JP7023366B2 - Heat exchanger unit and refrigeration cycle device - Google Patents

Heat exchanger unit and refrigeration cycle device Download PDF

Info

Publication number
JP7023366B2
JP7023366B2 JP2020537961A JP2020537961A JP7023366B2 JP 7023366 B2 JP7023366 B2 JP 7023366B2 JP 2020537961 A JP2020537961 A JP 2020537961A JP 2020537961 A JP2020537961 A JP 2020537961A JP 7023366 B2 JP7023366 B2 JP 7023366B2
Authority
JP
Japan
Prior art keywords
flat tube
heat exchanger
flat
blower
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020537961A
Other languages
Japanese (ja)
Other versions
JPWO2020039547A1 (en
Inventor
伸 中村
剛志 前田
大輔 伊東
康明 加藤
惇司 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020039547A1 publication Critical patent/JPWO2020039547A1/en
Application granted granted Critical
Publication of JP7023366B2 publication Critical patent/JP7023366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、扁平管の管軸を上下方向に向けて並べて構成された熱交換器を備える熱交換器ユニット及び冷凍サイクル装置に関し、特に扁平管の配列構造に関する。 The present invention relates to a heat exchanger unit and a refrigeration cycle device including a heat exchanger configured by arranging the tube axes of flat tubes in the vertical direction, and particularly to an arrangement structure of flat tubes.

従来の熱交換器ユニットは、伝熱管とフィンとにより構成された熱交換器を送風機の側方を囲む様にして配置したものが知られている。このような熱交換器は、伝熱管を水平方向に延ばし、フィンを伝熱管の管軸に垂直に交差するように配置されており、限られた筐体の容積の中で熱交換器がなるべく大きな前面面積を確保する必要がある。そのため、熱交換器は、伝熱管が延びる方向において複数回曲げて送風機が配置されている風路を囲むように構成されている(例えば、特許文献1参照)。 A conventional heat exchanger unit is known in which a heat exchanger composed of a heat transfer tube and fins is arranged so as to surround the side of the blower. In such a heat exchanger, the heat transfer tube is extended in the horizontal direction, and the fins are arranged so as to intersect the tube axis of the heat transfer tube perpendicularly. It is necessary to secure a large front area. Therefore, the heat exchanger is configured to be bent a plurality of times in the direction in which the heat transfer tube extends to surround the air passage in which the blower is arranged (see, for example, Patent Document 1).

特許第4684085号公報Japanese Patent No. 4684085

しかし、特許文献1に開示されている熱交換器ユニットにおいては、熱交換器は、伝熱管を水平方向に管軸を向けて配置しているため、水平方向の端部にヘッダ、伝熱管のUベンド部、及び接続配管が配置される。そのため、熱交換器は、送風機が配置されている風路の周囲の全域を囲むことができず、筐体内の風路における実装効率を向上させることができない。そのため、熱交換器ユニットは、必要な熱交換性能を確保するために筐体を大型化して熱交換器を大きくしなければならないという課題があった。また、熱交換器ユニットは、熱交換器の水平方向の端部から熱交換されない空気が通過することにより、熱交換性能が低下するという課題があった。さらには、熱交換器ユニットは、送風機から伝熱管までの距離のばらつきが大きいため、熱交換器を通過する空気の流れが熱交換器の各部においてばらつき、熱交換性能が低下するという課題があった。 However, in the heat exchanger unit disclosed in Patent Document 1, since the heat exchanger is arranged with the heat transfer tube directed in the horizontal direction, the header and the heat transfer tube are arranged at the end in the horizontal direction. The U bend portion and the connecting pipe are arranged. Therefore, the heat exchanger cannot surround the entire area around the air passage in which the blower is arranged, and cannot improve the mounting efficiency in the air passage in the housing. Therefore, the heat exchanger unit has a problem that the housing must be enlarged and the heat exchanger must be enlarged in order to secure the required heat exchange performance. Further, the heat exchanger unit has a problem that the heat exchange performance is deteriorated due to the passage of air that is not heat exchanged from the horizontal end portion of the heat exchanger. Furthermore, since the heat exchanger unit has a large variation in the distance from the blower to the heat transfer tube, there is a problem that the flow of air passing through the heat exchanger varies in each part of the heat exchanger and the heat exchange performance deteriorates. rice field.

本発明は、上記のような課題を解決するためのものであり、熱交換器の各部を通過する空気の流れを一様にし、熱交換性能を向上させた熱交換器ユニット、及び冷凍サイクル装置を得ることを目的とする。 The present invention is for solving the above-mentioned problems, and is a heat exchanger unit and a refrigerating cycle apparatus in which the flow of air passing through each part of the heat exchanger is made uniform and the heat exchange performance is improved. The purpose is to obtain.

本発明に係る熱交換器ユニットは、筐体内に外気を導入する送風機と、前記送風機の回転中心軸の側方を囲む熱交換器と、を備え、前記熱交換器は、管軸を上下方向に向けて前記送風機の前記回転中心軸の周囲に並列に配置された複数の扁平管と、前記複数の扁平管を接続するヘッダと、を備え、前記複数の扁平管は、第1の扁平管、第2の扁平管、及び第3の扁平管を有し、前記第2の扁平管及び前記第3の扁平管は、前記第1の扁平管と隣合って配置され、前記第1の扁平管との間を接続するフィンが設置されておらず、前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は、前記送風機の前記回転中心軸を中心とした径方向を規定したときに、前記管軸に垂直な断面の長軸の2つの端部のうち前記径方向において前記中心側に位置する第1端部が前記回転中心軸を囲む環状の仮想線上に配置され、前記第1の扁平管の前記第1端部は、前記第2の扁平管の前記第1端部と前記第3の扁平管の前記第1端部とを結ぶ仮想直線よりも前記径方向において前記中心から遠い側に配置されるものである。 The heat exchanger unit according to the present invention includes a blower that introduces outside air into the housing and a heat exchanger that surrounds the side of the rotation center axis of the blower, and the heat exchanger has a tube shaft in the vertical direction. A plurality of flat tubes arranged in parallel around the rotation center axis of the blower and a header connecting the plurality of flat tubes are provided, and the plurality of flat tubes are the first flat tube. , A second flat tube, and a third flat tube, wherein the second flat tube and the third flat tube are arranged adjacent to the first flat tube, and the first flat tube is arranged . The fins connecting to the pipes are not installed, and the first flat pipe, the second flat pipe, and the third flat pipe have a diameter centered on the rotation center axis of the blower. When the direction is specified, the first end located on the center side in the radial direction of the two ends of the long axis of the cross section perpendicular to the tube axis is on the annular virtual line surrounding the rotation center axis. The first end of the first flat tube is arranged and said more than a virtual straight line connecting the first end of the second flat tube and the first end of the third flat tube. It is arranged on the side far from the center in the radial direction.

