により上部電極34が所定の基準位置から上下方向に移動した距離を示し、上部電極34と載置台33との間の距離に対応している。複数の測定長のうちのある上部電極駆動距離に対応する測定長は、上部電極34がその上部電極駆動距離に対応する位置に配置されたときに、プリズム上面67から載置台対向面41までの距離について既述の位置測定方法により測定された測定値を示している。
図11のグラフは、上部電極駆動距離に対する測定長を近似する回帰式を示す直線の傾きが1に概ね等しいことを示し、既述の位置測定方法により測定された測定長が、概ね確からしいことを示している。さらに、位置測定方法により測定された複数の測定長の標準偏差σを用いて算出される測定長の安定性3σは、35μm以下であり、このことは、位置測定方法が安定して測定長を測定することができることを示している。
[位置測定装置の効果]
実施形態の位置測定装置1は、チャンバ外装置2とベースウェハ11と光回路12-1とを備えている。チャンバ外装置2は、内部空間35が形成されるチャンバ32に形成される窓37を介してチャンバ32の外部から内部空間35に出射光を出射する。ベースウェハ11は、内部空間35に配置される載置台33に載置される。光回路12-1は、ベースウェハ11に固定され、出射光が沿う直線10-1と平行でない直線24-1に沿う入射光にその出射光を変換し、その入射光が入射された対象を反射した反射光を、直線10-1に沿う測定光に変換する。直線10-1は、「第1直線」の一例であり、直線24-1は、「第2直線」の一例である。チャンバ外装置2は、窓37を介してその測定光を受光する。このような位置測定装置1は、チャンバ32の内部空間35を大気解放することなく、上部電極34に例示される対象の位置を容易に測定することができる。
また、実施形態の位置測定装置1の光回路12-1は、その出射光を第1伝送光に集光するコリメータ15-1と、その第1伝送光を垂直フォーカサ16-1に伝送する光ファイバ17-1とを備えている。コリメータ15-1は、「第1光学機器」の一例であり、垂直フォーカサ16-1は、「第2光学機器」の一例である。垂直フォーカサ16-1は、その第1伝送光をその出射光に変換し、その反射光を第2伝送光に変換する。光ファイバ17-1は、さらに、その第2伝送光をコリメータ15-1に伝送する。コリメータ15-1は、その第2伝送光をその測定光に変換する。このような位置測定装置1は、コリメータ15-1と垂直フォーカサ16-1とをベースウェハ11のうちの互いに異なる2つの位置にそれぞれ配置することができる。
また、実施形態の位置測定装置1は、ベースウェハ11に固定される光回路12-2と、ベースウェハ11に固定される光回路12-3とをさらに備えている。光回路12-2は、「第1光回路」の一例であり、光回路12-3は、「第2光回路」の一例である。光回路12-2は、チャンバ外装置2から出射されて直線10-2に沿う出射光を、直線24-2に沿う入射光に変換し、上部電極34を反射した反射光を、直線10-2に沿う測定光に変換する。直線10-2は、「第3直線」の一例であり、直線24-2は、「第4直線」の一例である。光回路12-3は、チャンバ外装置2から出射されて直線10-3に沿う出射光を、直線24-3に沿う入射光に変換し、上部電極34を反射した反射光を、直線10-3に沿う測定光に変換する。直線10-3は、「第5直線」の一例であり、直線24-3は、「第6直線」の一例である。このような位置測定装置1は、チャンバ内装置3が載置台33に載置された状態で、上部電極34のうちの複数の部位の位置を測定することができる。
また、実施形態の位置測定装置1のチャンバ外装置2は、複数のコリメータ6-1~6-3を備えている。コリメータ6-1は、「第1出射受光部」の一例であり、コリメータ6-2は、「第2出射受光部」の一例であり、コリメータ6-3は、「第3出射受光部」の一例である。このとき、コリメータ6-2とコリメータ6-3とは、コリメータ6-1に固定されている。このような位置測定装置1は、コリメータ6-1とコリメータ6-2とコリメータ6-3とを容易に位置合わせすることができる。
ところで、既述の複数の垂直フォーカサ16-1~16-3は、1つの直線に重ならないように配置されているが、1つの直線に重なるように配置されてもよい。このとき、位置測定装置1は、上部電極34の平行度を適切に測定することができないことがあるが、上部電極34の載置台対向面41または裏面42が屈曲している程度を示す歪み量(平坦度)を測定することができる。
