JP7030473B2 - A light source device and a projection type display device having this - Google Patents

A light source device and a projection type display device having this Download PDF

Info

Publication number
JP7030473B2
JP7030473B2 JP2017211218A JP2017211218A JP7030473B2 JP 7030473 B2 JP7030473 B2 JP 7030473B2 JP 2017211218 A JP2017211218 A JP 2017211218A JP 2017211218 A JP2017211218 A JP 2017211218A JP 7030473 B2 JP7030473 B2 JP 7030473B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion element
light source
source device
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017211218A
Other languages
Japanese (ja)
Other versions
JP2019082644A (en
Inventor
諒 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017211218A priority Critical patent/JP7030473B2/en
Publication of JP2019082644A publication Critical patent/JP2019082644A/en
Application granted granted Critical
Publication of JP7030473B2 publication Critical patent/JP7030473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光源装置、およびこれを有する投射型表示装置に関し、特に波長変換装置を有する光源装置、およびこれを有する投射型表示装置に関する。 The present invention relates to a light source device and a projection type display device having the same, and more particularly to a light source device having a wavelength conversion device and a projection type display device having the same.

固体光源と蛍光体を用いた投射型表示装置は、近年、高輝度化のために固体光源の出力を増加させており、固体光源からの光の波長を別の波長に変換(蛍光変換)する蛍光体への光エネルギーも増加する傾向にある。 In recent years, projection-type display devices that use a solid-state light source and a phosphor have increased the output of the solid-state light source in order to increase the brightness, and convert the wavelength of light from the solid-state light source to another wavelength (fluorescence conversion). The light energy to the phosphor also tends to increase.

蛍光体へ入射する光のうち、別の波長に変換されなかった光のエネルギーの一部は熱エネルギーに変換されるため蛍光体は発熱し、発熱した蛍光体が高温になると波長の変換効率が低下する。 Of the light incident on the phosphor, part of the energy of the light that has not been converted to another wavelength is converted to thermal energy, so that the phosphor generates heat, and when the generated phosphor becomes hot, the wavelength conversion efficiency increases. descend.

このため、投射型表示において、蛍光体を円盤形状の基材(以下、円盤と称する)の外周部分に円環状に塗布しておき(以下、蛍光体ホイールと称する)、蛍光体を円盤ごと回転させる。また、これと共に円盤に対して冷却風を吹付けることにより、蛍光体に対する冷却能力を向上させることが考えられる。 Therefore, in the projection type display, the phosphor is applied to the outer peripheral portion of the disk-shaped base material (hereinafter referred to as a disk) in an annular shape (hereinafter referred to as a phosphor wheel), and the phosphor is rotated together with the disk. Let me. At the same time, it is conceivable to improve the cooling capacity for the fluorescent substance by blowing cooling air on the disk.

しかしながら、回転に起因して円盤に歪みや傾き等を生じて、個体光源からの光が蛍光体上に形成するスポットの径が周期的に変化するため、波長変換の効率が変化してしまう。このため、最終的に投射面に投射される画像が乱れる場合がある。 However, the disk is distorted or tilted due to the rotation, and the diameter of the spot formed on the phosphor by the light from the solid light source changes periodically, so that the efficiency of wavelength conversion changes. Therefore, the image finally projected on the projection surface may be distorted.

特許文献1は、蛍光体ホイールに対して、その回転軸の方向に平行な方向において円盤を挟むように、互いに同じ形状を有する一対または二対の導風路を形成した投射型表示装置を開示している。この装置は、円盤に対して両側から均一に冷却風の圧力をかけるので、回転に伴う円盤の歪みや傾き等を小さくすることができる。 Patent Document 1 discloses a projection type display device in which a pair or two pairs of air guide paths having the same shape are formed with respect to a phosphor wheel so as to sandwich a disk in a direction parallel to the direction of its rotation axis. is doing. Since this device uniformly applies the pressure of the cooling air to the disk from both sides, it is possible to reduce the distortion and inclination of the disk due to rotation.

特開2012-181309号公報Japanese Unexamined Patent Publication No. 2012-181309

しかしながら、特許文献1の装置では、蛍光体ホイールを回転させる回転軸の近傍を冷却することができない。したがって、回転軸の近傍と、冷却される部分とで大きな温度差が生じる。このため、蛍光体ホイールの部位によって熱膨張の量が異なり、回転軸や蛍光体ホイールの歪みや傾き等を必要なだけ小さくできないという課題があった。 However, in the apparatus of Patent Document 1, it is not possible to cool the vicinity of the rotation axis that rotates the phosphor wheel. Therefore, a large temperature difference occurs between the vicinity of the rotating shaft and the portion to be cooled. For this reason, there is a problem that the amount of thermal expansion differs depending on the portion of the phosphor wheel, and the distortion and inclination of the rotation axis and the phosphor wheel cannot be reduced as much as necessary.

そこで本発明の目的は、蛍光体の歪みや傾きを従来よりも小さくできる光源装置、およびこれを有する投射型表示装置を提供することである。 Therefore, an object of the present invention is to provide a light source device capable of reducing the distortion and inclination of the phosphor to be smaller than before, and a projection type display device having the same.

上記目的を達成するために、本発明は、光源からの光の波長を変換する波長変換素子と、該波長変換素子を回転させる回転部材と、前記波長変換素子を収容する収容部を有し、前記収容部は、前記波長変換素子の回転によって発生する風を循環させる形状を有し前記波長変換素子の回転中心軸に平行な方向において、前記波長変換素子の中心部と周辺部との中間における前記収容部の内面の間隔は、前記波長変換素子の中心部における前記収容部の内面の間隔と、前記波長変換素子の周辺部における前記収容部の内面の間隔よりも大きいことを特徴とする。 In order to achieve the above object, the present invention has a wavelength conversion element for converting the wavelength of light from a light source, a rotating member for rotating the wavelength conversion element, and an accommodating portion for accommodating the wavelength conversion element. The accommodating portion has a shape that circulates the wind generated by the rotation of the wavelength conversion element, and is located between the central portion and the peripheral portion of the wavelength conversion element in a direction parallel to the rotation center axis of the wavelength conversion element. The distance between the inner surfaces of the accommodating portions is larger than the distance between the inner surfaces of the accommodating portions in the central portion of the wavelength conversion element and the inner surface spacing of the accommodating portions in the peripheral portions of the wavelength conversion element .

本発明によれば、蛍光体の歪みや傾きを低減する光源装置、およびこれを有する投射型表示装置を提供することができる。 According to the present invention, it is possible to provide a light source device that reduces distortion and tilt of a phosphor, and a projection type display device having the same.

投射型表示装置の全体構成を説明するための説明図Explanatory drawing for explaining the whole structure of a projection type display device 図1の光源装置の構成を示す図The figure which shows the structure of the light source apparatus of FIG. 図2の波長変換装置の構成を示す分解図Exploded view showing the configuration of the wavelength conversion device of FIG. 波長変換装置の外観を示す斜視図Perspective view showing the appearance of the wavelength converter 蛍光体ホイールで生じる風の風向の一例を示す図The figure which shows an example of the wind direction of the wind generated by a phosphor wheel. 波長変換装置の内部の風の風向の一例を示す断面図Cross-sectional view showing an example of the wind direction of the wind inside the wavelength converter 蛍光体ホイールの接続部材の外観を示す斜視図Perspective view showing the appearance of the connecting member of the phosphor wheel. フィン形状を有する波長変換装置の概略図Schematic diagram of a wavelength converter having a fin shape 波長変換装置の断面および風向の概念図Conceptual diagram of cross section and wind direction of wavelength converter 波長変換装置の分解斜視図An exploded perspective view of the wavelength converter

以下、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(実施例1)
(全体構成)
図1は本発明の投射型表示装置Pの全体構成を説明するための説明図である。
(Example 1)
(overall structure)
FIG. 1 is an explanatory diagram for explaining the overall configuration of the projection type display device P of the present invention.

