JP7037828B2 - Temperature control method for electric radiant tube - Google Patents

Temperature control method for electric radiant tube Download PDF

Info

Publication number
JP7037828B2
JP7037828B2 JP2019547106A JP2019547106A JP7037828B2 JP 7037828 B2 JP7037828 B2 JP 7037828B2 JP 2019547106 A JP2019547106 A JP 2019547106A JP 2019547106 A JP2019547106 A JP 2019547106A JP 7037828 B2 JP7037828 B2 JP 7037828B2
Authority
JP
Japan
Prior art keywords
temperature
tube
heat
treatment furnace
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019547106A
Other languages
Japanese (ja)
Other versions
JP2021521498A (en
Inventor
景峰 楊
鵬 沈
海斌 汪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Yibai Science And Technology Co Ltd
Original Assignee
Shanghai Yibai Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Yibai Science And Technology Co Ltd filed Critical Shanghai Yibai Science And Technology Co Ltd
Publication of JP2021521498A publication Critical patent/JP2021521498A/en
Application granted granted Critical
Publication of JP7037828B2 publication Critical patent/JP7037828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/27Control of temperature characterised by the use of electric means with sensing element responsive to radiation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • G05D23/32Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature with provision for adjustment of the effect of the auxiliary heating device, e.g. a function of time

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Temperature (AREA)

Description

本発明は、一つの熱処理装置を加熱するときの温度制御装置に関し、特に一つの電熱放射管温度制御装置及びその制御方法に関する。 The present invention relates to a temperature control device for heating one heat treatment device, and more particularly to one electric heating radiation tube temperature control device and a control method thereof.

金属熱処理の分野において、放射管を用いて間接的に加熱する方法がますます広く用いられてきた。既存の熱処理炉において、熱処理炉の温度制御モードは、作業エリアにおける熱電対によって測定された温度信号によって温度が制御される。このような温度制御方法は、熱電対の挿入位置の変化と熱処理炉内の気体の流動変化が、測定された温度信号に大きく影響し、測定される温度信号の変動、不正確さ及び遅れなどを引き起こすことが問題となっている。そのため、既存技術の欠陥に対して、温度制御に対する応答が早い上、制御精度が高い熱処理炉の温度制御装置を開発することが大いに必要である。 In the field of metal heat treatment, the method of indirect heating using a radiant tube has become more and more widely used. In the existing heat treatment furnace, the temperature control mode of the heat treatment furnace is controlled by the temperature signal measured by the thermocouple in the working area. In such a temperature control method, changes in the insertion position of the thermocouple and changes in the flow of gas in the heat treatment furnace greatly affect the measured temperature signal, such as fluctuations, inaccuracies and delays in the measured temperature signal. Is a problem. Therefore, it is very necessary to develop a temperature control device for a heat treatment furnace that responds quickly to temperature control and has high control accuracy for defects in existing technology.

本発明は、既存の熱処理炉における温度を測定する過程で生じる大きな温度変動範囲、不正確性及び遅れなどの問題を解決するために、電熱放射管温度制御装置及びその制御方法を提供する。 The present invention provides an electric heating radiation tube temperature control device and a control method thereof in order to solve problems such as a large temperature fluctuation range, inaccuracy and delay that occur in the process of measuring temperature in an existing heat treatment furnace.

前記目的を達成するために、本発明は、以下の技術方案を採用する。 In order to achieve the above object, the present invention adopts the following technical plan.

本発明の第1の方案は、熱処理炉内に挿入して放熱する少なくとも1つの電熱放射管を含む電熱放射管温度制御装置を提供し、さらに、
前記電熱放射管内に配置され、加熱するエリアの温度制御のために用いられる第1の熱電対と、
前記電熱放射管の管壁にはめ込まれ、保温段階の温度制御のために、及び昇温時の過熱アラームのために用いられる第2の熱電対と、
前記熱処理炉の作業エリアに配置され、昇温段階の温度制御のために用いられる第3の熱電対と、を含み、
前記第1の熱電対と、第2の熱電対と第3の熱電対とがそれぞれ温度制御装置と電気的に接続されており、前記温度制御装置は、各熱電対によって監視された温度に基づいて、PIDアルゴリズムにより電熱放射管の電源の切り替えを制御することによって、熱処理炉の各段階の温度を正確に制御することを特徴とする。
A first aspect of the present invention provides an electric heating radiant tube temperature control device including at least one electric radiating tube that is inserted into a heat treatment furnace to dissipate heat.
A first thermocouple located in the electric heating radiant tube and used for temperature control of the heating area.
A second thermocouple that is fitted into the wall of the electric heating radiation tube and is used for temperature control in the heat insulation stage and for an overheat alarm when the temperature rises.
Includes a third thermocouple located in the work area of the heat treatment furnace and used for temperature control in the heating stage.
The first thermocouple, the second thermocouple, and the third thermocouple are each electrically connected to the temperature control device, and the temperature control device is based on the temperature monitored by each thermocouple. It is characterized in that the temperature of each stage of the heat treatment furnace is accurately controlled by controlling the switching of the power supply of the electric heat radiation tube by the PID algorithm.

さらに、前記電熱放射管温度制御装置において、前記電熱放射管自体が発熱体であり、内蔵された発熱体がないことを特徴とする。 Further, in the electric heating radiation tube temperature control device, the electric heating radiation tube itself is a heating element, and there is no built-in heating element.

さらに、前記電熱放射管温度制御装置において、前記電熱放射管の側壁にガイド孔が設けられていることを特徴とする。 Further, the electric heating radiation tube temperature control device is characterized in that a guide hole is provided on the side wall of the electric heating radiation tube.

さらに、前記電熱放射管温度制御装置において、前記電熱放射管の底部に開口があることを特徴とする。 Further, the electric heating radiation tube temperature control device is characterized by having an opening at the bottom of the electric heating radiation tube.

さらに、前記電熱放射管温度制御装置において、前記電熱放射管は複数本であり、各2本の電熱放射管の間に接続片を介して直列に接続されていることを特徴とする。 Further, in the electric heating radiating tube temperature control device, the electric heating radiating tube is a plurality of lines, and the electric heating radiating tube is connected in series between each of the two electric heating radiating tubes via a connecting piece.

さらに、前記電熱放射管温度制御装置において、前記電熱放射管は、前記熱処理炉の上部に設置され、その壁厚さは上の方が下より大きいことを特徴とする。 Further, in the electric heating radiation tube temperature control device, the electric heating radiation tube is installed in the upper part of the heat treatment furnace, and the wall thickness thereof is larger in the upper part than in the lower part.

