JP7033739B2 - 固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法 - Google Patents

固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法 Download PDF

Info

Publication number
JP7033739B2
JP7033739B2 JP2020508670A JP2020508670A JP7033739B2 JP 7033739 B2 JP7033739 B2 JP 7033739B2 JP 2020508670 A JP2020508670 A JP 2020508670A JP 2020508670 A JP2020508670 A JP 2020508670A JP 7033739 B2 JP7033739 B2 JP 7033739B2
Authority
JP
Japan
Prior art keywords
charge
unit
charge storage
solid
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020508670A
Other languages
English (en)
Other versions
JPWO2019186838A1 (ja
Inventor
悠吾 能勢
基範 石井
信三 香山
繁孝 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019186838A1 publication Critical patent/JPWO2019186838A1/ja
Application granted granted Critical
Publication of JP7033739B2 publication Critical patent/JP7033739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Description

ここに開示する技術は、固体撮像技術に関する。
従来、被写体の撮像に加えてフォトンカウンティングを行うことが可能な固体撮像素子が開発されている。このようなフォトンカウンティングを利用して、例えば、TOF(Time Of Flight)方式の距離測定方法を行うことが可能である。
特許文献1には、赤外線透過フィルタを備える第1の画素群を有する複数の画素が二次元状に配列された固体撮像装置が開示されている。この第1の画素群の各画素は、受光回路とカウンタ回路と比較回路と記憶回路とを備えている。受光回路は、受光した光を電気信号に変換する光電変換を行う受光素子を有し、受光素子において光電変換を行う光電時間を露光信号により設定し、光電時間内に画素に到達した入射光の有無に応じた受光信号を出力する。カウンタ回路は、受光回路から入力された受光信号に基づいて、入射光の到達回数をカウント値として計数する。比較回路は、カウント値に応じた値を閾値として設定し、閾値に対してカウント値が大きい場合に比較信号をオン状態とする。記憶回路は、比較信号と時間に対して変化する時間信号とが入力され、比較信号がオン状態のとき時間信号を距離信号として記憶する。
また、特許文献1の図10Aに示すように、記憶回路には、増幅トランジスタが接続され、その増幅トランジスタには、選択トランジスタが接続されている。さらに、受光回路には、輝度画像用増幅トランジスタが接続され、輝度画像用増幅トランジスタには、輝度画像用選択トランジスタが接続されている。そして、固体撮像装置は、カウンタ回路と比較回路と記憶回路とを介して受光信号に基づく距離信号を得ることにより距離画像を取得し、輝度画像用増幅トランジスタと輝度画像用選択トランジスタとを介して受光信号を得ることにより対象物の輝度画像を取得するように構成されている。
国際公開第2017/098725号パンフレット
しかしながら、特許文献1の固体撮像素子では、増幅トランジスタと選択トランジスタとで構成された出力部が2つ設けられているので、固体撮像素子の回路規模を低減することが困難である。
ここに開示する技術は、固体撮像素子に関し、この固体撮像素子は、露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、前記電荷を蓄積する電荷蓄積部と、前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、前記電荷を蓄積する電荷蓄積キャパシタと、前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備えている。
また、ここに開示する技術は、固体撮像素子の駆動方法に関し、この固体撮像素子は、露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、前記電荷を蓄積する電荷蓄積部と、前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、前記電荷を蓄積する電荷蓄積キャパシタと、前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備えている。そして、この固体撮像素子の駆動方法は、前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送される転送動作が予め定められた回数だけ行われるように前記固体撮像素子を駆動させる第1工程と、前記第1工程の後に、前記電荷蓄積キャパシタに蓄積された電荷が前記第2電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように前記固体撮像素子を駆動させる第2工程とを備えている。
ここに開示する技術によれば、電荷蓄積キャパシタに蓄積された電荷を第2電荷転送部により電荷蓄積部に転送して電荷蓄積部に蓄積された電荷に応じた信号を出力部により出力することにより、電荷蓄積キャパシタに蓄積された電荷に応じた信号を出力することができる。これにより、電荷蓄積キャパシタに蓄積された電荷に応じた信号を出力するための構成(出力部とは異なる構成)を別途設けなくてもよくなるので、固体撮像素子の回路規模を低減することができる。
固体撮像システムの構成を例示するブロック図である。 固体撮像素子の構成を例示する回路図である。 距離測定の原理について説明するための概念図である。 距離検出制御を例示するフローチャートである。 距離検出制御を例示するタイミングチャートである。 撮像制御を例示するフローチャートである。 固体撮像素子の変形例の構成を例示する回路図である。
以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
(固体撮像システム)
図1は、実施形態による固体撮像システム10の構成を例示している。この固体撮像システム10は、被写界の撮像とフォトンカウンティングを利用した距離測定とを行うように構成されている。具体的には、固体撮像装置20と、光源30と、制御部40とを備えている。固体撮像装置20は、画素領域21と、駆動処理部22とを備えている。
〔画素領域〕
画素領域21は、P×Q個(P,Qは2以上の整数)の固体撮像素子100と、Q本の垂直信号線110とを有している。P×Q個の固体撮像素子100は、P行Q列のマトリクス状に配列されている。Q本の垂直信号線110は、P×Q個の固体撮像素子100のQ個の固体撮像素子列にそれぞれ対応している。
〔固体撮像素子〕
図2は、固体撮像素子100の構成を例示している。固体撮像素子100は、受光部200と、電荷蓄積部300と、第1電荷転送部400と、出力部500と、電荷蓄積キャパシタ600と、第2電荷転送部700と、第1リセット部800と、第2リセット部900とを備えている。
〈受光部〉
受光部200は、露光状態と遮光状態とに切り換え可能に構成されている。そして、受光部200は、露光状態において受光した光に応じた電荷を生成するように構成されている。なお、受光部200は、遮光状態では電荷を生成しない。この例では、受光部200は、露光信号EXPに応答して露光状態と遮光状態とに切り換えられる。