光源装置9は、光源(個体光源)91、波長変換装置(蛍光体ユニット)100、ダイクロイックミラー97を有する。光源装置9の詳細な構成は後述する。光源装置9からの光は、照明光学系200に入射する。 The light source device 9 includes a light source (individual light source) 91, a wavelength conversion device (fluorescent unit) 100, and a dichroic mirror 97. The detailed configuration of the light source device 9 will be described later. The light from the light source device 9 is incident on the illumination optical system 200.

照明光学系200は、反射型液晶パネルやデジタルマイクロミラーデバイス等の光変調素子(不図示)を含む色分離合成光学系500に、光源装置9からの光を入射させる。光変調素子は、映像信号処理部(不図示)からの映像信号に基づいて駆動され、入射した光源装置9からの光を変調して画像光を生成する。照明光学系や光変調素子は公知であるので、その詳細な説明は省略する。 The illumination optical system 200 causes the light from the light source device 9 to be incident on the color-separated synthetic optical system 500 including a light modulation element (not shown) such as a reflective liquid crystal panel or a digital micromirror device. The light modulation element is driven based on a video signal from a video signal processing unit (not shown), and modulates the light from the incident light source device 9 to generate image light. Since the illumination optical system and the light modulation element are known, detailed description thereof will be omitted.

画像光は、投射レンズ(投射光学系)300に入射する。投射レンズ300は、画像光を外部スクリーンに向けて投射する。 The image light is incident on the projection lens (projection optical system) 300. The projection lens 300 projects the image light toward the external screen.

符号400はこれらの構成要素を包含する外装である。なお、投射レンズ300を外装400等に着脱可能に構成してもよい。 Reference numeral 400 is an exterior that includes these components. The projection lens 300 may be detachably attached to the exterior 400 or the like.

(ファン)
本実施例においては、波長変換装置100や光源91等の冷却手段としてファン(軸流ファン)を設けている。波長変換装置100の周囲のファンを符号F1、F2、F3に示す。
(fan)
In this embodiment, a fan (axial flow fan) is provided as a cooling means for the wavelength conversion device 100, the light source 91, and the like. Fans around the wavelength converter 100 are indicated by reference numerals F1, F2, and F3.

ファンF1、およびファンF2は、冷却風を波長変換装置100(のフィン形状8(図8を参照のこと))にあてる。ファンF3は、波長変換装置100からの熱を含んだ風を排出する。なお、ファンの配置は本実施例に限られない。また、ファンF1、F2、F3を全て構成する必要はなく、例えばファンF1とF3を構成してもよいし、あるいはファンF2とF3を構成してもよい。また例えば、さらにファンを追加してもかまわない。 The fan F1 and the fan F2 apply the cooling air to the wavelength conversion device 100 (fin shape 8 (see FIG. 8)). The fan F3 discharges the wind including heat from the wavelength conversion device 100. The arrangement of the fans is not limited to this embodiment. Further, it is not necessary to configure all the fans F1, F2, and F3, and for example, the fans F1 and F3 may be configured, or the fans F2 and F3 may be configured. Also, for example, additional fans may be added.

(光源装置の構成)
図2は、本発明の実施例1に係る光源装置9の構成図である。以下、図2を参照しながら、光源装置9の詳細な構成を説明する。
(Configuration of light source device)
FIG. 2 is a block diagram of the light source device 9 according to the first embodiment of the present invention. Hereinafter, a detailed configuration of the light source device 9 will be described with reference to FIG. 2.

図2の光源装置9は、光源91、コリメータレンズ92、複数のミラーからなるアレイ素子であるミラーアレイ93、平面ミラー94、凹レンズ95、レンズアレイ96、ダイクロイックミラー97を有する。また光源装置9は、集光光学系6、蛍光体11を含む波長変換装置100(図3も参照のこと)を有する。 The light source device 9 of FIG. 2 includes a light source 91, a collimator lens 92, a mirror array 93 which is an array element composed of a plurality of mirrors, a plane mirror 94, a concave lens 95, a lens array 96, and a dichroic mirror 97. Further, the light source device 9 has a wavelength conversion device 100 (see also FIG. 3) including a condensing optical system 6 and a phosphor 11.

本実施例における光源91は、青色レーザーダイオードである。光源91から発散したレーザー光束は、コリメータレンズ92によって平行光束に変換される。 The light source 91 in this embodiment is a blue laser diode. The laser luminous flux emitted from the light source 91 is converted into a parallel luminous flux by the collimator lens 92.

コリメータレンズ92からの平行光束(レーザー光束)はミラーアレイ93によって反射、集光され、平面ミラー94に向かい、そこでさらに反射され、凹レンズ95に入射する。 The parallel light beam (laser light beam) from the collimator lens 92 is reflected and focused by the mirror array 93, directed toward the planar mirror 94, and further reflected there and incident on the concave lens 95.

凹レンズ95は、入射したレーザー光束を平行光束としてレンズアレイ96に向けて射出する。レーザー光束はレンズアレイ96に入射し、複数に分割された後、ダイクロイックミラー97に向かう。ダイクロイックミラー97は、複数のレーザー光束を反射して集光光学系6に向けて射出する。 The concave lens 95 emits the incident laser light flux as a parallel light flux toward the lens array 96. The laser luminous flux is incident on the lens array 96, divided into a plurality of pieces, and then directed toward the dichroic mirror 97. The dichroic mirror 97 reflects a plurality of laser light fluxes and emits them toward the condensing optical system 6.

集光光学系6は、複数のレーザー光束を蛍光体11上に集光、重畳して蛍光体11上に強度分布が均一な光スポットを形成する。蛍光体11にこの光スポットを形成した青色のレーザー光束は、赤のスペクトルと緑のスペクトルとを主波長域とする蛍光光に変換される(波長変換される)。 The condensing optical system 6 condenses and superimposes a plurality of laser light beams on the phosphor 11 to form a light spot having a uniform intensity distribution on the phosphor 11. The blue laser luminous flux forming this light spot on the phosphor 11 is converted (wavelength-converted) into fluorescent light having the red spectrum and the green spectrum as the main wavelength regions.

蛍光体11の塗布された基材(図3における符号12参照のこと)は、高反射アルミであり、蛍光体11により波長変換された蛍光光の光束は集光レンズ6へ向かって反射される。一部のレーザー光束は波長変換されず、青色の光束のまま高反射アルミ面で反射される。 The base material coated with the phosphor 11 (see reference numeral 12 in FIG. 3) is highly reflective aluminum, and the luminous flux of the fluorescent light wavelength-converted by the phosphor 11 is reflected toward the condenser lens 6. .. Some laser light fluxes are not wavelength-converted and are reflected on the highly reflective aluminum surface as blue light fluxes.

これらの光束は集光光学系6によって集光され平行光束となって、再びダイクロイックミラー97に向かう。 These luminous fluxes are condensed by the condensing optical system 6 to become parallel luminous fluxes and head toward the dichroic mirror 97 again.

ここでダイクロイックミラー97の表面には多層膜がコーティングされている。この多層膜は、入射光の波長によって入射光を反射したり透過させたりする特性を有する。すなわち波長選択性を有する反射膜であり、レーザー光源の波長(青色光)は反射し、蛍光体により波長変換された波長(赤色光と緑色光)は透過させる特性を有する。 Here, the surface of the dichroic mirror 97 is coated with a multilayer film. This multilayer film has a property of reflecting or transmitting incident light depending on the wavelength of incident light. That is, it is a reflective film having wavelength selectivity, and has a characteristic that the wavelength of the laser light source (blue light) is reflected and the wavelength converted by the phosphor (red light and green light) is transmitted.

したがって、白色光のうち赤色、緑色の光はダイクロイックミラー97を通過できる。青色の光は、ダイクロイックミラー97に一部が反射されるが、ダイクロイックミラー97の外側を通過できる。したがって、光源光学系から取り出せる光は赤、緑、青の3原色の光であり、白色光束を構成する。こののち、白色光束は照明光学系200(図1参照のこと)に向かう。 Therefore, among the white light, the red and green light can pass through the dichroic mirror 97. The blue light is partially reflected by the dichroic mirror 97, but can pass outside the dichroic mirror 97. Therefore, the light that can be extracted from the light source optical system is light of the three primary colors of red, green, and blue, and constitutes a white luminous flux. After that, the white light flux goes toward the illumination optical system 200 (see FIG. 1).