本発明の第2の方案は、電熱放射管の温度制御方法を提供することであり、以下のステップを含み、
ステップ1において、熱処理炉内に複数対の電熱放射管を設置して、電熱放射管内部に電熱放射管の内部の温度を監視する第1の熱電対を設置して、電熱放射管の管壁に電熱放射管の管壁の温度を監視する第2の熱電対を設置して、電熱放射管の外部の作業エリアに熱処理炉の作業エリアの温度を監視する第3の熱電対を設置すること、
ステップ2において、第3の熱電対によって検出された温度を温度制御装置に送信して、前記温度制御装置が制御プログラムを実行して計算を行い、熱処理炉の作業状態が昇温段階であるか或いは保温段階であるかを判断し、作業状態が昇温段階である場合には、第3の熱電対によって実測された温度と目標温度との差を用いて、前記電熱放射管の入力パワーを制御すること、
ステップ3において、保温段階において、第2の熱電対によって検出された温度を温度制御装置に送信し、前記温度制御装置は、設定された目標温度により自動的に前記電熱放射管の電源の切り替えを制御することを通して、設定された目標温度に基づいて、対応する温度制御エリアの温度を調整し、昇温段階において、前記第2の熱電対が熱処理炉の温度の制御に関与しないこと、
ステップ4において、第1の熱電対によって検出された温度を前記温度制御装置に送信して、前記温度制御装置は、設定されたアラーム温度に基づいて、前記熱処理炉内の温度制御エリアの温度がアラーム温度を超えているかどうかを判断し、アラーム温度を超える場合には、前記温度制御装置は、前記目標温度に応じて前記電熱放射管の電源の切り替えを自動的に制御することによって、温度がアラーム温度より小さくなるようにすることを特徴とする。
A second aspect of the present invention is to provide a method for controlling the temperature of an electric heating radiation tube, which includes the following steps.
In step 1, a plurality of pairs of electric heating radiation tubes are installed in the heat treatment furnace, and a first thermocouple for monitoring the temperature inside the heating radiation tube is installed inside the heating radiation tube, and the tube wall of the heating radiation tube is installed. A second thermocouple for monitoring the temperature of the wall of the electric heating radiating tube shall be installed in the work area, and a third thermocouple for monitoring the temperature of the working area of the heat treatment furnace shall be installed in the working area outside the electric heating radiating tube. ,
In step 2, the temperature detected by the third thermocouple is transmitted to the temperature control device, the temperature control device executes the control program to perform the calculation, and whether the working state of the heat treatment furnace is in the temperature rise stage. Alternatively, it is determined whether it is in the heat retention stage, and if the working state is in the temperature rise stage, the input power of the electric heat radiation tube is calculated by using the difference between the temperature measured by the third thermocouple and the target temperature. To control,
In step 3, in the heat retention step, the temperature detected by the second thermocouple is transmitted to the temperature control device, and the temperature control device automatically switches the power supply of the electric heat radiation tube according to the set target temperature. Through the control, the temperature of the corresponding temperature control area is adjusted based on the set target temperature, and the second thermocouple is not involved in the temperature control of the heat treatment furnace in the temperature rise step.
In step 4, the temperature detected by the first thermocouple is transmitted to the temperature control device, and the temperature control device sets the temperature of the temperature control area in the heat treatment furnace based on the set alarm temperature. It is determined whether or not the temperature exceeds the alarm temperature, and if the temperature exceeds the alarm temperature, the temperature control device automatically controls the switching of the power supply of the electric heat radiation tube according to the target temperature, so that the temperature is raised. It is characterized in that the temperature is lower than the alarm temperature.

さらに、前記電熱放射管の温度制御方法において、前記ステップ(2)と、ステップ(3)とステップ(4)に、第3の熱電対によって実測された温度とその温度制御エリアの目標温度との差により、前記熱処理炉内の各温度制御エリアの作業状態は昇温段階であるか保温段階であるかを判断することを特徴とする。 Further, in the temperature control method of the electric heating radiation tube, the temperature actually measured by the third thermocouple and the target temperature of the temperature control area are set in the step (2), the step (3) and the step (4). The difference is characterized in that it is determined whether the working state of each temperature control area in the heat treatment furnace is the temperature rise stage or the heat retention stage.

さらに好ましくは、前記電熱放射管の温度制御方法において、作業エリアにおける前記第3の熱電対によって検出された温度が前記目標温度によりはるかに低い場合には、前記作業エリアに対応する熱処理炉の温度制御エリアは昇温段階におり、前記作業エリアにおける第3の熱電対によって検出された温度が前記目標温度より大きい或いは同じである場合には、その作業エリアに対応する熱処理炉の温度制御エリアは保温段階にあることを特徴とする。 More preferably, in the method for controlling the temperature of the electric heat radiation tube, when the temperature detected by the third thermocouple in the work area is much lower than the target temperature, the temperature of the heat treatment furnace corresponding to the work area is obtained. If the control area is in the heating stage and the temperature detected by the third thermocouple in the work area is greater than or equal to the target temperature, the temperature control area of the heat treatment furnace corresponding to the work area is It is characterized by being in the heat retention stage.

さらに好ましくは、前記電熱放射管の温度制御方法において、熱処理炉が昇温段階にある場合には、前記第3の熱電対によって実測された温度と当該の温度制御エリアの目標温度との差に基づいて、PIDアルゴリズムによって熱処理炉の温度を制御し、熱処理炉が保温段階にある場合には、前記第2の熱電対によって実測された温度と当該の温度制御エリアの目標温度との差に基づいて、PIDアルゴリズムによって熱処理炉の温度を制御することを特徴とする。 More preferably, in the temperature control method for the electric heat radiation tube, when the heat treatment furnace is in the temperature rise stage, the difference between the temperature actually measured by the third thermoelectric pair and the target temperature in the temperature control area is set. Based on this, the temperature of the heat treatment furnace is controlled by the PID algorithm, and when the heat treatment furnace is in the heat retention stage, it is based on the difference between the temperature actually measured by the second thermoelectric pair and the target temperature of the temperature control area. It is characterized in that the temperature of the heat treatment furnace is controlled by the PID algorithm.

さらに、前記電熱放射管の温度制御方法において、ステップ(3)に、前記電熱放射管から発生したジュール熱の一部が自身の温度を上昇させ、他の一部が伝熱、放射、及び対流を介して環境に伝達され、熱処理炉の周囲温度を上げる。
前記電熱放射管の外径をφ,壁厚さをδ,抵抗をRとし,電流が放射管を通過する際に発生されたジュール熱は、

Figure 0007037828000001
前記電熱放射管(1)の抵抗Rは、放射管の材質と幾何学的なサイズを組み合わせることによって決定される。
Figure 0007037828000002
ここで、ρは放射管の抵抗率、Lは放射管の長さ、Aは放射管の断面積である。
熱収支によれば、各部分の熱量の合計はジュール熱に等しい。
Figure 0007037828000003
ここで、Qはジュール熱、Q1は放射管自体の熱によって吸収された熱、Q2は放射管が外部環境(熱処理炉)に伝達する熱、Q3は放射管が管内環境に伝える熱である。
Figure 0007037828000004
ここで、mは放射管の質量、Cpは定圧熱容量、
Figure 0007037828000005
は平均定圧熱容量、Trは放射管の温度、Tmは室温である。
Figure 0007037828000006
Figure 0007037828000007
方程式(5)と方程式(6)において、hは放射管と管外環境との間の伝熱係数、hは放射管と管内環境との間の伝熱係数、Tfoは管外環境の温度、Tは管壁の温度、Tfiは管内環境の温度である。
前記温度制御装置は方程式(3)に基づいて、以下の方程式(7)によって当該の温度制御エリアの温度を調整する。
Figure 0007037828000008
ここで、Tfoは熱処理炉の作業エリアにおける温度、Tは放射管の管壁温度、Tfiは熱電対によって測定された放射管内の温度である。
前記温度制御装置は、Tfo、Tr、(T-Tfo)および(T-Tfi)の値に基づいて、PIDアルゴリズムを採用して、リアルタイム温度と目標温度との偏差を算出して制御量を出力することによって、熱処理炉の昇温段階と保温段階の温度を正確に制御することを特徴とする。 Further, in the temperature control method of the electric heat radiating tube, in step (3), a part of Joule heat generated from the electric heat radiating tube raises its own temperature, and a part of the other part heat transfers, radiates, and convection. It is transmitted to the environment via radiant heat and raises the ambient temperature of the heat treatment furnace.
The outer diameter of the electric radiant tube is φ, the wall thickness is δ, the resistance is R, and the Joule heat generated when the current passes through the radiant tube is
Figure 0007037828000001
The resistance R of the electric heating radiation tube (1) is determined by combining the material and geometric size of the radiation tube.
Figure 0007037828000002
Here, ρ is the resistivity of the radiation tube, L is the length of the radiation tube, and A is the cross-sectional area of the radiation tube.
According to the heat balance, the total amount of heat in each part is equal to Joule heat.
Figure 0007037828000003
Here, Q is Joule heat, Q1 is heat absorbed by the heat of the radiant tube itself, Q2 is heat transferred by the radiant tube to the external environment (heat treatment furnace), and Q3 is heat transferred by the radiant tube to the internal environment of the tube.
Figure 0007037828000004
Here, m is the mass of the radiant tube, Cp is the constant pressure heat capacity,
Figure 0007037828000005
Is the average constant pressure heat capacity, Tr is the temperature of the radiant tube, and Tm is the room temperature.
Figure 0007037828000006
Figure 0007037828000007
In equations (5) and (6), ho is the heat transfer coefficient between the radiation tube and the out-of-tube environment, hi is the heat transfer coefficient between the radiation tube and the in-tube environment, and T fo is the out-of-tube environment. The temperature of, Tr is the temperature of the pipe wall, and Tfi is the temperature of the environment inside the pipe.
The temperature control device adjusts the temperature of the temperature control area according to the following equation (7) based on the equation (3).
Figure 0007037828000008
Here, T fo is the temperature in the work area of the heat treatment furnace, Tr is the tube wall temperature of the radiation tube, and T fi is the temperature inside the radiation tube measured by the thermocouple.
The temperature controller adopts a PID algorithm based on the values of T fo , Tr, (T r -T fo ) and (T r -T fi ) to calculate the deviation between the real-time temperature and the target temperature. By outputting the controlled amount, the temperature of the temperature rise stage and the heat retention stage of the heat treatment furnace can be accurately controlled.