具体的には、この例では受光部200は、光電変換要素201を有している。そして、受光部200は、露光状態において光電変換要素201を露光させ、遮光状態において光電変換要素201を遮光させるように構成されている。例えば、受光部200には、光電変換要素を露光および遮光させる露光機構(図示を省略)が設けられている。
この例では、光電変換要素201は、アバランシェフォトフォトダイオードによって構成されている。なお、これに限らず、光電変換要素201は、その他の種類のフォトダイオードによって構成されていてもよい。
〈電荷蓄積部〉
電荷蓄積部300は、電荷を蓄積するように構成されている。この例では、電荷蓄積部300は、フローティングディフュージョン部301を有している。
〈第1電荷転送部〉
第1電荷転送部400は、受光部200から電荷蓄積部300へ電荷を転送するように構成されている。この例では、第1電荷転送部400は、転送制御信号TRNに応答して受光部200から電荷蓄積部300へ電荷を転送する。具体的には、この例では、第1電荷転送部400は、転送トランジスタ401を有している。
転送トランジスタ401は、受光部200の光電変換要素201と電荷蓄積部300のフローティングディフュージョン部301との間に接続されている。転送トランジスタ401のゲートは、転送制御信号TRNが印加される転送制御ノード402に接続されている。そして、転送トランジスタ401は、転送制御信号TRNに応答してオン状態とオフ状態とに切り換えられる。
〈出力部〉
出力部500は、電荷蓄積部300に蓄積された電荷に応じた信号を出力するように構成されている。この例では、出力部500は、選択制御信号SELに応答して電荷蓄積部300に蓄積された電荷に応じた信号を出力する。具体的には、この例では、出力部500は、増幅トランジスタ501と、選択トランジスタ502とを有している。
増幅トランジスタ501および選択トランジスタ502は、電源電圧VDDが印加される電源ノード503と垂直信号線110との間に直列に接続されている。増幅トランジスタ501のゲートは、電荷蓄積部300のフローティングディフュージョン部301に接続されている。選択トランジスタ502のゲートは、選択制御信号SELが印加される選択制御ノード504に接続されている。そして、選択トランジスタ502は、選択制御信号SELに応答してオン状態とオフ状態とに切り換えられる。
〈電荷蓄積キャパシタ〉
電荷蓄積キャパシタ600は、電荷を蓄積するように構成されている。
〈第2電荷転送部〉
第2電荷転送部700は、電荷蓄積部300と電荷蓄積キャパシタ600の一端との間において電荷を双方向に転送するように構成されている。この例では、第2電荷転送部700は、スイッチング制御信号SWTに応答して電荷蓄積部300から電荷蓄積キャパシタ600の一端へ(または電荷蓄積キャパシタ600の一端から電荷蓄積部300へ)電荷を転送する。具体的には、この例では、第2電荷転送部700は、スイッチングトランジスタ701と、整流要素702と、電位制御ノード703とを有している。
スイッチングトランジスタ701および整流要素702は、電荷蓄積部300のフローティングディフュージョン部301と電荷蓄積キャパシタ600の一端との間に直列に接続されている。スイッチングトランジスタ701のゲートは、スイッチング制御信号SWTが印加されるスイッチング制御ノード704に接続されている。そして、スイッチングトランジスタ701は、スイッチング制御信号SWTに応答してオン状態とオフ状態とに切り換えられる。
電位制御ノード703は、電荷蓄積キャパシタ600の他端に接続されている。電位制御ノード703には、電荷蓄積キャパシタ600から電荷蓄積部300へ電荷を転送する場合に電荷蓄積キャパシタ600の一端の電位(以下「記憶電位VCNT」と記載)が電荷蓄積部300の電位(この例ではフローティングディフュージョン部301の電位、以下「中間電位VFD」と記載)よりも高くなるよう電位制御信号EIVが印加される。
この例では、整流要素702は、整流トランジスタ710によって構成されている。整流トランジスタ710は、ダイオード接続されている。具体的には、整流トランジスタ710のゲートは、整流トランジスタ710のドレインまたはソースに接続されている。
また、この例では、電荷蓄積部300のフローティングディフュージョン部301から電荷蓄積キャパシタ600の一端へ向けて整流要素702とスイッチングトランジスタ701とが順に配置されている。なお、スイッチングトランジスタ701と整流要素702との並びは、この逆であってもよい。すなわち、電荷蓄積部300のフローティングディフュージョン部301から電荷蓄積キャパシタ600の一端へ向けてスイッチングトランジスタ701と整流要素702とが順に配置されていてもよい。
〈第1リセット部〉
第1リセット部800は、中間電位VFD(電荷蓄積部300の電位、この例ではフローティングディフュージョン部301の電位)をリセットするように構成されている。この例では、第1リセット部800は、第1リセット制御信号RS1に応答して中間電位VFDをリセットする。具体的には、この例では、第1リセット部800は、第1リセットトランジスタ801を有している。
第1リセットトランジスタ801は、中間電位VFDをリセットするための第1リセット電圧VRS1が印加される第1リセット電圧ノード802と電荷蓄積部300のフローティングディフュージョン部301との間に接続されている。第1リセットトランジスタ801のゲートは、第1リセット制御信号RS1が印加される第1リセット制御ノード803に接続されている。そして、第1リセットトランジスタ801は、第1リセット制御信号RS1に応答してオン状態とオフ状態とに切り換えられる。
〈第2リセット部〉
第2リセット部900は、記憶電位VCNT(電荷蓄積キャパシタ600の一端の電位)をリセットするように構成されている。この例では、第2リセット部900は、第2リセット制御信号RS2に応答して記憶電位VCNTをリセットする。具体的には、この例では、第2リセット部900は、第2リセットトランジスタ901を有している。
第2リセットトランジスタ901は、記憶電位VCNTをリセットするための第2リセット電圧VRS2が印加される第2リセット電圧ノード902と電荷蓄積キャパシタ600の一端との間に接続されている。第2リセットトランジスタ901のゲートは、第2リセット制御信号RS2が印加される第2リセット制御ノード903に接続されている。そして、第2リセットトランジスタ901は、第2リセット制御信号RS2に応答してオン状態とオフ状態とに切り換えられる。
〔駆動処理部〕
図1に戻って、駆動処理部22は、P×Q個の固体撮像素子100を駆動させるように構成されている。この例では、駆動処理部22は、露光信号EXPと転送制御信号TRNと選択制御信号SELとスイッチング制御信号SWTと第1リセット制御信号RS1と第2リセット制御信号RS2とをP×Q個の固体撮像素子100の各々に供給することでP×Q個の固体撮像素子100を駆動させる。
また、この例では、駆動処理部22は、制御部40による制御に応答してフォトンカウンティング動作と撮像動作とを行うように構成されている。
フォトンカウンティング動作では、駆動処理部22は、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送されて電荷蓄積部300に蓄積された電荷が第2電荷転送部700により電荷蓄積キャパシタ600に転送される転送動作が予め定められた回数だけ行われた後に、電荷蓄積キャパシタ600に蓄積された電荷が第2電荷転送部700により電荷蓄積部300に転送されて電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、固体撮像素子100を駆動させる。
撮像動作では、駆動処理部22は、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送されて電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、固体撮像素子100を駆動させる。
具体的には、この例では、駆動処理部22は、画素駆動回路25と、垂直シフトレジスタ26と、相関二重サンプリング回路27と、水平シフトレジスタ28と、出力回路29とを備えている。
