JP7031920B1 - Flying object container - Google Patents

Flying object container Download PDF

Info

Publication number
JP7031920B1
JP7031920B1 JP2021153604A JP2021153604A JP7031920B1 JP 7031920 B1 JP7031920 B1 JP 7031920B1 JP 2021153604 A JP2021153604 A JP 2021153604A JP 2021153604 A JP2021153604 A JP 2021153604A JP 7031920 B1 JP7031920 B1 JP 7031920B1
Authority
JP
Japan
Prior art keywords
heat
container
heat absorber
container body
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021153604A
Other languages
Japanese (ja)
Other versions
JP2022051564A (en
Inventor
圭介 岩谷
Original Assignee
株式会社岩谷技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021046076A external-priority patent/JP7118467B1/en
Application filed by 株式会社岩谷技研 filed Critical 株式会社岩谷技研
Priority to CN202210181116.4A priority Critical patent/CN115107983B/en
Priority to US17/680,378 priority patent/US11794906B2/en
Application granted granted Critical
Publication of JP7031920B1 publication Critical patent/JP7031920B1/en
Publication of JP2022051564A publication Critical patent/JP2022051564A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

Figure 0007031920000001

【課題】高高度を飛翔する飛翔体が備える気密な容器内で発生する熱を外部に排出可能とする手段を提供する。
【解決手段】容器12はガス気球のキャビンであり、搭乗員H1を収容し空気122の充填された気密な容器である容器本体121と、容器本体121の内側を覆うとともに一部が熱吸収体保持部123に接しているアルミ等の熱伝導率の高い素材で作られた熱伝導部125と、容器本体121の外に配置されアルミ等の熱伝導率の高い素材で作られた容器である熱吸収体保持部123と、熱吸収体保持部123に収容された熱吸収体124を備える。搭乗員H1が発した熱は、直接、又は空気122を介して熱伝導部125に移動し、その後、熱吸収体保持部123へと移動して、熱吸収体124が液体から気体へと変化する際に吸収される気化熱となる。
【選択図】図2

Figure 0007031920000001

PROBLEM TO BE SOLVED: To provide a means capable of discharging heat generated in an airtight container included in a flying object flying at a high altitude to the outside.
SOLUTION: A container 12 is a cabin of a gas balloon, and covers the inside of a container body 121 which is an airtight container accommodating a crew member H1 and filled with air 122, and a part of the heat absorber. The heat conductive part 125 made of a material having high thermal conductivity such as aluminum in contact with the holding part 123, and the container placed outside the container body 121 and made of a material having high thermal conductivity such as aluminum. A heat absorber holding unit 123 and a heat absorber 124 housed in the heat absorber holding unit 123 are provided. The heat generated by the crew member H1 is transferred to the heat conductive section 125 directly or via the air 122, and then transferred to the heat absorber holding section 123, so that the heat absorber 124 changes from a liquid to a gas. It becomes the heat of vaporization that is absorbed when doing so.
[Selection diagram] Fig. 2

Description

本発明は、気球、飛行船等の飛翔体のための容器に関する。 The present invention relates to a container for a flying object such as a balloon or an airship.

人(搭乗員)を収容する容器であるキャビンの設けられた気球、飛行船等の飛翔体がある。そのような飛翔体によれば、人は空中を移動できる。 There are flying objects such as balloons and airships equipped with cabins, which are containers for accommodating people (crew members). According to such a projectile, a person can move in the air.

人を収容するキャビンを備える飛翔体を開示している特許文献として、例えば特許文献1がある。特許文献1には、人を収容したドローン本体を気球で吊って飛翔させる構造を備えた有人ドローンが提案されている。 For example, Patent Document 1 discloses a flying object including a cabin for accommodating a person. Patent Document 1 proposes a manned drone having a structure in which a drone body containing a person is suspended by a balloon and flies.

特開2020-97345号公報Japanese Unexamined Patent Publication No. 2020-97345

例えば、地上から1万メートル以下の低高度を飛翔する飛翔体のキャビンにおいては、換気によってキャビン内で発生する熱を容易に外部に排出できる。従って、キャビン内の温度を望ましい温度帯内(例えば、搭乗員が快適に過ごせる温度帯内)に保つことはさほど難しくない。 For example, in the cabin of a flying object flying at a low altitude of 10,000 meters or less from the ground, the heat generated in the cabin can be easily discharged to the outside by ventilation. Therefore, it is not so difficult to keep the temperature in the cabin within the desired temperature range (for example, within the temperature range where the crew can spend comfortably).

