JP7034439B2 - ニッケル粉の回収方法 - Google Patents

ニッケル粉の回収方法 Download PDF

Info

Publication number
JP7034439B2
JP7034439B2 JP2018115992A JP2018115992A JP7034439B2 JP 7034439 B2 JP7034439 B2 JP 7034439B2 JP 2018115992 A JP2018115992 A JP 2018115992A JP 2018115992 A JP2018115992 A JP 2018115992A JP 7034439 B2 JP7034439 B2 JP 7034439B2
Authority
JP
Japan
Prior art keywords
pipe
valve
nickel powder
tank
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115992A
Other languages
English (en)
Other versions
JP2019218591A (ja
Inventor
和幸 高石
佳智 尾崎
伸一 平郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018115992A priority Critical patent/JP7034439B2/ja
Publication of JP2019218591A publication Critical patent/JP2019218591A/ja
Application granted granted Critical
Publication of JP7034439B2 publication Critical patent/JP7034439B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は硫酸ニッケルアンミン錯体溶液からニッケル粉を回収する方法で、高温高圧の反応槽から生成したニッケル粉を含む還元スラリーのニッケル粉スラリーを安定的に回収する方法に関するものである。
湿式製錬プロセスを用いてニッケル粉を工業的に製造する方法として、特許文献1に示すように、ニッケルを含有する原料を硫酸溶液に溶解後、溶解液に含有する不純物を除去する浄液工程を経て、得られた硫酸ニッケル溶液にアンモニアを添加してニッケルのアンミン錯体を形成させ、次いでこの硫酸ニッケルアンミン錯体溶液を高温高圧の容器に入れ、水素ガスを供給して硫酸ニッケルアンミン錯体溶液中のニッケルを還元し、ニッケル粉を製造する方法が知られている。
上記のような製造方法に際しては、高温高圧の反応で行われることから、取扱いしやすさや装置コストの観点からバッチ式を用いた製造方法を用いることが多かった。
しかしバッチ式の製造方法では、反応容器を開け、溶液を装入し、密栓して昇温し、温度と圧力を制御し、水素ガスを吹き込んで還元し、冷却し、反応物を取出す一連の操作を段階ごとに行う必要があり、多大な手間と時間を要し、稼動率が低くなり効率的ではなかった。さらに、反応前後の加熱途中や降温中の影響などが無視できず、この間にスケーリングと称する不均一な析出や粒径のばらつきが生じることがあり、その影響や除去する手間の問題も重なって、反応稼動率の維持と製品品質を一定に保つのが難しかった。
また、上記のバッチ式の方法で得たニッケル粉は、一般的な電解製錬で得られる板(シート)状の電気ニッケルに比較すると、不純物品質面での課題もあった。具体的には、ニッケルの国際的な取引市場であるLME(London Metal Exchenge)において高純度なグレードの認定を得るには、硫黄品位は0.01重量%以下であることが必要とされているが、バッチ式の方法を用いて得られたニッケル粉では、上記の高純度のLMEグレードのスペックよりも硫黄品位が高くなる場合があり、電気ニッケルを完全に代替する用途に用いることは難しかった。
そこで、生産性を高め、一定の品質を得るために、連続化された処理によるニッケル粉の生成の提案が成された。具体的には、高温高圧反応槽に上述のニッケルアンミン錯体溶液や種晶を供給し、一定の高温高圧下で水素ガスを吹き込んでニッケル粉を生成させ、これを連続的に高温高圧反応槽から取り出し、固液分離してニッケル粉を回収しようとするものである。