〈画素駆動回路〉
画素駆動回路25は、制御部40による制御に応答して露光信号EXPと転送制御信号TRNとスイッチング制御信号SWTと第1リセット制御信号RS1と第2リセット制御信号RS2とをP×Q個の固体撮像素子100の各々に供給するように構成されている。
〈垂直シフトレジスタ〉
垂直シフトレジスタ26は、制御部40による制御に応答して選択制御信号SELをP×Q個の固体撮像素子100の各々に供給するように構成されている。そして、垂直シフトレジスタ26は、P×Q個の固体撮像素子100のP個の固体撮像素子行を順次選択する。この例では、垂直シフトレジスタ26は、P×Q個の固体撮像素子100のP個の固体撮像素子行のうち選択された固体撮像素子行に含まれるQ個の固体撮像素子100に供給される選択制御信号SELの信号レベルをローレベルからハイレベルにする。
垂直シフトレジスタ26により選択された固体撮像素子100では、電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により垂直信号線110(その固体撮像素子100に対応する垂直信号線110)に出力される。すなわち、垂直シフトレジスタ26によってP×Q個の固体撮像素子100のP個の固体撮像素子行のいずれか1つが選択されることにより、その固体撮像素子行に含まれるQ個の固体撮像素子100の出力部500からQ本の垂直信号線110にQ個の信号がそれぞれ出力される。
この例では、2つの垂直シフトレジスタ26が設けられている。そして、2つの垂直シフトレジスタ26のうち一方の垂直シフトレジスタ26による固体撮像素子行の選択と他方の垂直シフトレジスタ26による固体撮像素子行の選択とが交互に行われる。
〈相関二重サンプリング回路〉
相関二重サンプリング回路27は、Q本の垂直信号線110にそれぞれ出力されたQ個の信号の各々に対して相関二重サンプリング処理を行うように構成されている。具体的には、相関二重サンプリング回路27は、垂直信号線110に出力された信号のうち後述する信号期間における信号レベルと後述するリセット期間における信号レベルとをサンプリングし、これらの信号レベルの差に応じた信号を出力する。このように、相関二重サンプリング処理が行われることにより、Q個の信号からオフセット成分が除去される。
この例では、2つの相関二重サンプリング回路27が設けられている。そして、2つの垂直シフトレジスタ26のうち一方の垂直シフトレジスタ26により選択された固体撮像素子行からQ本の垂直信号線110にそれぞれ出力されたQ個の信号が一方の相関二重サンプリング回路27に供給され、他方の垂直シフトレジスタ26により選択された固体撮像素子行からQ本の垂直信号線110にそれぞれ出力されたQ個の信号が他方の相関二重サンプリング回路27に供給される。
〈水平シフトレジスタ〉
水平シフトレジスタ28は、相関二重サンプリング回路27において処理されたQ個の信号を順次転送するように構成されている。この例では、2つの水平シフトレジスタ28が設けられており、2つの相関二重サンプリング回路27のうち一方の相関二重サンプリング回路27において処理されたQ個の信号が一方の水平シフトレジスタ28により順次転送され、他方の相関二重サンプリング回路27において処理されたQ個の信号が他方の水平シフトレジスタ28により順次転送される。
〈出力回路〉
出力回路29は、水平シフトレジスタ28により転送された信号を予め定められた増幅利得で増幅して出力するように構成されている。この例では、2つの出力回路29が設けられており、2つの水平シフトレジスタ28のうち一方の水平シフトレジスタ28から一方の出力回路29に信号が転送され、他方の水平シフトレジスタ28から他方の出力回路29に信号が転送される。
〔光源〕
光源30は、信号光L1を照射するように構成されている。この例では、光源30は、予め定められたパルス幅Aを有する信号光L1(パルス光)を照射する。例えば、光源30は、必要に応じて光を拡散させることにより三次元情報(距離情報)を取得したい箇所全体に光を照射するように構成されている。なお、光源30は、例えば、LEDによって構成されている。
〔制御部〕
制御部40は、固体撮像装置20の動作および光源30の動作を制御するように構成されている。例えば、制御部40は、CPUなどの演算処理部と、演算処理部を動作させるためのプログラムや情報などを記憶するメモリなどの記憶部とによって構成されている。
この例では、制御部40は、駆動制御部41と、情報出力部42とを有している。すなわち、駆動制御部41と情報出力部42は、制御部40の一部の機能を構成している。
〈駆動制御部〉
駆動制御部41は、固体撮像装置20の駆動処理部22の動作および光源30の動作を制御するように構成されている。また、この例では、駆動制御部41は、距離検出制御と撮像制御とを行うように構成されている。
距離検出制御では、駆動制御部41は、複数の距離区間にそれぞれ対応する複数の距離検出期間の各々において駆動処理部22によりフォトンカウンティング動作が行われるように、駆動処理部22の動作を制御する。また、距離検出制御では、駆動制御部41は、複数の距離検出期間の各々におけるフォトンカウンティング動作の転送動作において、光源30から信号光L1が照射された時点からその距離検出期間に対応する遅延時間TDが経過した後に受光部200が露光状態となり、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送され、電荷蓄積部300に蓄積された電荷が第2電荷転送部700により電荷蓄積キャパシタ600に転送されるように、駆動処理部22の動作および光源30の動作を制御する。
撮像制御では、駆動制御部41は、駆動処理部22により撮像動作が行われるように、駆動処理部22を制御する。
〈情報出力部〉
情報出力部42は、複数の距離検出期間の各々における画素駆動回路25のフォトンカウンティング動作において出力部500により出力された信号に基づいて対象物までの距離に関する情報(距離情報)を出力するように構成されている。この例では、情報出力部42は、それぞれが対象物までの距離に応じた値を示すP×Q個の距離値により構成された三次元情報(距離画像)を出力する。
〔フォトンカウンティングを利用した距離測定〕
次に、図3を参照して、フォトンカウンティングを利用した距離測定の原理について説明する。この例では、TOF(Time Of Flight)方式の距離測定方法に、フォトンカウンティングが利用されている。
まず、TOF方式の距離測定方法について説明する。TOF方式の距離測定方法とは、距離測定装置(この例では固体撮像装置20)の付近に設けられた光源(この例では光源30)から対象物へ向けて光を照射した時点からその光が対象物で反射して距離測定装置に帰還する時点までの時間を測定し、その時間に基づいて距離測定装置から対象物までの距離を求める距離測定方法のことである。
図3に示すように、この固体撮像システム10では、距離測定範囲である固体撮像装置20から任意の地点までの距離R(例えば固体撮像システム10により測定することが可能な距離)がN個の距離区間に分割されている。具体的には、第1場目の距離区間は、ゼロからR/Nまでの区間に設定され、第2番目の距離区間は、R/Nから2R/Nまでの区間に設定され、第3番目の距離区間は、2R/Nから3R/Nまでの区間に設定され、第N番目の距離区間は、R(N-1)/NからRまでの区間に設定されている。ここで、N個の距離区間のうち第K番目(Kは1以上でN以下の整数)の距離区間に対象物が存在している場合、光源30から信号光L1が照射された時刻から反射光L2が固体撮像装置20に到達する時刻までの時間Tは、光速を“V”とすると、次の式のようになる。
Figure 0007033739000001
すなわち、光源30から信号光L1が照射された時刻から受光部200を遮光状態から露光状態にする時刻までの時間(遅延時間TD)を上式の時間Tに設定することにより、露光状態の受光部200に反射光L2を受光させることが可能となる。
このような原理に基づいて、この固体撮像システム10では、N個の距離区間の各々における遅延時間TDは、次の式のように設定されている。
Figure 0007033739000002