ガス気球等の飛翔体は、地上から5万メートル以上の高高度まで飛翔可能である。そのような高高度の空間は真空に近い。従って、そのような高高度を飛翔する飛翔体のキャビンは、飛翔中に内部の空気が意図せず外部へと漏れ出ないように、内部気密に保つ構造を持つ必要があり、換気を行うことはできない。また、真空に近い高高度の空間においては、キャビンに外側から接する空気が希薄であるため、その空気の対流によりキャビンが冷却されることはほとんどない。 A flying object such as a gas balloon can fly to a high altitude of 50,000 meters or more from the ground. Such a high altitude space is close to a vacuum. Therefore, the cabin of a flying object flying at such a high altitude must have a structure that keeps the inside airtight so that the internal air does not unintentionally leak to the outside during flight, and ventilation should be performed. Can't. Further, in a high altitude space close to a vacuum, the air in contact with the cabin from the outside is thin, so that the cabin is hardly cooled by the convection of the air.

従って、高高度を飛翔する飛翔体のキャビンにおいては、キャビン内の温度を望ましい温度帯内に保つために、キャビン内で発生する熱を外部に排出する仕組みが必要である。 Therefore, in the cabin of a flying object flying at a high altitude, a mechanism for discharging the heat generated in the cabin to the outside is required in order to keep the temperature inside the cabin within a desirable temperature range.

また、高高度を飛翔する飛翔体が、撮影装置等の装置を収容した気密な容器を備える場合がある。そのような容器においても、上述したキャビンと同様に、容器内の温度を望ましい温度帯内(例えば、装置が熱暴走しない温度帯内)に保つために、容器内で発生する熱を外部に排出する仕組みが必要である。 Further, a flying object flying at a high altitude may include an airtight container containing a device such as a photographing device. Even in such a container, similar to the cabin described above, in order to keep the temperature inside the container within a desirable temperature range (for example, within a temperature range in which the device does not cause thermal runaway), the heat generated in the container is discharged to the outside. We need a mechanism to do this.

上記の事情に鑑み、本発明は、高高度を飛翔する飛翔体が備える気密な容器内で発生する熱を外部に排出可能とする手段を提供する。 In view of the above circumstances, the present invention provides means for enabling heat generated in an airtight container of a flying object flying at a high altitude to be discharged to the outside.

本発明は、飛翔体が備える容器であって、熱発生源を収容する容器本体と、相変化に伴い熱を吸収る熱吸収体と、前記容器本体の外に取り付けられ、前記熱吸収体を保持する熱吸収体保持部と、前記熱発生源が発する熱を、前記容器本体を介して、又は、前記容器本体を介さずに、前記熱吸収体に移動させる熱移動体とを備える容器を第1の態様として提案する。 The present invention is a container included in a flying object, the container main body accommodating a heat generation source, a heat absorber that absorbs heat with a phase change, and the heat absorbed outside the container main body. The heat absorber holding portion that holds the absorber and the heat transfer body that transfers the heat generated by the heat generation source to the heat absorber through the container body or not through the container body. The container to be provided is proposed as the first aspect.

第1の態様に係る容器において、記熱移動体は、前記容器本体内で対流する流体を含む、という構成が第2の態様として採用されてもよい。 In the container according to the first aspect, the configuration in which the heat transfer body contains a fluid convected in the container body may be adopted as the second aspect.

第1又は第2の態様に係る容器において、前記熱移動体は、前記熱発生源と、前記容器本体又は前記熱吸収体保持部とに接するように配置された熱伝導素材で作られた熱伝導部を含む、という構成が第3の態様として採用されてもよい。 In the container according to the first or second aspect, the heat transfer body is a heat made of a heat conductive material arranged so as to be in contact with the heat generation source and the container body or the heat absorber holding portion. A configuration including a conduction portion may be adopted as the third aspect.

第1乃至第3のいずれかの態様に係る容器において、前記熱吸収体保持部は、熱を吸収して気体になった熱吸収体を外部に放出するための開口部を有する、という構成が第4の態様として採用されてもよい。 In the container according to any one of the first to third aspects, the heat absorber holding portion has an opening for absorbing heat and releasing the heat absorber that has become a gas to the outside. It may be adopted as the fourth aspect.

第4の態様に係る容器において、前記開口部を通って前記容器本体の内部から外部へと移動する気体の流れを制御する弁を備える、という構成が第5の態様として採用されてもよい。 In the container according to the fourth aspect, a configuration in which a valve for controlling the flow of gas moving from the inside to the outside of the container body through the opening is provided may be adopted as the fifth aspect.

