JP7027282B2 - Slope spray greening method and vegetation base material - Google Patents

Slope spray greening method and vegetation base material Download PDF

Info

Publication number
JP7027282B2
JP7027282B2 JP2018161905A JP2018161905A JP7027282B2 JP 7027282 B2 JP7027282 B2 JP 7027282B2 JP 2018161905 A JP2018161905 A JP 2018161905A JP 2018161905 A JP2018161905 A JP 2018161905A JP 7027282 B2 JP7027282 B2 JP 7027282B2
Authority
JP
Japan
Prior art keywords
base material
fiber material
slope
work
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018161905A
Other languages
Japanese (ja)
Other versions
JP2020031595A (en
Inventor
寛 吉田
Original Assignee
東興ジオテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東興ジオテック株式会社 filed Critical 東興ジオテック株式会社
Priority to JP2018161905A priority Critical patent/JP7027282B2/en
Publication of JP2020031595A publication Critical patent/JP2020031595A/en
Application granted granted Critical
Publication of JP7027282B2 publication Critical patent/JP7027282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

本発明は、緑化基礎工として網張工を併用する法面(斜面含む)緑化において、造成する生育基盤の強度を高めることにより、網張工を省略可能にする法面吹付緑化工法に関する。特に、金網張工(ラス張工ともいう)を省略できる植生基材吹付工法(厚層基材吹付工法ともいう)に関する。 The present invention relates to a slope spraying greening method that makes it possible to omit the netting work by increasing the strength of the growth base to be created in the slope (including slope) greening in which the netting work is used together as the greening foundation work. In particular, the present invention relates to a vegetation base material spraying method (also referred to as a thick layer base material spraying method) that can omit the wire netting work (also referred to as lath tensioning work).

法面緑化工の設計・施工では、法面勾配が緩勾配である場合を除き、表層土の移動や滑落を防止し、吹き付ける生育基盤の安定維持を図り、導入植物や侵入を期待する植物の生育環境を整備することを目的に、緑化基礎工として網張工を施工した上で、植生工として植生基材吹付工や客土吹付工(客土種子吹付工ともいう)などの吹付工法で生育基盤の造成が行われる。 In the design and construction of slope greening work, except when the slope slope is gentle, it prevents the movement and slipping of the surface soil, keeps the growth base to be sprayed stable, and introduces plants and plants that are expected to invade. For the purpose of improving the growing environment, after constructing a netting work as a greening foundation work, it grows as a vegetation work by a spraying method such as a vegetation base material spraying work or a soil dressing spraying work (also called a soil dressing seed spraying work). The foundation is created.

吹付工法には、これらのほか長繊維又は連続長繊維などと称される長い繊維を砂質土等に混合して法面に吹き付ける吹付補強土工法がある。このような工法によっても、また厳密には基材の質によっても異なるが、植生基材を例えば10cm以上程度に厚く吹き付けすると生育基盤の自立性が高まるため、網張工が省略できる場合があることは言うまでもない。 In addition to these, there is a spray reinforced soil method in which long fibers called long fibers or continuous long fibers are mixed with sandy soil and sprayed on the slope. Although it depends on such a construction method and, strictly speaking, on the quality of the base material, if the vegetation base material is sprayed thickly to, for example, about 10 cm or more, the independence of the growth base is enhanced, so that the netting work may be omitted. Needless to say.

ここで、網張工とは地山に網状物を張る工法で、一般に金網張工と樹脂ネット張工に大別される。金網張工は剛性を有し、表層土の移動や滑落を防止、吹き付ける生育基盤の安定維持、法面地山の凍上等による剥落防止に有効なため、切土法面をはじめとする比較的勾配の急な斜面を緑化する場合に広く用いられている。一方、樹脂ネット張工は剛性がなく、凍上や落石に対する対応が困難なため、勾配の緩い盛土法面等に適用される場合が多い。 Here, netting is a method of stretching a net-like material on the ground, and is generally classified into wire netting and resin netting. Wire meshing has rigidity and is effective in preventing the movement and slipping of surface soil, maintaining the stability of the growing base to be sprayed, and preventing peeling due to frost heaving of slopes, so it is relatively relatively including cut slopes. It is widely used for greening steep slopes. On the other hand, the resin net upholstery is not rigid and it is difficult to deal with frost heaving and falling rocks, so it is often applied to embankment slopes with gentle slopes.

またここで、植生工とは植物を導入する工法であり、植物の態様の観点から播種工、植栽工、植生誘導工に大別される。植生工を工法の態様から大別すると、その一つに吹付けを用いる吹付緑化工法(機械施工法ともいう)があり、種子散布工、客土吹付工、植生基材吹付工に分類される。吹付緑化工法としては、急勾配法面でも3cm以上の生育基盤を一度に吹き付けることができる植生基材吹付工が切土法面を中心に広く採用されている。 Here, the vegetation work is a method of introducing a plant, and is roughly classified into a sowing work, a planting work, and a vegetation induction work from the viewpoint of the aspect of the plant. The vegetation work can be roughly classified according to the mode of the construction method. One of them is the spray greening method (also called the mechanical construction method), which is classified into seed dispersal work, soil dressing spraying work, and vegetation base material spraying work. .. As a spraying greening method, a vegetation base material spraying method that can spray a growth base of 3 cm or more at a time even on a steep slope is widely adopted mainly on a cut slope.

これら吹付緑化工法のうち、厚みを有する生育基盤を造成する客土吹付工や植生基材吹付工を適用する場合は、前述した理由により緑化基礎工として網張工の併用が標準となり、剛性のある金網張工が一般的に採用されている。 Of these spraying greening methods, when applying soil dressing spraying work or vegetation base material spraying work to create a thick growth base, the combined use of netting work as a greening foundation work is standard for the reasons mentioned above, and it is rigid. Wire netting is commonly used.

しかし、植生基材吹付工の場合、金網張工に要する経費比率は、吹付厚10cmの場合で約20%、5cm圧の場合で約33%、3cm厚の場合で41%にもなり、最も採用頻度が高いであろうと思われる3~5cm厚では3~4割に達する高い経費比率となっているのが実情で、経済性を高めるために、生育基盤の強度を高めて金網張工を省略できる吹付緑化工法が求められている。 However, in the case of vegetation base material spraying work, the cost ratio required for wire netting work is about 20% when the spraying thickness is 10 cm, about 33% when the spray thickness is 5 cm, and 41% when the spray thickness is 3 cm, which is the highest. In the actual situation, the cost ratio is as high as 30-40% for the thickness of 3-5 cm, which is thought to be frequently adopted. There is a need for a spray greening method that can be used.

生育基盤の強度を高める方法としては、特許文献1に開示された、植生基材に短繊維材を混合することにより生育基盤の連結性を向上させる方法が実用化されている。例えば生育基盤が、単繊維繊度が0.7~120デニールでかつアスペクト比が120~1300である短繊維材(実施例では合成繊維のポリビニルアルコール系繊維)を0.2~6重量%、バーク堆肥を50重量%以上、ピートモスを2~45重量%、及び結合剤を0.1~25重量%の割合で含有する。これによりひび割れ、崩壊、脱落、流出などは生じない生育基盤の造成を実現している。 As a method for increasing the strength of the growth base, a method disclosed in Patent Document 1 for improving the connectability of the growth base by mixing a short fiber material with the vegetation base material has been put into practical use. For example, the growth base is a short fiber material (polyvinyl alcohol-based fiber of synthetic fiber in the example) having a single fiber fineness of 0.7 to 120 denier and an aspect ratio of 120 to 1300, 0.2 to 6% by weight, bark. It contains 50% by weight or more of compost, 2 to 45% by weight of peat moss, and 0.1 to 25% by weight of a binder. As a result, it is possible to create a growth base that does not crack, collapse, fall off, or run off.

生育基盤材の重量は、使用材料とその含水率により変動する。本出願人の保有工法で、国土交通省の公共工事等における新技術活用システム(NETIS)登録技術である植生基材吹付工「斜面樹林化工法」(登録番号:QS-980148-VE、掲載期間満了)を例に試算すると、生育基盤の総重量は概ね124~154kg/mの範囲になる。これを基に重量換算(小数点第2位を四捨五入)すると、短繊維材の混合量0.2~6重量%は少なくとも0.2~7.4kg/m、多くとも0.3~9.2kg/mになるので、短繊維材を0.2~9.2kg/m配合することにより目的とする効果が得られると考えることができる。 The weight of the growth base material varies depending on the material used and its water content. The vegetation base material spraying work "Slope Forest Chemical Method" (registration number: QS-980148-VE, publication period), which is a new technology utilization system (NETIS) registration technology in public works projects of the Ministry of Land, Infrastructure, Transport and Tourism, owned by the applicant. As an example, the total weight of the growth base is in the range of 124 to 154 kg / m 3 . Based on this, when converted to weight (rounded to the first decimal place), the mixing amount of the short fiber material is 0.2 to 6% by weight, which is at least 0.2 to 7.4 kg / m 3 , and at most 0.3 to 9. Since it is 2 kg / m 3 , it can be considered that the desired effect can be obtained by blending 0.2 to 9.2 kg / m 3 of the short fiber material.

別の方法として特許文献2には、吹付緑化工法に適用する有機質又は無機質の資材、肥料、侵食防止材等の配合材料を混合して調製される生育基盤材において、繊維長5~20cmの吸水性及び吸湿性を有する繊維材(実施例では椰子繊維)を、容積にして5~40%含むことを特徴とする生育基盤材が開示されている。これにより、施工後の生育基盤の乾燥に対して耐久性のある生育基盤を実現している。 As another method, Patent Document 2 describes water absorption with a fiber length of 5 to 20 cm in a growth base material prepared by mixing organic or inorganic materials, fertilizers, erosion-preventing materials and other compounding materials applied to the spray greening method. A growth base material characterized by containing 5 to 40% by volume of a fiber material having a property and a hygroscopic property (palm fiber in an example) is disclosed. As a result, a growth base that is durable against drying of the growth base after construction is realized.