(波長変換装置の構成)
続いて図3および図4を参照して本発明の実施例1に係る波長変換装置100の構成を説明する。図3は波長変換装置100の構成を示す分解図である。図4は波長変換装置100の外観を示す斜視図である。
(Structure of wavelength converter)
Subsequently, the configuration of the wavelength conversion device 100 according to the first embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is an exploded view showing the configuration of the wavelength conversion device 100. FIG. 4 is a perspective view showing the appearance of the wavelength conversion device 100.

図3に示すように、波長変換装置100は蛍光体ホイール(波長変換素子)1を有する。蛍光体ホイール1は、円盤形状の基材12に対して、その径方向外側の領域(外周部)に円環状に蛍光体11を塗布した構成である。 As shown in FIG. 3, the wavelength conversion device 100 has a phosphor wheel (wavelength conversion element) 1. The phosphor wheel 1 has a configuration in which the phosphor 11 is coated in an annular shape on the radial outer region (outer peripheral portion) of the disk-shaped base material 12.

また波長変換装置100は、モータ(回転部材)2、第1のカバー部材4、第2のカバー部材5、集光光学系6、鏡筒7を有する。 Further, the wavelength conversion device 100 includes a motor (rotating member) 2, a first cover member 4, a second cover member 5, a condensing optical system 6, and a lens barrel 7.

蛍光体ホイール1は、接続部材3を介してモータ2の回転中心軸である軸部材20(図4参照)に固定されることにより、モータ2の軸部材20と一体となって(同軸で)回転する。符号Cは、軸部材20の(仮想の)中心軸を示す。 The phosphor wheel 1 is fixed to the shaft member 20 (see FIG. 4), which is the rotation center axis of the motor 2, via the connecting member 3, so that the phosphor wheel 1 is integrated with the shaft member 20 of the motor 2 (coaxially). Rotate. Reference numeral C indicates a (virtual) central axis of the shaft member 20.

第2のカバー部材5には、モータ2を保持するモータ保持部51(モータ保持部51周辺のビス21を用いてモータ2をカバー部材5に固定する構成)と、鏡筒7を保持する保持部52が形成される。保持部51,52はそれぞれ所定の直径と深さとを有する円形貫通孔である。 The second cover member 5 includes a motor holding portion 51 for holding the motor 2 (a configuration in which the motor 2 is fixed to the cover member 5 by using a screw 21 around the motor holding portion 51) and a holding for holding the lens barrel 7. The portion 52 is formed. The holding portions 51 and 52 are circular through holes having a predetermined diameter and depth, respectively.

第1のカバー部材4と第2のカバー部材5は、ビス(不図示)によって締結される。カバー部材4と5とは、蛍光体ホイール1とモータ2とを収容する閉空間(密閉空間、あるいは隙間がある形態もある)を形成する。すなわち波長変換装置100は、蛍光体ホイール1とモータ2とを収容する収容部を有する。言い換えれば、波長変換装置100はケースのような形状を有している。 The first cover member 4 and the second cover member 5 are fastened with screws (not shown). The cover members 4 and 5 form a closed space (a closed space or a form having a gap) for accommodating the phosphor wheel 1 and the motor 2. That is, the wavelength conversion device 100 has an accommodating portion for accommodating the phosphor wheel 1 and the motor 2. In other words, the wavelength converter 100 has a case-like shape.

本実施例では、第1のカバー部材4と第2のカバー部材5は熱伝導率のよい部材(例えばアルミ、銅等)を用いることが好ましい。収容部の内部の閉空間内の循環風が局所的に冷却されたり、温められたりしない構造にするためであるが、異なる材料を用いる場合であってもこのような構造が可能であれば、本発明の効果を得られる。 In this embodiment, it is preferable to use a member having good thermal conductivity (for example, aluminum, copper, etc.) for the first cover member 4 and the second cover member 5. This is to make the structure so that the circulating air in the closed space inside the housing is not locally cooled or heated, but if such a structure is possible even when different materials are used, if such a structure is possible. The effect of the present invention can be obtained.

(光学保持部材)
鏡筒7は、集光光学系6(を構成するレンズ)を保持する。鏡筒7はアルミ材で形成され、別体の圧入部材71を介して保持部52と勘合する構成である。またこの際、集光光学系6と蛍光体ホイール1との距離が調整される。
(Optical holding member)
The lens barrel 7 holds the condensing optical system 6 (a lens constituting the lens barrel 7). The lens barrel 7 is made of an aluminum material, and is configured to be fitted with the holding portion 52 via a separate press-fitting member 71. At this time, the distance between the condensing optical system 6 and the phosphor wheel 1 is adjusted.

本実施例では圧入部材71として発泡体を用いるが、これ以外の材質でもかまわない。また、本実施例においては鏡筒7にアルミ材を用いたが、鏡筒7に樹脂材を用いて樹脂鏡筒を形成し、別体の圧入部材を介さずに直接的に保持部52に圧入する構成でもかまわない。また、鏡筒7の保持は圧入構成に限られず、例えばビスで固定してもよい。 In this embodiment, a foam is used as the press-fitting member 71, but other materials may be used. Further, in this embodiment, an aluminum material is used for the lens barrel 7, but a resin lens barrel is formed by using a resin material for the lens barrel 7, and the holding portion 52 is directly attached to the holding portion 52 without using a separate press-fitting member. It does not matter if it is press-fitted. Further, the holding of the lens barrel 7 is not limited to the press-fitting configuration, and may be fixed with screws, for example.

(冷却メカニズム)
次に図5および図6を参照して、実施例1に係る蛍光体ホイール1の冷却方法と、その冷却効果について説明する。図5は、蛍光体ホイール1の回転により発生する風の風向のうち、代表的なものを矢印で例示した概念図である。図6は、波長変換装置100の断面、およびその風向のうち代表的なものを矢印で例示した概念図である。
(Cooling mechanism)
Next, the cooling method of the phosphor wheel 1 according to the first embodiment and the cooling effect thereof will be described with reference to FIGS. 5 and 6. FIG. 5 is a conceptual diagram illustrating a typical wind direction of the wind generated by the rotation of the phosphor wheel 1 with an arrow. FIG. 6 is a conceptual diagram illustrating a cross section of the wavelength conversion device 100 and a typical wind direction thereof with arrows.

図5の破線の矢印14に代表して示すように、蛍光体ホイール1が回転方向13に回転することで、蛍光体ホイール1の接線方向へ風14が発生する。風14の流れ(対流)により、蛍光体11が発生する熱が、第1のカバー部材4、および第2のカバー部材5(図3および図4参照)に熱伝達される。これによって、蛍光体ホイール1は冷却される。 As shown by the arrow 14 of the broken line in FIG. 5, the wind 14 is generated in the tangential direction of the phosphor wheel 1 by the rotation of the phosphor wheel 1 in the rotation direction 13. Due to the flow (convection) of the wind 14, the heat generated by the phosphor 11 is transferred to the first cover member 4 and the second cover member 5 (see FIGS. 3 and 4). As a result, the phosphor wheel 1 is cooled.

蛍光体11が発生した熱を熱伝達された第1のカバー部材4と第2のカバー部材5は、さらに、外側から(閉空間外から)ファンF1、F2、F3(図1を参照のこと)によって冷却される。すなわち、第1のカバー部材4と第2のカバー部材5の熱は、これらに吹き付けられた冷却風の流れによって、外装400(図1参照)の外部に向けて対流熱伝達される構成である。 The first cover member 4 and the second cover member 5 to which the heat generated by the phosphor 11 is heat-transferred are further described as fans F1, F2, F3 (see FIG. 1) from the outside (from outside the closed space). ). That is, the heat of the first cover member 4 and the second cover member 5 is convected heat transferred to the outside of the exterior 400 (see FIG. 1) by the flow of the cooling air blown to them. ..

(導風形状)
図6には、波長変換装置100の断面図を示している。
(Wind guide shape)
FIG. 6 shows a cross-sectional view of the wavelength conversion device 100.