本発明に係る冷凍サイクル装置は、上記の熱交換器ユニットを搭載したものである。 The refrigeration cycle apparatus according to the present invention is equipped with the above heat exchanger unit.

本発明によれば、上記構成により、送風機の周りに環状に扁平管が配置され、送風機から複数の扁平管のそれぞれの第1端部までの距離の差を小さく設定することができる。そのため、熱交換器ユニット及び冷凍サイクル装置は、各扁平管の間を通過する空気の流れが一様になるため、熱交換性能が向上する。 According to the present invention, according to the above configuration, the flat tubes are arranged in an annular shape around the blower, and the difference in the distances from the blower to the first end of each of the plurality of flat tubes can be set small. Therefore, in the heat exchanger unit and the refrigeration cycle device, the air flow passing between the flat tubes becomes uniform, so that the heat exchange performance is improved.

実施の形態1に係る熱交換器ユニットの送風機の回転中心軸に垂直な断面における構造の模式図である。It is a schematic diagram of the structure in the cross section perpendicular to the rotation center axis of the blower of the heat exchanger unit which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器ユニットの送風機の回転中心軸に平行な断面における構造の模式図である。It is a schematic diagram of the structure in the cross section parallel to the rotation center axis of the blower of the heat exchanger unit which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器ユニットが適用された冷凍サイクル装置の説明図である。It is explanatory drawing of the refrigerating cycle apparatus to which the heat exchanger unit which concerns on Embodiment 1 is applied. 実施の形態1に係る熱交換器を構成する扁平管の構造を説明する模式図である。It is a schematic diagram explaining the structure of the flat tube which constitutes the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器ユニットの送風機と熱交換器の複数の扁平管との位置関係の説明図である。It is explanatory drawing of the positional relationship between the blower of the heat exchanger unit which concerns on Embodiment 1 and a plurality of flat pipes of a heat exchanger. 実施の形態1に係る熱交換器ユニットの変形例である熱交換器ユニットの送風機と熱交換器の複数の扁平管との位置関係の説明図である。It is explanatory drawing of the positional relationship between a blower of a heat exchanger unit and a plurality of flat pipes of a heat exchanger which is a modification of the heat exchanger unit which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器ユニットの比較例としての熱交換器ユニットの送風機と熱交換器の複数の扁平管との位置関係の説明図である。It is explanatory drawing of the positional relationship between the blower of a heat exchanger unit, and a plurality of flat pipes of a heat exchanger as a comparative example of the heat exchanger unit which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器ユニットの熱交換器の変形例である熱交換器の扁平管の管軸に垂直な断面構造の説明図である。It is explanatory drawing of the cross-sectional structure perpendicular to the tube axis of the flat tube of the heat exchanger which is the modification of the heat exchanger of the heat exchanger unit which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器ユニットの熱交換器の変形例である熱交換器の扁平管の管軸に平行な断面構造の説明図である。It is explanatory drawing of the cross-sectional structure parallel to the tube axis of the flat tube of the heat exchanger which is the modification of the heat exchanger of the heat exchanger unit which concerns on Embodiment 1. FIG. 実施の形態2に係る熱交換器ユニットの送風機と熱交換器の複数の扁平管との位置関係の説明図である。It is explanatory drawing of the positional relationship between the blower of the heat exchanger unit which concerns on Embodiment 2 and a plurality of flat pipes of a heat exchanger. 実施の形態3に係る熱交換器ユニットの送風機と熱交換器の複数の扁平管との位置関係の説明図である。It is explanatory drawing of the positional relationship between the blower of the heat exchanger unit which concerns on Embodiment 3 and a plurality of flat pipes of a heat exchanger. 図11の熱交換器を構成する扁平管の構造を説明する模式図である。It is a schematic diagram explaining the structure of the flat tube constituting the heat exchanger of FIG. 11. 実施の形態4に係る熱交換器ユニットの送風機と熱交換器の複数の扁平管との位置関係の説明図である。It is explanatory drawing of the positional relationship between the blower of the heat exchanger unit which concerns on Embodiment 4, and a plurality of flat pipes of a heat exchanger. 図13の熱交換器を構成する扁平管の構造を説明する模式図である。It is a schematic diagram explaining the structure of the flat tube constituting the heat exchanger of FIG. 13. 実施の形態4に係る熱交換器ユニットの送風機の回転中心軸に垂直な断面における構造の模式図である。It is a schematic diagram of the structure in the cross section perpendicular to the rotation center axis of the blower of the heat exchanger unit which concerns on Embodiment 4. FIG.

以下に、熱交換器及び熱交換器ユニットの実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the heat exchanger and the heat exchanger unit will be described. The form of the drawings is an example and does not limit the present invention. Further, those having the same reference numerals in the respective figures are the same or equivalent thereof, which are common to the entire text of the specification. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.