有機質系植生基材吹付工では、一般的に吹付により植生基材の容積が1/2に圧密されて生育基盤が造成されることから、出来形1000L(リットル)当たり2000Lの生育基盤材を配合する。これを基に特許文献2の生育基盤材の繊維材を容量換算すると、椰子繊維の配合量5~40容積%は100~800L/mになる。ほぐされた椰子繊維の嵩密度は概ね0.1であることからこれをベースに重量換算すると、椰子繊維を10~80kg/m配合することにより目的とする効果が得られると考えることができる。 In organic vegetation base material spraying work, the volume of the vegetation base material is generally consolidated by half by spraying to create a growth base, so 2000 L of growth base material is blended per 1000 L (liter) of finished product. do. Based on this, when the fiber material of the growth base material of Patent Document 2 is converted into volume, the blending amount of palm fiber 5 to 40% by volume is 100 to 800 L / m 3 . Since the bulk density of the loosened palm fibers is approximately 0.1, it can be considered that the desired effect can be obtained by blending 10 to 80 kg / m 3 of the palm fibers in terms of weight based on this. ..

さらに非特許文献1の工法は、本出願人の保有工法で、NETIS登録技術である金網張工を省略した植生基材吹付工「ノンラス工法」(登録番号:QS-020028、掲載期間満了)であり、特許文献1及び特許文献2の技術を応用して開発実用化したものである。非特許文献1の工法には、合成樹脂短繊維材を使用する仕様と天然短繊維材を使用する仕様の2タイプがあるが、近年では多くの現場で自然環境にやさしい天然短繊維材が採用されている。 Furthermore, the construction method of Non-Patent Document 1 is the vegetation base material spraying construction "non-lass construction method" (registration number: QS-020028, publication period has expired), which is the construction method owned by the applicant and omits the wire netting construction which is the NETIS registration technology. Yes, it has been developed and put into practical use by applying the techniques of Patent Document 1 and Patent Document 2. There are two types of construction methods in Non-Patent Document 1, one that uses synthetic resin staples and the other that uses natural staples. In recent years, natural staples that are friendly to the natural environment have been adopted at many sites. Has been done.

さらに別の方法として特許文献3には、糸巻き用紙管の残糸を用いてリサイクル短繊維材を製造する方法が開示されている。複数の糸巻き用紙管から引き出された長繊維である残糸を束ねてボビンに巻き取り、ボビンに巻き取られた残糸束を切断装置で順次引き出して所定の長さに切断する。この製造方法により、繊維長が10~50mm、アスペクト比が500~7000に形成されたリサイクル短繊維材が得られる。 As yet another method, Patent Document 3 discloses a method for producing a recycled staple fiber material using the residual yarn of the spool paper tube. The residual yarn, which is a long fiber drawn from a plurality of spool paper tubes, is bundled and wound on a bobbin, and the residual yarn bundle wound on the bobbin is sequentially drawn out by a cutting device and cut to a predetermined length. By this manufacturing method, a recycled staple fiber material having a fiber length of 10 to 50 mm and an aspect ratio of 500 to 7000 can be obtained.

特許文献3では、生育基盤材にポリエステル短繊維を1~5kg/m配合することによって、吹き付けにより造成された緑化基盤のクラックを防止、あるいはクラックが目立たない状態にすることを実現している。しかし、モルタル・コンクリートや生育基盤の強度を増強させる効果までは得られていない。 In Patent Document 3 , by blending 1 to 5 kg / m3 of polyester staple fiber in the growth base material, it is realized that cracks in the greening base created by spraying can be prevented or the cracks can be made inconspicuous. .. However, the effect of increasing the strength of mortar / concrete and growth base has not been obtained.

特開平7-327484号公報Japanese Unexamined Patent Publication No. 7-327484 特開平10-113069号公報Japanese Unexamined Patent Publication No. 10-113069 特開平2013-238028号公報Japanese Unexamined Patent Publication No. 2013-238028 特開第2004-225330号公報Japanese Unexamined Patent Publication No. 2004-225330

吉田・古田(2002)金網張工を省略した植生基材吹付工、日本緑化工学会誌28(1)、193-196.Yoshida and Furuta (2002) Vegetation base material spraying work omitting wire netting work, Journal of Japan Green Engineering Society 28 (1), 193-196.

特許文献1と特許文献2に基づく非特許文献1の工法(工法名:ノンラス工法)は、標準仕様としてビニロン短繊維を使用する場合は2kg/m、椰子繊維を使用する場合は8kg/m混合することで生育基盤のつなぎ効果を高め、金網張工を省略する工法で、これまで多くの現場で採用されている。 The construction method (construction method name: non-lass construction method) of Patent Document 1 and Non-Patent Document 1 based on Patent Document 1 is 2 kg / m 3 when vinylon short fibers are used as standard specifications, and 8 kg / m when coconut fibers are used. It is a construction method that enhances the effect of connecting the growth base by mixing 3 and omits the wire netting work, and has been adopted in many sites so far.

しかしながら、風の強い沿岸部や風道となる地形に位置する立地条件下で施工した場合に生育基盤が剥離したり、もともと地山に生育していた雑草が出芽して生育基盤が浮き上がって剥離したりするケースがあった。これら網張工を省略できる従来技術をより確実性の高い工法とするためには、生育基盤の強度をより増強させ、かつ従来技術と同等以上の植物の発芽生育促進効果が発揮される工法の開発が求められている。 However, when the construction is carried out under the location conditions located in the windy coastal area or the terrain that becomes the wind channel, the growth base may peel off, or the weeds that originally grew in the ground may sprout and the growth base may rise and peel off. There was a case of doing so. In order to make the conventional technique that can omit these netting works more reliable, the development of a method that further enhances the strength of the growth base and exerts the germination and growth promoting effect of plants equal to or higher than the conventional technique. Is required.

本発明は、法面吹付緑化工法、特に植生基材吹付工において、埋設柵などのような補助工法を併用することなく単独で3~10cm厚に吹付した場合、特に最も採用されるケースが多いといえる3~5cm乃至3~7cm厚程度に吹付した場合でも生育基盤の強度が増強されて、網張工が省略できる生育基盤の実現を目的とする。 The present invention is most often adopted in the slope spraying greening method, particularly in the vegetation base material spraying method, when the plant is sprayed alone to a thickness of 3 to 10 cm without using an auxiliary method such as a buried fence. The purpose is to realize a growth base in which the strength of the growth base is enhanced even when sprayed to a thickness of about 3 to 5 cm to 3 to 7 cm, and the netting work can be omitted.

上記の目的を達成するために、本発明は、以下の構成を提供する。
・ 本発明の態様は、緑化基礎工として網張工を併用せずに植生基材を傾斜地に直接吹き
付ける緑化工法に用いる前記植生基材であって、
主材料となる生育基盤材と、粘土鉱物と、第1の短繊維材と、第2の短繊維材とを少なくとも含む混合物であり、
前記第1の短繊維材と前記第2の短繊維材は、相対的に、前記第1の短繊維材が硬質で平均繊維長が4.5cm±3.0cm、かつ、前記第2の短繊維材が軟質で平均繊維長が2.0cm±1.0cmであることを特徴とする植生基材。
・ 本発明の別の態様は、緑化基礎工として網張工を併用せずに植生基材を用いて行う法面吹付緑化工法であって、
少なくとも主材料となる生育基盤材と、粘土鉱物と、第1の短繊維材と、第2の短繊維材とを混合することにより植生基材を調製する工程と、
前記植生基材を傾斜地に直接吹き付ける工程とを有し、
前記第1の短繊維材と前記第2の短繊維材は、相対的に、前記第1の短繊維材が硬質で平均繊維長が4.5cm±3.0cm、かつ、前記第2の短繊維材が軟質で平均繊維長が2.0cm±1.0cmであることを特徴とする。
In order to achieve the above object, the present invention provides the following configurations.
-Aspect of the present invention is the vegetation base material used in the greening method in which the vegetation base material is directly sprayed on a slope without using a netting work as a greening foundation work.
It is a mixture containing at least a growth base material as a main material, a clay mineral, a first staple fiber material, and a second staple fiber material.
In the first short fiber material and the second short fiber material, the first short fiber material is relatively hard, the average fiber length is 4.5 cm ± 3.0 cm , and the second short fiber material is said. A vegetation base material characterized in that the fiber material is soft and the average fiber length is 2.0 cm ± 1.0 cm .
-Another aspect of the present invention is a slope spraying greening method using a vegetation base material without using a netting work as a greening foundation work.
A step of preparing a vegetation base material by mixing at least a growth base material as a main material, a clay mineral, a first staple fiber material, and a second staple fiber material.
It has a step of directly spraying the vegetation base material on a slope.
In the first short fiber material and the second short fiber material, the first short fiber material is relatively hard, the average fiber length is 4.5 cm ± 3.0 cm , and the second short fiber material is said. The fiber material is soft and the average fiber length is 2.0 cm ± 1.0 cm .

本発明により、緑化基礎工として網張工(金網張工)を併用せずに植生基材を法面に吹き付ける法面吹付緑化工法において、従来技術と比較して、生育基盤の強度増強効果、耐侵食性増強効果、耐久性増強効果に優れ、かつ従来技術と同等以上の植物生育性が期待される生育基盤の造成が可能になる。 According to the present invention, in the slope spraying greening method in which the vegetation base material is sprayed on the slope without using the netting work (wire netting work) as the greening foundation work, the effect of enhancing the strength of the growth base and the resistance to the growth base are compared with the prior art. It is possible to create a growth base that is excellent in erosion-enhancing effect and durability-enhancing effect and is expected to have plant growth equal to or higher than that of the prior art.

その結果、従来技術が有していた問題である、風の強い沿岸部や風道となる地形に位置する立地条件化で施工した場合に生育基盤が剥離したり、もともと地山に生育していた雑草が出芽して生育基盤が浮き上がって剥離したりする問題が解消される。 As a result, the growth base is peeled off or originally grows in the ground when the construction is carried out under the location conditions that are located in the windy coastal area or the terrain that becomes the wind channel, which is a problem that the conventional technology had. The problem that weeds sprout and the growth base rises and peels off is solved.

これらの作用効果により、本発明により緑化工事の手直し工事の発生や、再施工を余儀なくされるリスクを低減することができる。 Due to these effects, it is possible to reduce the risk of reworking the greening work and the risk of being forced to reconstruct the greening work according to the present invention.