第1のカバー部材4は、図6の断面曲線41をモータ2の軸部材20の中心軸C(蛍光体ホイール1の回転の中心軸C)を中心に周回させた(回転対称な)曲面形状を有している(図3も参照のこと)。この形状を、第1の導風形状と称する。 The first cover member 4 has a curved surface shape (rotationally symmetric) in which the cross-sectional curve 41 of FIG. 6 is rotated around the central axis C of the shaft member 20 of the motor 2 (the central axis C of rotation of the phosphor wheel 1). (See also FIG. 3). This shape is referred to as a first wind guide shape.

同様に、第2のカバー部材5は図6の断面曲線53をモータ2の軸部材20の中心軸Cを中心に周回させた(回転対称な)曲面形状を有している。この形状を、第2の導風形状と称する。 Similarly, the second cover member 5 has a curved surface shape (rotationally symmetric) in which the cross-sectional curve 53 of FIG. 6 is rotated around the central axis C of the shaft member 20 of the motor 2. This shape is referred to as a second wind guide shape.

本実施例の波長変換装置100では、これら第1および第2の導風形状により、図6に矢印で示すように、蛍光体ホイール1の回転によって発生する風14(図6の破線の矢印)の導風形状を構成している。すなわち、風14を強制的に蛍光体ホイール14の回転の中心軸C(軸部材20の中心軸C)の近傍へ導く(閉空間で循環させる)導風形状を構成している。図6では、この風14の循環風を実線の矢印104で示している。 In the wavelength conversion device 100 of the present embodiment, due to these first and second wind guide shapes, as shown by the arrow in FIG. 6, the wind 14 generated by the rotation of the phosphor wheel 1 (dashed line arrow in FIG. 6). It constitutes the wind guide shape of. That is, it constitutes a wind guide shape that forcibly guides the wind 14 to the vicinity of the central axis C (central axis C of the shaft member 20) of the rotation of the phosphor wheel 14 (circulates in a closed space). In FIG. 6, the circulating wind of the wind 14 is indicated by a solid arrow 104.

同時に、前述したように第1のカバー部材4の第1の導風形状と、第2のカバー部材5の第2の導風形状とは、波長変換装置100における蛍光体ホイール1の収容部を構成していることになる。 At the same time, as described above, the first air guide shape of the first cover member 4 and the second air guide shape of the second cover member 5 form the accommodating portion of the phosphor wheel 1 in the wavelength conversion device 100. It will be configured.

導風形状によって軸部材20の近傍に導かれた風は、蛍光体ホイール1の回転により、再び蛍光体ホイール1に沿って外周側へと導かれる。これによって、波長変換装置100内部の循環風104は循環する。 The wind guided in the vicinity of the shaft member 20 by the wind guide shape is again guided to the outer peripheral side along the phosphor wheel 1 by the rotation of the phosphor wheel 1. As a result, the circulating air 104 inside the wavelength converter 100 circulates.

このように本実施例においては、蛍光体ホイール1が回転することで発生する風14を、閉空間内で(導風形状によって)強制対流させる(循環させる)ことにより、閉空間の温度分布を略均一にすることができる。すなわち、閉空間内における蛍光体ホイール1、軸部材20、および第1のカバー部材4と第2のカバー部材5の温度差が小さくなる。 As described above, in this embodiment, the temperature distribution in the closed space is controlled by forcibly convection (circulating) the wind 14 generated by the rotation of the phosphor wheel 1 in the closed space (depending on the shape of the wind guide). It can be made almost uniform. That is, the temperature difference between the phosphor wheel 1, the shaft member 20, and the first cover member 4 and the second cover member 5 in the closed space becomes small.

そして閉空間の内部は、略均一な温度分布を保ったまま、前述のように閉空間の外部の冷却手段(本実施例では図1に示したファンF1、F2およびF3)によって冷却される。 The inside of the closed space is cooled by cooling means outside the closed space (fans F1, F2 and F3 shown in FIG. 1 in this embodiment) as described above while maintaining a substantially uniform temperature distribution.

(第1の導風形状)
以下、本実施例における第1のカバー部材4の有する第1の導風形状について、図6を参照しながら補足する。
(First wind guide shape)
Hereinafter, the first air guide shape of the first cover member 4 in this embodiment will be supplemented with reference to FIG.

なお、以下では第1のカバー部材4の有する形状について述べるが、この形状を第2のカバー部材5の側に形成してもかまわない。すなわち、カバー部材のいずれか一方に第1の導風形状を形成してもよいし、両方に形成してもよい。もちろん、本実施例のように第1、第2の導風形状を組み合わせてもよいし、導風形状は本実施例で例示する形状に限られない。 Although the shape of the first cover member 4 will be described below, this shape may be formed on the side of the second cover member 5. That is, the first air guide shape may be formed on either one of the cover members, or may be formed on both. Of course, the first and second air guide shapes may be combined as in this embodiment, and the air guide shape is not limited to the shape exemplified in this embodiment.

図6に示すように、蛍光体ホイール1(基材12)の回転の中心である軸部材20の中心軸C(図4も参照のこと)を含む面(第1の面)P1を定める。第1のカバー部材4の形状は、蛍光体ホイール1の回転の中心軸Cを中心とした回転対称の形状であるから、面P1は中心軸Cを含む任意の平面でかまわない。 As shown in FIG. 6, a surface (first surface) P1 including a central axis C (see also FIG. 4) of the shaft member 20 which is the center of rotation of the phosphor wheel 1 (base material 12) is defined. Since the shape of the first cover member 4 is a rotationally symmetric shape centered on the central axis C of rotation of the phosphor wheel 1, the surface P1 may be any plane including the central axis C.

また、面P1に平行であって、蛍光体ホイール1の外周部分(円盤形状の縁(側面)部分)と接する面(第3の面)P3を定める。さらに、面P1と面P3と平行かつこれらの間に配される面(第2の面)P2を定める。なお本実施例では、面P2を面P1及び面P3の中間に定めるが、面P2と面P1との距離が、面P2と面P3との距離と等しくない位置に面P2を定めても本発明の効果を得ることができる。 Further, a surface (third surface) P3 that is parallel to the surface P1 and is in contact with the outer peripheral portion (disk-shaped edge (side surface) portion) of the phosphor wheel 1 is defined. Further, a surface (second surface) P2 parallel to the surface P1 and the surface P3 and arranged between them is defined. In this embodiment, the surface P2 is defined between the surface P1 and the surface P3, but even if the surface P2 is defined at a position where the distance between the surface P2 and the surface P1 is not equal to the distance between the surface P2 and the surface P3. The effect of the invention can be obtained.

さらに上記の面P1、P2、P3において、蛍光体ホイール1と、第1のカバー部材4のうち蛍光体ホイール1に対向する面との間隔を、それぞれ図6に示すようにW1、W2、W3とする。 Further, on the above surfaces P1, P2, and P3, the distances between the phosphor wheel 1 and the surface of the first cover member 4 facing the phosphor wheel 1 are W1, W2, and W3, respectively, as shown in FIG. And.

本実施例においては、第1のカバー部材4(のうち蛍光体ホイール1に対向する面)の形状を、間隔W2が間隔W1およびW3とよりも広くなるように構成している。すなわち、W2>W1、かつW2>W3を満たす形状である。 In this embodiment, the shape of the first cover member 4 (of which the surface facing the phosphor wheel 1) is configured such that the interval W2 is wider than the interval W1 and W3. That is, the shape satisfies W2> W1 and W2> W3.

また本実施例においては、第1のカバー部材4の形状を、間隔W3が間隔W1とよりも広くなるように構成している。すなわち、W3>W1の関係を満たす形状である。 Further, in this embodiment, the shape of the first cover member 4 is configured so that the interval W3 is wider than the interval W1. That is, the shape satisfies the relationship of W3> W1.

これらにより、本実施例では波長変換装置100内部の風(冷却風)をより効果的に循環させている。なお、本実施例ではW2>W1、かつW2>W3の関係を満たし、さらにW3>W1の関係も満たしている形状を示したが、前者の関係あるいは後者の関係のいずれか一方を満たす形状であっても、本発明の効果を得ることができる。 As a result, in this embodiment, the wind (cooling air) inside the wavelength converter 100 is circulated more effectively. In this embodiment, the shape that satisfies the relationship of W2> W1 and W2> W3 and further satisfies the relationship of W3> W1 is shown, but the shape satisfies either the former relationship or the latter relationship. Even if there is, the effect of the present invention can be obtained.