さらに、前記電熱放射管の温度制御方法において、前記昇温段階では作業エリアにおける温度によって温度が制御され、保温段階になると、放射管の管壁の温度信号によって温度が制御されることを特徴とする。 Further, in the temperature control method of the electric heating radiation tube, the temperature is controlled by the temperature in the work area in the temperature rise stage, and the temperature is controlled by the temperature signal of the tube wall of the radiation tube in the heat retention stage. do.

本発明は、前記技術方案を採用して、以下の技術的な効果を奏する。 The present invention adopts the above-mentioned technical plan and exhibits the following technical effects.

(1)採用した電熱放射管内に電熱線がなく、直接的に放射管を発熱体とし、回路を接続する時、電流が放射管を通過する時に発生したジュール熱は放射管の温度を急速に上昇させる。放射管を直接的に加熱することの利点は、電熱リンクと熱抵抗が減少し、伝熱効率が改善され、同じ作業温度で発熱体の表面温度が低下し、放射管の耐用年数が延びることにある。 (1) There is no heating wire in the adopted heating radiation tube, and when the radiation tube is directly used as a heating element and a circuit is connected, the Joule heat generated when the current passes through the radiation tube rapidly raises the temperature of the radiation tube. Raise it. The advantages of heating the radiant tube directly are that the electric heating link and thermal resistance are reduced, the heat transfer efficiency is improved, the surface temperature of the heating element is lowered at the same working temperature, and the service life of the radiant tube is extended. be.

(2)電熱放射管温度制御装置の温度制御モードに基づいて、各熱電対をそれぞれ放射管内部に配置し、放射管の管壁に配置し、熱処理炉の作業エリアに配置し、異なる段階で異なる温度制御方式を採用して、昇温段階では作業エリアの熱電対の信号によって温度が制御され、保温段階に入った後、放射管の管壁の温度信号によって温度が制御される。熱電対の位置が固定されており、気流の影響を受けることが少ないため、PIDアルゴリズムによってリアルタイム温度と設定温度との偏差を算出して制御量を出力することによって、抵抗炉の温度を正確に制御できる。よって、熱処理炉の温度信号の安定性、均一性、正確性と感度が保証されうる。 (2) Based on the temperature control mode of the electric heat radiation tube temperature control device, each thermocouple is placed inside the radiation tube, on the tube wall of the radiation tube, in the work area of the heat treatment furnace, and at different stages. By adopting different temperature control methods, the temperature is controlled by the thermocouple signal in the work area in the temperature rise stage, and after entering the heat retention stage, the temperature is controlled by the temperature signal in the tube wall of the radiation tube. Since the position of the thermocouple is fixed and it is not easily affected by the air flow, the temperature of the resistance furnace is accurately calculated by calculating the deviation between the real-time temperature and the set temperature by the PID algorithm and outputting the control amount. Can be controlled. Therefore, the stability, uniformity, accuracy and sensitivity of the temperature signal of the heat treatment furnace can be guaranteed.

図1は本発明の電熱放射管温度制御装置の概略構造図である。FIG. 1 is a schematic structural diagram of the electric heating radiation tube temperature control device of the present invention. 図2は本発明の電熱放射管温度制御装置の一部を拡大する概略構造図である。FIG. 2 is a schematic structural diagram in which a part of the electric heating radiation tube temperature control device of the present invention is enlarged.

本発明をよりよく理解するために、以下の具体的な実施形態を通して、本発明を具体的に説明するが、以下の実施形態は本発明の範囲を限定するものではない。 In order to better understand the present invention, the present invention will be specifically described through the following specific embodiments, but the following embodiments do not limit the scope of the present invention.

図1に示すように、本実施形態は、電熱放射管温度制御装置を提供し、熱処理炉内に挿入して放熱する少なくとも1つの電熱放射管1を含み、さらに、前記電熱放射管1内に配置され、加熱するエリアの温度制御のために用いられる第1の熱電対2と、前記電熱放射管1の管壁にはめ込まれ、保温段階の温度制御のため、及び昇温時の過熱アラームのために用いられる第2の熱電対3と、前記熱処理炉の作業エリアに配置され、昇温段階の温度制御のために用いられる第3の熱電対4とを含む。前記第1の熱電対2と、第2の熱電対3と第3の熱電対4とはそれぞれ温度制御装置と電気的に接続されており、前記温度制御装置は各熱電対によって監視された温度に基づいて、PIDアルゴリズムにより電熱放射管1の電源の切り替えを制御することで、熱処理炉の各段階の温度を正確に制御する。 As shown in FIG. 1, the present embodiment provides an electric heating radiation tube temperature control device, includes at least one electric heating radiation tube 1 that is inserted into a heat treatment furnace to dissipate heat, and further, the inside of the electric heating radiation tube 1. A first thermoelectric pair 2 that is arranged and used for temperature control of the area to be heated, and an overheat alarm that is fitted into the tube wall of the electric heating radiation tube 1 for temperature control at the heat retention stage and at the time of temperature rise. It includes a second thermoelectric pair 3 used for this purpose and a third thermoelectric pair 4 arranged in the work area of the heat treatment furnace and used for temperature control in the temperature rise stage. The first thermocouple 2, the second thermocouple 3 and the third thermocouple 4 are each electrically connected to a temperature control device, and the temperature control device is the temperature monitored by each thermocouple. By controlling the switching of the power supply of the electric heat radiation tube 1 by the PID algorithm, the temperature of each stage of the heat treatment furnace is accurately controlled.

本実施形態の電熱放射管温度制御装置において、温度制御装置は、各熱電対によって実測された温度に基づいて、PIDアルゴリズムにより電熱放射管1の電源の切り替えを制御して、熱処理炉における温度を制御する。当該の電熱放射管温度制御装置は新しい温度制御モードを提案して、各熱電対が電熱放射管の内部、放射管の管壁、熱処理炉の作業エリアにそれぞれ配置され、異なる段階に対して異なる温度制御方式を採用する。昇温段階では、作業エリアの温度によって温度が制御され、作業エリアの温度と管壁の温度との差を参照して全体的に温度が制御される。保温段階に入った後、放射管の管壁の温度信号によって温度が制御され、管壁の温度と作業エリアの平均温度との差を参照して温度が制御される。熱電対の位置が固定されており、気流の影響を受けることが少ないため、PIDアルゴリズムによってリアルタイム温度と設定温度との偏差を算出して制御量を出力して、抵抗炉の温度の正確な制御が実現される。よって、熱処理炉の温度信号の安定性、均一性、正確性と感度が保証される。 In the electric heating radiant tube temperature control device of the present embodiment, the temperature control device controls the switching of the power supply of the electric radiant tube 1 by the PID algorithm based on the temperature actually measured by each thermocouple to control the temperature in the heat treatment furnace. Control. The electric heating radiant tube temperature control device proposes a new temperature control mode, in which each thermocouple is placed inside the electric heating radiant tube, on the tube wall of the radiant tube, and in the work area of the heat treatment furnace, and is different for different stages. Adopt a temperature control method. In the temperature rise stage, the temperature is controlled by the temperature of the work area, and the temperature is controlled as a whole by referring to the difference between the temperature of the work area and the temperature of the pipe wall. After entering the heat retention stage, the temperature is controlled by the temperature signal of the tube wall of the radiation tube, and the temperature is controlled by referring to the difference between the temperature of the tube wall and the average temperature of the working area. Since the position of the thermocouple is fixed and it is not easily affected by the air flow, the deviation between the real-time temperature and the set temperature is calculated by the PID algorithm and the control amount is output to accurately control the temperature of the resistance furnace. Is realized. Therefore, the stability, uniformity, accuracy and sensitivity of the temperature signal of the heat treatment furnace are guaranteed.