図1は、実施例1の実験計画表を示す。FIG. 1 shows an experimental design table of Example 1. 図2は、実施例1の調査結果(植被率、群落高、被度・群度)を示す表である。FIG. 2 is a table showing the survey results (vegetation coverage rate, community height, coverage / community degree) of Example 1. 図3は、実施例1の三元配置分散分析結果を示す表である。FIG. 3 is a table showing the results of the three-way ANOVA of Example 1. 図4は、バヒアグラス(BaH)の草丈の比較(二元配置分散分析)を示すグラフである。FIG. 4 is a graph showing a comparison of plant heights (two-way ANOVA) of Bahiagrass (BaH). 図5は、バヒアグラス(BaH)密度の比較(二元配置分散分析)を示すグラフである。FIG. 5 is a graph showing a comparison of Bahiagrass (BaH) densities (two-way ANOVA). 図6は、湿潤時の生育基板の強度比較(一軸圧縮強度)を示すグラフである。FIG. 6 is a graph showing a comparison of the strength of the growth substrate (uniaxial compressive strength) when wet. 図7は、乾燥時の生育基板の強度比較(曲げ強度)を示すグラフである。FIG. 7 is a graph showing a comparison (bending strength) of the strength of the growth substrate at the time of drying. 図8は、湿潤時と乾燥時の浸食土量の比較を示すグラフである。FIG. 8 is a graph showing a comparison of the amount of eroded soil during wet and dry conditions. 図9は、乾燥収縮クラック間隔の比較(三元配置分散分析)を示すグラフである。FIG. 9 is a graph showing a comparison of drying shrinkage crack intervals (three-way ANOVA). 図10は、乾燥収縮クラック延長の比較(三元配置分散分析)を示すグラフである。FIG. 10 is a graph showing a comparison of drying shrinkage crack lengths (three-way ANOVA). 図11は、施工105日後に確認された生育基盤の剥離状況を比較する写真である。FIG. 11 is a photograph comparing the peeling state of the growth base confirmed 105 days after the construction.

以下、実施例を参照して本発明の実施形態を説明する。
本発明は、緑化基礎工として網張工を併用せずに植生基材を傾斜地に直接吹き付ける緑化工法に係る。その植生基材は、主材料となる生育基盤材と、粘土鉱物と、第1の短繊維材Aと、第2の短繊維材Bとを少なくとも含む混合物である。第1の短繊維材Aと第2の短繊維材Bは、相対的に、第1の短繊維材Aが硬質で平均繊維長が長く、かつ、第2の短繊維材Bが軟質で平均繊維長が短いことが特徴である。
Hereinafter, embodiments of the present invention will be described with reference to examples.
The present invention relates to a greening method in which a vegetation base material is directly sprayed on a slope without using a netting work as a greening foundation work. The vegetation base material is a mixture containing at least a growth base material as a main material, a clay mineral, a first staple fiber material A, and a second staple fiber material B. In the first short fiber material A and the second short fiber material B, the first short fiber material A is relatively hard and the average fiber length is long, and the second short fiber material B is soft and average. It is characterized by a short fiber length.

短繊維材Bよりも平均繊維長が長くかつ硬質の短繊維材Aを配合して剪断抵抗力(つなぎ効果)を持たせる。さらに粘土鉱物と、短繊維材Aよりも平均繊維長が短くかつ軟質の短繊維材Bを配合することによって、吸水により生じる粘土鉱物の容積増加と膨潤圧による生育基盤の有効間隙圧縮効果と、短繊維材Aに短繊維材Bが生育基盤材を介在させた状態で相互に絡み合うことによる摩擦力増強効果との相乗効果が得られ、その結果、生育基盤の強度、耐侵食性、耐久性及び植物生育性を増強することを実現した。 A short fiber material A having an average fiber length longer than that of the short fiber material B and being hard is blended to have a shear resistance (connecting effect). Furthermore, by blending the clay mineral and the short fiber material B, which has a shorter average fiber length than the short fiber material A and is soft, the volume increase of the clay mineral caused by water absorption and the effective gap compression effect of the growth base due to the swelling pressure are obtained. A synergistic effect with the frictional force enhancing effect is obtained by entwining the short fiber material B with the short fiber material A in a state where the growth base material is interposed, and as a result, the strength, erosion resistance, and durability of the growth base material are obtained. And realized to enhance plant viability.

生育基盤材としては、バーク堆肥やピートモスのほか、剪定枝葉などの堆肥化物、現地発生土砂、砂質土、生チップ、堆肥化チップ、発酵汚泥コンポストなどが使用できるが、本発明は、バーク堆肥やピートモスに代表される有機質系生育基盤材を主材料に用いる有機質系植生基材吹付工に分類される工法で特に大きな効果を奏する。 As the growth base material, in addition to bark compost and peat moss, compost products such as pruned branches and leaves, locally generated earth and sand, sandy soil, raw chips, composted chips, fermented sludge compost, etc. can be used. This method is classified as an organic vegetation base material spraying method that uses an organic growth base material such as peat moss as the main material, and is particularly effective.

粘土鉱物は、珪酸塩鉱物を主材料とする粘土で、ベントナイト、カオリナイト、モンモリロナイト、セリサイト、タルク、ゼオライトなどが使用できる。本発明で用いる粘土鉱物は、吸水により生じる容積増加と膨潤圧による生育基盤の有効間隙圧縮効果を発揮するものであればよく、土木工事で広く採用されているベントナイトが好適である。生育基盤材に粘土鉱物を混合することにより、これが吸水して有機質基盤内の空隙を満たして侵食防止材の接合力を増大させ、さらに混合する短繊維材とA、Bの摩擦抵抗力も増大させる効果を奏する。 Clay minerals are clays whose main material is silicate minerals, and bentonite, kaolinite, montmorillonite, sericite, talc, zeolite and the like can be used. The clay mineral used in the present invention may be any as long as it exhibits the effect of increasing the volume caused by water absorption and the effective gap compression effect of the growth base due to the swelling pressure, and bentonite widely used in civil engineering works is suitable. By mixing clay mineral with the growth base material, it absorbs water and fills the voids in the organic base material to increase the bonding force of the erosion prevention material, and also increases the frictional resistance between the mixed short fiber material and A and B. It works.

短繊維材Aは、短繊維材Bよりも平均繊維長が長くかつ硬質の繊維で、吹き付ける生育基盤内に分散させることにより剪断強度を高める効果を奏する。短繊維材Aは、生育基盤材の剪断抵抗力を高めて補強を目的とする繊維で、鋼繊維、ステンレス繊維、ガラス繊維、炭素繊維、セラミック繊維、アラミド、ナイロン、ビニロン、ポリエチレン、ポリプロピレン、ポリエステル、椰子繊維、セルロース繊維などが使用できる。 The short fiber material A is a fiber having an average fiber length longer than that of the short fiber material B and is hard, and has an effect of increasing the shear strength by dispersing it in the growth base to be sprayed. Short fiber material A is a fiber whose purpose is to increase the shear resistance of the growth base material and reinforce it. Steel fiber, stainless fiber, glass fiber, carbon fiber, ceramic fiber, aramid, nylon, vinylon, polyethylene, polypropylene, polyester. , Palm fiber, cellulose fiber, etc. can be used.

しかし、ここで重要なことは、短繊維材Aには、固化するモルタル・コンクリート等の構造物の補強ではなく、繊維による周面摩擦力が得られにくい緑化のための生育基盤を補強するという特殊性から、できる限り長い繊維を混合して基盤内に分散させる必要がある。そのため、短繊維材Aは、繊維にある程度の硬さ(腰)があり、繊維表面が平滑ではなく凹凸を有していたり、繊維が直線的ではなく屈曲していたりするなど、生育基盤内に分散させた場合にできる限り強い周面摩擦抵抗力が発現する繊維が望ましい。そのため、化学繊維と比較して繊維が直線的かつ表面が平滑ではない天然繊維が望ましく、とりわけ繊維が屈曲している椰子繊維が好適である。 However, what is important here is that the short fiber material A does not reinforce structures such as mortar and concrete that solidify, but reinforces the growth base for greening where it is difficult to obtain peripheral frictional force due to the fibers. Due to its peculiarity, it is necessary to mix and disperse as long fibers as possible in the substrate. Therefore, the short fiber material A has a certain degree of hardness (waist) in the fiber, and the fiber surface is not smooth and has irregularities, or the fiber is bent rather than linear, and the fiber is contained in the growth base. Fibers that exhibit as strong a peripheral frictional resistance as possible when dispersed are desirable. Therefore, natural fibers in which the fibers are linear and the surface is not smooth as compared with chemical fibers are desirable, and palm fibers in which the fibers are bent are particularly preferable.

また、短繊維材Aは、比較的固い繊維であることから、繊維長が長くなるとミキサによる各種材料の攪拌混合時に供回りを生じるなどして攪拌効率が著しく悪化し、植生基材中に均一に分散させることが困難になる。施工性に支障がなく、かつ植生基材内に均一に分散させるためには、短繊維材Aの平均繊維長を4.5cm±3.0cmの範囲とすると好適である。 Further, since the short fiber material A is a relatively hard fiber, if the fiber length is long, the stirring efficiency is remarkably deteriorated due to the occurrence of rotation during stirring and mixing of various materials by the mixer, and the staple fiber material A is uniform in the vegetation base material. It becomes difficult to disperse in. It is preferable that the average fiber length of the staple fiber material A is in the range of 4.5 cm ± 3.0 cm so that the workability is not hindered and the staple fiber material A is uniformly dispersed in the vegetation substrate.

短繊維材Bは、短繊維材Aよりも平均繊維長が短くかつ軟質の繊維で、吹き付ける生育基盤内に均一に分散させることにより、生育基盤材を介在させながら短繊維材Aと絡み合い、生育基盤の接合力と剪断抵抗力を増大させるとともに、乾燥収縮クラックの発生を抑制する効果を奏する。短繊維材Bを短繊維材Aと効率よく絡み合わせるためには、短繊維材Aよりも繊維長が短くかつ表面が平滑で軟質の繊維であることが重要で、繊維は極力柔らかい化学繊維が有効である。化学繊維の種類は特に限定されないが、例えば、特許文献3のリサイクル短繊維材は化学繊維の中でも強度が高いポリエステルであり、経済的にも有効である。 The short fiber material B is a fiber having an average fiber length shorter than that of the short fiber material A and is soft. By uniformly dispersing the short fiber material B in the growth base material to be sprayed, the short fiber material B is entangled with the short fiber material A and grows while interposing the growth base material. It has the effect of increasing the bonding force and shear resistance of the substrate and suppressing the occurrence of drying shrinkage cracks. In order to efficiently entangle the short fiber material B with the short fiber material A, it is important that the fiber length is shorter than that of the short fiber material A and the surface is smooth and soft. It is valid. The type of the chemical fiber is not particularly limited, but for example, the recycled staple fiber material of Patent Document 3 is a polyester having high strength among the chemical fibers, and is economically effective.