すなわち、光源30から信号光L1が照射された時刻から第K番目の距離区間に対応する遅延時間TDが経過した時刻において受光部200を遮光状態から露光状態にした場合に、その露光状態の受光部200が反射光L2を受光することができれば、対象物が第K番目の距離区間に存在しているといえる。また、露光状態の受光部200が反射光L2を受光することにより、受光部200において反射光L2に応じた電荷が生成される。そして、その受光部200により生成された電荷を第1電荷転送部400と第2電荷転送部700とを経由して電荷蓄積キャパシタ600に転送して蓄積することにより、電荷蓄積キャパシタ600に蓄積された電荷の量に基づいて第K番目の距離区間に対象物が存在しているか否かを判定することが可能となる。
〔駆動制御部の動作:距離検出制御〕
次に、図4および図5を参照して、駆動制御部41による距離検出制御について説明する。この例では、図3に示したN個の距離区間にそれぞれ対応するN個の距離検出期間の各々において距離検出制御(ステップST102~ST111)が行われる。また、距離検出制御では、駆動処理部22は、N個の距離区間にそれぞれ対応するN個の距離検出期間においてフォトンカウンティング動作を行う。また、光源30は、N個の距離検出期間の各々においてM個(Mは1以上の整数)の信号光L1を照射する。すなわち、N個の距離検出期間の各々において信号光L1がM回照射される。なお、図5は、N個の距離検出期間のうち第K番目の距離検出期間において光源30が2つの信号光L1を照射する場合(M=2の場合)を例示している。
〈ステップST101〉
まず、駆動制御部41は、N個の距離区間の中から第1番目の距離区間を距離検出制御の対象として選択する。これにより、第1番目の距離区間に対応する第1番目の距離検出期間が開始される。なお、以下では、距離検出制御の対象として選択されている距離区間を「第K番目(Kは1以上でN以下の整数)の距離区間」と記載する。
〈ステップST102〉
第K番目の距離区間に対応する距離検出期間(以下「第K番目の距離検出期間」と記載)が開始されると、駆動処理部22は、駆動制御部41による制御に応答して、受光部200の電位(この例では光電変換要素201の電位、以下「入力電位VPD」と記載)と中間電位VFDと記憶電位VCNTとがリセットされるように、P×Q個の固体撮像素子100を駆動させる。
図5の時刻t1に示すように、駆動処理部22の画素駆動回路25は、転送制御信号TRNと第1リセット制御信号RS1とスイッチング制御信号SWTと第2リセット制御信号RS2の信号レベルをローレベルからハイレベルにする。これにより、転送トランジスタ401とスイッチングトランジスタ701と第1リセットトランジスタ801と第2リセットトランジスタ901とがオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされ、第2リセット電圧VRS2より記憶電位VCNTがリセットされる。また、転送トランジスタ401がオン状態となっているので、中間電位VFDのリセットとともに、入力電位VPDがリセットされる。そして、画素駆動回路25は、入力電位VPDと中間電位VFDと記憶電位VCNTのリセットが完了する(例えば予め定められたリセット時間が経過する)と、転送制御信号TRNと第1リセット制御信号RS1とスイッチング制御信号SWTと第2リセット制御信号RS2の信号レベルをハイレベルからローレベルにする。これにより、転送トランジスタ401とスイッチングトランジスタ701と第1リセットトランジスタ801と第2リセットトランジスタ901とがオフ状態となる。
〈ステップST103〉
次に、駆動制御部41は、第K番目の距離検出期間において照射すべきM個の信号光L1のうち第1番目の信号光L1を照射処理の対象として選択する。なお、以下では、照射処理の対象として選択されている信号光L1を「第J番目(Jは1以上でM以下の整数)の信号光」と記載する。
〈ステップST104〉
次に、光源30は、駆動制御部41による制御に応答して第J番目の信号光L1を照射する。この例では、信号光L1のパルス幅は、パルス幅Aに設定されている。
図5の時刻t2に示すように、光源30は、第J番目の信号光L1(時刻t2では第1番目の信号光L1)の照射を開始した時刻からパルス幅Aに対応する照射時間が経過すると、第J番目の信号光L1の照射を終了する。
〈ステップST105〉
次に、駆動処理部22は、駆動制御部41による制御に応答して、光源30から第J番目の信号光L1が照射された時刻から第K番目の距離検出期間(すなわち第K番目の距離区間)に対応する遅延時間TDが経過すると、受光部200が予め定められた露光時間だけ露光状態となるように、P×Q個の固体撮像素子100を駆動させる。なお、この例では、第J番目の信号光L1に対応する露光時間は、第J番目の信号光L1のパルス幅(この例ではパルス幅A)に対応する時間に設定されている。また、第K番目の距離検出期間に対応する遅延時間TDは、次の式のように設定されている。
Figure 0007033739000003
図5の時刻t3に示すように、駆動処理部22の画素駆動回路25は、光源30から第J番目の信号光L1(時刻t3では第1番目の信号光L1)が照射された時刻から遅延時間TDが経過すると、露光信号EXPの信号レベルをローレベルからハイレベルにする。これにより、受光部200が露光状態となり、受光部200が受光した光に応じた電荷が生成され、その生成された電荷の量に応じて入力電位VPDが変化する。図5の例では、時刻t3において第1番目の信号光L1に対応する第1番目の反射光L2が受光部200に到達している。すなわち、時刻t1において照射された第1番目の信号光L1が対象物(第K番目の距離区間に存在する対象物)で反射して第1番目の反射光L2として受光部200に到達している。そして、画素駆動回路25は、露光信号EXPの信号レベルをローレベルからハイレベルにした時点から露光時間(パルス幅Aに対応する時間)が経過すると、露光信号EXPの信号レベルをハイレベルからローレベルにする。これにより、受光部200が遮光状態となる。
〈ステップST106〉
次に、駆動処理部22は、駆動制御部41による制御に応答して、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送された後に、電荷蓄積部300に蓄積された電荷が第2電荷転送部700により電荷蓄積キャパシタ600に転送されるように、P×Q個の固体撮像素子100を駆動させる。
図5の時刻t4に示すように、駆動処理部22の画素駆動回路25は、転送制御信号TRNの信号レベルをローレベルからハイレベルにする。これにより、転送トランジスタ401がオン状態となり、受光部200からオン状態の転送トランジスタ401を経由して電荷蓄積部300に電荷が転送され、その転送された電荷の量に応じて中間電位VFDが変化する。そして、画素駆動回路25は、受光部200から電荷蓄積部300への電荷の転送が完了する(例えば予め定められた転送時間が経過する)と、転送制御信号TRNの信号レベルをハイレベルからローレベルにする。これにより、転送トランジスタ401がオフ状態となる。
次に、図5の時刻t5に示すように、駆動処理部22の画素駆動回路25は、スイッチング制御信号SWTの信号レベルをローレベルからハイレベルにする。これにより、スイッチングトランジスタ701がオン状態となり、電荷蓄積部300からオン状態のスイッチングトランジスタ701を経由して電荷蓄積キャパシタ600に電荷が転送され、その転送された電荷の量に応じて記憶電位VCNTが変化する。なお、電荷蓄積部300から電荷蓄積キャパシタ600へ転送される電荷の量は、電荷蓄積部300と電荷蓄積キャパシタ600との静電容量の比に応じた量となっている。そして、画素駆動回路25は、電荷蓄積部300から電荷蓄積キャパシタ600への転送が完了する(例えば予め定められた転送時間が経過する)と、スイッチング制御信号SWTの信号レベルをハイレベルからローレベルにする。これにより、スイッチングトランジスタ701がオフ状態となる。
〈ステップST107〉