第5の態様に係る容器において、前記容器本体の内部の温度を測定する温度計と、前記温度計が測定した温度に基づき前記弁の開閉を制御する弁制御部とを備える、という構成が第6の態様として採用されてもよい。 The fifth aspect of the container is configured to include a thermometer that measures the temperature inside the container body and a valve control unit that controls opening and closing of the valve based on the temperature measured by the thermometer. It may be adopted as the aspect of 6.

本発明によれば、飛翔体が真空に近い高高度まで飛翔しても、容器本体内で発生する熱が容器本外の外にある熱吸収体により吸収されるため、容器内の温度が望ましい温度帯内に保たれる。 According to the present invention, even if the projectile flies to a high altitude close to vacuum, the heat generated inside the container body is absorbed by the heat absorber outside the container body, so the temperature inside the container is desirable. It is kept within the temperature range.

一実施形態に係る飛翔体の全体構成を示した図。The figure which showed the whole composition of the flying object which concerns on one Embodiment. 一実施形態に係る容器の構成を示した図。The figure which showed the structure of the container which concerns on one Embodiment. 一変形例に係る容器の構成を示した図。The figure which showed the structure of the container which concerns on one modification. 一変形例に係る容器の構成を示した図。The figure which showed the structure of the container which concerns on one modification. 一変形例に係る容器の構成を示した図。The figure which showed the structure of the container which concerns on one modification.

[実施形態]
図1は、本発明の一実施形態に係る飛翔体1の全体構成を示した図である。飛翔体1は、ヘリウム等の空気より軽い気体を収容する球皮11と、球皮11に吊られて飛翔する容器12と、球皮11に一方の端部が連結され容器12に他方の端部が連結されて球皮11が容器12を吊るために設けられている複数の索体である吊索13を備える。
[Embodiment]
FIG. 1 is a diagram showing an overall configuration of a flying object 1 according to an embodiment of the present invention. The flying object 1 includes a sphere 11 that contains a gas lighter than air such as helium, a container 12 that is suspended from the sphere 11 and flies, and one end is connected to the sphere 11 and the other end is connected to the container 12. A hanging rope 13 which is a plurality of cords to which the portions are connected and the bulb 11 is provided for suspending the container 12 is provided.

図2は、容器12の構成を示した図である。容器12は、内部に搭乗員H1等の収容物を収容する中空の箱体である容器本体121と、容器本体121の内部に収容されている空気122と、容器本体121の外に取り付けられた容器本体121よりも小さい容器である熱吸収体保持部123と、熱吸収体保持部123に収容されることで熱吸収体保持部123に保持される熱吸収体124と、容器本体121の内側を覆うように配置された熱伝導部125を備える。 FIG. 2 is a diagram showing the configuration of the container 12. The container 12 is attached to the outside of the container body 121, which is a hollow box body for accommodating the crew H1 and the like, the air 122 contained inside the container body 121, and the container body 121. The heat absorber holding portion 123, which is a container smaller than the container main body 121, the heat absorber 124, which is housed in the heat absorber holding portion 123 and is held by the heat absorber holding portion 123, and the inside of the container main body 121. A heat conductive portion 125 arranged so as to cover the above is provided.

飛翔体1は、例えば地上から数万メートルといった高高度の空間にまで飛翔可能である。従って、容器本体121は、飛翔体1が飛翔中、内部の気圧を保ち、また、内部に収容されている空気122が外部へと意図せず漏れ出ないように、気密な構造となっている。なお、容器本体121は、飛翔体1の飛翔前に搭乗員H1が出入りするためのハッチ等を備えるが、図2においてはそれらの図示が省略されている。 The projectile 1 can fly to a high altitude space such as tens of thousands of meters from the ground. Therefore, the container body 121 has an airtight structure so that the air pressure inside is maintained while the projectile 1 is flying and the air 122 contained therein does not unintentionally leak to the outside. .. The container body 121 is provided with a hatch or the like for the crew member H1 to enter and exit before the flight body 1 flies, but the illustration thereof is omitted in FIG.

容器本体121は、例えば、繊維強化プラスチックで作られている。なお、容器本体121の素材は必要な強度が確保できれば軽量であることが望ましいが、その素材は繊維強化プラスチックに限られず、例えば、アルミ等の軽金属や、繊維強化プラスチックではないプラスチック、それらの組み合わせ等であってもよい。 The container body 121 is made of, for example, fiber reinforced plastic. The material of the container body 121 is preferably lightweight as long as the required strength can be secured, but the material is not limited to fiber reinforced plastics, for example, light metals such as aluminum, plastics that are not fiber reinforced plastics, and combinations thereof. And so on.