短繊維材Bを平均繊維長は4.5cm±3.0cmの短繊維材Aと効率よく絡ませるためには、短繊維材Bの平均繊維長を2.0cm±1.0cmの範囲とすると好適である。 In order to efficiently entangle the short fiber material B with the short fiber material A having an average fiber length of 4.5 cm ± 3.0 cm, the average fiber length of the short fiber material B should be in the range of 2.0 cm ± 1.0 cm. Suitable.

なお、各短繊維材A、Bが硬質であるか軟質であるかの区分は、短繊維材Aと短繊維材Bとが相対的に軟質か硬質かということによる。また、各短繊維材A、Bの長さが上述した範囲よりも短いと目的とする効果が顕著でなく、長いと施工性が悪化することが問題となる。 The classification of whether each of the short fiber materials A and B is hard or soft depends on whether the short fiber material A and the short fiber material B are relatively soft or hard. Further, if the length of each of the short fiber materials A and B is shorter than the above-mentioned range, the desired effect is not remarkable, and if it is long, the workability is deteriorated.

短繊維材の物性を例示すれば、短繊維Aは、アスペクト比100~500、伸び率10~30%、引張強さ50~800cNの天然繊維が好適で、中でもアスペクト比200~400、伸び率10~30%、引張強さ100~700cNの椰子繊維がさらに好適である。 As an example of the physical properties of the staple fiber material, the staple fiber A is preferably a natural fiber having an aspect ratio of 100 to 500, an elongation rate of 10 to 30%, and a tensile strength of 50 to 800 cN, and among them, an aspect ratio of 200 to 400 and an elongation rate. A coconut fiber having a tensile strength of 100 to 700 cN and a tensile strength of 10 to 30% is more suitable.

また、短繊維材Bは、アスペクト比500~7000、伸び率30~100%、引張強さ1~30cNの化学繊維が好適で、さらにアスペクト比1000~3500、伸び率40~60%、引張強さ2~10cNのポリエステル繊維がさらに好適である。 The short fiber material B is preferably a chemical fiber having an aspect ratio of 500 to 7000, an elongation of 30 to 100%, and a tensile strength of 1 to 30 cN, and further preferably an aspect ratio of 1000 to 3500, an elongation of 40 to 60%, and a tensile strength. Polyester fibers with an aspect ratio of 2 to 10 cN are more suitable.

施工にあたっては、これらの資材のほか、通常の法面吹付緑化工法と同様に、侵食防止材(接合材)、肥料、種子などが混合される。侵食防止材は、酢酸ビニル系樹脂に代表される合成樹脂系と、セメントに代表される無機質系があるが、生育基盤の耐浸食性や耐久性を高めるためには接合力の強い無機質系の資材が好適で、例えば、植物の発芽生育を阻害しない特許文献4に記載の有機質系生育基盤材用侵食防止材などが有効である。 In addition to these materials, erosion prevention materials (bonding materials), fertilizers, seeds, etc. are mixed in the same way as the normal slope spray greening method. There are two types of erosion prevention materials: synthetic resin typified by vinyl acetate resin and inorganic typified by cement. The material is suitable, and for example, the erosion-preventing material for an organic growth base material described in Patent Document 4 which does not inhibit the germination and growth of plants is effective.

[その他の効果]
本発明の副次的な作用効果として、緑化工で導入した植物の根系と短繊維材Aと短繊維材Bとの絡み合い効果による生育基盤の中長期的な強度増強効果がある。本発明は、植物根系が介在していない施工直後の状態から生育基盤の強度増強を実現したことを特徴とする。この生育基盤の強度増強効果は、これまでに実施した試験施工時における観察により、施工後は発芽した植物の根系が生育基盤材を介在させた状態で短繊維材A、Bに絡みついて伸長し、これにより植物が容易に引き抜けない状態になっていることが確かめられている。根系による土壌緊縛力はもちろん周知であるが、本発明は、従来技術と比較して、施工後の植物の根系の伸長に伴って、生育基盤の中長期的な基盤強度、耐侵食性、耐久性を増強させ、より高い効果を奏することが期待できることが示唆された。
[Other effects]
As a secondary effect of the present invention, there is a medium- to long-term strength enhancing effect of the growth base due to the entanglement effect of the root system of the plant, the short fiber material A and the short fiber material B introduced by the greening work. The present invention is characterized in that the strength of the growth base is enhanced from the state immediately after construction without the intervention of the plant root system. The strength-enhancing effect of this growth base was observed during the test construction conducted so far, and after the construction, the root system of the germinated plant was entwined with the staples A and B with the growth base material intervening and extended. It has been confirmed that this makes it difficult for the plant to be pulled out. Of course, the soil binding force of the root system is well known, but the present invention has a medium- to long-term base strength, erosion resistance, and durability of the growth base as the root system of the plant grows after construction, as compared with the prior art. It was suggested that it can be expected to enhance sex and exert a higher effect.

[施工について]
生育基盤に相対的に平均繊維長及び硬度が異なる短繊維材A、Bを配合することによって生育基盤の有効間隙圧縮効果と摩擦力増強効果の相乗効果により、生育基盤の強度増強を実現するためには、施工時に各種材料を十分に攪拌して均一に混合することが重要となる。
[About construction]
By blending short fiber materials A and B, which have relatively different average fiber lengths and hardness, in the growth base, the strength of the growth base is enhanced by the synergistic effect of the effective gap compression effect and the frictional force enhancing effect of the growth base. Therefore, it is important to sufficiently stir various materials at the time of construction to mix them uniformly.

吹付緑化工法では、各種材料を吹付機に直接投入して混合する形がとられる場合があるが、本発明の効果を最大限に発揮させるためには、あらかじめ各資材をシャフトレスミキサに代表される攪拌効率の高いミキサに投入して混合することが望ましい。また、侵食防止材の接合力を得るためには水を混合する必要がある。この際、加水に前もって十分攪拌混合しておくことにより、植生基材の中に短繊維材A、Bを分散させることができる。なお、水は、シャフトレスミキサによる攪拌時、あるいは攪拌後に吹付機に投入してから混合しても問題はなく、植生基材の圧送距離が長い場合は、吹き付けノズル手前で水を合流させて混合してもよい。 In the spraying greening method, various materials may be directly put into a spraying machine and mixed, but in order to maximize the effect of the present invention, each material is represented by a shaftless mixer in advance. It is desirable to put it in a mixer with high stirring efficiency and mix it. In addition, it is necessary to mix water in order to obtain the bonding force of the erosion preventive material. At this time, the staple fibers A and B can be dispersed in the vegetation base material by sufficiently stirring and mixing with water in advance. There is no problem if the water is agitated by the shaftless mixer or after being added to the sprayer after stirring, and if the pumping distance of the vegetation substrate is long, the water is merged in front of the spray nozzle. It may be mixed.

本発明の従来技術に対する進歩性を実証した試験施工の結果を各実施例として示す。
[実施例1]圃場試験による植物生育性の検証
本発明を完成させるにあたり、本実施例に前もって植物生育に適する各種資材の好適な配合量を決定するための基礎試験を実施した。その結果、植物生育性に支障がない各種資材の混合量として、粘土鉱物(ベントナイト)を5~50kg/m、短繊維材A(椰子繊維)を20~100L/m、短繊維材B(ポリエステル繊維)を1~5kg/m配合するのが望ましいとの結論が得られている。
The results of the test construction demonstrating the inventive step with respect to the prior art of the present invention are shown as examples.
[Example 1] Verification of plant growth by field test In completing the present invention, a basic test was conducted in advance of this example to determine a suitable blending amount of various materials suitable for plant growth. As a result, clay mineral (bentonite) is 5 to 50 kg / m 3 , short fiber material A (palm fiber) is 20 to 100 L / m 3 , and short fiber material B is a mixture of various materials that do not interfere with plant growth. It has been concluded that it is desirable to add 1 to 5 kg / m 3 of (polyester fiber).

そのため、この配合量の範囲内において、施工性と経済性を考慮して、さらに好適な配合量の上限値と下限値を採用した試験を行った。本試験では、短繊維材Bの配合による植物生育性を再確認するため、ポリエステル短繊維材のみ配合なしの試験区を設けた。 Therefore, within the range of this compounding amount, in consideration of workability and economy, a test was conducted in which a more suitable upper limit value and lower limit value of the compounding amount were adopted. In this test, in order to reconfirm the plant growth by blending the short fiber material B, a test group was set up in which only the polyester staple fiber material was not blended.

試験は、従来技術(特許文献1及び特許文献2に基づく非特許文献1に記載の工法)と比較して植物の生育性に問題が生じないか検証するため、従来技術1(ビニロン短繊維)と従来技術2(椰子短繊維)の2区を設定し、本発明工法については、粘土鉱物(ベントナイト)、短繊維材A(椰子繊維)、及び短繊維材B(ポリエステル繊維)の3因子I、II、IIIを組み合わせた比較試験を行った。 In the test, in order to verify whether there is a problem in the viability of the plant as compared with the prior art (the method described in Non-Patent Document 1 based on Patent Document 1 and Patent Document 2), the prior art 1 (vinylon staple fiber) is used. And the prior art 2 (palm short fiber) are set, and for the method of the present invention, there are three factors I of clay mineral (bentonite), short fiber material A (palm fiber), and short fiber material B (polyester fiber). , II, and III were combined to perform a comparative test.

施工は、実際に使用する施工機械を用いて行い、栃木県内の東興ジオテック株式会社テクニカルセンター内の実験圃場に設置した1.8m×1.8m試験区に生育基盤を吹き付けた。実験計画は次のとおりで、各試験区とも、有機質系生育基盤材(商品名:オルガソイル)2000L/m、無機質系侵食防止材(商品名:レミコントロール)60kg/m、及び種子(トールフェスク(TF)、クリーピングレッドフェスク(CRF)、ヤマハギ、シャリンバイ、アカメガシワ、キハダ、オオヤマザクラ)は共通である。 The construction was carried out using the construction machine actually used, and the growth base was sprayed on the 1.8m × 1.8m test plot set up in the experimental field in the Technical Center of Toko Geotech Co., Ltd. in Tochigi Prefecture. The experimental plan is as follows. In each test plot, organic growth base material (trade name: Olga Soil) 2000 L / m 3 , inorganic erosion preventive material (trade name: Remicontrol) 60 kg / m 3 , and seeds (Tall fescue) (TF), Creeping Red Fesk (CRF), Yamahagi, Sharinbai, Mallotus japonicus, Kihada, Oyamazakura) are common.