次に、駆動制御部41は、第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されたか否か(すなわちM回の信号光L1の照射が完了したか否か)を判定する。第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されていない場合には、ステップST108へ進み、そうでない場合には、ステップST110へ進む。
〈ステップST108〉
第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されていない場合、駆動制御部41は、第K番目の距離検出期間において照射すべきM個の信号光L1のうち第J番目の信号光L1の次の信号光(第J+1番目の信号光L1)を次の照射処理の対象として選択する。
〈ステップST109〉
次に、駆動処理部22は、駆動制御部41による制御に応答して、入力電位VPDと中間電位VFDがリセットされるように、P×Q個の固体撮像素子100を駆動させる。そして、ステップST104へ進む。
図5の時刻t6に示すように、駆動処理部22の画素駆動回路25は、転送制御信号TRNと第1リセット制御信号RS1の信号レベルをローレベルからハイレベルにする。これにより、転送トランジスタ401と第1リセットトランジスタ801とがオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされる。また、転送トランジスタ401がオン状態となっているので、中間電位VFDのリセットとともに、入力電位VPDがリセットされる。そして、画素駆動回路25は、入力電位VPDと中間電位VFDのリセットが完了する(例えば予め定められたリセット時間が経過する)と、転送制御信号TRNと第1リセット制御信号RS1の信号レベルをハイレベルからローレベルにする。これにより、転送トランジスタ401と第1リセットトランジスタ801とがオン状態となる。
次に、図5の時刻t7~t10に示すように、図5の時刻t2~t5と同様の処理(ステップST104~ST106)が行われる。なお、記憶電位VCNTは、露光状態の受光部200が受光した反射光L2の数(回数)に応じて変化する。すなわち、露光状態の受光部200が受光した反射光L2の数が多くなるに連れて、電荷蓄積キャパシタ600に転送される電荷の量が多くなり、その結果、記憶電位VCNTが低下していく。
〈ステップST110〉
一方、ステップST107において第K番目の距離検出期間において照射すべきM個の信号光L1の全部が照射処理の対象として選択されている場合(すなわちM回の信号光L1の照射が完了している場合)、駆動処理部22は、駆動制御部41による制御に応答して、中間電位VFDがリセットされた後に、電荷蓄積キャパシタ600に蓄積された電荷が第2電荷転送部700により電荷蓄積部300に転送されるように、P×Q個の固体撮像素子100を駆動させる。
図5の時刻t11に示すように、駆動処理部22の画素駆動回路25は、第1リセット制御信号RS1の信号レベルをローレベルからハイレベルにする。これにより、第1リセットトランジスタ801がオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされる。そして、画素駆動回路25は、中間電位VFDのリセットが完了する(例えば予め定められたリセット時間が経過する)と、第1リセット制御信号RS1の信号レベルをハイレベルからローレベルにする。これにより、第1リセットトランジスタ801がオフ状態となる。
次に、図5の時刻t12に示すように、駆動処理部22の画素駆動回路25は、電位制御信号EIVの信号レベルをローレベルからハイレベルにする。なお、電位制御信号EIVのハイレベルは、リセット後の中間電位VFDよりも高い電位に設定されている。これにより、記憶電位VCNTが中間電位VFDよりも高くなる。
次に、図5の時刻t13に示すように、駆動処理部22の画素駆動回路25は、スイッチング制御信号SWTの信号レベルをローレベルからハイレベルにする。これにより、スイッチングトランジスタ701がオン状態となり、電荷蓄積キャパシタ600の一端からオン状態のスイッチングトランジスタ701を経由して電荷蓄積部300へ電荷が転送され、その転送された電荷の量に応じて中間電位VFDが変化する。なお、電荷蓄積キャパシタ600から電荷蓄積部300へ転送される電荷の量は、電荷蓄積部300と電荷蓄積キャパシタ600との静電容量の比に応じた量となっている。そして、画素駆動回路25は、電荷蓄積キャパシタ600から電荷蓄積部300への電荷の転送が完了する(例えば予め定められた転送時間が経過する)と、電位制御信号EIVとスイッチング制御信号SWTの信号レベルをハイレベルからローレベルにする。
〈ステップST111〉
次に、駆動処理部22は、駆動制御部41による制御に応答して、電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、P×Q個の固体撮像素子100をP個の固体撮像素子行毎に駆動させる。これにより、P×Q個の固体撮像素子100の各々の電荷蓄積部300に蓄積された電荷に応じた信号が相関二重サンプリング回路27と水平シフトレジスタ28と出力回路29とを経由して制御部40の情報出力部42に供給される。すなわち、情報出力部42には、それぞれがカウント値を示すP×Q個の信号値からなる情報(カウント画像)が供給される。なお、カウント値は、電荷蓄積キャパシタ600に蓄積された電荷の量に応じた値であり、この例では、露光状態の受光部200が受光した反射光L2の数に応じた値となっている。また、この例では、電荷蓄積キャパシタ600に蓄積された電荷の量が多くなる(露光状態の受光部200が受光した反射光L2の数が多くなる)に連れてカウント値が大きくなる。
図5の時刻t14に示すように、駆動処理部22の垂直シフトレジスタ26は、選択制御信号SELの信号レベルをローレベルからハイレベルにする。これにより、選択トランジスタ502がオン状態となり、電荷蓄積部300に蓄積された電荷に応じた信号が増幅トランジスタ501からオン状態の選択トランジスタ502を経由して垂直信号線110に出力される。
次に、図5の時刻t15に示すように、駆動処理部22の画素駆動回路25は、第1リセット制御信号RS1の信号レベルをローレベルからハイレベルにする。これにより、第1リセットトランジスタ801がオン状態となり、第1リセット電圧VRS1により中間電位VFDがリセットされる。その結果、増幅トランジスタ501からオン状態の選択トランジスタ502を経由して垂直信号線110に出力される信号の信号レベルは、リセット後の中間電位VFDに対応する信号レベルとなる。
そして、駆動処理部22の画素駆動回路25は、中間電位VFDのリセットが完了する(例えば予め定められたリセット時間が経過する)と、第1リセット制御信号RS1の信号レベルをハイレベルからローレベルにする。これにより、第1リセットトランジスタ801がオフ状態となる。また、垂直シフトレジスタ26は、出力部500から垂直信号線110への信号の出力が完了する(例えば予め定められた出力時間が経過する)と、選択制御信号SELの信号レベルをハイレベルからローレベルにする。これにより、選択トランジスタ502がオフ状態となる。
なお、図5の例では、時刻t14から時刻t15までの期間が信号期間となり、時刻t15から選択制御信号SELの信号レベルがハイレベルからローレベルになる時刻までの期間がリセット期間となる。そして、相関二重サンプリング回路27は、出力部500から垂直信号線110に出力された信号のうち信号期間における信号レベルとリセット期間における信号レベルとをサンプリングする。相関二重サンプリング回路27により処理された信号は、水平シフトレジスタ28と出力回路29とを経由して制御部40の情報出力部42に供給される。
〈ステップST112〉
次に、駆動制御部41は、N個の距離区間の全部が距離検出制御の対象として選択されたか否か(すなわちN個の距離区間にそれぞれ対応するN個の距離検出処理が完了したか否か)を判定する。N個の距離区間の全部が距離検出制御の対象として選択されていない場合には、ステップST113へ進み、N個の距離区間の全部が距離検出制御の対象として選択されている場合には、処理を終了する。
〈ステップST113〉