実施の形態1.
図1は、実施の形態1に係る熱交換器ユニット100の送風機2の回転中心軸61に垂直な断面における構造の模式図である。図2は、実施の形態1に係る熱交換器ユニット100の送風機60の回転中心軸に平行な断面における構造の模式図である。図3は、実施の形態1に係る熱交換器ユニット100が適用された冷凍サイクル装置1の説明図である。図1に示された熱交換器ユニット100は、空気調和装置等の冷凍サイクル装置1に搭載されるものである。図3に示される様に、冷凍サイクル装置1は、圧縮機3、四方弁4、室外熱交換器5、膨張装置6、及び室内熱交換器7を冷媒配管90により接続し、冷媒回路を構成したものである。例えば冷凍サイクル装置1が空気調和装置である場合には、冷媒配管90内には冷媒が流通し、四方弁4により冷媒の流れを切り換えることにより、暖房運転と冷凍運転とを切り換えることができる。
Embodiment 1.
FIG. 1 is a schematic view of a structure in a cross section perpendicular to the rotation center axis 61 of the blower 2 of the heat exchanger unit 100 according to the first embodiment. FIG. 2 is a schematic view of a structure in a cross section parallel to the rotation center axis of the blower 60 of the heat exchanger unit 100 according to the first embodiment. FIG. 3 is an explanatory diagram of the refrigeration cycle device 1 to which the heat exchanger unit 100 according to the first embodiment is applied. The heat exchanger unit 100 shown in FIG. 1 is mounted on a refrigeration cycle device 1 such as an air conditioner. As shown in FIG. 3, in the refrigerating cycle device 1, a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an expansion device 6, and an indoor heat exchanger 7 are connected by a refrigerant pipe 90 to form a refrigerant circuit. It was done. For example, when the refrigeration cycle device 1 is an air conditioner, the refrigerant flows in the refrigerant pipe 90, and the flow of the refrigerant can be switched by the four-way valve 4 to switch between the heating operation and the refrigeration operation.

室外機8に搭載された室外熱交換器5及び室内機9に搭載された室内熱交換器7は、近傍に送風機2を備える。室外機8において送風機2は、室外熱交換器5に外気を送り込み、外気と冷媒との間で熱交換を行う。また、室内機9において送風機2は、室内の空気を筐体内に導入し、室内熱交換器7に室内の空気を送り込み、室内の空気と冷媒との間で熱交換を行い、室内の空気の温度を調和する。また、熱交換器ユニット100は、冷凍サイクル装置1において室外機8及び室内機9として用いることができる。つまり、熱交換器ユニット100に搭載されている熱交換器10は、凝縮器又は蒸発器として機能する。熱交換器10が搭載された室外機8及び室内機9等の機器を、特に熱交換器ユニット100と呼ぶ。 The outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 are provided with a blower 2 in the vicinity thereof. In the outdoor unit 8, the blower 2 sends outside air to the outdoor heat exchanger 5 to exchange heat between the outside air and the refrigerant. Further, in the indoor unit 9, the blower 2 introduces the indoor air into the housing, sends the indoor air to the indoor heat exchanger 7, exchanges heat between the indoor air and the refrigerant, and exchanges heat between the indoor air and the refrigerant. Harmonize the temperature. Further, the heat exchanger unit 100 can be used as the outdoor unit 8 and the indoor unit 9 in the refrigeration cycle device 1. That is, the heat exchanger 10 mounted on the heat exchanger unit 100 functions as a condenser or an evaporator. Equipment such as the outdoor unit 8 and the indoor unit 9 on which the heat exchanger 10 is mounted is particularly referred to as a heat exchanger unit 100.

図1に示される熱交換器ユニット100は、筐体80の中央部に送風機2が配置されており、送風機2の回転中心軸61を囲むように熱交換器10が配置されている。熱交換器10の内側には内側風路70が形成されており、熱交換器10の外側には外側風路71が形成されている。外側風路71は、筐体80内の風路外壁と熱交換器10の外周との間に形成される。実施の形態1においては、送風機2は、筐体80の外部の空気を開口部82から筐体80の内部に導入し、内側風路70から熱交換器10を通過し、外側風路71を経て、筐体80の外部に連通する開口部81から外部に空気を吹き出す。図2に示される様に、実施の形態1に係る熱交換器ユニット100においては、熱交換器10は、送風機2の側方を囲むように配置されているが、この形態のみに限定されず、送風機2と熱交換器10とは、上下方向にずれた位置に配置されていても良い。また、実施の形態1において、筐体80内の空気の流れは、開口部82から送風機2、熱交換器10、外側風路71を経て開口部81に至るが、逆方向に流れていても良い。 In the heat exchanger unit 100 shown in FIG. 1, the blower 2 is arranged in the central portion of the housing 80, and the heat exchanger 10 is arranged so as to surround the rotation center axis 61 of the blower 2. An inner air passage 70 is formed inside the heat exchanger 10, and an outer air passage 71 is formed outside the heat exchanger 10. The outer air passage 71 is formed between the outer wall of the air passage in the housing 80 and the outer periphery of the heat exchanger 10. In the first embodiment, the blower 2 introduces the air outside the housing 80 into the inside of the housing 80 through the opening 82, passes through the heat exchanger 10 from the inner air passage 70, and passes through the outer air passage 71. Then, air is blown to the outside from the opening 81 communicating with the outside of the housing 80. As shown in FIG. 2, in the heat exchanger unit 100 according to the first embodiment, the heat exchanger 10 is arranged so as to surround the side of the blower 2, but is not limited to this embodiment. , The blower 2 and the heat exchanger 10 may be arranged at positions displaced in the vertical direction. Further, in the first embodiment, the air flow in the housing 80 reaches the opening 81 from the opening 82 through the blower 2, the heat exchanger 10, and the outer air passage 71, but even if the air flows in the opposite direction. good.

図4は、実施の形態1に係る熱交換器10を構成する扁平管20の構造を説明する模式図である。熱交換器10は、複数の扁平管20を送風機2の回転中心軸61を囲む様に配置して構成されている。複数の扁平管20は、管軸に垂直な断面形状が長軸26及び短軸27を持つ扁平形状で、内部に冷媒が流通する冷媒流路24が複数設けられている。また、扁平管20は、熱伝導性を持つ金属材料で構成されている。扁平管20を構成する材料としては、例えばアルミニウム、アルミニウム合金、銅、又は銅合金が用いられている。扁平管20は、加熱した材料をダイスの穴から押し出して図に示される断面を成形する押し出し加工によって製造される。なお、扁平管20は、ダイスの穴から材料を引き抜いて図に示される断面を成形する引き抜き加工によって製造されてもよい。扁平管20の製造方法は、扁平管20の断面形状に応じ適宜選択することができる。 FIG. 4 is a schematic diagram illustrating the structure of the flat tube 20 constituting the heat exchanger 10 according to the first embodiment. The heat exchanger 10 is configured by arranging a plurality of flat tubes 20 so as to surround the rotation center axis 61 of the blower 2. The plurality of flat pipes 20 have a flat shape having a long axis 26 and a short axis 27 in a cross-sectional shape perpendicular to the pipe axis, and a plurality of refrigerant flow paths 24 through which the refrigerant flows are provided therein. Further, the flat tube 20 is made of a metal material having thermal conductivity. As the material constituting the flat tube 20, for example, aluminum, an aluminum alloy, copper, or a copper alloy is used. The flat tube 20 is manufactured by extruding a heated material through a hole in a die to form a cross section shown in FIG. The flat tube 20 may be manufactured by a drawing process in which a material is pulled out from a hole in a die to form a cross section shown in FIG. The method for manufacturing the flat tube 20 can be appropriately selected according to the cross-sectional shape of the flat tube 20.