図1は、実施例1の実験計画表を示す。
従来技術1:ビニロン短繊維(特許文献1の技術)
従来技術2:椰子短繊維(特許文献2の技術)
本発明:三因子実験
・要因I:粘土鉱物(ベントナイト)、
混合量(α1:10kg/m、α2:30kg/m
・要因II:短繊維材A(椰子繊維、商品名:レミファイバー)
混合量(β1:40L/m、β2:80L/m
・要因III:短繊維材B(ポリエステル繊維、商品名:キリファイバー)
混合量(γ1:0kg/m、γ2:1kg/m、γ3:2kg/m
FIG. 1 shows an experimental design table of Example 1.
Conventional Technology 1: Vinylon Staples (Technology of Patent Document 1)
Conventional technique 2: Palm staple fiber (Technology of Patent Document 2)
The present invention: Three-factor experiment-Factor I: Clay mineral (bentonite),
Mixing amount (α1: 10 kg / m 3 , α2: 30 kg / m 3 )
・ Factor II: Staple fiber A (palm fiber, trade name: Remi fiber)
Mixing amount (β1: 40 L / m 3 , β2: 80 L / m 3 )
・ Factor III: Staple B (polyester fiber, trade name: Kiri fiber)
Mixing amount (γ1: 0 kg / m 3 , γ2: 1 kg / m 3 , γ3: 2 kg / m 3 )

従来技術1の1m当たりの材料配合は次のとおりである。
生育基盤材(オルガソイル) 2000L
短繊維材(ビニロン繊維) 2kg
侵食防止材(レミコントロール) 60kg
緩効性肥料(ハイコントロール) 4kg
種子 1式
The material composition per 1 m 3 of the prior art 1 is as follows.
Growth base material (organ soil) 2000L
Staple material (vinylon fiber) 2kg
Erosion prevention material (Remi Control) 60kg
Slow-release fertilizer (high control) 4 kg
1 set of seeds

従来技術2の1m当たりの材料配合は次のとおりである。
生育基盤材(オルガソイル) 2000L
短繊維材(椰子繊維) 80L
侵食防止材(レミコントロール) 60kg
緩効性肥料(ハイコントロール) 4kg
種子 1式
The material composition per 1 m 3 of the prior art 2 is as follows.
Growth base material (organ soil) 2000L
Staple material (palm fiber) 80L
Erosion prevention material (Remi Control) 60kg
Slow-release fertilizer (high control) 4 kg
1 set of seeds

図2は、実施例1の調査結果(植被率、群落高、被度・群度)を示す表である。
試験の結果、施工11ヵ月後の植被率は、粘土鉱物30kg/m配合区と短繊維材A80L/m配合区が従来技術1及び従来技術2より高くなり、群落高も粘土鉱物30kg/m配合区が従来技術2及び従来技術2より高くなり、植物の被度・群度も、総じて対照区1と同等あるいは優勢な種が多かった。
FIG. 2 is a table showing the survey results (vegetation coverage rate, community height, coverage / community degree) of Example 1.
As a result of the test, the vegetation coverage ratio after 11 months of construction was higher in the clay mineral 30 kg / m3 compounding group and the short fiber material A80L / m3 compounding group than in the prior art 1 and the prior art 2, and the community height was also clay mineral 30 kg / m. The m3 compounding group was higher than the prior art 2 and the conventional technique 2, and the coverage and group coverage of the plants were generally the same as or predominant in the control group 1.

この結果から、本発明を構成する材料による植生基盤は、少なくとも従来技術と同等で、むしろそれ以上の生育促進効果を有していることが確かめられた。 From this result, it was confirmed that the vegetation base made of the material constituting the present invention is at least equivalent to that of the prior art, but rather has a growth promoting effect more than that.

図3は、実施例1の三元配置分散分析結果を示す表である。
次に、植物の樹高・草丈と密度について三元配置分散分析を行い、粘土鉱物、短繊維材A、及び短繊維材Bの配合量の効果を検証した。その結果、各要因とも一部の植物を除いて有意差は認められず、配合量の多少に対して正の関係と負の関係となったものが混在し、試験施工した各資材の配合量の範囲においては、各植物とも生育性は同等と考えて問題がないことが確かめられた。
FIG. 3 is a table showing the results of the three-way ANOVA of Example 1.
Next, a three-way ANOVA was performed on the tree height, plant height and density of the plant, and the effect of the blending amounts of clay mineral, short fiber material A, and short fiber material B was verified. As a result, no significant difference was observed in each factor except for some plants, and there was a mixture of positive and negative relationships with respect to the amount of compounding, and the compounding amount of each material tested and constructed. In the range of, it was confirmed that there was no problem considering that the viability of each plant was the same.

なお、試験施工において吹付作業を行った際、粘土鉱物30kg/m配合区は、10kg/m配合区と比較して吹付抵抗力が大きく、明らかに植生基材の粘性が高くなっていた。そのため、実施工における施工性を考慮すると、粘土鉱物10kg/m配合が好適といえる。 When the spraying work was performed in the test construction, the clay mineral 30 kg / m 3 compounding group had a larger spraying resistance than the 10 kg / m 3 compounding group, and the viscosity of the vegetation base material was clearly higher. .. Therefore, it can be said that 10 kg / m 3 of clay mineral is suitable in consideration of workability in the construction work.

[実施例2]法面における植物生育性の検証
福島県内の東向きと西向きの盛土法面(法長15m、勾配1:1.4)において、外来草本類による急速緑化による従来技術1と本発明の比較試験を行った。本試験における本発明の1m当たりの材料配合は次のとおりである。使用植物(種子)は、TF、CRF、バミューダグラス(BG)、バヒアグラス(BaH)、バーズフットトレフォイル(BFT)である。
生育基盤材(オルガソイル) 2000L
短繊維材A(椰子繊維) 40L
短繊維材B(ポリエステル繊維) 2kg
粘土鉱物(ベントナイト) 10kg
侵食防止材(レミコントロール) 60kg
緩効性肥料(ハイコントロール) 4kg
種子 1式
[Example 2] Verification of plant growth on slopes Conventional technique 1 and book by rapid greening by exotic herbs on the east-facing and west-facing embankment slopes (slope length 15 m, gradient 1: 1.4) in Fukushima Prefecture. A comparative test of the invention was conducted. The material composition per 1 m 3 of the present invention in this test is as follows. The plants (seed) used are TF, CRF, Bermudagrass (BG), Bahiagrass (BaH), and Birdsfoot trefoil (BFT).
Growth base material (organ soil) 2000L
Staple A (palm fiber) 40L
Staple B (polyester fiber) 2 kg
Clay mineral (bentonite) 10 kg
Erosion prevention material (Remi Control) 60kg
Slow-release fertilizer (high control) 4 kg
1 set of seeds

施工2ヵ月後の植生は、東向法面、西向法面ともにBaHが被度5で優占する外来草本植物群落が形成され、外見的な植被率は100%で工法間の違いは認められなかった。導入種の総密度は、東向法面は1,208本/m、西向法面は992本/mに達し、種別の分析は種間競争が影響してあまり意味を持たないと考えられたことから、法面方位(東向き、西向き)と適用工法(従来技術1、本発明)による二元配置分散分析を行って優占種のBaHの草丈と密度を比較した。 In the vegetation two months after the construction, an exotic herbaceous plant community dominated by BaH with a coverage of 5 was formed on both the eastward slope and the westward slope, and the apparent vegetation coverage was 100%, and no difference was observed between the construction methods. rice field. The total density of introduced species reached 1,208 lines / m 2 on the eastward slope and 992 lines / m 2 on the westward slope, and it is considered that the type analysis is not very meaningful due to the influence of interspecific competition. Therefore, a two-way ANOVA was performed using the slope orientation (eastward and westward) and the applied method (previous technique 1, the present invention) to compare the plant height and density of the dominant species, BaH.

図4は、BaHの草丈の比較(二元配置分散分析)を示すグラフである。
草丈については、従来技術1と本発明との間に差は認められず、実施例1の結果と同様に、本発明は従来技術1と同等の生育特性を有していていることが確かめられた。
FIG. 4 is a graph showing a comparison of plant heights of BaH (two-way ANOVA).
Regarding the plant height, no difference was observed between the prior art 1 and the present invention, and it was confirmed that the present invention had the same growth characteristics as the prior art 1 as in the result of Example 1. rice field.

図5は、BaHの密度の比較(二元配置分散分析)を示すグラフである。
密度については、従来技術1と本発明との間に高い確率で差(p=0.06)が認められ、本発明は植物の発芽を促進する効果があることが確かめられた。
FIG. 5 is a graph showing a comparison of BaH densities (two-way ANOVA).
Regarding the density, a difference (p = 0.06) was observed with high probability between the prior art 1 and the present invention, and it was confirmed that the present invention has an effect of promoting the germination of plants.