次に、駆動制御部41は、N個の距離区間のうち第K番目の距離区間の次の距離区間(第K+1番目の距離区間)を次の距離検出制御の対象として選択する。次に、ステップST102へ進む。
〔情報出力部の動作:距離情報の出力〕
次に、情報出力部42による動作について説明する。N個の距離区間にそれぞれ対応するN回の距離検出処理が完了すると、情報出力部42は、N個の距離区間にそれぞれ対応するN個のカウント画像(それぞれがカウント値を示すP×Q個の信号値からなる情報)を取得する。そして、情報出力部42は、これらのN個のカウント画像に基づいて距離画像(それぞれが対象物までの距離に応じた値を示すP×Q個の距離値により構成された三次元情報)を生成し、その距離画像を出力する。
例えば、情報出力部42は、N個のカウント画像の各々に対して比較処理を行う。第K番目のカウント画像に対する比較処理では、情報出力部42は、第K番目のカウント画像を構成するP×Q個の信号値(カウント値)の各々について、その信号値が第K番目のカウント画像に対応する第K番目の距離区間に対して定められた閾値以上であるか否かを判定する。N個の距離区間の各々に対して定められた閾値は、例えば、その距離区間に対象物が存在しているときに取得される信号値(カウント値)に設定されている。
そして、情報出力部42は、N個のカウント画像の各々に対する比較処理の結果に基づいて距離画像を生成する。例えば、情報出力部42は、第K番目のカウント画像を構成するP×Q個の信号値(カウント値)のうち第X行目(Xは1以上でP以下の整数)で第Y列目(Yは1以上でQ以下の整数)の信号値が第K番目のカウント画像に対して定められた閾値以上である場合に、距離画像を構成するP×Q個の距離値のうち第X行目で第Y行目の距離値を第K番目の距離区間に対応する値に設定する。
なお、情報出力部42は、背景光に応じてN個の距離区間の各々に対して定められた閾値を調節するように構成されていてもよい。
〔駆動制御部の動作:撮像制御〕
次に、図6を参照して、駆動制御部41による撮像制御について説明する。撮像制御では、駆動処理部22は、駆動制御部41による制御に応答して撮像動作を行う。
〈ステップST201〉
まず、駆動処理部22は、駆動制御部41による制御に応答して、入力電位VPDと中間電位VFDとがリセットされるように、P×Q個の固体撮像素子100を駆動させる。
〈ステップST202〉
次に、駆動処理部22は、駆動制御部41による制御に応答して、受光部200が予め定められた露光時間だけ露光状態となるように、P×Q個の固体撮像素子100を駆動させる。これにより、受光部200が露光状態となり、受光部200が受光した光に応じた電荷が生成され、その生成された電荷の量に応じて入力電位VPDが変化する。
〈ステップST203〉
次に、駆動処理部22は、駆動制御部41による制御に応答して、受光部200により生成された電荷が第1電荷転送部400により電荷蓄積部300に転送されるように、P×Q個の固体撮像素子100を駆動させる。これにより、受光部200から第1電荷転送部400を経由して電荷蓄積部300に電荷が転送され、その転送された電荷の量に応じて中間電位VFDが変化する。
〈ステップST204〉
次に、駆動処理部22は、駆動制御部41による制御に応答して、電荷蓄積部300に蓄積された電荷に応じた信号が出力部500により出力されるように、P×Q個の固体撮像素子100をP個の固体撮像素子行毎に駆動させる。これにより、P×Q個の固体撮像素子100の各々の電荷蓄積部300に蓄積された電荷に応じた信号が相関二重サンプリング回路27と水平シフトレジスタ28と出力回路29とを経由して制御部40に供給される。すなわち、制御部40には、それぞれが輝度に応じた値を示すP×Q個の信号値からなる情報(輝度画像)が供給される。
〔実施形態による効果〕
以上のように、電荷蓄積キャパシタ600に蓄積された電荷を第2電荷転送部700により電荷蓄積部300に転送して電荷蓄積部300に蓄積された電荷に応じた信号を出力部500により出力することにより、電荷蓄積キャパシタ600に蓄積された電荷に応じた信号を出力することができる。これにより、電荷蓄積キャパシタ600に蓄積された電荷に応じた信号を出力するための構成(出力部500とは異なる構成)を別途設けなくてもよくなるので、固体撮像素子100の回路規模を低減することができる。
また、電荷蓄積キャパシタ600に蓄積された電荷に応じた信号を出力するための構成(出力部500とは異なる構成)を別途設けなくてもよいので、その分、受光部200の受光面積を拡大することができる。これにより、受光部200の感度を向上させることができるので、固体撮像システム10により測定することが可能な距離を長くすることができる。
また、第2電荷転送部700の整流要素702をダイオード接続された整流トランジスタ710で構成することにより、固体撮像素子100に含まれるトランジスタ(例えばスイッチングトランジスタ701など)を形成するためのトランジスタ形成工程において整流要素702を形成することができる。これにより、整流要素702の形成を容易にすることができる。
(固体撮像素子の変形例)
図6に示すように、固体撮像素子100において、受光部200は、複数の光電変換要素201を有していてもよい。複数の光電変換要素201は、それぞれが受光した光に応じた電荷を生成するように構成されている。そして、受光部200は、露光状態において複数の光電変換要素201を露光させるように構成されていてもよい。また、第1電荷転送部400は、複数の転送トランジスタ401を有していてもよい。複数の転送トランジスタ401は、複数の光電変換要素201と電荷蓄積部300のフローティングディフュージョン部301との間にそれぞれ接続されている。複数の転送トランジスタ401の各々のゲートには、転送制御信号TRNが印加される転送制御ノード402に接続されている。
以上のように、複数の光電変換要素201を受光部200に設けることにより、受光部200の受光面積を拡大することができる。これにより、受光部200の感度を向上させることができる。
(その他の実施形態)
以上の説明では、ステップST111において出力部500から垂直信号線110に出力される信号において信号期間の後にリセット期間がある場合を例に挙げたが、出力部500から垂直信号線110に出力される信号においてリセット期間の後に信号期間があってもよい。具体的には、駆動処理部22は、ステップST111において、中間電位VFD(電荷蓄積部300の電位)がリセットされて電荷蓄積部300に蓄積された電荷に応じた信号(リセットレベルの信号)が出力部500により垂直信号線110に出力された後に、第2電荷転送部700により電荷蓄積キャパシタ600に蓄積された電荷が電荷蓄積部300に転送されて出力部500により出力される信号の信号レベルが変化するように、固体撮像素子100を駆動させてもよい。
また、以上の説明において、N個の距離区間は、それぞれ同一の区間長さに設定されていてもよいし、それぞれ異なる区間長さに設定されていてもよい。
また、以上の実施形態を適宜組み合わせて実施してもよい。以上の実施形態は、本質的に好ましい例示であって、この発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、ここに開示する技術は、固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法に有用である。
10 固体撮像システム
20 固体撮像装置
21 画素領域
22 駆動処理部
25 画素駆動回路
26 垂直シフトレジスタ
27 相関二重サンプリング回路
28 水平シフトレジスタ
29 出力回路
30 光源
40 制御部
41 駆動制御部
42 情報出力部
100 固体撮像素子
200 受光部
201 光電変換要素
300 電荷蓄積部
301 フローティングディフュージョン部
400 第1電荷転送部
401 転送トランジスタ
500 出力部
501 増幅トランジスタ
502 選択トランジスタ
600 電荷蓄積キャパシタ
700 第2電荷転送部
701 スイッチングトランジスタ
702 整流要素
710 整流トランジスタ
800 第1リセット部
801 第1リセットトランジスタ
900 第2リセット部
901 第2リセットトランジスタ