空気122は、搭乗員H1が呼吸をすることができるように、十分な酸素を含んだ気体である。また、容器本体121内に適正量の空気122が充填されることにより、容器本体121内の気圧は概ね大気圧に保たれている。 The air 122 is a gas containing sufficient oxygen so that the crew member H1 can breathe. Further, by filling the container body 121 with an appropriate amount of air 122, the pressure inside the container body 121 is kept at an atmospheric pressure.

熱吸収体保持部123は熱吸収体124を収容する容器であり、上面に1以上の開口部Oが設けられている。この開口部Oは、熱吸収体保持部123内で気体となった熱吸収体124を外部へ放出するための排気口である。熱吸収体保持部123は、軽量かつ熱伝導率の高い素材(例えば、アルミ等の軽金属)でできている。 The heat absorber holding portion 123 is a container for accommodating the heat absorber 124, and is provided with one or more openings O on the upper surface thereof. The opening O is an exhaust port for discharging the heat absorber 124, which has become a gas in the heat absorber holding portion 123, to the outside. The heat absorber holding portion 123 is made of a lightweight material having high thermal conductivity (for example, a light metal such as aluminum).

熱吸収体124は、熱を吸収して気体になる液体である。熱吸収体124は、飛翔体1が飛翔中に長時間滞在する高度における気圧下で、沸点が、例えば摂氏25度程度の液体であることが望ましい。その場合、容器本体121内の温度が摂氏25度より高くなると、熱吸収体124が沸点に達し液体になり、その際に気化熱として熱吸収体124が熱を吸収するため、容器本体121内の温度が摂氏25度より少し高い温度に保たれる。 The heat absorber 124 is a liquid that absorbs heat and becomes a gas. It is desirable that the heat absorber 124 is a liquid having a boiling point of, for example, about 25 degrees Celsius under atmospheric pressure at an altitude at which the projectile 1 stays for a long time during flight. In that case, when the temperature inside the container body 121 becomes higher than 25 degrees Celsius, the heat absorber 124 reaches the boiling point and becomes a liquid, and at that time, the heat absorber 124 absorbs heat as heat of vaporization, so that the inside of the container body 121 The temperature is kept slightly higher than 25 degrees Celsius.

熱伝導部125は、容器本体121内で搭乗員H1等が発する熱を熱吸収体保持部123に伝導するための部材である。熱伝導部125は、軽量かつ熱伝導率の高い素材(例えば、アルミ等の軽金属)でできている。熱伝導部125は、容器本体121の内側を覆うと共に、その一部が、容器本体121の内外を貫通するように設けられた孔を通って熱吸収体保持部123に接している。 The heat conductive portion 125 is a member for conducting the heat generated by the crew member H1 or the like in the container main body 121 to the heat absorber holding portion 123. The heat conductive portion 125 is made of a lightweight and highly heat conductive material (for example, a light metal such as aluminum). The heat conductive portion 125 covers the inside of the container main body 121, and a part thereof is in contact with the heat absorber holding portion 123 through a hole provided so as to penetrate the inside and outside of the container main body 121.

容器本体121内で、熱発生源である搭乗員H1や図2において図示が省略されている装置等が発した熱の一部は、熱伝導部125のうち、それらの熱発生源に接している部分において熱伝導部125に移動し、熱伝導部125を通じて熱吸収体保持部123に移動し、熱吸収体保持部123から熱吸収体124に移動して、気化熱として熱吸収体124に吸収される。 In the container body 121, a part of the heat generated by the crew member H1 which is a heat generation source or the device (not shown in FIG. 2) is in contact with the heat generation source in the heat conduction portion 125. It moves to the heat conductor 125, moves to the heat absorber holding unit 123 through the heat conductor 125, moves from the heat absorber holding unit 123 to the heat absorber 124, and moves to the heat absorber 124 as heat of vaporization. Be absorbed.

また、容器本体121内で熱発生源が発した熱の一部は、それらの熱発生源に接している空気122に移動し、その空気122が、例えば対流等により熱伝導部125に接する位置へと移動すると空気122から熱伝導部125に移動し、熱伝導部125を通じて熱吸収体保持部123に移動し、熱吸収体保持部123から熱吸収体124に移動して、気化熱として熱吸収体124に吸収される。 Further, a part of the heat generated by the heat generation sources in the container body 121 moves to the air 122 in contact with those heat generation sources, and the position where the air 122 comes into contact with the heat conduction portion 125 due to, for example, convection or the like. When it moves to, it moves from the air 122 to the heat conductive part 125, moves to the heat absorber holding part 123 through the heat conductive part 125, moves from the heat absorber holding part 123 to the heat absorber 124, and heats as vaporization heat. It is absorbed by the absorber 124.