[実施例3]生育基盤の強度増強効果の検証
本発明の強度増強効果を検証するため、次の比較試験を行った。
従来技術1:ビニロン短繊維(特許文献1の技術)
従来技術2:椰子短繊維(特許文献2の技術)
本発明1:短繊維材A+短繊維材B 1kg/m配合
本発明2:短繊維材A+短繊維材B 2kg/m配合
[Example 3] Verification of strength-enhancing effect of growth base In order to verify the strength-enhancing effect of the present invention, the following comparative test was conducted.
Conventional Technology 1: Vinylon Staples (Technology of Patent Document 1)
Conventional technique 2: Palm staple fiber (Technology of Patent Document 2)
Invention 1: Staple material A + Staple material B 1 kg / m 3 compounded Invention 2: Staple material A + Staple material B 2 kg / m 3 compounded

従来技術1と従来技術2の材料配合は実施例1と同様である。また、本試験における本発明の1m当たりの材料配合は次のとおりである。
生育基盤材(オルガソイル) 2000L
短繊維材A(椰子繊維) 80L
短繊維材B(ポリエステル繊維) 1kg及び2kg
粘土鉱物(ベントナイト) 10kg
侵食防止材(レミコントロール) 60kg
緩効性肥料(ハイコントロール) 4kg
The material composition of the prior art 1 and the prior art 2 is the same as that of the first embodiment. In addition, the material composition per 1 m 3 of the present invention in this test is as follows.
Growth base material (organ soil) 2000L
Staple A (palm fiber) 80L
Staple B (polyester fiber) 1kg and 2kg
Clay mineral (bentonite) 10 kg
Erosion prevention material (Remi Control) 60kg
Slow-release fertilizer (high control) 4 kg

試験は、実際に使用する施工機械を用いて行い、シャフトレスミキサで十分攪拌した植生基材をφ5cm×10cmのプラスチックモールドに詰めて、湿潤状態での生育基盤の強度増強効果を確認するための一軸圧縮試験用の供試体を作成した。さらに、内寸39.0cm×23.7cm、高さ7.0cmのプラスチックコンテナに植生基材を吹き付けて、乾燥状態での生育基盤の強度増強効果を確認するための曲げ試験用の供試体を作成した。供試体は室内養生し、曲げ試験ではプラスチックコンテナから基盤を脱型して幅10cmに切断したものを供試体とした。 The test was conducted using a construction machine that was actually used, and the vegetation substrate that had been sufficiently agitated with a shaftless mixer was packed in a plastic mold of φ5 cm × 10 cm to confirm the effect of enhancing the strength of the growth substrate in a wet state. A specimen for a uniaxial compression test was prepared. Furthermore, a vegetation base material is sprayed onto a plastic container having an inner size of 39.0 cm × 23.7 cm and a height of 7.0 cm, and a specimen for a bending test for confirming the effect of enhancing the strength of the growth base in a dry state is provided. Created. The specimen was cured indoors, and in the bending test, the substrate was removed from the plastic container and cut to a width of 10 cm to obtain the specimen.

なお、湿潤時と乾燥時で試験方法を分けたのは、生育基盤は材齢が長くなると乾燥収縮して変形する場合があり、こうした状態になると短繊維が混入している一軸圧縮試験用の供試体の整形が困難なことによる。 The test method was divided into wet and dry. The growth base may shrink and deform as the material ages, and in such a state, it is for uniaxial compression test in which short fibers are mixed. Due to the difficulty in shaping the specimen.

図6は、湿潤時の生育基板の強度比較(一軸圧縮強度)を示すグラフである。
一軸圧縮試験(n=9)の結果についてTukeyの多重比較検定を行った結果、湿潤時(含水比160.6%)の生育基盤は、従来技術1と、従来技術2と、本発明の短繊維材B配合量1kg/mとの間に差はみられなかったが、短繊維材Bを2kg/m配合した場合は、従来技術1と従来技術2との間にはともに高い確率で有意差(前者p<0.01、後者p=0.08)が認められた。
FIG. 6 is a graph showing a comparison of the strength of the growth substrate (uniaxial compressive strength) when wet.
As a result of Tukey's multiple comparison test for the result of the uniaxial compression test (n = 9), the growth base when wet (water content ratio 160.6%) is the prior art 1, the prior art 2, and the short of the present invention. There was no difference between the amount of fiber material B blended at 1 kg / m 3 , but when short fiber material B was blended at 2 kg / m 3 , there was a high probability of both prior art 1 and prior art 2. A significant difference (the former p <0.01, the latter p = 0.08) was observed.

また、短繊維材B配合量1kg/mと、配合量2kg/mとの間にも有意差(p<0.05)が認められ、生育基盤が湿潤な状態、つまり施工後後間もない状態でも、短繊維材Bを2kg/m配合することにより、生育基盤の強度を短繊維材Aのみの場合と比較して18%程度向上できることが確かめられた。 In addition, a significant difference (p <0.05) was also observed between the staple B compounding amount of 1 kg / m 3 and the compounding amount of 2 kg / m 3 , and the growth base was in a moist state, that is, after the construction. It was confirmed that the strength of the growth base can be improved by about 18% as compared with the case of using only the short fiber material A by blending 2 kg / m 3 of the short fiber material B even in the absence of the staple.

図7は、乾燥時の生育基板の強度比較(曲げ強度)を示すグラフである。
曲げ試験(n=5)の結果についてTukeyの多重比較検定を行った結果、乾燥時(含水比35.9%)の生育基盤は、従来技術1と従来技術2との間、及び本発明の短繊維材B配合量1kg/mと配合量2kg/mと間に有意者認められず同等であることが確かめられた。
FIG. 7 is a graph showing a comparison (bending strength) of the strength of the growth substrate at the time of drying.
As a result of Tukey's multiple comparison test for the result of the bending test (n = 5), the growth base at the time of drying (water content ratio 35.9%) was between the prior art 1 and the prior art 2, and the present invention. It was confirmed that the short fiber material B compounding amount 1 kg / m 3 and the compounding amount 2 kg / m 3 were not significant and were equivalent.

次に、従来技術と本発明を比較すると、従来技術1と、本発明の短繊維材B配合量1kg/m及び配合量2kg/mとの間には有意差(前者p<0.01、後者p<0.05)が認められ、強度は43~50%増強されていた。また、従来技術2と、本発明の短繊維材B配合量1kg/m及び配合量2kg/mとの間にも高い確率で有意差(前者p<0.05、後者p=0.11)が認められ、強度は30~37%増強されていた。 Next, when the prior art and the present invention are compared, there is a significant difference between the prior art 1 and the short fiber material B compounding amount 1 kg / m 3 and compounding amount 2 kg / m 3 of the present invention (the former p <0. 01, the latter p <0.05) was observed, and the intensity was increased by 43 to 50%. Further, there is a high probability of a significant difference between the prior art 2 and the short fiber material B compounding amount of 1 kg / m 3 and the compounding amount of 2 kg / m 3 of the present invention (the former p <0.05, the latter p = 0. 11) was observed, and the intensity was increased by 30 to 37%.

図6及び図7に示された結果から、短繊維材Aと短繊維材Bを組み合わせることにより、生育基盤の強度を短繊維材Aのみの場合と比較して、乾燥時の強度を大きく向上できることが確かめられた。 From the results shown in FIGS. 6 and 7, by combining the staple fiber material A and the staple fiber material B, the strength of the growth base is greatly improved when dried as compared with the case where the staple fiber material A alone is used. It was confirmed that it could be done.

[実施例4]生育基盤の耐侵食性増強効果の検証
本発明の生育基盤の強度増強効果を検証するため、次の比較試験を行った。実験計画と各試験区の材料配合は実施例3と同様である。
従来技術1:ビニロン短繊維(特許文献1の技術)
従来技術2:椰子短繊維(特許文献2の技術)
本発明1:短繊維材A+短繊維材B 1kg/m配合
本発明2:短繊維材A+短繊維材B 2kg/m配合
[Example 4] Verification of erosion resistance enhancing effect of growth base In order to verify the strength enhancing effect of the growth base of the present invention, the following comparative test was conducted. The experimental design and the material composition of each test group are the same as in Example 3.
Conventional Technology 1: Vinylon Staples (Technology of Patent Document 1)
Conventional technique 2: Palm staple fiber (Technology of Patent Document 2)
Invention 1: Staple material A + Staple material B 1 kg / m 3 compounded Invention 2: Staple material A + Staple material B 2 kg / m 3 compounded

試験は、実際に使用する施工機械を用いて行い、シャフトレスミキサで十分攪拌した植生基材を内寸39.0cm×23.7cm、高さ7.0cmのプラスチックコンテナに植生基材を吹き付けて供試体を作成した。供試体は室内でシート養生し、降雨実験装置を用いて、基盤湿潤時(概ね養生1週間後)と基盤乾燥時(概ね養生5週間後)に、雨量100mm/h、雨滴径2.5mm(振動モーター回転数500rpm)の人工降雨を1時間降らせた。 The test was carried out using a construction machine that was actually used, and the vegetation base material that had been sufficiently agitated with a shaftless mixer was sprayed onto a plastic container with an internal size of 39.0 cm x 23.7 cm and a height of 7.0 cm. A specimen was created. The specimen was sheet-cured indoors, and using a rainfall experiment device, the rainfall was 100 mm / h and the raindrop diameter was 2.5 mm (generally after 1 week of curing) and when the substrate was dried (generally after 5 weeks of curing). Artificial rainfall (vibration motor rotation speed 500 rpm) was allowed to fall for 1 hour.

図8は、湿潤時と乾燥時の浸食土量の比較を示すグラフである。
試験の結果、基盤湿潤時(n=3)には、従来技術1と、本発明の短繊維材B配合量1kg/mとの間には差は認められなかったが、短繊維材B配合量2kg/mとの間には高い有意差(p<0.01)が認められ、11.7倍の耐侵食性を発揮していることが確かめられた。また、従来技術2と本発明との間には高い有意差(p<0.01)が認められ、短繊維材B配合量1kg/mは1.9倍、2kg/m配合は23.2倍という高い耐侵食性を発揮していることが確かめられた。
FIG. 8 is a graph showing a comparison of the amount of eroded soil during wet and dry conditions.
As a result of the test, when the substrate was wet (n = 3), no difference was observed between the prior art 1 and the staple fiber material B compounding amount of 1 kg / m 3 , but the staple fiber material B was found. A high significant difference (p <0.01) was observed between the compounding amount of 2 kg / m 3 and it was confirmed that the erosion resistance was 11.7 times higher. In addition, a high significant difference (p <0.01) was observed between the prior art 2 and the present invention, and the staple fiber B compounding amount of 1 kg / m 3 was 1.9 times, and the 2 kg / m 3 compounding amount was 23. It was confirmed that it exhibited twice as high erosion resistance.

一方、基盤乾燥時(n=3)には、すべての試験区間において差は小さくなり、従来技術1と本発明との間に差は認められなかったが、従来技術2と、本発明の短繊維材B配合量1kg/mとの間(p=0.24)及び短繊維材B配合量2kg/mとの間(p=0.18)には比較的高い確率で差が認められ、1.5~1.6倍の浸食防止効果が発揮されることが確かめられた。 On the other hand, when the substrate was dried (n = 3), the difference was small in all the test sections, and no difference was observed between the prior art 1 and the present invention, but the prior art 2 and the present invention were short. There is a relatively high probability of a difference between the fiber material B blending amount of 1 kg / m 3 (p = 0.24) and the staple fiber B blending amount of 2 kg / m 3 (p = 0.18). It was confirmed that the erosion prevention effect was 1.5 to 1.6 times higher.