しかしながら、上記方法では、高圧の反応槽から直接スラリーを取り出すと、急激な減圧に伴ってスラリーが飛散するなど操業の安全性から問題を生じていた。
このため、高圧の反応槽の下手に降圧槽(あるいは「フラッシュベッセル」ともいう)を設け、さらに降圧槽の入り口(給液側)に設けた弁(バルブ)等を制御することで、高温高圧反応槽から排出されたスラリーを安全に常圧まで降圧する操作が行われる。降圧槽を用いることで、発生する蒸気を回収し有効に活用できるメリットもある。
なお、実操業では前記高温高圧反応槽と降圧槽との間は、接続配管を介して接続されるのが一般的である。このため弁は高温高圧反応槽の吐出口と降圧槽の給液側の双方に設けることが接続配管の耐圧性の点で好ましい。
しかしながら、ニッケル粉スラリーなどが弁を介して供給される場合、ニッケル粉などの固体部分が弁の機構に噛みこんだり挟まったりする懸念がある。
特に工業的には自動制御を行うために電磁弁が一般に用いられるが、ニッケルのような強磁性の粉末の場合、電磁弁の磁石に反応し、開閉機構に磁着する恐れが強い。
弁の開閉機構に噛みこんだり磁着してしまった場合、制御ができず高温高圧反応槽からスラリーが未反応な状態で排出されたり、降圧槽に過大な負荷をかけるなど品質と安全面で問題となる。
さらに接続配管の途中の配管内部にニッケル粉が析出してスケールとなることもあった。
このため、複数のバルブを設けて安全対策を強化したり、こまめに弁や配管を分解掃除したりする手間と費用が必要となり連続操業は困難だった。
ニッケル粉の生成の連続化には、このような障害を乗り越える必要があり、そのため、ニッケル粉の工業的な回収方法は、生産性の低いバッチ反応による生成が主体となっていた。
特開2015-140480号公報
本発明は、ニッケル錯イオンを水素ガスで還元してニッケル粉を得る方法において、配管や弁を洗浄できる機構を設けることで、配管内部のスケーリングや弁への噛み込みを抑制し、安定してニッケル粉の生成を連続化された処理によってなし得るニッケル粉の回収方法を提供するものである。
上記の課題を解決するための本発明の第1の発明は、硫酸ニッケルアンミン錯体溶液を含む原料給液から連続して前記硫酸ニッケルアンミン錯体溶液に含まれるニッケル錯イオンを水素により還元処理して生成されたニッケル粉を含む還元スラリーに含まれるニッケル粉の回収方法であって、前記原料給液が、さらに種晶を含む混合スラリーであり、前記ニッケル粉が、前記還元処理により前記種晶上に析出したニッケルを有し、下記回収装置を用いて製造されることを特徴とするニッケル粉の回収方法である。
(記)
原料給液を供給する開閉弁付き給液管と、水素ガスを前記原料給液に吹き込む開閉弁付き水素導入管と、前記還元スラリーを排出する開閉弁付き吐出管を備え、前記原料給液を貯留、撹拌し、前記原料給液中のニッケル錯イオンを前記水素ガスにより還元処理して生成されたニッケル粉を含む還元スラリーを形成する反応槽と、
一端が前記吐出管に連結された接続配管と連結している開閉弁付き流入管と、固液分離装置に接続する開閉弁付き排出管を備え、前記反応槽から接続配管を介して還元スラリーを貯留後、前記還元スラリーを常圧まで降圧して常圧後還元スラリーとし、前記常圧後還元スラリーからニッケル粉を回収するために前記排出管を介して固液分離装置に排出する降圧槽と、
一端が前記接続配管の中間部で分岐する開閉弁付き洗浄配管と、開閉弁付き洗浄水給液管を有し、前記洗浄水給液管を介して洗浄水を貯め込み、前記洗浄配管を介して洗浄水を前記反応槽又は降圧槽、或いは前記反応槽と降圧槽の両者に供給する洗浄水貯留槽を備え、
前記接続配管に洗浄配管を介して前記洗浄水貯留槽から洗浄水を供給し、前記接続配管から降圧槽に向かう方向への洗浄と、前記接続配管から前記反応槽に向かう方向への逆洗浄が、前記洗浄水貯留槽から供給される洗浄水の圧力を、前記反応槽の内部圧力P よりも、0.2[MPa]から0.5[MPa]の高い圧力で、前記洗浄配管に供給されることを可能とした構造のニッケル粉の回収装置。