好ましい実施形態として、従来の放射管とは異なり、本実施形態に採用された前記電熱放射管1の内には電熱線がなく、電熱放射管自体は発熱体であり、内蔵される発熱体はない。図2に示すように、前記電熱放射管1の側壁にはガイド孔5が設けられており、かつ底部に開口6が設けられており、ガス対流熱伝達に有利である。具体的には、該電熱放射管1の内部には抵抗糸が巻かれておらず、放射管1自体が発熱体であり、放射管1が電源に接続されている場合には、放射管の内壁と外壁にジュール熱が発生して、加熱に用いられる。電熱放射管1は電熱合金で作られ、しかも放射管1の表面積(直径、長さと壁厚さ)などの幾何学的なサイズは加熱炉のパワーにより確定されている。電熱放射管1の一端は電極であり、電極の両端はそれぞれ熱処理炉の殻の外側と熱処理炉の内側の保温層に固定されている。 As a preferred embodiment, unlike the conventional radiation tube, there is no heating wire in the heating radiation tube 1 adopted in the present embodiment, the heating radiation tube itself is a heating element, and the built-in heating element is a heating element. do not have. As shown in FIG. 2, a guide hole 5 is provided on the side wall of the electric heat radiating tube 1 and an opening 6 is provided at the bottom, which is advantageous for gas convection heat transfer. Specifically, when the resistance thread is not wound inside the electric heating radiation tube 1, the radiation tube 1 itself is a heating element, and the radiation tube 1 is connected to a power source, the radiation tube Joule heat is generated on the inner and outer walls and is used for heating. The electric heating radiation tube 1 is made of an electric heating alloy, and the geometric size such as the surface area (diameter, length and wall thickness) of the radiation tube 1 is determined by the power of the heating furnace. One end of the electric heat radiating tube 1 is an electrode, and both ends of the electrode are fixed to a heat insulating layer on the outside of the shell of the heat treatment furnace and the inside of the heat treatment furnace, respectively.

従来の電熱放射管の構造において、放射管の内部に一組の抵抗糸の巻線がある。抵抗糸は伝熱と放射などの方法で熱を放射管に伝えて放射管の温度を上昇させ、更に放射管は伝熱、放射と対流を通じてワークを加熱する。一方、本実施例で採用した電熱放射管1の内部には電熱線がなく、直接放射管を発熱体とし、回路を接続する時に、電流が放射管を通過する時に発生したジュール熱は放射管の温度を急速に上昇させる。直接放射管を加熱することの利点は、伝熱リンクと熱抵抗が減少し、伝熱効率が改善され、同じ作業温度で発熱体の表面温度が低下し、放射管の耐用年数が延びることにある。 In the structure of a conventional electric heating radiant tube, there is a set of resistance thread windings inside the radiant tube. The resistance thread transfers heat to the radiation tube by a method such as heat transfer and radiation to raise the temperature of the radiation tube, and the radiation tube heats the work through heat transfer, radiation and convection. On the other hand, there is no heating wire inside the heating radiation tube 1 adopted in this embodiment, and the radiation tube is used as a heating element directly, and when connecting a circuit, the Joule heat generated when the current passes through the radiation tube is the radiation tube. Raises the temperature of the radiant rapidly. The advantages of heating the radiant tube directly are that the heat transfer link and thermal resistance are reduced, the heat transfer efficiency is improved, the surface temperature of the heating element is lowered at the same working temperature, and the useful life of the radiant tube is extended. ..

好ましい実施形態として、前記電熱放射管1は複数本であり、2つずつの電熱放射管1の間に接続片7を介して直列に接続されている。図1に示すように、電熱放射管1は2本であり、その間は接続片7を介して直列に接続されている。また、この電熱放射管1は、前記熱処理炉の上部に取り付けられ、かつその管壁の厚さは上の方が下より大きく、放射管が上部から下部にかけて単位面積当たりの重力がほぼ等しくなるようにして、電熱放射管の高温条件での不均一なクリープを軽減する。 As a preferred embodiment, the electric heating radiation tube 1 is a plurality of lines, and is connected in series between the two electric heating radiation tubes 1 via a connection piece 7. As shown in FIG. 1, there are two electric heating radiation tubes 1, which are connected in series via a connection piece 7. Further, the electric heating radiation tube 1 is attached to the upper part of the heat treatment furnace, and the thickness of the tube wall thereof is larger in the upper part than in the lower part, and the radiant tube has substantially the same gravity per unit area from the upper part to the lower part. In this way, non-uniform creep of the electric heating tube under high temperature conditions is reduced.

他の好ましい実施形態として、前記伝熱放射管の温度制御装置に基づく電熱放射管の温度制御方法を提供し、具体的には以下のステップを含み、
ステップ1において、熱処理炉内に複数対の電熱放射管を設置して、電熱放射管内部に電熱放射管の内部の温度を監視する第1の熱電対を設置して、電熱放射管の管壁に電熱放射管の管壁の温度を監視する第2の熱電対を設置して、電熱放射管の外部の作業エリアに熱処理炉の作業エリアの温度を監視する第3の熱電対を設置すること、
ステップ2において、第3の熱電対によって検出された温度を温度制御装置に送信して、前記温度制御装置が制御プログラムを実行して計算を行い、熱処理炉の作業状態が昇温段階であるか或いは保温段階であるかを判断し、作業状態が昇温段階である場合には、第3の熱電対によって実測された温度と目標温度との差を用いて、前記電熱放射管の入力パワーを制御すること、
ステップ3において、保温段階において、第2の熱電対によって検出された温度を温度制御装置に送信し、前記温度制御装置は、設定された目標温度により自動的に前記電熱放射管の電源の切り替えを制御することを通して、設定された目標温度に基づいて、温度制御エリアの温度を調整し、昇温段階において、前記第2の熱電対が熱処理炉の温度の制御に関与しないこと、
ステップ4において、第1の熱電対によって検出された温度を前記温度制御装置に送信し、前記温度制御装置は、設定されたアラーム温度に基づいて、前記熱処理炉内の温度制御エリアの温度がアラーム温度を超えているかどうかを判断し、アラーム温度を超える場合には、前記温度制御装置の前記目標温度に応じて前記電熱放射管の電源の切り替えを自動的に制御することによって、温度がアラーム温度より小さくなるようにする。
As another preferred embodiment, a method for controlling the temperature of an electric heat radiant tube based on the temperature control device for the heat transfer radiant tube is provided, specifically including the following steps.
In step 1, a plurality of pairs of electric heating radiation tubes are installed in the heat treatment furnace, and a first thermocouple for monitoring the temperature inside the heating radiation tube is installed inside the heating radiation tube, and the tube wall of the heating radiation tube is installed. A second thermocouple for monitoring the temperature of the wall of the electric heating radiating tube shall be installed in the work area, and a third thermocouple for monitoring the temperature of the working area of the heat treatment furnace shall be installed in the working area outside the electric heating radiating tube. ,
In step 2, the temperature detected by the third thermocouple is transmitted to the temperature control device, the temperature control device executes the control program to perform the calculation, and whether the working state of the heat treatment furnace is in the temperature rise stage. Alternatively, it is determined whether it is in the heat retention stage, and if the working state is in the temperature rise stage, the input power of the electric heat radiation tube is calculated by using the difference between the temperature measured by the third thermocouple and the target temperature. To control,
In step 3, in the heat retention step, the temperature detected by the second thermocouple is transmitted to the temperature control device, and the temperature control device automatically switches the power supply of the electric heat radiation tube according to the set target temperature. Through the control, the temperature of the temperature control area is adjusted based on the set target temperature, and the second thermocouple does not participate in the temperature control of the heat treatment furnace in the temperature rise stage.
In step 4, the temperature detected by the first thermocouple is transmitted to the temperature control device, and the temperature control device alarms the temperature of the temperature control area in the heat treatment furnace based on the set alarm temperature. It is determined whether or not the temperature is exceeded, and if the temperature exceeds the alarm temperature, the temperature is set to the alarm temperature by automatically controlling the switching of the power supply of the electric heat radiation tube according to the target temperature of the temperature control device. Try to make it smaller.