また、各面P1、P2、P3の間は、少なくとも一部が滑らかな曲面で形成されている。別の観点では、第1の導風形状の蛍光体ホイール1(基材12)の回転中心の軸を含む面における断面形状(図6に示す断面曲線(断面形状)41)は、蛍光体ホイール1の外周(中心軸Cの径方向外側)から、中心軸Cに向けて滑らかな曲線を有する。これにより、循環風104に対する抵抗をより減ずることができる。このように構成することが望ましいが、一部に滑らかではない凹凸を含む形状であっても本発明の効果を得ることができる。 Further, at least a part of each surface P1, P2, and P3 is formed by a smooth curved surface. From another viewpoint, the cross-sectional shape (cross-sectional curve (cross-sectional shape) 41 shown in FIG. 6) on the surface including the axis of the center of rotation of the phosphor wheel 1 (base material 12) having the first airflow shape is the phosphor wheel. It has a smooth curve from the outer circumference of 1 (the radial outer side of the central axis C) toward the central axis C. Thereby, the resistance to the circulating wind 104 can be further reduced. Although it is desirable to configure it in this way, the effect of the present invention can be obtained even if the shape includes irregularities that are not smooth in part.

(第2の導風形状)
次いで、本実施例における第2のカバー部材5の有する第2の導風形状について、図6を参照しながら補足する。
(Second wind guide shape)
Next, the second air guide shape of the second cover member 5 in this embodiment will be supplemented with reference to FIG.

図6に二点鎖線で示す蛍光体ホイール1の面のうち、第2のカバー部材5と対向する面S(第4の面S)を定める。面Sは、中心軸Cに直交し、蛍光体ホイール1を含む面でもよい。このとき第2の導風形状は、第2のカバー部材5と面Sとの間隔が、中心軸Cから径方向外側に向かうほど小さくなる(狭くなる)形状である。また、第1の導風形状と同様に、第2の導風形状は中心軸Cの側と蛍光体ホイール1の外周(中心軸Cの径方向外側)は滑らかな曲面を有している。 Of the surfaces of the phosphor wheel 1 shown by the alternate long and short dash line in FIG. 6, the surface S (fourth surface S) facing the second cover member 5 is defined. The surface S may be a surface orthogonal to the central axis C and including the phosphor wheel 1. At this time, the second air guide shape is such that the distance between the second cover member 5 and the surface S becomes smaller (narrower) toward the outer side in the radial direction from the central axis C. Further, similarly to the first air guide shape, the second air guide shape has a smooth curved surface on the side of the central axis C and the outer periphery of the phosphor wheel 1 (outward in the radial direction of the central axis C).

これを言い換えると、第2のカバー部材5は、中心軸Cから径方向外側に向かうほど、自身と閉空間を構成する第1のカバー部材4(他方のカバー部材)の側に、中心軸Cの延びる方向において近づくように形成された曲面を有している。 In other words, the central axis C of the second cover member 5 is closer to the first cover member 4 (the other cover member) that forms a closed space with itself as it goes outward in the radial direction from the central axis C. It has a curved surface formed so as to approach in the extending direction of.

第2のカバー部材5の蛍光体ホイール1側の面には、集光光学系6(図3参照のこと)のうち、最も蛍光体ホイール1側に配置されるレンズ61、およびこれを保持する鏡筒7が配置される。前述した第2の導風形状と、このレンズ61の面は、誤差の範囲内でほぼ同一の(高さの)面となるように調整されることが好ましい。 On the surface of the second cover member 5 on the phosphor wheel 1 side, a lens 61 arranged on the phosphor wheel 1 side of the condensing optical system 6 (see FIG. 3) and a lens 61 thereof are held. The lens barrel 7 is arranged. It is preferable that the second air guide shape described above and the surface of the lens 61 are adjusted so as to be substantially the same (height) surface within an error range.

同様に、レンズ61を保持する鏡筒7の面も、第2の導風形状の面とほぼ同一の(高さの)面となるように構成することが好ましい。また、第2の導風形状は、集光光学系6が正規の位置に調整された状態で、レンズ61の面を含んで滑らかな曲面形状であることが望ましい。言い換えれば、レンズ61や鏡筒7が、第2の導風形状に対して突出したり、窪んだりしないように構成することが好ましい。 Similarly, it is preferable that the surface of the lens barrel 7 holding the lens 61 is also configured to be a surface having substantially the same (height) as the surface of the second wind guide shape. Further, it is desirable that the second wind guide shape is a smooth curved surface shape including the surface of the lens 61 in a state where the condensing optical system 6 is adjusted to a normal position. In other words, it is preferable that the lens 61 and the lens barrel 7 are configured so as not to protrude or dent with respect to the second wind guide shape.

(効果)
以上の構成により、冷却風(風14および循環風104)が循環することで、第1のカバー部材4と第2のカバー部材5で構成される閉空間内は、空気の温度分布(温度の高低差)が均一となる平衡状態に近づく(低減される)。これに伴って、この閉空間内に収容される蛍光体ホイール1における外周と内周の温度差も低減することができる。したがって、蛍光体ホイール1の温度差に起因する歪みや傾きの発生を低減できる。
(effect)
With the above configuration, the cooling air (wind 14 and circulating air 104) circulates, so that the temperature distribution of air (temperature) in the closed space composed of the first cover member 4 and the second cover member 5 It approaches (reduces) an equilibrium state in which the height difference) becomes uniform. Along with this, the temperature difference between the outer circumference and the inner circumference of the phosphor wheel 1 housed in this closed space can also be reduced. Therefore, it is possible to reduce the occurrence of distortion and inclination due to the temperature difference of the phosphor wheel 1.

また閉空間の外部のファン等の冷却手段により、閉空間内の温度分布を均一にした状態のままで冷却が可能となる。 In addition, cooling means such as a fan outside the closed space enables cooling while keeping the temperature distribution in the closed space uniform.

さらに、本実施例では蛍光体が閉空間内に収容されるので、例えば光エネルギーにより蛍光体に塵埃等が集められ、蛍光変換の効率が低下する等のいわゆるコンタミネーションの問題も防ぎつつ、蛍光体ホイール1の歪みや傾きの発生を低減できる。 Further, in this embodiment, since the phosphor is housed in a closed space, dust and the like are collected on the phosphor by light energy, and the problem of so-called contamination such as a decrease in the efficiency of fluorescence conversion is prevented, and fluorescence is performed. It is possible to reduce the occurrence of distortion and tilt of the body wheel 1.

(変形例)
また、図7に示す接続部材3は、モータ2とともに蛍光体ホイール1を挟持しているが、蛍光体ホイール1との接触面と反対側の面に凹凸形状(受熱部)31を有している。凹凸形状31により接続部材3の表面積を広げることで、閉空間内で循環した風から蛍光体ホイール1へ熱伝導させやすい形状となっている。なお、凹凸形状が直接、蛍光体ホイール1に設けられる構成であってもかまわない。
(Modification example)
Further, the connecting member 3 shown in FIG. 7 sandwiches the phosphor wheel 1 together with the motor 2, but has an uneven shape (heat receiving portion) 31 on the surface opposite to the contact surface with the phosphor wheel 1. There is. By increasing the surface area of the connecting member 3 by the concave-convex shape 31, the shape is such that heat can be easily conducted from the wind circulating in the closed space to the phosphor wheel 1. It should be noted that the concave-convex shape may be directly provided on the phosphor wheel 1.

また、図8には、フィン形状を有する波長変換装置100の概略図を示す。このように、第1のカバー部材4と第2のカバー部材5により構成されるケース(筐体)の外面形状は、熱伝達率の高いフィン形状8を備えることが好ましい。特に、フィン形状8は図8に示すように、第1の導風形状を有する第1のカバー部材4側に設けられることが好ましい。さらに第2のカバー部材5側にもフィン形状を備える形態もありえる。 Further, FIG. 8 shows a schematic view of the wavelength conversion device 100 having a fin shape. As described above, the outer surface shape of the case (housing) composed of the first cover member 4 and the second cover member 5 preferably includes a fin shape 8 having a high heat transfer coefficient. In particular, as shown in FIG. 8, the fin shape 8 is preferably provided on the side of the first cover member 4 having the first air guide shape. Further, there may be a form in which a fin shape is provided on the second cover member 5 side as well.