以上の結果から、本発明においては、短繊維材Bの配合量を2kg/mとすることで、基盤湿潤時、基盤乾燥時ともに、生育基盤の耐侵食性向上効果が発揮できることが確かめられた。 From the above results, it was confirmed that in the present invention, by setting the blending amount of the staple fiber material B to 2 kg / m 3 , the effect of improving the erosion resistance of the growth substrate can be exhibited both when the substrate is wet and when the substrate is dried. rice field.

[実施例5]生育基盤の耐久性の検証
本発明の生育基盤の耐久性(?離防止効果)を検証するため、法長4m、勾配1:1.0の盛土法面を使用して、岩盤法面(北西向き疑似岩盤法面)と土砂法面(南東向き)において次の比較試験を行った。岩盤法面は、30cm×30cmのコンクリートブロックを節理間隔5mm程度となるように空張りした疑似岩盤法面である。生育基盤の吹付厚は、岩盤法面は5cm厚、土砂法面は3cm厚で施工した。
[Example 5] Verification of durability of growth base In order to verify the durability (effect of preventing separation) of the growth base of the present invention, an embankment slope having a length of 4 m and a gradient of 1: 1.0 was used. The following comparative tests were conducted on the rock slope (northwest facing pseudo-rock slope) and the earth and sand slope (southeast facing). The bedrock slope is a pseudo-rock slope in which concrete blocks of 30 cm × 30 cm are laid out so that the joint spacing is about 5 mm. The spray thickness of the growth base was 5 cm thick on the rock slope and 3 cm thick on the earth and sand slope.

なお、実施例1~実施例3の結果から、従来技術1と従来技術2はほぼ同等であること、及び本発明における短繊維材Bの配合量は、1kg/m配合よりも2kg/m配合の方が好適なことが確かめられたことから、対照区として、金網張工を併用した有機質系厚層基材吹付工(短繊維材は配合していない)と、従来技術2を設定した。 From the results of Examples 1 to 3, the prior art 1 and the prior art 2 are almost the same, and the blending amount of the staple fiber material B in the present invention is 2 kg / m more than the blending of 1 kg / m 3 . Since it was confirmed that the combination of 3 was more suitable, the organic thick-layer base material spraying work (without the staples) and the conventional technique 2 were set as the control group. did.

金網張工+有機質系植生基材吹付工
本発明:短繊維材A+短繊維材B
従来技術2:椰子短繊維(特許文献2の技術)
Wire netting work + organic vegetation base material spraying work Present invention: Staple material A + Staple material B
Conventional technique 2: Palm staple fiber (Technology of Patent Document 2)

従来技術2の材料配合はこれまでの実施例と同様である。また、本試験における本発明の1m当たりの材料配合は次のとおりである。
生育基盤材(オルガソイル) 2000L
短繊維材A(椰子繊維) 80L
短繊維材B(ポリエステル繊維) 2kg
粘土鉱物(ベントナイト) 10kg
侵食防止材(レミコントロール) 60kg
緩効性肥料(ハイコントロール) 4kg
The material composition of the prior art 2 is the same as in the previous examples. In addition, the material composition per 1 m 3 of the present invention in this test is as follows.
Growth base material (organ soil) 2000L
Staple A (palm fiber) 80L
Staple B (polyester fiber) 2 kg
Clay mineral (bentonite) 10 kg
Erosion prevention material (Remi Control) 60kg
Slow-release fertilizer (high control) 4 kg

各試験区とも、有機質系生育基盤材(商品名:オルガソイル)2000L/m、無機質系侵食防止材(商品名:レミコントロール)60kg/m、及び緩効性肥料(商品名:ハイコントロール)4kg/m)は共通である。調査は、46日後と105日後に3箇所/試験区の調査プロットを設定し、乾燥収縮クラック間隔、単位面積当たりの乾燥収縮クラック延長の測定、及び生育基盤の?離状況を観察した。 In each test plot, organic growth base material (trade name: Olga Soil) 2000 L / m 3 , inorganic erosion preventive material (trade name: Remi Control) 60 kg / m, and slow-release fertilizer (trade name: High Control) 4 kg. / M 3 ) is common. For the survey, survey plots were set at 3 sites / test plots after 46 days and 105 days, and the drying shrinkage crack interval, the measurement of the drying shrinkage crack length per unit area, and the separation of the growth base were observed.

図9は、乾燥収縮クラック間隔の比較(三元配置分散分析)を示すグラフである。
乾燥収縮クラック間隔について、法面条件(岩盤法面、土砂法面)、適用工法(金網張工を併用した植生基材吹付工、本発明、従来技術2)、及び経過日数(46日後、105日後)の3因子について三元配置分散分析を行った。その結果、法面条件、適用工法、経過日数の各要因ともに高い有意差(それぞれp<0.01、p<0.05、p<0.01)が認められ、Tukeyの多重比較検定の結果、金網を併用した植生基材吹付工と従来技術2との間の差は小さいが(p=0.46)、本発明と金網を併用した植生基材吹付工との間、及び本発明と従来技術2との間には有意差(p<0.05)が認められた。
FIG. 9 is a graph showing a comparison of drying shrinkage crack intervals (three-way ANOVA).
Regarding the drying shrinkage crack interval, slope conditions (rock slope, earth and sand slope), applicable method (vegetation base material spraying work using wire meshing work, present invention, prior art 2), and elapsed days (46 days later, 105) Three-way ANOVA was performed for the three factors (day later). As a result, a high significant difference (p <0.01, p <0.05, p <0.01, respectively) was observed for each factor of slope condition, applied construction method, and elapsed days, and the result of Tukey's multiple comparison test was found. Although the difference between the vegetation base material spraying work using the wire net and the prior art 2 is small (p = 0.46), the present invention and the vegetation base material spraying work using the wire net together, and the present invention A significant difference (p <0.05) from the prior art 2 was observed.

乾燥収縮クラック間隔は、法面条件や経過日数によっても差が生じるが、本発明は他の試験区と比較して優れたクラック抑制効果を有していることが確かめられた。また、本発明のクラック抑制効果を法面条件別に比較すると、金網張工を併用した植生基材吹付工と比較して岩盤法面で54~64%、土砂法面で87~93%に、従来技術2と比較して岩盤法面で76~83%、土砂法面で67~72%に減少させる効果が認められた。 Although the drying shrinkage crack interval varies depending on the slope conditions and the number of days elapsed, it was confirmed that the present invention has an excellent crack suppressing effect as compared with other test plots. Further, when the crack suppressing effect of the present invention is compared according to the slope conditions, it is 54 to 64% on the bedrock slope and 87 to 93% on the earth and sand slope as compared with the vegetation base material spraying work using the wire netting work. Compared with the prior art 2, the effect of reducing the rock slope to 76 to 83% and the earth and sand slope to 67 to 72% was observed.

図10は、乾燥収縮クラック延長の比較(三元配置分散分析)を示すグラフである。
乾燥収縮クラック延長について、法面条件(岩盤法面、土砂法面)、適用工法(金網張工を併用した植生基材吹付工、本発明、従来技術2)、及び経過日数(46日後、105日後)の3因子について三元配置分散分析を行った。その結果、法面条件、適用工法、経過日数の各要因ともに顕著な差(それぞれp=0.06、p<0.05、p=0.20)が認められ、Tukeyの多重比較検定の結果、本発明と従来技術2の間の差(p=0.25)は少なかったが、本発明と金網張工を併用した植生基材吹付工の間には高い有意差(p<0.05)が認められ、本発明は金網張工を併用した一般的な植生基材吹付工と比較しても優れたクラック抑制効果を有し、従来技術2と比較しても比較的高い確率で差があることが確かめられた。
FIG. 10 is a graph showing a comparison of drying shrinkage crack lengths (three-way ANOVA).
Regarding the extension of dry shrinkage cracks, slope conditions (rock slope, earth and sand slope), applicable method (vegetation base material spraying work using wire meshing work, present invention, prior art 2), and elapsed days (46 days later, 105) Three-way ANOVA was performed for the three factors (day later). As a result, significant differences (p = 0.06, p <0.05, p = 0.20, respectively) were observed for each factor of slope conditions, applied construction method, and elapsed days, and the results of Tukey's multiple comparison test were found. Although the difference (p = 0.25) between the present invention and the prior art 2 was small, there was a high significant difference (p <0.05) between the present invention and the vegetation base material spraying work in which the wire netting work was used in combination. ) Is recognized, and the present invention has an excellent crack suppressing effect as compared with a general vegetation base material spraying work in which a wire netting work is also used, and there is a relatively high probability of difference as compared with the prior art 2. It was confirmed that there was.

乾燥収縮クラック延長は、法面条件や経過日数によっても差が生じるが、本発明は、これら対照区と比較して優れたクラック抑制効果を有していることが確かめられた。また、本発明のクラック抑制効果を法面条件別に比較すると、金網張工を併用した植生基材吹付工と比較して、岩盤法面で31~37%、土砂法面で42~43%に、従来技術2と比較して、岩盤法面で45~71%、土砂法面で65~76%に減少させる効果が認められた。 Although the dry shrinkage crack prolongation varies depending on the slope conditions and the number of days elapsed, it was confirmed that the present invention has an excellent crack suppressing effect as compared with these control groups. Further, when the crack suppressing effect of the present invention is compared according to the slope conditions, it is 31 to 37% on the bedrock slope and 42 to 43% on the earth and sand slope as compared with the vegetation base material spraying work using the wire netting work. Compared with the prior art 2, the effect of reducing the rock slope to 45 to 71% and the earth and sand slope to 65 to 76% was observed.

金網張工を併用した植生基材吹付工のクラック間隔とクラック延長が最も大きくなった原因として、生育基盤の乾燥収縮に伴って、金網の網目に沿ってクラックが生じたことがあげられる。このような現象は、特に生育基盤の吹付厚が薄い場合に発生しやすい。本発明を、金網張工を併用した植生基材吹付工として施工した場合には、金網に沿ったクラックの発生を抑制する効果も期待できる。 The reason why the crack interval and the crack extension of the vegetation base material spraying work combined with the wire meshing work became the largest is that cracks occurred along the mesh of the wire mesh due to the drying shrinkage of the growth base. Such a phenomenon is likely to occur especially when the spray thickness of the growth base is thin. When the present invention is applied as a vegetation base material spraying work in which a wire meshing work is also used, the effect of suppressing the generation of cracks along the wire mesh can be expected.