また、本発明の第2の発明は、第1の発明における接続配管に供給される洗浄水に、前記還元スラリーを固液分離して得た濾液を用いることを特徴とするニッケル粉の回収方法である。
本発明によれば、ニッケル錯イオンを水素ガスで還元してニッケル粉を連続化された処理によるニッケル粉の回収方法において、配管や弁を洗浄できる機構を設けることで、ニッケル粉の配管内部でのスケーリングや弁への噛み込みが抑制され、安定してニッケル粉の生成を可能とする工業上顕著な効果を奏するものである。
本発明に係るニッケル粉の回収装置を説明する概略構成図である。
本発明は、反応槽、降圧槽を備えるニッケル粉の回収装置を用いたニッケル粉の回収方法において、その回収装置に高温高圧状態で使用される反応槽内の配管及び反応槽から降圧槽までの配管および各種機器へのニッケルメタルのスケーリングや弁などへのニッケル粉の噛み込みを低減する「逆洗浄」が実施可能な回収装置とし、反応槽の連続運転を可能とするものである。
具体的には、図1に概略構成を示すニッケル粉の回収装置1を使用し、ニッケルアンミン錯体溶液中のニッケル錯イオンを所定の高温高圧下で水素ガスによって還元反応させてニッケル粉を析出させる工程を連続化された処理方法で行なうもので、生産性の高い連続化された処理を、安定して行えるようにするため、反応槽10の槽内貯留量が所定レベルの上限値になったら、反応槽10の吐出管11に設けられた開閉弁の吐出弁Vを開けてニッケル粉スラリーで有る還元スラリー41を取り出して降圧槽20に接続配管13a、13を介して移送し、所定の下限値になったら吐出弁Vを閉じる操作を繰り返すものである。
その際に、本発明は別途設けられた洗浄水貯留槽30から洗浄配管14を介して洗浄水Wwを供給し、接続配管13、13aや反応槽10の吐出管11、及び吐出弁Vなどの閉塞を生じやすい部分を洗浄するもので、特に、降圧槽20に向かう接続配管13や降圧槽20への開閉弁である流入弁Vの洗浄のみでなく、反応槽10に向かって洗浄することで、反応槽10に向う接続配管13aや吐出弁V、及び吐出管11、さらには反応槽10の内部にまで洗浄水が届く、「逆洗浄」を行うことで、効果的に閉塞を防止している。
また、このため本発明では、洗浄水Wwを貯留する洗浄水貯留槽30も反応槽10の圧力よりも高い圧力に加圧できる構造とし、少なくとも反応槽10に向かって「逆洗浄」を行なう際に、反応槽10での操業を停止することなく連続操業できるようにした。その際の洗浄水の圧力Pとしては、反応槽10の槽内圧力Pに対して、P=P+0.2[MPa]からP=P+0.5[MPa]となるように洗浄水の圧力を、圧力調整弁GVを流れる雰囲気ガス(実施例では窒素ガス)IGの流量を調整することで洗浄水の圧力を上記範囲に維持して作業を実施している。
なお、「洗浄」および「逆洗浄」に使用する洗浄水Wwは、工業用水など普通の水Wの他に、還元反応により生成したニッケル粉を含む常圧還元スラリーをヌッチェやフィルタープレスや遠心分離機などの固液分離装置(例えば、符号50に示す固液分離装置)を用いてニッケル粉と分離した濾液51を用いることもできる。
次に、「洗浄」及び「逆洗浄」時における回収装置1のニッケル粉のフローを説明する。
通常、供給配管15、15a、供給弁V、供給弁V4aを介して反応槽10内に所定容量の混合スラリー(原料給液)40を貯留する。なお、混合スラリー40は硫酸ニッケルアンミン錯体溶液60及び種晶スラリー61を別個に反応槽20に供給して槽内で混合スラリー40としても良く、或いは、それらの混合物である混合スラリーの形で供給して貯留しても良い。
この給液の際には、吐出弁Vは「閉」状態、供給弁V、V4aは「開」で行なわれる。
反応槽内に所定容量の混合スラリー40が貯留されているのを確認後、撹拌機Mにより貯留された混合スラリー40を撹拌しながら、水素導入弁GVを「開」状態として水素ガスを混合スラリー40に吹き込み、ニッケル錯イオンを還元してニッケル成分を析出させてニッケル粉を生成し、還元スラリー41を形成する。
その形成された還元スラリー41は、ニッケル粉を含んで、吐出管11、吐出弁V、接続配管13a、分岐点A、接続配管13、流入弁V、流入管21を通り、降圧槽20に貯められ、常圧に降圧された常圧後還元スラリー42となる。その後、抜出管18、抜出弁Vを介して、固液分離装置50に移送され、ニッケル粉と濾液51に固液分離される。なお、濾液51の一部又は全量は、洗浄水に用いるために洗浄水貯留槽30に移送されて洗浄水となる。