この構成により、ファンF1、F2、F3等(図1を参照のこと)の作用により、閉空間内の全体的な温度を下げることができ、蛍光体ホイール1の冷却効率を向上することができる。 With this configuration, the overall temperature in the closed space can be lowered by the action of the fans F1, F2, F3, etc. (see FIG. 1), and the cooling efficiency of the phosphor wheel 1 can be improved. ..

また、冷却手段としてファンを例示したが、ファン以外の冷却手段によっても本発明は実施可能である。例えば、蛍光体ホイールや光源を密閉空間に収容し、その周囲から液体を当て、対流熱伝導させるようないわゆる水冷形式の冷却手段によっても、本発明は実施可能である。 Further, although the fan is exemplified as the cooling means, the present invention can be implemented by a cooling means other than the fan. For example, the present invention can also be carried out by a so-called water-cooled cooling means in which a phosphor wheel or a light source is housed in a closed space and a liquid is applied from the surroundings to conduct convection heat conduction.

また、本実施例では冷却手段を光源装置9の外部に配置した投射型表示装置の構成を例示した。しかし、光源装置が冷却手段を有する構成であっても本発明は実施可能である。例えば、光源装置の内部に冷却手段としてファンを設けてもかまわない。言い換えれば、内部に導風形状を有する収容部(閉空間)に対して、外側から冷却手段が作用するように構成されていれば、本発明は実施可能である。 Further, in this embodiment, the configuration of a projection type display device in which the cooling means is arranged outside the light source device 9 is illustrated. However, the present invention can be implemented even if the light source device has a cooling means. For example, a fan may be provided as a cooling means inside the light source device. In other words, the present invention can be carried out as long as the cooling means is configured to act from the outside on the accommodating portion (closed space) having a wind guide shape inside.

本実施例では、第1のカバー部材4、第2のカバー部材5とともに、モータ2、集光光学系6(レンズ61)、鏡筒7も、導風形状を備えた閉空間を構成する。導風形状(閉空間)の構成はこれらの部材による構成に限られず、その他の部材を加えて導風形状を形成してもよいし、例えば第1のカバー部材4、第2のカバー部材5のみで構成してもかまわない。 In this embodiment, the motor 2, the condensing optical system 6 (lens 61), and the lens barrel 7 together with the first cover member 4 and the second cover member 5 also form a closed space having a wind guide shape. The configuration of the air guide shape (closed space) is not limited to the configuration of these members, and other members may be added to form the air guide shape, for example, the first cover member 4 and the second cover member 5. It does not matter if it is composed of only.

また、本実施例ではカバー部材による閉空間(導風形状)の内部に蛍光体ホイール1、およびモータ2(の軸部材20の部分)を収容する構成を例示した。このように、モータ等の動力源に接続される軸部材(本実施例では軸部材20のモータの外装から露出している部分)を含む蛍光体ホイールが、閉空間から露出しないような構成が好ましい。回転軸部材が局所的に歪むと蛍光体ホイールの回転がぶれてしまうが、このように構成することで、蛍光体ホイールと回転軸部材との相対的な熱膨張の差による歪みや、傾きを抑制することができる。 Further, in this embodiment, a configuration in which the phosphor wheel 1 and the motor 2 (the portion of the shaft member 20) are housed inside the closed space (air guide shape) formed by the cover member is illustrated. As described above, the phosphor wheel including the shaft member connected to the power source of the motor or the like (the portion of the shaft member 20 exposed from the exterior of the motor in this embodiment) is not exposed from the closed space. preferable. If the rotating shaft member is locally distorted, the rotation of the phosphor wheel will be shaken. However, with this configuration, distortion and tilt due to the difference in relative thermal expansion between the phosphor wheel and the rotating shaft member can be prevented. It can be suppressed.

例えば、モータの軸部材以外の部分はカバー部材の外部に配置(露出)されても本発明の効果を得ることができる(この場合、モータの軸部材以外の部分が閉空間の境界となり、軸部材そのものは閉空間の内部にあるとも言い換えることができる)。また例えば、集光光学系や光源等が閉空間(導風形状)の内部に収容される構成であっても、本発明は実施可能である。 For example, the effect of the present invention can be obtained even if the portion other than the shaft member of the motor is arranged (exposed) outside the cover member (in this case, the portion other than the shaft member of the motor becomes the boundary of the closed space and the shaft. In other words, the member itself is inside a closed space). Further, for example, the present invention can be implemented even if the condensing optical system, the light source, or the like is housed inside a closed space (air guide shape).

(実施例2)
以下、図9、および図10を参照して、本発明の第2の実施例による、波長変換装置の構成と効果について説明する。実施例1と同様の構成には同一の符号を付し、説明は省略する。
(Example 2)
Hereinafter, the configuration and effect of the wavelength conversion device according to the second embodiment of the present invention will be described with reference to FIGS. 9 and 10. The same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted.

図9は波長変換装置100の断面図、および風向の概念図である。図10は波長変換装置100の分解斜視図である。本実施例の第1のカバー部材4と第2のカバー部材5は、対流誘導部材10を挟持している点で、実施例1の構成と異なる。 FIG. 9 is a cross-sectional view of the wavelength converter 100 and a conceptual diagram of the wind direction. FIG. 10 is an exploded perspective view of the wavelength conversion device 100. The first cover member 4 and the second cover member 5 of this embodiment differ from the configuration of the first embodiment in that the convection guiding member 10 is sandwiched between them.

(冷却メカニズム)
実施例2においても前述の実施例1と同様に、蛍光体ホイール1の接線方向への風14が発生する(図8中の破線の矢印、図5も参照のこと)。風14の流れ(対流)により、蛍光体11が発生する熱が第1のカバー部材4、および第2のカバー部材5(図3、4参照)に熱伝達される。これによって、蛍光体ホイール1は冷却される。
(Cooling mechanism)
In the second embodiment as well, the wind 14 in the tangential direction of the phosphor wheel 1 is generated as in the first embodiment (see also the broken line arrow in FIG. 8 and FIG. 5). Due to the flow (convection) of the wind 14, the heat generated by the phosphor 11 is transferred to the first cover member 4 and the second cover member 5 (see FIGS. 3 and 4). As a result, the phosphor wheel 1 is cooled.

第1のカバー部材4と第2のカバー部材5は、図9の断面図に示すような断面曲線41および断面曲線53を有しており、これらの断面曲線をモータ2の軸部材20の中心軸Cを中心に周回させた回転対称な形状を有している。 The first cover member 4 and the second cover member 5 have a cross-sectional curve 41 and a cross-sectional curve 53 as shown in the cross-sectional view of FIG. 9, and these cross-sectional curves are centered on the shaft member 20 of the motor 2. It has a rotationally symmetric shape that revolves around the axis C.

したがって、実施例1と同様に風14が強制的に軸部材20の近傍へ導かれる(図9に実線の矢印で示す循環風104、および図9に黒色矢印で示す循環風140にわかれる)。軸部材20の近傍に導かれた風は、再び蛍光体ホイール1の回転駆動により蛍光体ホイール1の外周側へと導かれて、循環する。 Therefore, similarly to the first embodiment, the wind 14 is forcibly guided to the vicinity of the shaft member 20 (divided into the circulating wind 104 indicated by the solid arrow in FIG. 9 and the circulating wind 140 indicated by the black arrow in FIG. 9). The wind guided in the vicinity of the shaft member 20 is again guided to the outer peripheral side of the phosphor wheel 1 by the rotational drive of the phosphor wheel 1 and circulates.