本実施形態において、前記ステップ(2)と、ステップ(3)とステップ(4)に、第3の熱電対4によって実測された温度とその温度制御エリアの目標温度との差により、前記熱処理炉内の各温度制御エリアの作業状態は昇温段階であるか保温段階であるかを判断する。 In the present embodiment, the heat treatment furnace is based on the difference between the temperature actually measured by the third thermocouple 4 and the target temperature in the temperature control area in step (2), step (3) and step (4). It is determined whether the working state of each temperature control area in the room is in the temperature rise stage or the heat retention stage.

本実施形態において、作業エリアにおける前記第3の熱電対4によって検出された温度が前記目標温度よりはるかに低い場合には、前記作業エリアに対応する熱処理炉の温度制御エリアは昇温段階にある。前記作業エリアにおける第3の熱電対4によって検出された温度が前記目標温度より大きい或いは同じである場合には、その作業エリアに対応する熱処理炉の温度制御エリアは保温段階にある。 In the present embodiment, when the temperature detected by the third thermocouple 4 in the work area is much lower than the target temperature, the temperature control area of the heat treatment furnace corresponding to the work area is in the temperature rise stage. .. When the temperature detected by the third thermocouple 4 in the work area is greater than or equal to the target temperature, the temperature control area of the heat treatment furnace corresponding to the work area is in the heat retention stage.

本実施形態において、熱処理炉が昇温段階にある場合には、前記第3の熱電対4によって実測された温度と当該の温度制御エリアの目標温度との差に基づいて、PIDアルゴリズムを介して熱処理炉の温度が制御される。熱処理炉が保温段階にある場合には、前記第2の熱電対3によって実測された温度と当該の温度制御エリアの目標温度との差によって、PIDアルゴリズムによって熱処理炉の温度が制御される。 In the present embodiment, when the heat treatment furnace is in the heating stage, the temperature measured by the third thermocouple 4 and the target temperature in the temperature control area are based on the difference between the temperature and the target temperature in the temperature control area, via the PID algorithm. The temperature of the heat treatment furnace is controlled. When the heat treatment furnace is in the heat retention stage, the temperature of the heat treatment furnace is controlled by the PID algorithm by the difference between the temperature actually measured by the second thermocouple 3 and the target temperature in the temperature control area.

本実施形態において、ステップ(3)に、前記電熱放射管1から発生したジュール熱の一部が自身の温度を上昇させ、他の一部が伝熱、放射、及び対流を介して環境に伝達され、熱処理炉の周囲温度を上げる。その中で、
前記電熱放射管1の外径をφ,壁厚さをδ,抵抗をRとし,電流が放射管を通過する際に発生したジュール熱は、

Figure 0007037828000009
前記電熱放射管(1)の抵抗Rは、放射管の材質と幾何学的なサイズを組み合わせることによって決定される。
Figure 0007037828000010
ここで、ρは放射管の抵抗率、Lは放射管の長さ、Aは放射管の断面積である。
熱収支によれば、各部分の熱量の合計はジュール熱に等しい。
Figure 0007037828000011
ここで、Qはジュール熱、Q1は放射管自体の熱によって吸収された熱であり、Q2は放射管が外部環境(熱処理炉)に伝達する熱であり、Q3は放射管が管内環境に伝わる熱である。
Figure 0007037828000012
ここで、mは放射管の質量、Cpは定圧熱容量、
Figure 0007037828000013
は平均定圧熱容量、Trは放射管の温度、Tmは室温である。
Figure 0007037828000014
Figure 0007037828000015
方程式(5)と方程式(6)において、hは放射管と管外環境との間の伝熱係数で、hは放射管と管内環境との間の伝熱係数で、Tfoは管外環境の温度で、Tは管壁の温度で、Tfiは管内環境の温度である。
前記温度制御装置は方程式(3)に基づいて、以下の方程式(7)によって当該の温度制御エリアの温度を調整する。
Figure 0007037828000016
ここで、Tfoは熱処理炉の作業エリアにおける温度であり、Tは放射管の管壁温度であり、Tfiは熱電対によって測定された放射管内の温度である。熱処理炉の安定作業段階では温度値Tfo,TとTfiの平均値は変化せず、相互に明確な対応関係がある。プロセス検証試験時に、実測された放射管壁と管内側と管外側の温度対応曲線に基づいており、このような対応関係は実験により確定されうる。次に、温度制御装置を採用して、Tfo、T、(T―Tfo)と(T―Tfi)を用いて、PIDアルゴリズムによってリアルタイム温度と設定温度との偏差を算出して制御量を出力し、熱処理炉の昇温段階と保温段階での温度の正確な制御が実現される。 In the present embodiment, in step (3), a part of Joule heat generated from the electric heat radiation tube 1 raises its own temperature, and another part is transferred to the environment through heat transfer, radiation, and convection. And raise the ambient temperature of the heat transfer furnace. among them,
The outer diameter of the electric heat radiant tube 1 is φ, the wall thickness is δ, the resistance is R, and the Joule heat generated when the current passes through the radiant tube is
Figure 0007037828000009
The resistance R of the electric heating radiation tube (1) is determined by combining the material and geometric size of the radiation tube.
Figure 0007037828000010
Here, ρ is the resistivity of the radiation tube, L is the length of the radiation tube, and A is the cross-sectional area of the radiation tube.
According to the heat balance, the total amount of heat in each part is equal to Joule heat.
Figure 0007037828000011
Here, Q is Joule heat, Q1 is heat absorbed by the heat of the radiant tube itself, Q2 is the heat transferred by the radiant tube to the external environment (heat treatment furnace), and Q3 is the heat transmitted by the radiant tube to the in-tube environment. It's a fever.
Figure 0007037828000012
Here, m is the mass of the radiant tube, Cp is the constant pressure heat capacity,
Figure 0007037828000013
Is the average constant pressure heat capacity, Tr is the temperature of the radiant tube, and Tm is the room temperature.
Figure 0007037828000014
Figure 0007037828000015
In equations (5) and (6), ho is the heat transfer coefficient between the radiation tube and the environment outside the tube, hi is the heat transfer coefficient between the radiation tube and the environment inside the tube, and T fo is the tube. In the temperature of the outside environment, Tr is the temperature of the pipe wall, and T fi is the temperature of the pipe environment.
The temperature control device adjusts the temperature of the temperature control area according to the following equation (7) based on the equation (3).
Figure 0007037828000016
Here, T fo is the temperature in the working area of the heat treatment furnace, Tr is the tube wall temperature of the radiation tube, and T fi is the temperature in the radiation tube measured by the thermocouple. At the stable work stage of the heat treatment furnace, the average values of the temperature values T fo , Tr and T fi do not change, and there is a clear correspondence between them. It is based on the temperature correspondence curves of the radiation tube wall and the inside and outside of the tube actually measured at the time of the process verification test, and such a correspondence relationship can be determined by experiments. Next, the temperature control device is adopted, and the deviation between the real-time temperature and the set temperature is calculated by the PID algorithm using T fo , Tr, (T r -T fo ) and (T r -T fi ) . The control amount is output, and accurate control of the temperature in the temperature rise stage and the heat retention stage of the heat treatment furnace is realized.

また、上記昇温段階では、作業エリアの実測温度と当該エリアの目標温度との差に基づいて温度が制御され、作業エリアの温度と管壁の温度との温度差を参照して目標温度に到達するように総合的に温度が制御される。保温段階では、放射管の管壁の実測温度と当該エリアの目標温度との差に基づいて温度が制御される。 Further, in the temperature rise step, the temperature is controlled based on the difference between the measured temperature of the work area and the target temperature of the area, and the temperature is set to the target temperature by referring to the temperature difference between the temperature of the work area and the temperature of the pipe wall. The temperature is controlled comprehensively to reach it. In the heat insulation stage, the temperature is controlled based on the difference between the measured temperature of the tube wall of the radiation tube and the target temperature in the area.