図2に示される様に、複数の扁平管20は、管軸を上下方向、つまり送風機2の回転中心軸61に平行な方向に向けて配置されている。複数の扁平管20の上端部には第1ヘッダ30が取り付けられており、下端部には第2ヘッダ40が取り付けられている。第1ヘッダ30及び第2ヘッダ40は、図3に示される冷媒配管90に接続されており、冷凍サイクル装置1を流れる冷媒を各扁平管20に分配するものである。また、熱交換器10は、複数の扁平管20の各扁平管20同士を繋ぐフィンが設置されていない。 As shown in FIG. 2, the plurality of flat tubes 20 are arranged so that the tube axes are oriented in the vertical direction, that is, in a direction parallel to the rotation center axis 61 of the blower 2. The first header 30 is attached to the upper end portion of the plurality of flat tubes 20, and the second header 40 is attached to the lower end portion. The first header 30 and the second header 40 are connected to the refrigerant pipe 90 shown in FIG. 3, and distribute the refrigerant flowing through the refrigeration cycle device 1 to each flat pipe 20. Further, the heat exchanger 10 is not provided with fins for connecting the flat tubes 20 of the plurality of flat tubes 20 to each other.

図5は、実施の形態1に係る熱交換器ユニット100の送風機2と熱交換器10の複数の扁平管20との位置関係の説明図である。図5においては、複数の扁平管20のうち一部の扁平管20のみを表示し、それ以外は表示を省略している。複数の扁平管20は、送風機2の回転中心軸61の周囲に並列に配置されている。送風機2の回転中心軸61を中心とした径方向を規定したときに、複数の扁平管20の管軸に垂直な断面の長軸26は、径方向に向けられている。扁平管20の長軸26の2つの端部のうち、径方向の内側に位置する端部を第1端部21と呼び、径方向の外側に位置する端部を第2端部22と呼ぶ。実施の形態1においては、複数の扁平管20のそれぞれの第1端部21は、送風機2の回転中心軸61を囲む環状の仮想線23上に配置されている。図5においては、複数の扁平管20のそれぞれの第1端部21は、回転中心軸61を中心とする仮想円上に位置している。 FIG. 5 is an explanatory diagram of the positional relationship between the blower 2 of the heat exchanger unit 100 and the plurality of flat tubes 20 of the heat exchanger 10 according to the first embodiment. In FIG. 5, only a part of the flat tubes 20 among the plurality of flat tubes 20 is displayed, and the display is omitted for the others. The plurality of flat tubes 20 are arranged in parallel around the rotation center axis 61 of the blower 2. When the radial direction centered on the rotation center axis 61 of the blower 2 is defined, the long axis 26 having a cross section perpendicular to the tube axis of the plurality of flat tubes 20 is oriented in the radial direction. Of the two ends of the long axis 26 of the flat tube 20, the end located inside in the radial direction is referred to as the first end portion 21, and the end located outside in the radial direction is referred to as the second end portion 22. .. In the first embodiment, the first end 21 of each of the plurality of flat tubes 20 is arranged on the annular virtual line 23 surrounding the rotation central axis 61 of the blower 2. In FIG. 5, the first end 21 of each of the plurality of flat tubes 20 is located on a virtual circle centered on the rotation center axis 61.

複数の扁平管20は、第1の扁平管20aと、第1の扁平管20aに隣合って配置されている第2の扁平管20b及び第3の扁平管20cとを有する。第1の扁平管20aは、第2の扁平管20bと第3の扁平管20cとの間に配置されている。実施の形態1においては、第1の扁平管20a、第2の扁平管20b、及び第3の扁平管20cの第1端部21は、仮想線23上に位置している。仮想線23が円形であるため、第1の扁平管20a、第2の扁平管20b、及び第3の扁平管20cは、送風機2から第1端部21までの距離が等しくなる。従って、第1の扁平管20aと第2の扁平管20bとの間を流れる空気の量と、第1の扁平管20aと第3の扁平管20cとの間を流れる空気の量とのばらつきが小さい。 The plurality of flat tubes 20 have a first flat tube 20a, a second flat tube 20b and a third flat tube 20c arranged adjacent to the first flat tube 20a. The first flat tube 20a is arranged between the second flat tube 20b and the third flat tube 20c. In the first embodiment, the first flat tube 20a, the second flat tube 20b, and the first end portion 21 of the third flat tube 20c are located on the virtual line 23. Since the virtual line 23 is circular, the first flat tube 20a, the second flat tube 20b, and the third flat tube 20c have the same distance from the blower 2 to the first end portion 21. Therefore, there is a variation in the amount of air flowing between the first flat tube 20a and the second flat tube 20b and the amount of air flowing between the first flat tube 20a and the third flat tube 20c. small.