ところで、既述のチャンバ内装置3は、複数の光回路12-1~12-3を備えているが、他の複数の光回路をさらに備えてもよい。その複数の光回路の各々は、光回路12-1と同様に、コリメータと垂直フォーカサと光ファイバとを備えている。コリメータは、複数のコリメータ15-1~15-3がチャンバ外装置2の光を受光できる状態から回転することにより、チャンバ外装置2の光を受光できるように配置されている。その複数の垂直フォーカサは、たとえば、ベースウェハ11の中心23との間の距離が、複数の垂直フォーカサ16-1~16-3と中心23との間の距離と異なっている。このとき、位置測定装置1は、載置台33に載置されたチャンバ内装置3を回転させることにより、上部電極34のうちのさらに多くの部位の位置を測定することができる。
ところで、既述のチャンバ外装置2は、複数のコリメータ6-1~6-3を備えているが、1つのコリメータ6-1以外のコリメータ6-2、6-3が省略されてもよい。この場合でも、位置測定装置1は、チャンバ32の内部空間35を大気解放することなく、上部電極34に例示される対象の位置を容易に測定することができる。
なお、コリメータ6-1は、コリメータと異なる他の光学機器から形成されてもよい。その光学機器としては、フォーカサが例示される。このとき、フォーカサは、光ファイバ7-1を介して測定器5から伝送される光を集光し、その集光された集光光線を出射受光口8-1から出射する。フォーカサは、さらに、出射受光口8-1に入射する光を集光し、光ファイバ7-1を介して、その集光された集光交線を測定器5に伝送する。コリメータ6-2とコリメータ6-3も、コリメータ6-1と同様に、他の光学機器から形成されてもよい。位置測定装置は、複数のコリメータ6-1~6-3が他の光学機器に置換された場合でも、同様に、対象の位置を容易に測定することができる。
また、コリメータ15-1は、コリメータと異なる他の光学機器から形成されてもよい。その光学機器としては、フォーカサが例示される。このとき、フォーカサは、受光出射口18-1に入射する光を集光し、光ファイバ17-1を介して、その集光された集光交線を垂直フォーカサ16-1に伝送する。フォーカサは、さらに、光ファイバ17-1を介して垂直フォーカサ16-1から伝送される光を集光し、その集光された集光光線を受光出射口18-1から出射する。コリメータ15-2とコリメータ15-3も、コリメータ15-1と同様に、他の光学機器から形成されてもよい。位置測定装置は、複数のコリメータ15-1~15-3が他の光学機器に置換された場合でも、同様に、対象の位置を容易に測定することができる。
また、光ファイバ17-1は、光ファイバと異なる他の光伝送部から形成されてもよい。その光伝送部としては、光導波路、ミラーを用いた光学系が例示される。光ファイバ17-2と光ファイバ17-1も、光ファイバ17-1と同様に、他の光伝送部から形成されてもよい。位置測定装置は、複数の光ファイバ17-1~17-3が他の光伝送部に置換された場合でも、同様に、対象の位置を容易に測定することができる。
ところで、既述のベースウェハ11は、単結晶シリコンから形成されているが、内部空間35に配置されても基板処理に悪影響を及ぼさない他の材料から形成されてもよい。その材料としては、SiC、石英、セラミックスが例示される。また、ベースウェハ11は、ノッチ14が形成されているが、オリエンテーションフラットが形成されてもよい。この場合も、チャンバ内装置3は、複数の受光出射口18-1~18-3からそれぞれ出射する複数の光が窓37を介してチャンバ32の外部に出射されるように、オリエンテーションフラットを用いて、載置台33に適切に載置されることができる。
今回開示された実施形態は、すべての点で例示であって、制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲およびその主旨を逸脱することなく、様々な形体で省略、置換、変更されてもよい。
1 :位置測定装置
2 :チャンバ外装置
3 :チャンバ内装置
5 :測定器
6-1~6-3:複数のコリメータ
7-1~7-3:複数の光ファイバ
11 :ベースウェハ
12-1~12-3:複数の光回路
14 :ノッチ
15-1~15-3:複数のコリメータ
16-1~16-3:複数の垂直フォーカサ
17-1~17-3:複数の光ファイバ
31 :基板処理装置
32 :チャンバ
33 :載置台
37 :窓