(誘導部材)
対流誘導部材10は、図9の断面図に示すような断面曲線101を中心軸C中心に周回させた回転対称な曲面形状(誘導形状)を有する。断面曲線101が中心軸Cを中心に回転して形成する形状と、前述の第1のカバー部材4の有する断面曲線41が同じく中心軸Cを中心に回転して形成する形状によって、循環風140の導風形状が形成される。別の観点では、対流誘導部材10と第1のカバー部材4によって、風の流路を形成している。
(Induction member)
The convection guiding member 10 has a rotationally symmetric curved surface shape (guide shape) in which a cross-sectional curve 101 as shown in the cross-sectional view of FIG. 9 is rotated around the center of the central axis C. The circulation wind 140 has a shape formed by rotating the cross-sectional curve 101 around the central axis C and a shape formed by rotating the cross-sectional curve 41 of the first cover member 4 around the central axis C. The wind guide shape is formed. From another point of view, the convection guiding member 10 and the first cover member 4 form a wind flow path.

なお、本実施例においては、誘導形状を備えた対流誘導部材10を構成しているが、その他の部材が誘導形状を備えてもかまわない。例えば、第1のカバー部材と一体的に構成してもよい。 In this embodiment, the convection guiding member 10 having the guiding shape is configured, but other members may have the guiding shape. For example, it may be integrally configured with the first cover member.

(効果)
この導風形状を通り、循環風140が軸部材20近傍へ導かれる。軸部材20の近傍へ導かれた循環風140は、軸部材20の近傍から蛍光体ホイール1と対流誘導部材10の間を通りその外周側へと導かれる(循環風240、図9のハッチングされた矢印)。
(effect)
The circulating air 140 is guided to the vicinity of the shaft member 20 through this air guide shape. The circulating wind 140 guided to the vicinity of the shaft member 20 passes between the phosphor wheel 1 and the convection guiding member 10 from the vicinity of the shaft member 20 and is guided to the outer peripheral side thereof (circulating wind 240, hatched in FIG. 9). Arrow).

すなわち対流誘導部材10によって、循環風140と循環風240の流れを分離、整流し、循環の流路を明確にできる。言い換えれば、対流誘導部材10は、回転する蛍光体ホイール1の近傍と、第1のカバー部材4の導風形状の部分を離隔している。別の観点では、蛍光体ホイール1の外周から軸部材20の近傍に導かれる流れ(循環風140の流れ)と、軸部材20から蛍光体ホイール1の外周側へと導かれる流れ(循環風240の流れ)が混合し、流れの一部が滞留してしまうことを抑制するのを防ぐ。 That is, the convection guiding member 10 can separate and rectify the flow of the circulating air 140 and the circulating air 240 to clarify the flow path of the circulation. In other words, the convection guiding member 10 separates the vicinity of the rotating phosphor wheel 1 from the wind guide-shaped portion of the first cover member 4. From another viewpoint, a flow guided from the outer periphery of the phosphor wheel 1 to the vicinity of the shaft member 20 (flow of the circulating air 140) and a flow guided from the shaft member 20 to the outer peripheral side of the phosphor wheel 1 (circulating wind 240). (Flow) is mixed, and it is prevented that a part of the flow is prevented from staying.

以上の構成によって、冷却風(風14、循環風104、140、240)の循環効率を上げることができる。すなわち、さらに蛍光体ホイール1自体の外周と内周の温度差も低減でき、温度差による歪みの発生を抑制できる。 With the above configuration, the circulation efficiency of the cooling air (wind 14, circulating air 104, 140, 240) can be improved. That is, the temperature difference between the outer circumference and the inner circumference of the phosphor wheel 1 itself can be further reduced, and the occurrence of distortion due to the temperature difference can be suppressed.

(変形例)
モータ2および蛍光体ホイール(の基材12)の軸部材20の中心軸Cを含む断面図における断面曲線41および101は、図9に示すように循環風140のように流れる風の流路の幅が略一定の形状となっている。言い換えれば、断面曲線41および101は、各曲線の(仮想の)中心が略同一の略同心円状の曲線である。
(Modification example)
The cross-sectional curves 41 and 101 in the cross-sectional view including the central axis C of the shaft member 20 of the motor 2 and the phosphor wheel (base material 12) are the flow paths of the flowing wind like the circulating wind 140 as shown in FIG. The width is almost constant. In other words, the cross-section curves 41 and 101 are substantially concentric curves having substantially the same (virtual) center.

しかしながら、導風形状の、蛍光体ホイールの回転の中心軸を含む断面における、導風形状の断面曲線の形状はこれに限られない。例えば、循環風が蛍光体ホイールの中心軸に向かうほど、導風路の幅が小さくなってもよいし、その逆でもよい。また断面曲線は、滑らかに形成されていることが望ましい。 However, the shape of the cross-sectional curve of the wind guide shape in the cross section including the central axis of rotation of the phosphor wheel of the wind guide shape is not limited to this. For example, the width of the air guide may be reduced as the circulating wind is directed toward the central axis of the phosphor wheel, and vice versa. Further, it is desirable that the cross-sectional curve is formed smoothly.

また、本実施例では誘導形状により流路を第1のカバー部材4の側に設けたが、誘導形状を第2のカバー部材5の側に設ける構成でも、両側に設ける構成でもよい。 Further, in this embodiment, the flow path is provided on the side of the first cover member 4 according to the guide shape, but the guide shape may be provided on the side of the second cover member 5 or on both sides.

また、本実施例ではモータ2および蛍光体ホイール1の回転の中心軸C周りに回転対称な導風形状を有する第1のカバー部材4、第2のカバー部材5、あるいは中心軸C周りに回転対称な誘導形状を有する対流誘導部材10を構成していた。このように構成することが好ましいが、しかしながら、これらが図6、あるいは図9に示されるような断面形状(中心軸Cを含まない断面形状もあり得る)を少なくとも一部で有していれば、回転対称でなくても、一定の効果を享受することができる。 Further, in this embodiment, the first cover member 4, the second cover member 5, or the central axis C, which has a rotationally symmetric air guide shape around the central axis C of rotation of the motor 2 and the phosphor wheel 1, rotates around the central axis C. The convection guiding member 10 having a symmetrical guiding shape was formed. It is preferable to configure in this way, however, as long as they have at least a part of the cross-sectional shape as shown in FIG. 6 or 9 (there may be a cross-sectional shape that does not include the central axis C). , Even if it is not rotationally symmetric, a certain effect can be enjoyed.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and modifications can be made within the scope of the gist thereof.

1 蛍光体ホイール
2 モータ
9 光源装置
41 断面曲線
53 断面曲線
91 光源
100 波長変換装置
1 Phosphor wheel 2 Motor 9 Light source device 41 Cross-section curve 53 Cross-section curve 91 Light source 100 Wavelength converter

Claims (13)