上記のように、空気122及び熱伝導部125は、容器本体121内で熱発生源が発する熱を熱吸収体124に移動させる熱移動体の一例である。 As described above, the air 122 and the heat conductive portion 125 are examples of heat transfer bodies that transfer heat generated by a heat generation source in the container body 121 to the heat absorber 124.

上記の構成の容器12によれば、飛翔体1が真空に近い空間内を飛翔する場合であっても、容器本体121の内部の温度が望ましい温度帯内に保たれる。 According to the container 12 having the above configuration, even when the projectile 1 flies in a space close to a vacuum, the temperature inside the container body 121 is maintained within a desirable temperature range.

[変形例]
上述した実施形態に係る飛翔体1は、本発明の技術的思想の範囲内において様々に変形されてよい。以下にそれらの変形の例を示す。なお、以下の変形例の2以上が適宜、組み合わされてもよい。
[Modification example]
The flying object 1 according to the above-described embodiment may be variously modified within the scope of the technical idea of the present invention. An example of these variations is shown below. In addition, two or more of the following modified examples may be combined as appropriate.

(1)上述した実施形態に係る飛翔体1においては、熱吸収体保持部123に設けられた開口部O(排気口)は常に開放されている。これに代えて、容器12が、開口部Oを塞ぐように設けられた弁を備えてもよい。この弁は、開口部Oを通って容器本体121の内部から外部へと移動する気体の流れを制御する。 (1) In the flying object 1 according to the above-described embodiment, the opening O (exhaust port) provided in the heat absorber holding portion 123 is always open. Alternatively, the container 12 may be provided with a valve provided to close the opening O. This valve controls the flow of gas moving from the inside to the outside of the container body 121 through the opening O.

図3は、この変形例に係る容器12の構成を示した図である。この変形例において、容器12は、上述した実施形態に係る容器12が備える構成部に加え、開口部Oを塞ぐように配置された弁126と、弁126の開閉を制御する弁制御部127と、容器本体121の内部の温度を測定する温度計128を備える。温度計128は測定した温度を示す温度データを弁制御部127に引き渡す。弁制御部127は、弁126が閉鎖されているときに温度計128から引き渡された温度データが示す温度が所定の上限の閾値を超えると、弁126を開放する。また、弁制御部127は、弁126が開放されているときに温度計128から引き渡された温度データが示す温度が所定の下限の閾値を下回ると、弁126を閉鎖する。 FIG. 3 is a diagram showing the configuration of the container 12 according to this modified example. In this modification, the container 12 includes a valve 126 arranged so as to close the opening O and a valve control unit 127 for controlling the opening and closing of the valve 126, in addition to the components included in the container 12 according to the above-described embodiment. , A thermometer 128 for measuring the temperature inside the container body 121 is provided. The thermometer 128 passes the temperature data indicating the measured temperature to the valve control unit 127. The valve control unit 127 opens the valve 126 when the temperature indicated by the temperature data delivered from the thermometer 128 when the valve 126 is closed exceeds a predetermined upper limit threshold value. Further, the valve control unit 127 closes the valve 126 when the temperature indicated by the temperature data delivered from the thermometer 128 when the valve 126 is open falls below a predetermined lower limit threshold value.

この変形例に係る容器12によれば、飛翔体1が飛翔している空間の気圧における熱吸収体124の沸点が必ずしも望ましい温度帯内でなくても、容器本体121の内部の温度が望ましい温度帯内に維持される。 According to the container 12 according to this modification, the temperature inside the container body 121 is desirable even if the boiling point of the heat absorber 124 at the atmospheric pressure in the space where the flying object 1 is flying is not necessarily within the desirable temperature range. Maintained in the belt.

この変形例において、容器12が弁制御部127及び温度計128を備えず、熱吸収体保持部123の内外圧力差が所定の下限の閾値を超えると開き、熱吸収体保持部123の内外圧力差が所定の上限の閾値を下回ると閉じる弁が、弁126として採用されてもよい。 In this modification, the container 12 does not have the valve control unit 127 and the thermometer 128, and opens when the pressure difference between the inside and outside of the heat absorber holding unit 123 exceeds a predetermined lower limit threshold value, and the pressure inside and outside the heat absorber holding unit 123 opens. A valve that closes when the difference falls below a predetermined upper threshold may be employed as the valve 126.