図5において送風機2の回転中心軸61を中心とした径方向を規定したときに、第1の扁平管20aの第1端部21は、第2の扁平管20bと第3の扁平管20cとの第1端部21同士を結ぶ仮想直線Lよりも径方向の外側に位置している。このような位置関係で配置された第1の扁平管20a、第2の扁平管20b、及び第3の扁平管20cを送風機2の回転中心軸61の周囲の全周に配置すると、熱交換器10の複数の扁平管20のそれぞれの第1端部21は、回転中心軸を囲む環状の仮想線23上に配置される。各扁平管20の第1端部21同士の間隔を等しくし、第1の扁平管20aの第1端部21から仮想直線Lまでの距離を複数の扁平管20全てにおいて等しくすると、図5に示される様に複数の扁平管20の第1端部21は、回転中心軸61の周りに円形に配置されることになる。また、実施の形態1においては、第1の扁平管20aの管軸に垂直な断面における長軸26の延長線である第1の仮想線は、第2の扁平管20bの長軸26の延長線である第2の仮想線及び第3の扁平管20cの長軸26の延長線である第3の仮想線のそれぞれと径方向の内側で交差している。 When the radial direction centered on the rotation center axis 61 of the blower 2 is defined in FIG. 5, the first end portion 21 of the first flat tube 20a includes the second flat tube 20b and the third flat tube 20c. It is located on the outer side in the radial direction from the virtual straight line L connecting the first end portions 21 of the above. When the first flat tube 20a, the second flat tube 20b, and the third flat tube 20c arranged in such a positional relationship are arranged all around the rotation center axis 61 of the blower 2, the heat exchanger is arranged. The first end 21 of each of the plurality of flat tubes 20 of 10 is arranged on the annular virtual line 23 surrounding the central axis of rotation. FIG. 5 shows that the distance between the first end portions 21 of each flat tube 20 is equalized, and the distance from the first end portion 21 of the first flat tube 20a to the virtual straight line L is equal in all of the plurality of flat tubes 20. As shown, the first end 21 of the plurality of flat tubes 20 will be arranged in a circle around the rotation center axis 61. Further, in the first embodiment, the first virtual line, which is an extension line of the long axis 26 in the cross section perpendicular to the tube axis of the first flat tube 20a, is an extension of the long axis 26 of the second flat tube 20b. It intersects each of the second virtual line, which is a line, and the third virtual line, which is an extension of the long axis 26 of the third flat tube 20c, on the inner side in the radial direction.

図6は、実施の形態1に係る熱交換器ユニット100の変形例である熱交換器ユニット100aの送風機2と熱交換器10aの複数の扁平管20との位置関係の説明図である。図6においては、複数の扁平管20のうち一部の扁平管20のみを表示し、それ以外は表示を省略している。複数の扁平管20のうち、第1の扁平管20aと異なる位置に配置されている第1の扁平管を第1の扁平管20dとしている。そして、複数の扁平管20のうち、第1の扁平管20dに隣合って配置されている扁平管20を第2の扁平管20e及び第3の扁平管20fと表示している。熱交換器ユニット100aは、熱交換器ユニット100と同様に第1の扁平管20aの第1端部21が第2の扁平管20bと第3の扁平管20cとの第1端部21同士を結ぶ仮想直線L1よりも径方向の外側に位置している。また、第1の扁平管20a、第2の扁平管20b、及び第3の扁平管20cとは異なる位置にある第1の扁平管20dも、第2の扁平管20eと第3の扁平管20fとの第1端部21同士を結ぶ仮想直線L2よりも径方向の外側に位置している。ただし、第1の扁平管20aの第1端部21から第2の扁平管20bと第3の扁平管20cとの第1端部21同士を結ぶ仮想直線L1までの距離と、第1の扁平管20dの第1端部21から第2の扁平管20eと第3の扁平管20cとの第1端部21同士を結ぶ仮想直線L2までの距離とを比較すると、第1の扁平管20dの第1端部21から仮想直線L2までの距離が大きく設定されている。このとき、複数の扁平管20のそれぞれの第1端部21同士の間隔は、等しく設定されている。 FIG. 6 is an explanatory diagram of the positional relationship between the blower 2 of the heat exchanger unit 100a, which is a modification of the heat exchanger unit 100 according to the first embodiment, and the plurality of flat tubes 20 of the heat exchanger 10a. In FIG. 6, only a part of the flat tubes 20 among the plurality of flat tubes 20 is displayed, and the display is omitted for the others. Of the plurality of flat tubes 20, the first flat tube 20d arranged at a position different from that of the first flat tube 20a is referred to as the first flat tube 20d. Among the plurality of flat tubes 20, the flat tubes 20 arranged adjacent to the first flat tube 20d are referred to as the second flat tube 20e and the third flat tube 20f. In the heat exchanger unit 100a, similarly to the heat exchanger unit 100, the first end portion 21 of the first flat tube 20a connects the first end portions 21 of the second flat tube 20b and the third flat tube 20c to each other. It is located on the outer side in the radial direction from the virtual straight line L1 to be connected. Further, the first flat tube 20d located at a position different from the first flat tube 20a, the second flat tube 20b, and the third flat tube 20c also includes the second flat tube 20e and the third flat tube 20f. It is located on the outer side in the radial direction from the virtual straight line L2 connecting the first end portions 21 with each other. However, the distance from the first end 21 of the first flat tube 20a to the virtual straight line L1 connecting the first ends 21 of the second flat tube 20b and the third flat tube 20c, and the first flat tube. Comparing the distance from the first end 21 of the tube 20d to the virtual straight line L2 connecting the first ends 21 of the second flat tube 20e and the third flat tube 20c, the first flat tube 20d The distance from the first end 21 to the virtual straight line L2 is set large. At this time, the distance between the first end portions 21 of each of the plurality of flat tubes 20 is set to be equal.

図6に示される様に、第1の扁平管20aから仮想直線L1までの距離と第1の扁平管20dから仮想直線L2までの距離とを異なる距離に設定することにより、回転中心軸61を囲む環状の仮想線23a上に配置される。熱交換器ユニット100aにおいては、複数の扁平管20のそれぞれの第1端部21は、送風機2の回転中心軸61を中心とした楕円状に配置されている。このように構成されることにより、熱交換器10aの扁平管20の配置の自由度を向上させつつ、各扁平管20の間を通過する空気の量のばらつきを少なくすることができる。 As shown in FIG. 6, the rotation center axis 61 is set by setting the distance from the first flat tube 20a to the virtual straight line L1 and the distance from the first flat tube 20d to the virtual straight line L2 to different distances. It is arranged on the surrounding annular virtual line 23a. In the heat exchanger unit 100a, the first end 21 of each of the plurality of flat tubes 20 is arranged in an elliptical shape centered on the rotation center axis 61 of the blower 2. With this configuration, it is possible to improve the degree of freedom in arranging the flat tubes 20 of the heat exchanger 10a and reduce the variation in the amount of air passing between the flat tubes 20.