「洗浄」及び「逆洗浄」は、以下のタイミング、方法で実施される。その一例を以下に示す。
[洗浄]
反応槽10に貯留されていたニッケル粉を含む還元スラリー41を、降圧槽20に排出し、降圧槽20で常圧後還元スラリー42とした後、抜出弁Vを「開」にして、全量を固液分離装置50に移送して降圧槽20内を「空」状態にする。その後、抜出弁Vを「閉」とし、流入弁V及び洗浄水調整弁Vを「開」状態にして洗浄水Wwを流して分岐点AよりC側に配置されている接続配管13及び流入弁V、並びに洗浄水Wwが貯まる降圧槽20の洗浄が行なわれる。洗浄が終了した時には、降圧槽20に備わるドレーン(図示せず)から洗浄水Wwが外部に排出されるか、一部は抜出弁V、固液分離装置50に流され、その洗浄に使用される。
[逆洗浄]
上記「洗浄」と同時に、又は別個に実施が可能である。
同時に行なう場合には、洗浄水調整弁V、流入弁Vを「開」状態としたまま、吐出弁Vを「開」状態にすることで、洗浄配管14と接続配管13の分岐点Aにおける反応槽10側の接続配管13a、吐出弁V、吐出管11、反応槽10の順に洗浄水が流れることにより、各部の洗浄が行なわれる。なお、この洗浄水の流れの方向が、還元スラリーの移送方向とは逆の方向であることから「逆洗浄」と称している。
又、別個に実施する際には、流入弁Vを「閉」状態とし、洗浄水調整弁V、吐出弁Vを「開」状態とすることで、分岐点AよりB方向に向い、反応槽10側の接続配管13a、吐出弁V、吐出管11、反応槽10の順に洗浄を行なうものである。
[洗浄水貯留槽]
洗浄水貯留槽30は、洗浄水Wwを供給、貯留する開閉弁の洗浄水供給弁V付きの洗浄水供給管16と、洗浄水Wwを反応槽10、降圧槽20、各種配管、付属する弁に供給する吐出管31及びその流量調整を担う洗浄水調整弁Vを備え、さらに洗浄水の圧力調整を担う雰囲気ガスIGを洗浄水貯留槽30に導入する槽内圧力調整弁GV付き圧力調整管17を有している。
なお、各種溶液やスラリーの移送、供給、給液、抜出、排出は、図1には図示されていない高圧ポンプなどを用いて行なわれている。
以下、本発明を実施例により詳細する。
図1に示すニッケル粉の回収装置1を用いて実施例を行なっている。
内容量が190Lの高温高圧保持が可能なステンレス製反応槽10(オートクレーブ)を用い、ニッケル濃度が82.5g/Lの硫酸ニッケルアンミン錯体溶液を1.0L/分の流量で高圧ポンプ(図示せず)を用いて連続して反応槽10内に供給した。
同時に、種晶になる粒径が45μm以下のニッケル粉を66~124g/Lの濃度で含有する種晶スラリー61を用い、0.5L/分の供給量で高圧スラリーポンプ(図示せず)を介して連続して反応槽10内に供給した。
なお、図1に示すように、反応槽の吐出管11には電磁弁である吐出弁Vが設けられ、接続配管13a、接続配管13を介して降圧槽20の流入管21に設置した電磁弁である流入弁Vに接続した。
また、洗浄水貯留槽30の吐出管31には洗浄配管14を接続し、洗浄配管14は電磁弁の洗浄水調整弁Vを介して分岐点Aで接続配管13、接続配管13aに接続した。
反応槽10の内部には、ボンベや水素発生器等の水素ガス供給装置(図示せず)から供給される水素ガス(H)が吹き込める構造とし、開閉弁の水素供給弁GVを持つ水素導入管12を備えていた。
洗浄水貯留槽30には電磁弁の槽内圧力調整弁GVを介して不活性ガス(窒素ガス)IGを吹込めるようにして洗浄水の水圧を調整可能としていた。また、工業用水Wないし還元スラリーを固液分離してニッケル粉を回収した後の濾液51を供給する電磁弁の洗浄水供給弁Vを設けてある。
次に、上記の混合スラリー40を張り込んだ反応槽10の内部温度を185℃に保ち、水素ガスを水素供給器(図示せず)から水素導入管12を経て吹込んで、その圧力Pを2.9~3.1MPaの範囲に保持し、還元処理を行ない、種晶の表面にニッケルを析出させてニッケル粉を生成し、ニッケル粉スラリーで有る還元スラリー41を形成した。
反応槽10に貯留される内容物の容量は平均90リットルを維持するように送液を続けながら、降圧槽20に向けて断続的に還元スラリー41を抜出した。