光源からの光の波長を変換する波長変換素子と、該波長変換素子を回転させる回転部材と、前記波長変換素子を収容する収容部を有し、
前記収容部は、前記波長変換素子の回転によって発生する風を循環させる形状を有し、
前記波長変換素子の回転中心軸に平行な方向において、前記波長変換素子の中心部と周辺部との中間における前記収容部の内面の間隔は、前記波長変換素子の中心部における前記収容部の内面の間隔と、前記波長変換素子の周辺部における前記収容部の内面の間隔よりも大きいことを特徴とする光源装置。
It has a wavelength conversion element that converts the wavelength of light from a light source, a rotating member that rotates the wavelength conversion element, and an accommodating portion that accommodates the wavelength conversion element.
The accommodating portion has a shape that circulates the wind generated by the rotation of the wavelength conversion element.
In the direction parallel to the rotation center axis of the wavelength conversion element, the distance between the inner surfaces of the accommodation portion in the middle between the central portion and the peripheral portion of the wavelength conversion element is the inner surface of the accommodation portion in the central portion of the wavelength conversion element. A light source device characterized in that the distance between the two is larger than the distance between the inner surfaces of the accommodating portion in the peripheral portion of the wavelength conversion element .
前記収容部の風を循環させる形状は、前記波長変換素子の回転中心軸に対して回転対称であることを特徴とする請求項1に記載の光源装置。 The light source device according to claim 1, wherein the shape of the accommodating portion for circulating wind is rotationally symmetric with respect to the rotation center axis of the wavelength conversion element. 前記収容部の風を循環させる形状は、前記波長変換素子の回転中心軸の側と、前記波長変換素子の周辺部の側とが滑らかに結ばれた曲面形状であることを特徴とする請求項1または2に記載の光源装置。 The shape for circulating the wind in the accommodating portion is characterized by a curved surface shape in which the side of the rotation center axis of the wavelength conversion element and the side of the peripheral portion of the wavelength conversion element are smoothly connected. The light source device according to claim 1 or 2. 前記波長変換素子の周辺部における前記収容部の内面の間隔が、前記波長変換素子の中心部における前記収容部の内面の間隔よりも大きいことを特徴とする請求項乃至のいずれか一項に記載の光源装置。 One of claims 1 to 3 , wherein the distance between the inner surfaces of the accommodating portions in the peripheral portion of the wavelength conversion element is larger than the distance between the inner surfaces of the accommodating portions in the central portion of the wavelength conversion element. The light source device described in. 前記波長変換素子には凹凸形状が設けられることを特徴とする請求項1乃至のいずれか一項に記載の光源装置。 The light source device according to any one of claims 1 to 4 , wherein the wavelength conversion element is provided with a concave-convex shape. 前記波長変換素子と前記回転部材とを接続する接続部材を有し、
前記接続部材は、凹凸形状を有することを特徴とする請求項に記載の光源装置。
It has a connecting member for connecting the wavelength conversion element and the rotating member, and has a connecting member.
The light source device according to claim 5 , wherein the connecting member has an uneven shape.
前記収容部は第1のカバー部材と第2のカバー部材を有し、
前記第1のカバー部材および前記第2のカバー部材の少なくとも一方と、前記波長変換素子との間に、
前記波長変換素子の回転によって発生する風を、該波長変換素子から離隔して該波長変換素子の回転中心軸に向けて導く誘導部材をさらに備えることを特徴とする請求項1乃至のいずれか一項に記載の光源装置。
The accommodating portion has a first cover member and a second cover member.
Between at least one of the first cover member and the second cover member and the wavelength conversion element,
The first to sixth aspects of claim 1 to 6 , further comprising an guiding member that guides the wind generated by the rotation of the wavelength conversion element toward the rotation center axis of the wavelength conversion element by separating it from the wavelength conversion element. The light source device according to any one item.
前記誘導部材は、前記回転部材の回転中心軸に対して回転対称な形状を有することを特徴とする請求項に記載の光源装置。 The light source device according to claim 7 , wherein the guiding member has a shape rotationally symmetric with respect to the rotation center axis of the rotating member. 前記回転部材あるいは波長変換素子の軸部材は、前記収容部の内部に配置されることを特徴とする請求項1乃至のいずれか一項に記載の光源装置。 The light source device according to any one of claims 1 to 8 , wherein the rotating member or the shaft member of the wavelength conversion element is arranged inside the accommodating portion. 前記収容部の外部から該収容部を冷却する冷却手段をさらに有することを特徴とする請求項1乃至のいずれか一項に記載の光源装置。 The light source device according to any one of claims 1 to 9 , further comprising a cooling means for cooling the accommodating portion from the outside of the accommodating portion. 前記波長変換素子は、円盤形状を有する基材に蛍光体が設けられていることを特徴とする請求項1乃至10のいずれか一項に記載の光源装置。 The light source device according to any one of claims 1 to 10 , wherein the wavelength conversion element is provided with a phosphor on a base material having a disk shape. 請求項1乃至11のいずれか一項に記載の光源装置と、該光源装置からの光により光変調素子を照明する照明光学系と、前記光変調素子からの光を投射する投射光学系とを有する投射型表示装置。 The light source device according to any one of claims 1 to 11 , an illumination optical system that illuminates a light modulation element with light from the light source device, and a projection optical system that projects light from the light modulation element. Projection type display device. 前記光源装置を冷却する冷却手段をさらに有することを特徴とする請求項12に記載の投射型表示装置。 The projection type display device according to claim 12 , further comprising a cooling means for cooling the light source device.
JP2017211218A 2017-10-31 2017-10-31 A light source device and a projection type display device having this Active JP7030473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017211218A JP7030473B2 (en) 2017-10-31 2017-10-31 A light source device and a projection type display device having this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017211218A JP7030473B2 (en) 2017-10-31 2017-10-31 A light source device and a projection type display device having this

Publications (2)

Publication Number Publication Date
JP2019082644A JP2019082644A (en) 2019-05-30
JP7030473B2 true JP7030473B2 (en) 2022-03-07

Family

ID=66671118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017211218A Active JP7030473B2 (en) 2017-10-31 2017-10-31 A light source device and a projection type display device having this

Country Status (1)

Country Link
JP (1) JP7030473B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835866A1 (en) * 2019-12-10 2021-06-16 Barco A laser reflection unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225407A (en) 2007-03-16 2008-09-25 Seiko Epson Corp Projector
JP2015007751A (en) 2013-05-30 2015-01-15 カシオ計算機株式会社 Optical wheel device and projection device
WO2016147226A1 (en) 2015-03-19 2016-09-22 パナソニックIpマネジメント株式会社 Housing, phosphor wheel device, and projection device
WO2017098705A1 (en) 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Fluorescent substance wheel device, light conversion device provided with same, and projection display device
JP2017116935A (en) 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 Phosphor wheel device, illumination device, and projection video display device
JP2017151213A (en) 2016-02-23 2017-08-31 セイコーエプソン株式会社 Optical device, illumination device, and projector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225407A (en) 2007-03-16 2008-09-25 Seiko Epson Corp Projector
JP2015007751A (en) 2013-05-30 2015-01-15 カシオ計算機株式会社 Optical wheel device and projection device
WO2016147226A1 (en) 2015-03-19 2016-09-22 パナソニックIpマネジメント株式会社 Housing, phosphor wheel device, and projection device
WO2017098705A1 (en) 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Fluorescent substance wheel device, light conversion device provided with same, and projection display device
JP2017116935A (en) 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 Phosphor wheel device, illumination device, and projection video display device
JP2017151213A (en) 2016-02-23 2017-08-31 セイコーエプソン株式会社 Optical device, illumination device, and projector

Also Published As

Publication number Publication date
JP2019082644A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US10520800B2 (en) Phosphor wheel, phosphor wheel device including the same, light conversion device, and projection display apparatus
US20200332993A1 (en) Cooling of a converter arrangement for light sources with high luminance
JP6979572B2 (en) Phosphor wheel and phosphor wheel device equipped with it, light conversion device, projection type display device
JP6281131B2 (en) Light conversion device and projection display device having the same
JP6402893B2 (en) Optical wheel device and projection device
JP6617274B2 (en) Phosphor wheel device, phosphor wheel device housing, and projection-type image display device
JP5661947B2 (en) Phosphor device provided with inner cooling section, and reflective illumination device provided with the phosphor device
JP6745486B2 (en) Phosphor wheel and projection type image display device
JP6846601B2 (en) Fluorescent wheel device, light conversion device equipped with this, projection type display device
JP2008052176A (en) Color wheel unit
JP6547270B2 (en) Light source device and image projector having the light source device
US9915858B2 (en) Cooling device and projection-type image display apparatus
US10809604B2 (en) Phosphor wheel and light conversion device including the same
JP6109883B2 (en) Hue ring device
JP5835607B2 (en) Diffusion wheel for light source, light source device, and projector
JP6987499B2 (en) Light source device and projection type display device
JP2013250422A (en) Image projection device
JP7145434B2 (en) Phosphor wheel, phosphor wheel device provided with same, light conversion device, projection display device
JP2018054975A (en) Rotary cooling device, wavelength conversion device, light diffusion device, light source device and projector
JP6589534B2 (en) Wavelength conversion device, illumination device, and projector
JP2018155860A (en) Cooling unit, light source unit, and projection device
JP7030473B2 (en) A light source device and a projection type display device having this
JP2018022000A (en) Heat radiation structure, and projection-type image display device
JP7113333B2 (en) WAVELENGTH CONVERSION WHEEL DEVICE, LIGHTING DEVICE, AND PROJECTION TYPE VIDEO DISPLAY DEVICE
JP6501031B2 (en) Image projection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R151 Written notification of patent or utility model registration

Ref document number: 7030473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151