図7は、実施の形態1に係る熱交換器ユニット100、100aの比較例としての熱交換器ユニット1100の送風機2と熱交換器110の複数の扁平管120との位置関係の説明図である。図7においては、複数の扁平管20のうち一部の扁平管20のみを表示し、それ以外は表示を省略している。熱交換器110は、複数の扁平管120のそれぞれの第1端部21を送風機2の回転中心軸61を囲む環状の仮想線123上に配置して構成されている。仮想線123は、矩形であり、直線部128と、直線部128の端部で他の直線部128と接続する部分である角部129とを有する。 FIG. 7 is an explanatory diagram of the positional relationship between the blower 2 of the heat exchanger unit 1100 and the plurality of flat tubes 120 of the heat exchanger 110 as a comparative example of the heat exchanger units 100 and 100a according to the first embodiment. .. In FIG. 7, only a part of the flat tubes 20 among the plurality of flat tubes 20 is displayed, and the display is omitted for the others. The heat exchanger 110 is configured by arranging the first end 21 of each of the plurality of flat tubes 120 on the annular virtual line 123 surrounding the rotation center axis 61 of the blower 2. The virtual line 123 is rectangular and has a straight line portion 128 and a corner portion 129 which is a portion connected to another straight line portion 128 at the end portion of the straight line portion 128.

熱交換器110は、直線部128上に第1端部121が配置され、長軸26を互いに平行にして並べられた扁平管120a、120b、120c、120hを備える。送風機2は、遠心送風機であり、図7に示される様に送風機2の外周の接線方向に対し外側に傾斜した矢印63方向に空気を吹き出す。従って、直線部128上に第1端部21が配置された扁平管120a、120b、120c、120f、120h、120iの間に、扁平管120の長軸26に対し斜め方向から空気が進入する。このとき、扁平管120aと扁平管120bとの間に進入する空気の流れと扁平管120a、120bの長軸26とが為す角度を角度θ1とする。また、扁平管120hと扁平管120iとの間に進入する空気の流れと扁平管120h、120iの長軸26とが為す角度を角度θ2とする。角度θ1と角度θ2とでは、角度θ2の方が角度が小さくなっている。つまり、扁平管120hと扁平管120iとの間に進入する空気は、扁平管120aと扁平管120bとの間に進入する空気よりも流れが屈曲する角度が大きくなっている。直線部128上に配置されている扁平管120は、送風機2の回転方向の端部に近づくに従い、扁平管120の間に流れ込む空気の流れの屈曲する角度が大きくなる。扁平管120の間に流れ込む空気の流れの屈曲する角度が大きくなると、流れる空気は、圧力損失が大きくなり、流量も低下する。 The heat exchanger 110 includes flat tubes 120a, 120b, 120c, 120h in which the first end portion 121 is arranged on the straight portion 128 and the major axes 26 are arranged in parallel with each other. The blower 2 is a centrifugal blower, and as shown in FIG. 7, air is blown out in the direction of the arrow 63 inclined outward with respect to the tangential direction of the outer circumference of the blower 2. Therefore, air enters between the flat pipes 120a, 120b, 120c, 120f, 120h, and 120i in which the first end portion 21 is arranged on the straight line portion 128 from an oblique direction with respect to the long axis 26 of the flat pipe 120. At this time, the angle formed by the air flow entering between the flat pipes 120a and the flat pipes 120b and the major axes 26 of the flat pipes 120a and 120b is defined as the angle θ1. Further, the angle formed by the air flow entering between the flat pipe 120h and the flat pipe 120i and the long axis 26 of the flat pipes 120h and 120i is defined as the angle θ2. At the angle θ1 and the angle θ2, the angle θ2 is smaller. That is, the air entering between the flat tube 120h and the flat tube 120i has a larger angle at which the flow bends than the air entering between the flat tube 120a and the flat tube 120b. As the flat tube 120 arranged on the straight line portion 128 approaches the end portion in the rotation direction of the blower 2, the bending angle of the air flow flowing between the flat tube 120 increases. When the bending angle of the air flow flowing between the flat tubes 120 becomes large, the pressure loss of the flowing air becomes large and the flow rate also decreases.

また、扁平管120aと扁平管120bとの間に進入する空気と、扁平管120hと扁平管120iとの間に進入する空気とでは、送風機2を出てから扁平管120に到達するまでの距離が異なる。送風機2から比較的遠い扁平管120hと扁平管120iとの間は、空気の流速が低下し、扁平管120間を流れる空気の流量が扁平管120aと扁平管120bとの間に対して少なくなる。従って、直線部128上に配置されている扁平管120は、角部129に近づくに従い、扁平管120の間を流れる空気の流量が低下する。 Further, the distance between the air entering between the flat tube 120a and the flat tube 120b and the air entering between the flat tube 120h and the flat tube 120i from leaving the blower 2 to reaching the flat tube 120. Is different. The flow velocity of air decreases between the flat tube 120h and the flat tube 120i, which are relatively far from the blower 2, and the flow rate of air flowing between the flat tubes 120 becomes smaller than that between the flat tubes 120a and 120b. .. Therefore, as the flat tube 120 arranged on the straight portion 128 approaches the corner portion 129, the flow rate of air flowing between the flat tubes 120 decreases.