具体的な抜出方法は、図1の洗浄水貯留槽30に洗浄水供給弁Vを開状態にして洗浄水(今回の実施例は工業用水を使用)を張り込み、槽内圧力調整弁GVを介して高圧の窒素ガスを吹込み、洗浄水貯留槽30の槽内圧力Pを3.3~3.5MPaに昇圧した。
また、反応槽の圧力Pは、水素ガスの吹込み量を調整し、2.9~3.1MPaに維持した。高温高圧状態の反応槽に貯留液量が92リットルとなったら、吐出弁Vと流入弁Vを開けて還元スラリー41を、高温高圧状態の反応槽10から吐出管11を介して排出させ、接続配管13a、13を通って降圧槽20に移送され、降圧槽20内で常圧まで減圧して抜取り、固液分離装置50に送られて固液分離され、ニッケル粉と濾液51に分離した。
83リットルまで減少した時点で吐出弁Vと流入弁Vを「閉」として抜取りを停止した。その後、流入弁Vを「開」とし、洗浄水調整弁Vを「開」として洗浄水貯留槽30から吐出管31、洗浄配管14を通して洗浄水Wwを供給し、接続配管の降圧槽方向(図1でのAからCの接続配管13および流入弁V弁)を1回に4リットルの洗浄水で洗浄した。
所定の時間洗浄後、流入弁Vを「閉」とし、次いで数秒後に洗浄水調整弁Vを「閉」として、接続配管13の圧力を3.3~3.5MPaに維持した。次に、吐出弁Vと洗浄水調整弁Vを同時に「開」として、分岐点Aから高温高圧状態の反応槽10方向(図1でのAからBの接続配管13aと吐出弁V)を洗浄する逆洗浄をおこなった。
所定の洗浄時間で経過後、吐出弁Vと洗浄水調整弁Vを「閉」として洗浄サイクルを終了した。なお、接続配管13aから吐出管11を経て高温高圧状態の反応槽10方向(AからBの接続配管13aおよび吐出弁V)の洗浄時間は、反応槽10の内部温度変化が1.0℃未満になるように調整した。
洗浄終了後は、反応槽10内の液レベルが上述の92リットルとなるのを待って上記の反応槽10から降圧槽20へのニッケル粉スラリーである還元スラリー41の排出と、水洗浄を繰り返した。
この洗浄ならびに逆洗浄を行う効果により24H以上経過しても配管や弁の閉塞することなく連続運転が可能となった。
(比較例1)
上記実施例1と同じ反応槽10に、同じ組成の硫酸ニッケルアンミン錯体溶液60を同じ1.0L/分で供給し、種晶に同じ粒径の種晶スラリー61を同じく0.5L/分の流量で供給した。反応槽10の温度を同じく185℃に保ち、水素ガスを吹込み、反応槽内10の圧力Pを3.1MPaとして還元処理を行なった。
反応槽の容量を基準の90Lに維持しながら、実施例1と同じように降圧槽に断続的にニッケル粉スラリーを抜出した。
しかし、実施例1とは異なり、洗浄水貯留槽30からの降圧槽20側への洗浄と高温高圧状態の反応槽10側への逆洗浄は行わなかった。
還元処理の反応時間が1時間を経過したころ、反応槽10の吐出管11の吐出弁Vと、降圧槽20に還元スラリー41を供給する流入弁Vが、ニッケル粉および還元析出したニッケルによって閉塞し、弁を制御できなくなって、反応槽の液量を90Lに維持できなくなった。
(比較例2)
上記実施例1と同じ反応槽10と硫酸ニッケルアンミン錯体溶液と種晶を用い、同じ流量、温度で反応させながら、同じく92リットルになった時点で吐出弁Vと流入弁Vを開け、吐出管11、接続配管13a、13を経て、降圧槽20に断続的に還元スラリー41を抜出した。
この還元スラリー41の降圧槽20への排出後、実施例1と同じく洗浄配管14から降圧槽20側への「洗浄」を行った。
しかし、洗浄配管14から反応槽20側への「逆洗浄」は行わなかった。
その結果、8時間経過後に反応槽10から還元スラリーを吐出させる吐出弁Vが、ニッケル粉および還元析出したニッケルによって閉塞して制御できなくなり、高温高圧反応槽の液量を90Lに維持できなくなった。
1 ニッケル粉回収装置
10 反応槽
11、31 吐出管
12 水素導入管
13、13a 接続配管
14 洗浄配管
15、15a 供給配管
16 洗浄水供給管
17 圧力調整管
18 抜出管
20 降圧槽
21 流入管
30 洗浄水貯留槽
40 混合スラリー
41 還元スラリー
42 常圧後還元スラリー
50 固液分離装置
51 濾液
60 硫酸ニッケルアンミン錯体溶液(給液原料)
61 種晶スラリー