Claims (7)

  1. 内部空間が形成されるチャンバに形成される窓を介して前記チャンバの外部から前記内部空間に出射光を出射するチャンバ外装置と、
    前記内部空間に配置される載置台に載置されるベースウェハと、
    前記ベースウェハに固定される光回路とを備え、
    前記光回路は、
    前記出射光が沿う第1直線と平行でない第2直線に沿う入射光に前記出射光を変換し、
    前記入射光を対象に入射させ、
    前記入射光が前記対象反射した反射光を、前記第1直線に沿う測定光に変換し、
    前記チャンバ外装置は、前記窓を介して前記測定光を受光する
    位置測定装置。
  2. 前記光回路は、
    前記出射光を第1伝送光に変換する第1光学機器と、
    前記第1伝送光を第2光学機器に伝送する光伝送部とを備え、
    前記第2光学機器は、前記第1伝送光を前記射光に変換し、前記反射光を第2伝送光に変換し、
    前記光伝送部は、さらに、前記第2伝送光を前記第1光学機器に伝送し、
    前記第1光学機器は、前記第2伝送光を前記測定光に変換する
    請求項1に記載の位置測定装置。
  3. 前記ベースウェハに固定される第1光回路と、
    前記ベースウェハに固定される第2光回路とをさらに備え、
    前記第1光回路は、
    前記チャンバ外装置から出射される第1出射光が沿う第3直線と平行でない第4直線に沿う第1入射光に前記第1出射光を変換し、
    前記第1入射光を前記対象に入射させ、
    前記第1入射光が前記対象反射した第1反射光を、前記第3直線に沿う第1測定光に変換し、
    前記第2光回路は、
    前記チャンバ外装置から出射される第2出射光が沿う第5直線と平行でない第6直線に沿う第2入射光に前記第2出射光を変換し、
    前記第2入射光を前記対象に入射させ、
    前記第2入射光が前記対象反射した第2反射光を、前記第5直線に沿う第2測定光に変換する
    請求項2に記載の位置測定装置。
  4. 前記対象のうちの前記入射光と前記第1入射光と前記第2入射光とがそれぞれ反射する3つの領域は、1つの直線上に配置される
    請求項3に記載の位置測定装置。
  5. 前記チャンバ外装置は、
    前記出射光を出射し、前記測定光を受光する第1出射受光部と、
    前記第1出射光を出射し、前記第1測定光を受光する第2出射受光部と、
    前記第2出射光を出射し、前記第2測定光を受光する第3出射受光部とを有し、
    前記第2出射受光部と前記第3出射受光部とは、前記第1出射受光部に固定される
    請求項3または請求項4に記載の位置測定装置。
  6. 前記ベースウェハは、周縁にノッチまたはオリエンテーションフラットが形成される
    請求項1~請求項5のいずれか一項に記載の位置測定装置。
  7. 請求項1~請求項6のいずれか一項に記載の位置測定装置を用いて実行される位置測定方法であり、
    前記ベースウェハが前記載置台に載置されるように前記ベースウェハを前記外部から前記内部空間に搬入することと、
    前記ベースウェハが前記載置台に載置された状態で、前記チャンバ外装置から前記光回路に前記出射光を出射することと、
    前記測定光に基づいて前記対象の位置を算出すること
    とを備える位置測定方法。
JP2018136764A 2018-07-20 2018-07-20 位置測定装置および位置測定方法 Active JP7038621B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018136764A JP7038621B2 (ja) 2018-07-20 2018-07-20 位置測定装置および位置測定方法
US16/516,481 US11513194B2 (en) 2018-07-20 2019-07-19 Ranging apparatus and method using the ranging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136764A JP7038621B2 (ja) 2018-07-20 2018-07-20 位置測定装置および位置測定方法

Publications (3)

Publication Number Publication Date
JP2020012785A JP2020012785A (ja) 2020-01-23
JP2020012785A5 JP2020012785A5 (ja) 2021-03-25
JP7038621B2 true JP7038621B2 (ja) 2022-03-18

Family

ID=69162386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136764A Active JP7038621B2 (ja) 2018-07-20 2018-07-20 位置測定装置および位置測定方法

Country Status (2)