以上のように、熱交換器ユニット1100においては、熱交換器110の複数の扁平管120のうち、仮想線123の角部129に近い部分の扁平管120の間を流れる空気の流量が低下する。従って、熱交換器110の各部において、扁平管120の間を流れる空気の量にばらつきが大きく、空気と冷媒との熱交換量もばらつきが大きい。一方、実施の形態1に係る熱交換器ユニット100においては、熱交換器10の扁平管20は、各部において送風機2の外周から等距離に配置されており、各扁平管20の間に進入する空気の屈曲する角度も各部において等しい。従って、熱交換器10の各部において、扁平管20の間に流れる空気の量が平均化され、空気と冷媒との熱交換量も平均化される。よって、熱交換器前面面積が等しければ、熱交換器10は、熱交換器110よりも熱交換容量が大きい。すなわち、熱交換器10の熱交換効率は、比較例の熱交換器ユニット1100の熱交換器110よりも高い。また、熱交換器10は、実装効率が熱交換器110に対して高いため、熱交換器ユニット100は、熱交換器ユニット1100に対し筐体を小さくすることも可能になる。 As described above, in the heat exchanger unit 1100, the flow rate of air flowing between the flat tubes 120 in the portion near the corner 129 of the virtual line 123 among the plurality of flat tubes 120 of the heat exchanger 110 decreases. .. Therefore, in each part of the heat exchanger 110, the amount of air flowing between the flat tubes 120 varies greatly, and the amount of heat exchange between the air and the refrigerant also varies greatly. On the other hand, in the heat exchanger unit 100 according to the first embodiment, the flat pipes 20 of the heat exchanger 10 are arranged at equal distances from the outer periphery of the blower 2 in each part, and enter between the flat pipes 20. The bending angle of the air is also the same in each part. Therefore, in each part of the heat exchanger 10, the amount of air flowing between the flat tubes 20 is averaged, and the amount of heat exchange between the air and the refrigerant is also averaged. Therefore, if the front area of the heat exchanger is equal, the heat exchanger 10 has a larger heat exchange capacity than the heat exchanger 110. That is, the heat exchange efficiency of the heat exchanger 10 is higher than that of the heat exchanger 110 of the heat exchanger unit 1100 of the comparative example. Further, since the mounting efficiency of the heat exchanger 10 is higher than that of the heat exchanger 110, the heat exchanger unit 100 can be made smaller than the heat exchanger unit 1100.

なお、熱交換器ユニット100aは、第1の扁平管20aから仮想直線L1までの距離及び第1の扁平管20dから仮想直線L2までの距離の設定を複数の扁平管20のそれぞれにおいて適宜変更することにより回転中心軸61の周りの環状の仮想線23aの形状を変更することができる。回転中心軸61の周りの環状の仮想線23aは、円形といった中心からの距離が等しい形状、又は楕円形等の中心からの距離が連続的に変化するような形状にでき、各部に複数の扁平管20のそれぞれの第1端部21を、環状の仮想線23a上に配置させることができる。図6に示される熱交換器ユニット100aは、熱交換器ユニット100に対し、熱交換器10aを構成する各扁平管20の第1端部21が送風機2の外周からの距離が変動するが、送風機2の外周からの距離の変動が小さく、比較例の熱交換器ユニット1100よりも熱交換効率が高く、実装効率も高い。また、熱交換器ユニット100aは、内部の熱交換器10aの配置の自由度が高いため、筐体内の風路の構造などに応じた扁平管20の配置も可能となるという利点がある。 The heat exchanger unit 100a appropriately changes the setting of the distance from the first flat tube 20a to the virtual straight line L1 and the distance from the first flat tube 20d to the virtual straight line L2 in each of the plurality of flat tubes 20. Thereby, the shape of the annular virtual line 23a around the rotation center axis 61 can be changed. The annular virtual line 23a around the rotation center axis 61 can be formed into a shape such as a circle having the same distance from the center, or a shape such as an ellipse in which the distance from the center continuously changes, and a plurality of flat surfaces are formed in each portion. Each first end 21 of the tube 20 can be arranged on the annular virtual line 23a. In the heat exchanger unit 100a shown in FIG. 6, the distance of the first end portion 21 of each flat tube 20 constituting the heat exchanger 10a from the outer periphery of the blower 2 varies with respect to the heat exchanger unit 100. The variation in the distance from the outer circumference of the blower 2 is small, the heat exchange efficiency is higher than that of the heat exchanger unit 1100 of the comparative example, and the mounting efficiency is also high. Further, since the heat exchanger unit 100a has a high degree of freedom in the arrangement of the internal heat exchanger 10a, there is an advantage that the flat tube 20 can be arranged according to the structure of the air passage in the housing and the like.

図8は、実施の形態1に係る熱交換器ユニット100の熱交換器10の変形例である熱交換器10bの扁平管20の管軸に垂直な断面構造の説明図である。図9は、実施の形態1に係る熱交換器ユニット100の熱交換器10の変形例である熱交換器10bの扁平管20の管軸に平行な断面構造の説明図である。熱交換器10bを構成する扁平管20は、熱交換器10又は熱交換器10aと同様に送風機2の回転中心軸61の周囲に並列に配置される。熱交換器10bは、扁平管20に隣合って配置されている強度部材41を備える。強度部材41は、第1ヘッダ30と第2ヘッダ40との間に配置され、扁平管20の長軸26の延長線上に配置されている。実施の形態1においては、扁平管20の間を流れる空気が第1端部21から第2端部22へ向かう方向に流れるため、強度部材41は、扁平管20の第2端部22の近傍に配置されている。また、扁平管20の短軸27方向と平行な方向における強度部材41の幅は、扁平管20の短軸27の幅以下である。このように構成されることにより、強度部材41は、扁平管20の間を流れる空気の剥離領域に位置するため、空気の流れに影響を与えることなく熱交換器10bの強度を向上させることができる。 FIG. 8 is an explanatory diagram of a cross-sectional structure perpendicular to the tube axis of the flat tube 20 of the heat exchanger 10b, which is a modification of the heat exchanger 10 of the heat exchanger unit 100 according to the first embodiment. FIG. 9 is an explanatory diagram of a cross-sectional structure parallel to the tube axis of the flat tube 20 of the heat exchanger 10b, which is a modification of the heat exchanger 10 of the heat exchanger unit 100 according to the first embodiment. The flat tubes 20 constituting the heat exchanger 10b are arranged in parallel around the rotation center shaft 61 of the blower 2 in the same manner as the heat exchanger 10 or the heat exchanger 10a. The heat exchanger 10b includes a strength member 41 arranged adjacent to the flat tube 20. The strength member 41 is arranged between the first header 30 and the second header 40, and is arranged on an extension line of the long axis 26 of the flat tube 20. In the first embodiment, since the air flowing between the flat pipes 20 flows in the direction from the first end portion 21 to the second end portion 22, the strength member 41 is in the vicinity of the second end portion 22 of the flat pipe 20. Is located in. Further, the width of the strength member 41 in the direction parallel to the minor axis 27 direction of the flat tube 20 is equal to or less than the width of the minor axis 27 of the flat tube 20. With this configuration, the strength member 41 is located in the separation region of the air flowing between the flat tubes 20, so that the strength of the heat exchanger 10b can be improved without affecting the air flow. can.