(2)上述した実施形態において、容器本体121は人を収容するキャビンであるが、容器本体121の収容物は人でなくてもよい。図4は、容器本体121が撮影装置H2を収容する場合を例示した図である。撮影装置H2は、画像の撮影中に容器本体121の内部で熱を発する熱発生源である。 (2) In the above-described embodiment, the container body 121 is a cabin that accommodates a person, but the container body 121 does not have to be a person. FIG. 4 is a diagram illustrating a case where the container main body 121 accommodates the photographing apparatus H2. The photographing apparatus H2 is a heat generation source that generates heat inside the container body 121 during the photographing of an image.

この変形例において、容器本体121の壁面のうち、撮影装置H2の撮影領域(画角)内の部分には開口部が設けられており、その開口部を塞ぐように光透過板1211が設置されている。撮影装置H2が光透過板1211を透過して外部から入ってくる光を感知し画像の撮影を行う。 In this modification, an opening is provided in the portion of the wall surface of the container main body 121 in the photographing region (angle of view) of the photographing apparatus H2, and the light transmitting plate 1211 is installed so as to close the opening. ing. The photographing device H2 transmits the light transmitting plate 1211 and senses the light coming in from the outside to take an image.

図4の例では、容器本体121(光透過板1211以外の部分)は、例えばアルミ等の熱伝導率の高い素材でできており、容器本体121が、上述した実施形態に係る容器12が備える熱伝導部125の役割を兼ねている。そのため、この例では、容器12は熱伝導部125に代えて、撮影装置H2と容器本体121の各々に接し、撮影装置H2の台の役割を兼ねる高い熱伝導率の素材(例えば、アルミ)で作られたヒートシンク129を備える。 In the example of FIG. 4, the container body 121 (the portion other than the light transmitting plate 1211) is made of a material having high thermal conductivity such as aluminum, and the container body 121 is provided with the container 12 according to the above-described embodiment. It also serves as the heat conductive portion 125. Therefore, in this example, instead of the heat conductive portion 125, the container 12 is made of a material having a high thermal conductivity (for example, aluminum) that is in contact with each of the photographing device H2 and the container body 121 and also serves as a stand for the photographing device H2. It is equipped with a heat sink 129 made.

この例において、撮影装置H2が発した熱の一部は、ヒートシンク129、容器本体121、熱吸収体保持部123を介して熱吸収体124に移動して、気化熱として熱吸収体124に吸収される。 In this example, a part of the heat generated by the photographing apparatus H2 is transferred to the heat absorber 124 via the heat sink 129, the container body 121, and the heat absorber holding portion 123, and is absorbed by the heat absorber 124 as heat of vaporization. Will be done.

また、撮影装置H2が発した熱の一部は、撮影装置H2に接している空気122に移動し、その空気122が、例えば対流等により容器本体121に接する位置へと移動すると空気122から容器本体121に移動し、その後、容器本体121、熱吸収体保持部123を介して熱吸収体124に移動して、気化熱として熱吸収体124に吸収される。 Further, a part of the heat generated by the photographing device H2 moves to the air 122 in contact with the photographing device H2, and when the air 122 moves to a position in contact with the container body 121 due to, for example, convection, the air 122 is transferred to the container. It moves to the main body 121, then moves to the heat absorber 124 via the container main body 121 and the heat absorber holding portion 123, and is absorbed by the heat absorber 124 as heat of vaporization.

なお、撮影装置H2に代えて、もしくは加えて、撮影装置以外の種類の装置が容器本体121に収容されてもよい。 In addition, instead of or in addition to the photographing apparatus H2, an apparatus of a type other than the photographing apparatus may be accommodated in the container body 121.

図5は、この変形例の他の例に係る容器12を示した図である。図5の例では、容器本体121(光透過板1211以外の部分)と熱吸収体保持部123は、例えば繊維強化プラスチック等の熱伝導率の低い素材でできている。 FIG. 5 is a diagram showing a container 12 according to another example of this modified example. In the example of FIG. 5, the container body 121 (the portion other than the light transmitting plate 1211) and the heat absorber holding portion 123 are made of a material having low thermal conductivity such as fiber reinforced plastic.

また、この例の容器12は、一部が撮影装置H2に接し、一部が、容器本体121に内外に貫通するように開けられた孔を通って熱吸収体124に接するように配置された熱伝導性の高い銅等の素材(熱伝導素材)で作られたヒートシンク129を備える。ヒートシンク129は、撮影装置H2(熱発生源)が発する熱を、容器本体121を介さずに熱吸収体124に移動させる熱移動体の一例である。 Further, the container 12 of this example is arranged so that a part of the container 12 is in contact with the photographing apparatus H2 and a part of the container 12 is in contact with the heat absorber 124 through a hole formed in the container body 121 so as to penetrate inside and outside. It is provided with a heat sink 129 made of a material (heat conductive material) such as copper having high heat conductivity. The heat sink 129 is an example of a heat transfer body that transfers heat generated by the photographing apparatus H2 (heat generation source) to the heat absorber 124 without passing through the container body 121.