Country Link
US (1) US11513194B2 (ja)
JP (1) JP7038621B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038621B2 (ja) * 2018-07-20 2022-03-18 東京エレクトロン株式会社 位置測定装置および位置測定方法
AU2020251989A1 (en) 2019-03-29 2021-10-21 Aurora Operations, Inc. Switchable coherent pixel array for frequency modulated continuous wave light detection and ranging
US11560235B2 (en) * 2021-02-09 2023-01-24 Joby Aero, Inc. Aircraft propulsion unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298522A1 (en) 2006-06-26 2007-12-27 Tevet Pct Ltd. Method and apparatus for process control with in-die metrology
JP2015052537A (ja) 2013-09-06 2015-03-19 キヤノン株式会社 計測装置
JP2018054500A (ja) 2016-09-29 2018-04-05 東京エレクトロン株式会社 位置検出システム及び処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611919A (en) * 1984-03-09 1986-09-16 Tegal Corporation Process monitor and method thereof
US4969200A (en) * 1988-03-25 1990-11-06 Texas Instruments Incorporated Target autoalignment for pattern inspector or writer
US5364187A (en) * 1993-03-08 1994-11-15 Micron Semiconductor, Inc. System for repeatable temperature measurement using surface reflectivity
US6782337B2 (en) * 2000-09-20 2004-08-24 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension an a presence of defects on a specimen
JP2002195819A (ja) * 2000-12-27 2002-07-10 Nikon Corp 形状測定方法、形状測定装置、露光方法、露光装置、及びデバイス製造方法
JP4842175B2 (ja) * 2007-03-07 2011-12-21 東京エレクトロン株式会社 温度測定装置及び温度測定方法
JP6180909B2 (ja) * 2013-12-06 2017-08-16 東京エレクトロン株式会社 距離を求める方法、静電チャックを除電する方法、及び、処理装置
JP6656200B2 (ja) * 2017-04-12 2020-03-04 東京エレクトロン株式会社 位置検出システム及び処理装置
JP6948873B2 (ja) * 2017-07-31 2021-10-13 東京エレクトロン株式会社 測定器を較正する方法、及び、ケース
JP7038621B2 (ja) * 2018-07-20 2022-03-18 東京エレクトロン株式会社 位置測定装置および位置測定方法
JP7270509B2 (ja) * 2019-09-06 2023-05-10 東京エレクトロン株式会社 処理装置を検査するシステム及び方法
TW202145839A (zh) * 2020-05-14 2021-12-01 日商東京威力科創股份有限公司 校正方法及校正系統

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298522A1 (en) 2006-06-26 2007-12-27 Tevet Pct Ltd. Method and apparatus for process control with in-die metrology
JP2015052537A (ja) 2013-09-06 2015-03-19 キヤノン株式会社 計測装置
JP2018054500A (ja) 2016-09-29 2018-04-05 東京エレクトロン株式会社 位置検出システム及び処理装置

Also Published As

Publication number Publication date
JP2020012785A (ja) 2020-01-23
US11513194B2 (en) 2022-11-29
US20200025884A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP7038621B2 (ja) 位置測定装置および位置測定方法
US8986494B2 (en) Plasma processing apparatus and temperature measuring method and apparatus used therein
KR100327141B1 (ko) 광산란에기초한실시간웨이퍼온도측정용장치시스템및방법
US10627339B2 (en) Modular photoacoustic detection device
TWI820327B (zh) 用於原位光學腔室表面及處理感應器的光學感應器系統、方法及光學感應陣列
JP2016119473A (ja) プラズマ処理装置及びプラズマ処理装置の運転方法
JP2001519596A (ja) 半導体ウェハのプロセスモニタリング装置およびその製造方法
KR20150070025A (ko) 소모량 측정 장치, 온도 측정 장치, 소모량 측정 방법, 온도 측정 방법 및 기판 처리 시스템
KR20200137029A (ko) 다수의 광학 프로브들을 갖는 다중-스폿 분석 시스템
KR102336091B1 (ko) 열 유속 측정 방법, 기판 처리 시스템 및 열 유속 측정용 부재
US11841278B2 (en) Temperature measurement sensor, temperature measurement system, and temperature measurement method
JP6329790B2 (ja) プラズマ処理装置
JP2002122480A (ja) 温度測定方法および装置、並びにプラズマ処理装置
JP7441944B2 (ja) プラズマ対向センサを有するプロセスセンサ及び光学壁
KR20180082185A (ko) 종료점 검출 방법 및 그 장치
TWI836157B (zh) 光學感測器系統、光學感測器及電漿處理腔室
US10748749B1 (en) Plasma monitoring apparatus, and plasma processing apparatus including the same
JP2024037509A (ja) 異常箇所を判定する方法
JPS62260078A (ja) 膜厚変動量測定器
JP2013053921A (ja) エリプソメータ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7038621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150