現在、従来の熱処理炉の温度は作業エリアにおける熱電対によって測定された温度信号によって制御され、このような制御温度方式に存在する問題は、熱電対の挿入位置の変化と熱処理炉内の気体の流動変化が、測定された温度信号に大きく影響し、測定される温度信号の変動、不正確さ及び遅れなどを引き起こすことが問題となっている。従来技術と比較して、本発明で提出した電熱放射管温度制御装置の制御温度モードは、熱電対は放射管の内部、放射管の管壁と、熱処理炉の作業エリアに配置され、異なる段階で異なる温度制御方式が採用され、昇温段階では作業エリアの熱電対の信号制御温度に応じて温度が制御され、保温段階に入った後、放射管の管壁の温度信号によって温度が制御される。熱電対の位置が固定されているため、気流の影響を受けることが少なく、PIDアルゴリズムによってリアルタイム温度と設定温度との偏差を算出して制御量を出力して、抵抗炉温度の正確な制御が実現されうる。熱処理炉の温度信号の安定性、均一性、正確性と感度が保証されうる。 Currently, the temperature of a conventional heat treatment furnace is controlled by a temperature signal measured by a thermocouple in the work area, and the problems existing in such a controlled temperature system are the change in the insertion position of the thermocouple and the gas in the heat treatment furnace. It is a problem that the flow change greatly affects the measured temperature signal and causes fluctuation, inaccuracy and delay of the measured temperature signal. Compared with the prior art, the control temperature mode of the electric thermal radiation tube temperature control device submitted in the present invention is different stages in which the thermocouple is arranged inside the radiation tube, the tube wall of the radiation tube and the work area of the heat treatment furnace. In the temperature rise stage, the temperature is controlled according to the signal control temperature of the thermocouple in the work area, and after entering the heat retention stage, the temperature is controlled by the temperature signal of the tube wall of the radiation tube. To. Since the position of the thermocouple is fixed, it is less affected by the air flow, and the deviation between the real-time temperature and the set temperature is calculated by the PID algorithm and the control amount is output to accurately control the resistance furnace temperature. It can be realized. The stability, uniformity, accuracy and sensitivity of the temperature signal of the heat treatment furnace can be guaranteed.

以上のように、放射管自体の発熱を利用して、従来の抵抗糸より放射管の構造を簡略化し、放射管の伝熱リンクと熱抵抗を減らし、加熱効率と速度を高め、寿命を延長した。また、本発明で提案した温度制御方法において、熱電対の位置が固定されているため、気流の影響を受けることが少なく、PIDアルゴリズムを用いてリアルタイム温度と設定温度とのずれを算出して制御量を出力して、抵抗炉の温度の正確な制御が実現されうる。熱処理炉の温度信号の安定性、均一性、正確性と感度を保証することができる。 As described above, by utilizing the heat generated by the radiant tube itself, the structure of the radiant tube is simplified compared to the conventional resistance thread, the heat transfer link and thermal resistance of the radiant tube are reduced, the heating efficiency and speed are increased, and the life is extended. did. Further, in the temperature control method proposed in the present invention, since the position of the thermocouple is fixed, it is less affected by the air flow, and the deviation between the real-time temperature and the set temperature is calculated and controlled using the PID algorithm. By outputting the quantity, accurate control of the temperature of the resistance furnace can be realized. The stability, uniformity, accuracy and sensitivity of the temperature signal of the heat treatment furnace can be guaranteed.

以上は、本発明の具体的な実施形態について詳細に説明したが、これは例示にすぎず、本発明は上記で説明した具体的な実施例に限定されるものではない。当業者にとっても、本発明に対する均等の修正および置換は、全部本発明の範囲内にある。したがって、本発明の旨と保護範囲から逸脱することなく行われる均等修正及び置換は、すべて本発明の範囲内に含まれるべきである。 Although the specific embodiments of the present invention have been described in detail above, this is merely an example, and the present invention is not limited to the specific examples described above. For those skilled in the art, equal modifications and substitutions to the present invention are all within the scope of the present invention. Therefore, all equal modifications and substitutions made without departing from the spirit of the invention and the scope of protection should be included within the scope of the invention.

Claims (5)