なお、熱吸収体124がアルミ等の熱伝導性の高い素材で作られており、ヒートシンク129の一部が熱吸収体124にではなく熱吸収体保持部123に接していてもよい。 The heat absorber 124 may be made of a material having high thermal conductivity such as aluminum, and a part of the heat sink 129 may be in contact with the heat absorber holding portion 123 instead of the heat absorber 124.

(3)上述した実施形態において、飛翔体はガス気球であるものとしたが、飛翔体の種類はガス気球に限られず、熱気球や飛行船等の他の種類の飛行体であってもよい。 (3) In the above-described embodiment, the flying object is a gas balloon, but the type of the flying object is not limited to the gas balloon, and may be another type of flying object such as a hot air balloon or an airship.

(4)上述した実施形態において、熱吸収体124は熱を吸収して気体になる液体であるものとしたが、熱吸収体124が熱を吸収して液体になる固体であってもよい。その場合、気化熱を吸収して固体から液体になった熱吸収体124が、さらに気化熱を吸収して気体になってもよい。 (4) In the above-described embodiment, the heat absorber 124 is a liquid that absorbs heat and becomes a gas, but the heat absorber 124 may be a solid that absorbs heat and becomes a liquid. In that case, the heat absorber 124 that has absorbed the heat of vaporization and turned from a solid to a liquid may further absorb the heat of vaporization and become a gas.

熱吸収体124が熱を吸収して液体になり、その後は気体にならない場合、熱吸収体保持部123は開口部Oを備えなくてもよい。 If the heat absorber 124 absorbs heat and becomes a liquid and then does not become a gas, the heat absorber holding portion 123 may not have the opening O.

1…飛翔体、11…球皮、12…容器、13…吊索、121…容器本体、122…空気、123…熱吸収体保持部、124…熱吸収体、125…熱伝導部、126…弁、127…弁制御部、128…温度計、129…ヒートシンク、1211…光透過板。 1 ... Flying object, 11 ... Ball crust, 12 ... Container, 13 ... Suspension line, 121 ... Container body, 122 ... Air, 123 ... Heat absorber holding part, 124 ... Heat absorber, 125 ... Heat conduction part, 126 ... Valve, 127 ... Valve control unit, 128 ... Thermometer, 129 ... Heat sink, 1211 ... Light transmission plate.

Claims (6)

飛翔体が備える容器であって、
熱発生源を収容する容器本体と、
相変化に伴い熱を吸収る熱吸収体と、
前記容器本体の外に取り付けられ、前記熱吸収体を保持する熱吸収体保持部と、
前記熱発生源が発する熱を、前記容器本体を介して、又は、前記容器本体を介さずに、前記熱吸収体に移動させる熱移動体と
を備える容器。
It is a container that the flying object has.
The container body that houses the heat source and
A heat absorber that absorbs heat as the phase changes ,
A heat absorber holding portion that is attached to the outside of the container body and holds the heat absorber,
A container including a heat transfer body that transfers heat generated by the heat generation source to the heat absorber through or without the container body.
記熱移動体は、前記容器本体内で対流する流体を含む
請求項1に記載の容器。
The container according to claim 1, wherein the heat transfer body includes a fluid convected in the container body.
前記熱移動体は、前記熱発生源と、前記容器本体又は前記熱吸収体保持部とに接するように配置された熱伝導素材で作られた熱伝導部を含む
請求項1又は2に記載の容器。
The first or second aspect of the present invention, wherein the heat transfer body includes a heat conductive portion made of a heat conductive material arranged so as to be in contact with the heat generating source and the container body or the heat absorber holding portion. container.
前記熱吸収体保持部は、熱を吸収して気体になった熱吸収体を外部に放出するための開口部を有する
請求項1乃至3のいずれか1項に記載の容器。
The container according to any one of claims 1 to 3, wherein the heat absorber holding portion has an opening for absorbing heat and releasing the heat absorber that has become a gas to the outside.
前記開口部を通って前記容器本体の内部から外部へと移動する気体の流れを制御する弁を備える
請求項4に記載の容器。
The container according to claim 4, further comprising a valve for controlling the flow of gas moving from the inside to the outside of the container body through the opening.
前記容器本体の内部の温度を測定する温度計と、
前記温度計が測定した温度に基づき前記弁の開閉を制御する弁制御部と
を備える請求項5に記載の容器。
A thermometer that measures the temperature inside the container body,
The container according to claim 5, further comprising a valve control unit that controls the opening and closing of the valve based on the temperature measured by the thermometer.
JP2021153604A 2020-09-18 2021-09-21 Flying object container Active JP7031920B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210181116.4A CN115107983B (en) 2021-03-19 2022-02-25 Container for flying body
US17/680,378 US11794906B2 (en) 2021-03-19 2022-02-25 Container for flight craft