Claims (9)

  1. 露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、
    前記電荷を蓄積する電荷蓄積部と、
    前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、
    前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、
    前記電荷を蓄積する電荷蓄積キャパシタと、
    前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備え、
    前記第2電荷転送部は、
    前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間に直列に接続されたスイッチングトランジスタおよび整流要素と、
    前記電荷蓄積キャパシタの他端に接続される電位制御ノードとを有し、
    前記整流要素は、前記電荷蓄積キャパシタの一端から前記電荷蓄積部へ向かう方向が順方向となるように構成され、
    前記電位制御ノードには、前記電荷蓄積キャパシタから前記電荷蓄積部へ前記電荷を転送する場合に該電荷蓄積キャパシタの一端の電位が該電荷蓄積部の電位よりも高くなるよう電位制御信号が印加される
    ことを特徴とする固体撮像素子。
  2. 請求項において、
    前記整流要素は、ダイオード接続された整流トランジスタによって構成されている
    ことを特徴とする固体撮像素子。
  3. 請求項1または2において、
    前記受光部は、受光した光に応じた電荷を生成する光電変換要素を有し、前記露光状態において該光電変換要素を露光させるように構成され、
    前記第1電荷転送部は、前記光電変換要素と前記電荷蓄積部との間に接続された転送トランジスタを有している
    ことを特徴とする固体撮像素子。
  4. 請求項1または2において、
    前記受光部は、それぞれが受光した光に応じた電荷を生成する複数の光電変換要素を有し、前記露光状態において該複数の光電変換要素を露光させるように構成され、
    前記第1電荷転送部は、前記複数の光電変換要素と前記電荷蓄積部との間にそれぞれ接続された複数の転送トランジスタを有している
    ことを特徴とする固体撮像素子。
  5. 体撮像素子と、
    前記固体撮像素子を駆動する駆動処理部とを備え、
    前記固体撮像素子は、
    露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、
    前記電荷を蓄積する電荷蓄積部と、
    前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、
    前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、
    前記電荷を蓄積する電荷蓄積キャパシタと、
    前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを有し、
    前記駆動処理部は、前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送される転送動作が予め定められた回数だけ行われた後に、該電荷蓄積キャパシタに蓄積された電荷が該第2電荷転送部により該電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように、前記固体撮像素子を駆動させるフォトンカウンティング動作を行う
    ことを特徴とする固体撮像装置。
  6. 請求項において、
    前記駆動処理部は、前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように、前記固体撮像素子を駆動させる撮像動作を行う
    ことを特徴とする固体撮像装置。
  7. 請求項またはに記載の固体撮像装置と、
    信号光を照射する光源と、
    前記固体撮像装置の動作および前記光源の動作を制御する制御部とを備えている
    ことを特徴とする固体撮像システム。
  8. 請求項において、
    前記制御部は、
    複数の距離区間にそれぞれ対応する複数の距離検出期間の各々において前記駆動処理部により前記フォトンカウンティング動作が行われ、該複数の距離検出期間の各々における該フォトンカウンティング動作の転送動作において、前記光源から前記信号光が照射された時点から該距離検出期間に対応する遅延時間が経過した後に前記受光部が露光状態となり、該受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送され、該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送されるように、前記駆動処理部の動作および前記光源の動作を制御する距離検出制御を行う駆動制御部と、
    前記複数の距離検出期間の各々における前記駆動処理部のフォトンカウンティング動作において前記出力部により出力された信号に基づいて対象物までの距離に関する情報を出力する情報出力部とを有している
    ことを特徴とする固体撮像システム。
  9. 露光状態と遮光状態とに切り換え可能に構成され、該露光状態において受光した光に応じた電荷を生成する受光部と、前記電荷を蓄積する電荷蓄積部と、前記受光部から前記電荷蓄積部へ前記電荷を転送する第1電荷転送部と、前記電荷蓄積部に蓄積された電荷に応じた信号を出力する出力部と、前記電荷を蓄積する電荷蓄積キャパシタと、前記電荷蓄積部と前記電荷蓄積キャパシタの一端との間において前記電荷を双方向に転送する第2電荷転送部とを備えた固体撮像素子の駆動方法であって、
    前記受光部により生成された電荷が前記第1電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷が前記第2電荷転送部により前記電荷蓄積キャパシタに転送される転送動作が予め定められた回数だけ行われるように、前記固体撮像素子を駆動させる第1工程と、
    前記第1工程の後に、前記電荷蓄積キャパシタに蓄積された電荷が前記第2電荷転送部により前記電荷蓄積部に転送されて該電荷蓄積部に蓄積された電荷に応じた信号が前記出力部により出力されるように、前記固体撮像素子を駆動させる第2工程とを備えている
    ことを特徴とする固体撮像素子の駆動方法。
JP2020508670A 2018-03-28 2018-03-28 固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法 Active JP7033739B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013007 WO2019186838A1 (ja) 2018-03-28 2018-03-28 固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法