電熱放射管の温度制御方法は、以下のステップを含み、
ステップ1において、熱処理炉内に複数対の電熱放射管(1)を設置して、前記電熱放射管(1)内部に前記電熱放射管(1)の内部の温度を監視する第1の熱電対(2)を設置して、前記電熱放射管(1)の管壁に前記電熱放射管(1)の管壁の温度を監視する第2の熱電対(3)を設置して、前記電熱放射管(1)の外部の作業エリアに熱処理炉の作業エリアの温度を監視する第3の熱電対(4)を設置すること、
ステップ2において、前記第3の熱電対(4)によって検出された温度を温度制御装置に送信して、前記温度制御装置が制御プログラムを実行して計算を行い、前記熱処理炉の作業状態が昇温段階であるか或いは保温段階であるかを判断し、作業状態が昇温段階である場合には、前記第3の熱電対(4)によって実測された温度と目標温度との差を用いて、前記電熱放射管(1)の入力パワーを制御すること、
ステップ3において、保温段階において、前記第2の熱電対(3)によって検出された温度を前記温度制御装置に送信し、前記温度制御装置は、設定された目標温度により自動的に前記電熱放射管(1)の電源の切り替えを制御することを通して、設定された目標温度に基づいて、対応する温度制御エリアの温度を調整し、昇温段階において、前記第2の熱電対(3)が前記熱処理炉の温度の制御に関与しないこと、
ステップ4において、第1の熱電対(2)によって検出された温度を前記温度制御装置に送信して、前記温度制御装置は、設定されたアラーム温度に基づいて、前記熱処理炉内の温度制御エリアの温度がアラーム温度を超えているかどうかを判断し、アラーム温度を超える場合には、前記温度制御装置の前記目標温度に応じて前記電熱放射管(1)の電源の切り替えを自動的に制御することによって、温度がアラーム温度より小さくなるようにすることを特徴とする電熱放射管の温度制御方法。
The method of controlling the temperature of the electric radiant tube includes the following steps, and includes the following steps.
In step 1, a first thermoelectric pair in which a plurality of pairs of electric heating radiating tubes (1) are installed in the heat treatment furnace and the temperature inside the electric heating radiating tube (1) is monitored inside the electric heating radiating tube (1). (2) is installed, and a second thermocouple (3) for monitoring the temperature of the tube wall of the electric heating radiating tube (1) is installed on the tube wall of the electric heating radiating tube (1) to radiate the electric heating. To install a third thermocouple (4) in the work area outside the tube (1) to monitor the temperature of the work area of the heat treatment furnace.
In step 2, the temperature detected by the third thermocouple (4) is transmitted to the temperature control device, the temperature control device executes a control program to perform a calculation, and the working state of the heat treatment furnace is changed. It is determined whether the temperature is in the temperature rise stage or the heat retention stage, and if the working state is in the temperature rise stage, the difference between the temperature actually measured by the third thermocouple (4) and the target temperature is used. To control the input power of the electric heat radiation tube (1),
In step 3, in the heat retention step, the temperature detected by the second thermocouple (3) is transmitted to the temperature control device, and the temperature control device automatically adjusts to the set target temperature. By controlling the switching of the power supply of (1), the temperature of the corresponding temperature control area is adjusted based on the set target temperature, and in the temperature rise step, the second thermocouple (3) is subjected to the heat treatment. Not involved in controlling the temperature of the furnace,
In step 4, the temperature detected by the first thermocouple (2) is transmitted to the temperature control device, and the temperature control device receives the temperature control area in the heat treatment furnace based on the set alarm temperature. It is determined whether or not the temperature exceeds the alarm temperature, and if it exceeds the alarm temperature, the switching of the power supply of the electric heat radiation tube (1) is automatically controlled according to the target temperature of the temperature control device. A method for controlling the temperature of an electric heat radiation tube, which comprises making the temperature smaller than the alarm temperature.
請求項の電熱放射管の温度制御方法において、前記ステップ(2)と、ステップ(3)とステップ(4)に、前記第3の熱電対(4)によって実測された温度と前記温度制御エリアの目標温度との差により、前記熱処理炉内の各温度制御エリアの作業状態は昇温段階であるか保温段階であるかを判断することを特徴とする電熱放射管の温度制御方法。 In the temperature control method for the electric heating radiation tube according to claim 1 , the temperature actually measured by the third thermocouple (4) and the temperature control area in the step (2), the step (3) and the step (4). A method for controlling the temperature of an electric heating radiation tube, which comprises determining whether the working state of each temperature control area in the heat treatment furnace is a temperature rise stage or a heat retention stage based on the difference from the target temperature. 請求項の電熱放射管の温度制御方法において、前記作業エリアにおける前記第3の熱電対(4)によって検出された温度が前記目標温度よりはるかに低い場合には、前記作業エリアに対応する前記熱処理炉の温度制御エリアは昇温段階におり、前記作業エリアにおける前記第3の熱電対(4)によって検出された温度が前記目標温度より大きい或いは同じである場合には、前記作業エリアに対応する前記熱処理炉の温度制御エリアは保温段階にあることを特徴とする電熱放射管の温度制御方法。 In the method for controlling the temperature of the electric thermal radiation tube according to claim 2 , when the temperature detected by the third thermocouple (4) in the work area is much lower than the target temperature, the work area corresponds to the said work area. The temperature control area of the heat treatment furnace is in the temperature rise stage, and when the temperature detected by the third thermocouple (4) in the work area is larger than or the same as the target temperature, it corresponds to the work area. A method for controlling the temperature of an electric heat radiation tube, wherein the temperature control area of the heat treatment furnace is in the heat retention stage. 請求項の電熱放射管の温度制御方法において、前記熱処理炉が昇温段階にある場合には、前記第3の熱電対(4)によって実測された温度と当該の温度制御エリアの目標温度との差に基づいて、PIDアルゴリズムによって前記熱処理炉の温度を制御し、前記熱処理炉が保温段階にある場合には、前記第2の熱電対(3)によって実測された温度と当該の温度制御エリアの目標温度との差に基づいて、PIDアルゴリズムによって熱処理炉の温度を制御することを特徴とする電熱放射管の温度制御方法。 In the temperature control method for the electric heat radiation tube according to claim 2 , when the heat treatment furnace is in the temperature rise stage, the temperature actually measured by the third thermocouple (4) and the target temperature in the temperature control area are used. The temperature of the heat treatment furnace is controlled by the PID algorithm based on the difference between the above, and when the heat treatment furnace is in the heat retention stage, the temperature actually measured by the second thermocouple (3) and the temperature control area. A method for controlling the temperature of an electric heat radiation tube, which comprises controlling the temperature of a heat treatment furnace by a PID algorithm based on the difference from the target temperature of. 請求項の電熱放射管の温度制御方法において、前記ステップ(3)に、前記電熱放射管(1)から発生したジュール熱の一部が自身の温度を上昇させ、他の一部が伝熱、放射、及び対流を介して環境に伝達され、熱処理炉の周囲温度を上げ、
前記電熱放射管の外径をφ,壁厚さをδ,抵抗をRとし,電流が前記放射管を通過する際に発生されたジュール熱は、
Figure 0007037828000017
前記電熱放射管(1)の抵抗Rは、前記放射管の材質と幾何学的なサイズを組み合わせることによって決定され、
Figure 0007037828000018
ここで、ρは前記放射管の抵抗率、Lは前記放射管の長さ、Aは前記放射管の断面積であり、
熱収支によれば、各部分の熱量の合計はジュール熱に等しく、
Figure 0007037828000019
ここで、Qはジュール熱、Q1は前記放射管自体の熱によって吸収された熱、Q2は前記放射管が外部環境(熱処理炉)に伝達する熱、Q3は前記放射管が管内環境に伝える熱であり、
Figure 0007037828000020
ここで、mは前記放射管の質量、Cpは定圧熱容量、
Figure 0007037828000021
は平均定圧熱容量、Trは放射管の温度、Tmは室温であり、
Figure 0007037828000022
Figure 0007037828000023
方程式(5)と方程式(6)において、hは前記放射管と管外環境との間の伝熱係数、hは上記放射管と管内環境との間の伝熱係数、Tfoは管外環境の温度、Tは管壁の温度、Tfiは管内環境の温度であり、
前記温度制御装置は、方程式(3)に基づいて、以下の方程式(7)によって当該の温度制御エリアの温度を調整し、
Figure 0007037828000024
ここで、Tfoは前記熱処理炉の作業エリアにおける温度、Tは前記放射管の管壁温度、Tfiは熱電対によって測定された前記放射管内の温度であり、
前記温度制御装置は、Tfo、T、(T-Tfo)および(T-Tfi)の値に基づいて、PIDアルゴリズムを採用して、リアルタイム温度と目標温度との偏差を算出して制御量を出力することによって、熱処理炉の昇温段階と保温段階の温度を正確に制御することを特徴とする電熱放射管の温度制御方法。
In the method for controlling the temperature of the electric radiant tube according to claim 1 , in the step (3), a part of the Joule heat generated from the electric radiant tube (1) raises its own temperature, and a part of the other part transfers heat. It is transmitted to the environment via radiation, and convection, and raises the ambient temperature of the heat treatment furnace.
The outer diameter of the electric radiant tube is φ, the wall thickness is δ, the resistance is R, and the Joule heat generated when the current passes through the radiant tube is
Figure 0007037828000017
The resistance R of the electric heating tube (1) is determined by combining the material and the geometric size of the radiating tube.
Figure 0007037828000018
Here, ρ is the resistivity of the radiation tube, L is the length of the radiation tube, and A is the cross-sectional area of the radiation tube.
According to the heat balance, the total amount of heat in each part is equal to Joule heat,
Figure 0007037828000019
Here, Q is Joule heat, Q1 is heat absorbed by the heat of the radiant tube itself, Q2 is heat transferred by the radiant tube to the external environment (heat treatment furnace), and Q3 is heat transmitted by the radiant tube to the in-tube environment. And
Figure 0007037828000020
Here, m is the mass of the radiant tube, Cp is the constant pressure heat capacity, and so on.
Figure 0007037828000021
Is the average constant pressure heat capacity, Tr is the temperature of the radiation tube, Tm is the room temperature,
Figure 0007037828000022
Figure 0007037828000023
In equations (5) and (6), ho is the heat transfer coefficient between the radiant tube and the environment outside the tube, hi is the heat transfer coefficient between the radiant tube and the environment inside the tube, and T fo is the tube. The temperature of the outside environment, Tr is the temperature of the pipe wall, and Tfi is the temperature of the pipe environment.
The temperature control device adjusts the temperature of the temperature control area according to the following equation (7) based on the equation (3).
Figure 0007037828000024
Here, T fo is the temperature in the work area of the heat treatment furnace, Tr is the tube wall temperature of the radiation tube, and T fi is the temperature inside the radiation tube measured by a thermocouple.
The temperature controller uses a PID algorithm to calculate the deviation between the real-time temperature and the target temperature based on the values of T fo , Tr, (T r -T fo ) and ( Tr -T fi ) . A method for controlling the temperature of an electric heating radiation tube, which comprises accurately controlling the temperature at the temperature raising stage and the heat retaining stage of the heat treatment furnace by outputting the controlled amount.
JP2019547106A 2019-04-03 2019-05-21 Temperature control method for electric radiant tube Active JP7037828B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910264271.0A CN109871052A (en) 2019-04-03 2019-04-03 A kind of electrothermal radiation tube temperature control equipment and its control method
CN201910264271.0 2019-04-03
PCT/CN2019/087869 WO2020199323A1 (en) 2019-04-03 2019-05-21 Electric-heating radiant tube temperature control device and control method therefor

Publications (2)

Publication Number Publication Date
JP2021521498A JP2021521498A (en) 2021-08-26
JP7037828B2 true JP7037828B2 (en) 2022-03-17

Family

ID=66922029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547106A Active JP7037828B2 (en) 2019-04-03 2019-05-21 Temperature control method for electric radiant tube

Country Status (4)