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020157849 2020-09-18
JP2020157849 2020-09-18
JP2021046076 2021-03-19
JP2021046076A JP7118467B1 (en) 2020-09-18 2021-03-19 Shooting method for photographing the subject

Publications (2)

Publication Number Publication Date
JP7031920B1 true JP7031920B1 (en) 2022-03-08
JP2022051564A JP2022051564A (en) 2022-03-31

Family

ID=80854993

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021153605A Active JP7071770B2 (en) 2020-09-18 2021-09-21 Flying object container
JP2021153606A Active JP7071771B2 (en) 2020-09-18 2021-09-21 Flying object container
JP2021153604A Active JP7031920B1 (en) 2020-09-18 2021-09-21 Flying object container

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2021153605A Active JP7071770B2 (en) 2020-09-18 2021-09-21 Flying object container
JP2021153606A Active JP7071771B2 (en) 2020-09-18 2021-09-21 Flying object container

Country Status (1)

Country Link
JP (3) JP7071770B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201284B1 (en) 2022-09-28 2023-01-10 株式会社岩谷技研 Projectile container
JP7425518B1 (en) 2023-06-30 2024-01-31 株式会社岩谷技研 Adjustment device and system for adjusting the pressure inside the cabin of a flying object, and a flying object equipped with a function to adjust the pressure inside the cabin.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944491B2 (en) 2006-05-11 2012-05-30 パナソニック株式会社 Fuel cell system
JP6932408B1 (en) 2020-09-25 2021-09-08 株式会社岩谷技研 Cabin for balloons

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944491Y1 (en) * 1970-06-09 1974-12-05
WO2008101986A1 (en) 2007-02-23 2008-08-28 Airbus Operations Gmbh Fuselage of an aircraft or spacecraft and method of actively insulating such a fuselage
JP2020097345A (en) * 2018-12-19 2020-06-25 株式会社プラニカ Manned drone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944491B2 (en) 2006-05-11 2012-05-30 パナソニック株式会社 Fuel cell system
JP6932408B1 (en) 2020-09-25 2021-09-08 株式会社岩谷技研 Cabin for balloons

Also Published As

Publication number Publication date
JP7071770B2 (en) 2022-05-19
JP7071771B2 (en) 2022-05-19
JP2022051566A (en) 2022-03-31
JP2022051565A (en) 2022-03-31
JP2022051564A (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP7031920B1 (en) Flying object container
JP7007005B1 (en) Cabin for balloons
Nonweiler Aerodynamic problems of manned space vehicles
JP4870758B2 (en) Unmanned aerial vehicles used as a platform for telecommunications or other scientific purposes
US11124282B2 (en) Bionic stratospheric airships
CN115107983B (en) Container for flying body
US6182924B1 (en) Ballast for lighter than air aircraft
VV et al. The 2.5 s microgravity drop tower at national centre for combustion research and development (NCCRD), Indian Institute of Technology Madras
Pfotzer History of the use of balloons in scientific experiments
Aaron et al. Balloon trajectory control
US3022643A (en) Air conditioning system for space vehicles
CN208264545U (en) floating device
Izutsu et al. Venus balloons at low altitudes by double capsule system
JP2019006361A (en) Buoyancy adjuster and drone with gas-closed vessel
CA3214677A1 (en) Apparatus, method and system for balloon altitude control by in-situ characterization and active energy management
JP4677142B2 (en) Hot air balloon rising by solar heat
US11866196B1 (en) Payload deployment from aerostats
CN208264544U (en) Floating device suitable near space
Janhunen et al. Steam balloon concept for lifting rockets to launch altitude
Kayhan et al. Performance simulation of serviceable stratospheric balloon control using Matlab/Simulink
CS210844B1 (en) Airship with controlled weight
Kshirsagar et al. Dynamic simulation of breakaway aerostat with emergency deflation valves
Wai et al. Venus cloud bobber mission: A long term survey of the Venusian surface

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220216

R150 Certificate of patent or registration of utility model

Ref document number: 7031920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150