Publications (2)

Publication Number Publication Date
JPWO2019186838A1 JPWO2019186838A1 (ja) 2020-12-17
JP7033739B2 true JP7033739B2 (ja) 2022-03-11

Family

ID=68058002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020508670A Active JP7033739B2 (ja) 2018-03-28 2018-03-28 固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法

Country Status (2)

Country Link
JP (1) JP7033739B2 (ja)
WO (1) WO2019186838A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085612A1 (ja) * 2019-11-01 2021-05-06
JPWO2022210070A1 (ja) * 2021-03-29 2022-10-06
WO2023080044A1 (ja) * 2021-11-02 2023-05-11 パナソニックIpマネジメント株式会社 撮像素子および測距装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245522A (ja) 2005-02-04 2006-09-14 Tohoku Univ 光センサ、固体撮像装置、および固体撮像装置の動作方法
JP2006261594A (ja) 2005-03-18 2006-09-28 Canon Inc 固体撮像装置及びカメラ
JP2008046047A (ja) 2006-08-18 2008-02-28 Fujifilm Corp 距離画像作成方法及び距離画像センサ、及び撮影装置
US20110037969A1 (en) 2009-08-14 2011-02-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for optical distance measurement
JP2013033896A (ja) 2011-06-30 2013-02-14 Sony Corp 撮像素子、撮像素子の駆動方法、撮像素子の製造方法、および電子機器
JP2014021100A (ja) 2012-07-24 2014-02-03 Toshiba Corp 3次元情報検出装置および3次元情報検出方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110051391A (ko) * 2009-11-10 2011-05-18 삼성전자주식회사 외광의 영향을 줄이기 위한 깊이 픽셀 장치 및 동작 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245522A (ja) 2005-02-04 2006-09-14 Tohoku Univ 光センサ、固体撮像装置、および固体撮像装置の動作方法
JP2006261594A (ja) 2005-03-18 2006-09-28 Canon Inc 固体撮像装置及びカメラ
JP2008046047A (ja) 2006-08-18 2008-02-28 Fujifilm Corp 距離画像作成方法及び距離画像センサ、及び撮影装置
US20110037969A1 (en) 2009-08-14 2011-02-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for optical distance measurement
JP2013033896A (ja) 2011-06-30 2013-02-14 Sony Corp 撮像素子、撮像素子の駆動方法、撮像素子の製造方法、および電子機器
JP2014021100A (ja) 2012-07-24 2014-02-03 Toshiba Corp 3次元情報検出装置および3次元情報検出方法

Also Published As

Publication number Publication date
WO2019186838A1 (ja) 2019-10-03
JPWO2019186838A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
US10277850B2 (en) Solid-state imaging device for a distance sensor transferring charges from one pixel while resetting another pixel in a same period
JP7033739B2 (ja) 固体撮像素子、固体撮像装置、固体撮像システム、固体撮像素子の駆動方法
JP5968350B2 (ja) 撮像装置、および、撮像システム
CN106851137B (zh) 用于驱动摄像装置的方法
EP0785673A2 (en) Photoelectric converting apparatus
KR19990045663A (ko) 방사선 검출 장치 및 검출 방법
US7956915B2 (en) Solid-state imaging apparatus
JP6376785B2 (ja) 撮像装置、および、撮像システム
US11194058B2 (en) Radiation imaging apparatus, radiation imaging system, drive method for radiation imaging apparatus, and non-transitory computer-readable storage medium
JP7474852B2 (ja) ランダムアクセスセンサ
JP6857856B2 (ja) 固体撮像装置、固体撮像システム、固体撮像装置の駆動方法
KR102392314B1 (ko) 고체 촬상 장치, 방사선 촬상 시스템, 및 고체 촬상 장치의 제어 방법
US20220006941A1 (en) Solid-state imaging device
JP6525694B2 (ja) 撮像装置、撮像システム、および、撮像装置の駆動方法
EP3445039B1 (en) Detection circuit for photo sensor with stacked substrates
JP2011166234A (ja) 固体撮像装置
JP6366325B2 (ja) 撮像システム
JP6289554B2 (ja) 撮像装置、および、撮像システム
JP6320132B2 (ja) 撮像システム
WO2020110762A1 (ja) 放射線撮像装置および放射線撮像の制御方法
JP2015149672A (ja) 光電変換装置及び光電変換システム
JP5518226B2 (ja) 固体撮像装置
JP2020092361A (ja) 放射線撮像装置および放射線撮像装置の制御方法
US8994859B2 (en) Methods and devices for improving dynamic range in image sensors
JP2020088765A (ja) 放射線撮像装置および放射線撮像装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220210

R151 Written notification of patent or utility model registration

Ref document number: 7033739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151