A 分岐点
B 反応槽方向
C 降圧槽方向
M 撹拌機
吐出弁
流入弁
洗浄水調整弁
、V4a 原料供給弁
洗浄水供給弁
抜出弁
GV 水素供給弁
GV 槽内圧力調整弁
W 水(工業用水等)
Ww 洗浄水

Claims (2)

  1. 硫酸ニッケルアンミン錯体溶液を含む原料給液から連続して前記硫酸ニッケルアンミン錯体溶液に含まれるニッケル錯イオンを水素により還元処理して生成されたニッケル粉を含む還元スラリーに含まれるニッケル粉の回収方法であって、
    前記原料給液が、さらに種晶を含む混合スラリーであり、
    前記ニッケル粉が、前記還元処理により前記種晶上に析出したニッケルを有し、
    下記回収装置を用いて製造されることを特徴とするニッケル粉の回収方法。
    (記)
    原料給液を供給する開閉弁付き給液管と、水素ガスを前記原料給液に吹き込む開閉弁付き水素導入管と、前記還元スラリーを排出する開閉弁付き吐出管を備え、
    前記原料給液を貯留、撹拌し、前記原料給液中のニッケル錯イオンを前記水素ガスにより還元処理して生成されたニッケル粉を含む還元スラリーを形成する反応槽と、
    一端が前記吐出管に連結された接続配管と連結している開閉弁付き流入管と、固液分離装置に接続する開閉弁付き排出管を備え、
    前記反応槽から接続配管を介して還元スラリーを貯留後、前記還元スラリーを常圧まで降圧して常圧後還元スラリーとし、前記常圧後還元スラリーからニッケル粉を回収するために前記排出管を介して固液分離装置に排出する降圧槽と、
    一端が前記接続配管の中間部で分岐する開閉弁付き洗浄配管と、開閉弁付き洗浄水給液管を有し、
    前記洗浄水給液管を介して洗浄水を貯め込み、前記洗浄配管を介して洗浄水を前記反応槽又は降圧槽、或いは前記反応槽と降圧槽の両者に供給する洗浄水貯留槽を備え、
    前記接続配管に洗浄配管を介して前記洗浄水貯留槽から洗浄水を供給し、前記接続配管から降圧槽に向かう方向への洗浄と、前記接続配管から前記反応槽に向かう方向への逆洗浄が前記洗浄水貯留槽から供給される洗浄水の圧力を、前記反応槽の内部圧力P よりも、0.2[MPa]から0.5[MPa]高い圧力で、前記洗浄配管に供給されることを可能とした構造のニッケル粉の回収装置。
  2. 前記接続配管に供給される洗浄水に、前記還元スラリーを固液分離して得た濾液を用いることを特徴とする請求項1に記載のニッケル粉の回収方法。
JP2018115992A 2018-06-19 2018-06-19 ニッケル粉の回収方法 Active JP7034439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115992A JP7034439B2 (ja) 2018-06-19 2018-06-19 ニッケル粉の回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115992A JP7034439B2 (ja) 2018-06-19 2018-06-19 ニッケル粉の回収方法