図11は、施工105日後に確認された生育基盤の剥離状況を比較する写真である。
なお、金網張工を省略した植生基材吹付工が有する問題として、現場によっては吹き付けた生育基盤が風で?離したり、宿根雑草の出芽で生育基盤が持ち上げられて?離したりする問題がある。今回の試験の105日後の調査時に、土砂法面において従来技術2の試験区で生育基盤の?離が観察されたのに対し、本発明と金網張工を併用した植生基材吹付工の試験区では全く?離は認められなかった。この結果から、本発明は従来技術2と比較して優れた生育基盤の?離抑制効果があり、3cm厚という薄い吹付厚でも十分な効果が発揮されることが確かめられた。
FIG. 11 is a photograph comparing the peeling state of the growth base confirmed 105 days after the construction.
In addition, as a problem of the vegetation base material spraying work that omits the wire netting work, there is a problem that the sprayed growth base is separated by the wind depending on the site, or the growth base is lifted and separated by the emergence of the root weeds. .. At the time of the investigation 105 days after this test, the separation of the growth base was observed in the test plot of the prior art 2 on the earth and sand slope, whereas the test of the vegetation base material spraying work using the present invention and the wire netting work together. No separation was allowed in the ward. From this result, it was confirmed that the present invention has an excellent effect of suppressing the separation of the growth base as compared with the prior art 2, and a sufficient effect is exhibited even with a thin spray thickness of 3 cm.

[実施例6]
以上を総合すると、本発明は、少なくとも次の配合の場合に目的とする作用効果を奏することができる。なお、下記記載以外の侵食防止材、肥料、及び種子の配合量は設計事項である。
生育基盤材 2000L
短繊維材A 20~100L
短繊維材B 1~5kg
粘土鉱物 5~50kg
[Example 6]
Taken together, the present invention can achieve the desired effects in the case of at least the following formulations. The amounts of erosion-preventing materials, fertilizers, and seeds other than those listed below are design items.
Growth base material 2000L
Staple material A 20-100L
Staple material B 1-5kg
Clay mineral 5-50kg

さらに好適には、次の配合の場合に目的とする作用効果を奏する。
生育基盤材 2000L
短繊維材A 40~80L
短繊維材B 1~2kg
粘土鉱物 10~30kg
More preferably, the desired action and effect are obtained in the case of the following formulation.
Growth base material 2000L
Staple material A 40-80L
Staple material B 1-2 kg
Clay mineral 10-30kg

Claims (2)

緑化基礎工として網張工を併用せずに植生基材を傾斜地に直接吹き付ける緑化工法に用いる前記植生基材であって、
主材料となる生育基盤材と、粘土鉱物と、第1の短繊維材(A)と、第2の短繊維材(B)とを少なくとも含む混合物であり、
前記第1の短繊維材(A)と前記第2の短繊維材(B)は、相対的に、前記第1の短繊維材(A)が硬質で平均繊維長が4.5cm±3.0cm、かつ、前記第2の短繊維材(B)が軟質で平均繊維長が2.0cm±1.0cmであることを特徴とする植生基材。
The vegetation base material used in the greening method in which the vegetation base material is directly sprayed onto the slope without using the netting work as the greening foundation work.
It is a mixture containing at least a growth base material as a main material, a clay mineral, a first staple fiber material (A), and a second staple fiber material (B).
In the first short fiber material (A) and the second short fiber material (B), the first short fiber material (A) is relatively hard and the average fiber length is 4.5 cm ± 3. A vegetation base material having 0 cm and the second short fiber material (B) being soft and having an average fiber length of 2.0 cm ± 1.0 cm .
緑化基礎工として網張工を併用せずに植生基材を用いて行う法面吹付緑化工法であって、
少なくとも主材料となる生育基盤材と、粘土鉱物と、第1の短繊維材(A)と、第2の短繊維材(B)とを混合することにより植生基材を調製する工程と、
前記植生基材を傾斜地に直接吹き付ける工程とを有し、
前記第1の短繊維材(A)と前記第2の短繊維材(B)は、相対的に、前記第1の短繊維材(A)が硬質で平均繊維長が4.5cm±3.0cm、かつ、前記第2の短繊維材(B)が軟質で平均繊維長が2.0cm±1.0cmであることを特徴とする法面吹付緑化工法。
It is a slope spraying greening method that uses a vegetation base material without using a netting work as a greening foundation work.
A step of preparing a vegetation base material by mixing at least a growth base material as a main material, a clay mineral, a first staple fiber material (A), and a second staple fiber material (B).
It has a step of directly spraying the vegetation base material on a slope.
In the first short fiber material (A) and the second short fiber material (B), the first short fiber material (A) is relatively hard and the average fiber length is 4.5 cm ± 3. A slope spray greening method characterized by 0 cm , the second staple fiber material (B) being soft, and an average fiber length of 2.0 cm ± 1.0 cm .
JP2018161905A 2018-08-30 2018-08-30 Slope spray greening method and vegetation base material Active JP7027282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161905A JP7027282B2 (en) 2018-08-30 2018-08-30 Slope spray greening method and vegetation base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161905A JP7027282B2 (en) 2018-08-30 2018-08-30 Slope spray greening method and vegetation base material

Publications (2)

Publication Number Publication Date
JP2020031595A JP2020031595A (en) 2020-03-05
JP7027282B2 true JP7027282B2 (en) 2022-03-01

Family

ID=69666122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161905A Active JP7027282B2 (en) 2018-08-30 2018-08-30 Slope spray greening method and vegetation base material

Country Status (1)

Country Link
JP (1) JP7027282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115921072B (en) * 2023-03-09 2023-06-06 山东风光市政园林工程有限公司 Afforestation discarded object is selected separately broken system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307175A (en) 2005-03-30 2006-11-09 Raito Kogyo Co Ltd Manufacturing method of fiber exposure-type granule, greening material and greening method using the material
JP2007092513A (en) 2005-09-05 2007-04-12 Eco Green:Kk Reinforcement building material, and method and system of preparing reinforced earth base for promoting greening using the reinforcement building material
JP2008050880A (en) 2006-08-25 2008-03-06 Raito Kogyo Co Ltd Growth base material, and greening method using the same
JP2009235760A (en) 2008-03-27 2009-10-15 Public Works Research Institute Soil material for covering bank back slope surface, and covering method using the soil material
JP2009247307A (en) 2008-04-09 2009-10-29 Tenryu Ind Co Ltd Method for producing greening material, method for producing vegetation base material, vegetation constructing method, greening material, vegetation base material, vegetation soil, and vegetation mat
JP2012162913A (en) 2011-02-07 2012-08-30 Kusube Sangyo:Kk Slope greening method
JP2013238028A (en) 2012-05-15 2013-11-28 Toko Geotech Corp Manufacturing method and manufacturing apparatus for recycle short-fiber material, and mortar concrete and seeding and planting base containing recycle short-fiber material
US20130344759A1 (en) 2011-03-08 2013-12-26 Geco Ingenierie Method and device for producing a nonwoven geotextile, and geotextile thus produced

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281265B2 (en) * 1996-08-16 2002-05-13 東興建設株式会社 Growth base material and slope greening method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307175A (en) 2005-03-30 2006-11-09 Raito Kogyo Co Ltd Manufacturing method of fiber exposure-type granule, greening material and greening method using the material
JP2007092513A (en) 2005-09-05 2007-04-12 Eco Green:Kk Reinforcement building material, and method and system of preparing reinforced earth base for promoting greening using the reinforcement building material
JP2008050880A (en) 2006-08-25 2008-03-06 Raito Kogyo Co Ltd Growth base material, and greening method using the same
JP2009235760A (en) 2008-03-27 2009-10-15 Public Works Research Institute Soil material for covering bank back slope surface, and covering method using the soil material
JP2009247307A (en) 2008-04-09 2009-10-29 Tenryu Ind Co Ltd Method for producing greening material, method for producing vegetation base material, vegetation constructing method, greening material, vegetation base material, vegetation soil, and vegetation mat
JP2012162913A (en) 2011-02-07 2012-08-30 Kusube Sangyo:Kk Slope greening method
US20130344759A1 (en) 2011-03-08 2013-12-26 Geco Ingenierie Method and device for producing a nonwoven geotextile, and geotextile thus produced
JP2013238028A (en) 2012-05-15 2013-11-28 Toko Geotech Corp Manufacturing method and manufacturing apparatus for recycle short-fiber material, and mortar concrete and seeding and planting base containing recycle short-fiber material

Also Published As

Publication number Publication date
JP2020031595A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
KR101226872B1 (en) Method for green planting a slope by vegetation-mat
CN107460884B (en) Grass cage reinforcement spray layer ecological slope protection structure and construction method thereof
KR100888230B1 (en) Nature Tree-planting Composition of Inclined Plane and Composition Method Thereof
JP7027282B2 (en) Slope spray greening method and vegetation base material
JP3943529B2 (en) Slope revegetation method and plant cultivation base
KR100806148B1 (en) Afforestation method
CN211621621U (en) Plant biological bag protection device for high and steep rocky slope
EP1869236B1 (en) Nonwoven, fabric or bundle comprising or consisting of lignite fibres
KR100423004B1 (en) Ecological restoration tree Plant law make up and accomplish topsoil class which plant grows using forest topsoil ingredient association composite and this
JP4351719B2 (en) Ground covering method and ground covering method
CN110419373B (en) Vegetation recovery method for treating slope by using high-steep rock quality and concrete
KR101205552B1 (en) Manufacturing method of vegetation mats
KR101768764B1 (en) Method for green planting a slope by jute-net and pulp
CN113412696B (en) Coal gangue slope shallow layer reinforcing and ecological restoration method
KR101004424B1 (en) Structure for afforestation of a slope using vegetation nets and greening soil mixtures
KR960009729B1 (en) Compound soil spray method for slope plants
JP3584468B2 (en) Slope greening method
JP2003092925A (en) Base for growing plant and spraying greening method using the same
KR20090032266A (en) Slope greening method
CN111213553A (en) Extrusion type spray seeding process for organic soil aggregate
JP3641791B2 (en) Constituents for breeding eelgrass
KR100817258B1 (en) A plant soil for afforestation and afforestation method using this composition
CN2653871Y (en) Grass and tree planting multi structure fiber covering body for soil hard to plant
CN114467403B (en) Method for restoring mountain green in quarry
CN101986805A (en) Method for producing environmentally-friendly grass blanket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220216

R150 Certificate of patent or registration of utility model

Ref document number: 7027282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150