Country Link
JP (1) JP7037828B2 (en)
CN (1) CN109871052A (en)
TW (1) TWI694319B (en)
WO (1) WO2020199323A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144545A (en) * 2019-06-14 2019-08-20 上海颐柏科技股份有限公司 A kind of frequency converter and its speed regulating method for vacuum carburization process
CN112257191B (en) * 2020-12-23 2021-03-16 中国人民解放军国防科技大学 Load platform integrated microsatellite thermal control subsystem optimization method and system
CN113372000B (en) * 2021-04-02 2022-07-22 山东玻纤集团股份有限公司 Bushing plate and intelligent heating method
CN113684442A (en) * 2021-08-05 2021-11-23 江苏颐柏机械有限公司 Variable-frequency speed regulation device for vacuum carburization process and speed regulation method thereof
CN114265446B (en) * 2021-12-27 2023-07-14 广东蓝玖新能源科技有限公司 Heat supply structure for hydrogen production reactor, temperature coordination control method and system
CN115220497A (en) * 2022-08-02 2022-10-21 上海轩田工业设备有限公司 Vacuum cavity heating device for vacuum reflow soldering furnace and temperature control method thereof
CN115505725A (en) * 2022-09-24 2022-12-23 中国航空工业标准件制造有限责任公司 Furnace temperature control method for aviation small part heat treatment process test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050581A (en) 2000-08-01 2002-02-15 Nec Kyushu Ltd Semiconductor manufacturing device
JP2009070700A (en) 2007-09-13 2009-04-02 Nippon Oil Corp Fuel cell system
JP2015075264A (en) 2013-10-08 2015-04-20 小野 真人 Superheated-steam generator and its temperature control method
JP2017154414A (en) 2016-03-03 2017-09-07 住友ゴム工業株式会社 Pricking roller

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730560A (en) * 1952-08-28 1956-01-10 Babcock & Wilcox Co Tapping control system for melting furnaces
US4198849A (en) * 1978-03-27 1980-04-22 Hans Siess Pyrometric temperature measurements in flameless atomic absorption spectroscopy
PT73892B (en) * 1981-10-27 1983-07-01 Saint Gobain Vitrage METHOD AND DEVICE FOR REGULATING THE TEMPERATURE OF A GLASS SHEET IN A MULTI-CELL OVEN
JPS5915829A (en) * 1982-07-19 1984-01-26 Yamari Sangyo Kk Tubular multipoint heat flowmeter
US4675826A (en) * 1984-08-06 1987-06-23 Granco-Clark, Inc. Temperature control system
FR2635578B1 (en) * 1988-08-17 1990-11-09 Triatherm Sarl INSTALLATION FOR HEATING A PREMISES BY THERMAL RADIATION AND TEMPERATURE SENSOR FOR SUCH AN INSTALLATION
JPH05248631A (en) * 1992-03-02 1993-09-24 Daido Steel Co Ltd Method for controlling furnace temperature
US5305417A (en) * 1993-03-26 1994-04-19 Texas Instruments Incorporated Apparatus and method for determining wafer temperature using pyrometry
FR2731311B1 (en) * 1995-03-01 1997-04-30 Cogidev ELECTRIC HEATING ELEMENT OF THE CONVECTION OR RADIATION TYPE OR COMBINING THESE TWO MODES OF HEATING
JPH09119616A (en) * 1995-10-25 1997-05-06 Nippon Steel Corp Electric resistance melting furnace for treating ash
JP3505076B2 (en) * 1998-01-30 2004-03-08 日本ファーネス工業株式会社 Heating furnace using radiant tube as heat source
US6072163A (en) * 1998-03-05 2000-06-06 Fsi International Inc. Combination bake/chill apparatus incorporating low thermal mass, thermally conductive bakeplate
US8107800B2 (en) * 2008-01-08 2012-01-31 International Business Machines Corporation Method and structure to control thermal gradients in semiconductor wafers during rapid thermal processing
TWI473309B (en) * 2009-02-27 2015-02-11 Hon Hai Prec Ind Co Ltd Thermoelectric power generation apparatus
CN101754504B (en) * 2010-01-19 2012-02-29 江苏丰东热技术股份有限公司 Zone-control radiant tube heater
TWI551803B (en) * 2010-06-15 2016-10-01 拜歐菲樂Ip有限責任公司 Cryo-thermodynamic valve device, systems containing the cryo-thermodynamic valve device and methods using the cryo-thermodynamic valve device
JP5980551B2 (en) * 2011-07-13 2016-08-31 株式会社日立国際電気 Temperature detector, substrate processing apparatus, and semiconductor device manufacturing method
CN202310153U (en) * 2011-09-19 2012-07-04 朱建忠 Immersion electric heating tube for aluminum/zinc melting and heat insulation
CN104302023A (en) * 2014-10-27 2015-01-21 苏州伟热电器科技有限公司 Refill for heating air duct
JP6579974B2 (en) * 2015-02-25 2019-09-25 株式会社Kokusai Electric Substrate processing apparatus, temperature sensor, and semiconductor device manufacturing method
CN205537128U (en) * 2016-04-26 2016-08-31 哈尔滨工业大学 To open radiation heating stove and furnace body
JP6521905B2 (en) * 2016-06-07 2019-05-29 中外炉工業株式会社 Radiant tube burner unit and industrial furnace
EP3472858B1 (en) * 2016-06-15 2022-01-12 Watlow Electric Manufacturing Company Power converter for a thermal system
CN106544048A (en) * 2016-09-27 2017-03-29 北京神雾环境能源科技集团股份有限公司 The heat accumulating type fast pyrogenation furnace temperature control method of control radial canal make-and-break time
CN106774521A (en) * 2016-11-11 2017-05-31 北京神雾环境能源科技集团股份有限公司 The temprature control method of heat accumulation type radiant tube fast pyrogenation stove
CN209388200U (en) * 2019-04-03 2019-09-13 上海颐柏科技股份有限公司 A kind of electrothermal radiation tube temperature control equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050581A (en) 2000-08-01 2002-02-15 Nec Kyushu Ltd Semiconductor manufacturing device
JP2009070700A (en) 2007-09-13 2009-04-02 Nippon Oil Corp Fuel cell system
JP2015075264A (en) 2013-10-08 2015-04-20 小野 真人 Superheated-steam generator and its temperature control method
JP2017154414A (en) 2016-03-03 2017-09-07 住友ゴム工業株式会社 Pricking roller

Also Published As

Publication number Publication date
TWI694319B (en) 2020-05-21
TW202038036A (en) 2020-10-16
WO2020199323A1 (en) 2020-10-08
JP2021521498A (en) 2021-08-26
CN109871052A (en) 2019-06-11

Similar Documents

Publication Publication Date Title
JP7037828B2 (en) Temperature control method for electric radiant tube
CN108680285B (en) Short thermocouple temperature calibration furnace and short thermocouple calibration method
KR101898037B1 (en) High temperature structure for measuring of properties of curved thermoelectric device, system for measuring of properties of curved thermoelectric device using the same and method thereof
CN110907493A (en) Method for testing high-temperature thermal conductivity
CN110907491A (en) Low heat conduction material high temperature thermal conductivity testing arrangement
JP2010249803A (en) Thermal fatigue testing device and program
JP6510755B2 (en) Scale adhesion amount estimation system
US7148450B2 (en) Portable blackbody furnace
JP7037829B2 (en) Temperature control method for gas radiation tube
JP6594250B2 (en) Temperature measuring device and temperature measuring method
KR102164075B1 (en) Warm test apparatus
CN110108752B (en) Polymer pyrolysis ignition experimental system under self-feedback time-varying heat flow and testing method
CN103134618A (en) Heating system for thermocouple verification furnace
CN209388200U (en) A kind of electrothermal radiation tube temperature control equipment
CN108543550A (en) Wave transparent test temperature chamber
CN205538031U (en) A calibrating device for temperature monitoring ware
CN210774373U (en) High-emissivity medium-temperature black body furnace
KR101247669B1 (en) Hot water heater and method for preventing overheating of hot water heater
CN206556442U (en) A kind of thermal gradient furnace of heating element heater from spare to dense
CN216565626U (en) Uniform heating device suitable for cone shell
JPH03152390A (en) Method and device for temperature control of fusion furnace
CN201828619U (en) Drying oven special for testing thermal stability of electrical appliance product
CN114883060B (en) Cable heat sealing device and method
CN114397025B (en) Standard radiation source for calibrating characteristics of external field target
Machin et al. Optimizing the implementation of high-temperature fixed points through the use of thermal modeling

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7037828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150