Publications (2)

Publication Number Publication Date
JP2019218591A JP2019218591A (ja) 2019-12-26
JP7034439B2 true JP7034439B2 (ja) 2022-03-14

Family

ID=69095592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115992A Active JP7034439B2 (ja) 2018-06-19 2018-06-19 ニッケル粉の回収方法

Country Status (1)

Country Link
JP (1) JP7034439B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155319A (ja) 2016-03-04 2017-09-07 住友金属鉱山株式会社 ニッケル粉の製造方法
WO2017150717A1 (ja) 2016-03-04 2017-09-08 住友金属鉱山株式会社 ニッケル粉の製造方法
JP2017226867A (ja) 2016-06-21 2017-12-28 住友金属鉱山株式会社 ニッケル粉の製造方法、ニッケル粉の製造装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI106635B (fi) * 1999-11-09 2001-03-15 Outokumpu Oy Menetelmä nikkelin pelkistämiseksi vesiliuoksesta

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155319A (ja) 2016-03-04 2017-09-07 住友金属鉱山株式会社 ニッケル粉の製造方法
WO2017150717A1 (ja) 2016-03-04 2017-09-08 住友金属鉱山株式会社 ニッケル粉の製造方法
JP2017226867A (ja) 2016-06-21 2017-12-28 住友金属鉱山株式会社 ニッケル粉の製造方法、ニッケル粉の製造装置

Also Published As

Publication number Publication date
JP2019218591A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2011132693A1 (ja) 貯液装置及びその圧力制御方法
AU2013228541B2 (en) Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore
EP2944702B1 (en) Operation method for dezincification plant
JP6459879B2 (ja) ニッケル粉の製造方法、反応設備の運転方法
JP7034439B2 (ja) ニッケル粉の回収方法
WO2017221787A1 (ja) ニッケル粉の製造方法、ニッケル粉の製造装置
CN102153148A (zh) 制备铁红的方法
JP7147452B2 (ja) 亜鉛硫化物除去用の濾過設備及びこれを用いたニッケルコバルト混合硫化物の製造方法
JP6245314B2 (ja) ニッケル粉の製造方法
JP7354710B2 (ja) 高純度硫酸ニッケル水溶液の製造方法
JP5660248B1 (ja) 脱亜鉛プラントの操業方法
CN213506670U (zh) 一种pta氧化母液固体回收控制系统
CN220194079U (zh) 一种酸再生脱硅系统及其沉降槽污泥管道防堵装置
CN110951969B (zh) 一种从难处理含钴镍尾料中回收有价金属的方法
JP2023031095A (ja) 濾過設備の運転方法、脱亜鉛処理方法、及び、ニッケル酸化鉱石の製錬方法
CN116463498A (zh) 一种含钴料液的处理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220213

R150 Certificate of patent or registration of utility model

Ref document number: 7034439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150