特に、実施の形態1に係る熱交換器ユニット100、100aの熱交換器10、10a、10bは、複数の扁平管20が管軸を上下方向に向けて並列に配置されており、扁平管20同士を接続するフィンが設置されていない。そのため、熱交換器10、10a、10bの強度は、第1ヘッダ30と第2ヘッダ40と接続されている扁平管20の強度に依存するが、上記のように強度部材41を配置することにより、熱交換器10、10a、10bの強度を向上させることができる。 In particular, in the heat exchangers 10, 10a and 10b of the heat exchanger units 100 and 100a according to the first embodiment, a plurality of flat tubes 20 are arranged in parallel with the tube axes facing up and down, and the flat tubes 20 are arranged in parallel. There are no fins to connect them to each other. Therefore, the strength of the heat exchangers 10, 10a and 10b depends on the strength of the flat tube 20 connected to the first header 30 and the second header 40, but by arranging the strength member 41 as described above, , The strength of the heat exchangers 10, 10a and 10b can be improved.

実施の形態2.
実施の形態2に係る熱交換器ユニット200は、実施の形態1に係る熱交換器ユニット100に対し、熱交換器10の複数の扁平管20の長軸26を向ける方向を変更したものである。実施の形態2に係る熱交換器ユニット200においては、実施の形態1に対する変更点を中心に説明する。実施の形態2に係る熱交換器ユニット200の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 2.
The heat exchanger unit 200 according to the second embodiment changes the direction in which the long axes 26 of the plurality of flat tubes 20 of the heat exchanger 10 are directed with respect to the heat exchanger unit 100 according to the first embodiment. .. In the heat exchanger unit 200 according to the second embodiment, the changes to the first embodiment will be mainly described. Regarding each part of the heat exchanger unit 200 according to the second embodiment, those having the same function in each drawing shall be indicated with the same reference numerals as those used in the description of the first embodiment.

図10は、実施の形態2に係る熱交換器ユニット200の送風機2と熱交換器210の複数の扁平管20との位置関係の説明図である。実施の形態1に係る熱交換器ユニット100は、熱交換器10の扁平管20の長軸26を向ける方向を送風機2の回転中心軸61を中心とする径方向に沿って配置している。つまり、実施の形態1に係る熱交換器ユニット100の扁平管20は、扁平管20の第1端部21と送風機2の回転中心軸61とを結んだ仮想直線L4に沿って長軸26が配置されている。一方、実施の形態2に係る熱交換器ユニット200は、熱交換器210の複数の扁平管20の長軸26の向く方向を仮想直線L4に対して傾斜させている。熱交換器210の複数の扁平管20は、第1端部21を基準として長軸26を送風機2の回転方向に傾斜させている。 FIG. 10 is an explanatory diagram of the positional relationship between the blower 2 of the heat exchanger unit 200 and the plurality of flat tubes 20 of the heat exchanger 210 according to the second embodiment. In the heat exchanger unit 100 according to the first embodiment, the direction toward which the long axis 26 of the flat tube 20 of the heat exchanger 10 is directed is arranged along the radial direction centered on the rotation center axis 61 of the blower 2. That is, the flat tube 20 of the heat exchanger unit 100 according to the first embodiment has a long axis 26 along a virtual straight line L4 connecting the first end portion 21 of the flat tube 20 and the rotation center axis 61 of the blower 2. Have been placed. On the other hand, in the heat exchanger unit 200 according to the second embodiment, the direction of the long axis 26 of the plurality of flat tubes 20 of the heat exchanger 210 is inclined with respect to the virtual straight line L4. The plurality of flat tubes 20 of the heat exchanger 210 have the long axis 26 tilted in the rotation direction of the blower 2 with respect to the first end portion 21.

送風機2からの空気は、図10に示される様に矢印63の方向に吹き出される。空気は、送風機2の外周の接線方向から径方向外側に傾斜した方向を向いている。そのため、送風機2からの空気の流れる方向を示す矢印63は、回転中心軸61と扁平管20の第1端部21とを結んだ仮想直線L4と直角に近い角度を為す。しかし、実施の形態2においては、扁平管20の長軸26は、L4に対し傾斜しており、送風機2からの空気の流れる方向である矢印63に対し平行に近い角度を為すように配置されている。よって、送風機2からの空気は、扁平管20の間に進入する際に方向が大きく屈曲することがないため、圧力損失が小さく、流速の低下も少ない。従って、実施の形態2に係る熱交換器ユニット200の熱交換器210は、実施の形態1に係る熱交換器ユニット100の熱交換器10よりも、熱交換効率及び実装効率を向上させることができる。 The air from the blower 2 is blown out in the direction of arrow 63 as shown in FIG. The air is oriented in a direction inclined outward in the radial direction from the tangential direction of the outer circumference of the blower 2. Therefore, the arrow 63 indicating the direction in which the air flows from the blower 2 forms an angle close to a right angle with the virtual straight line L4 connecting the rotation center axis 61 and the first end portion 21 of the flat tube 20. However, in the second embodiment, the long axis 26 of the flat tube 20 is inclined with respect to L4, and is arranged so as to form an angle close to parallel to the arrow 63, which is the direction in which air flows from the blower 2. ing. Therefore, since the air from the blower 2 does not bend significantly in the direction when entering between the flat tubes 20, the pressure loss is small and the flow velocity does not decrease much. Therefore, the heat exchanger 210 of the heat exchanger unit 200 according to the second embodiment can improve the heat exchange efficiency and the mounting efficiency as compared with the heat exchanger 10 of the heat exchanger unit 100 according to the first embodiment. can.

なお、実施の形態2に係る熱交換器210の扁平管20の配置は、実施の形態1に係る熱交換器ユニット100aの熱交換器10aにも適用することができる。このとき、扁平管20の傾斜させる角度は、環状の仮想線23a上の位置に応じて適宜変更することができる。 The arrangement of the flat tube 20 of the heat exchanger 210 according to the second embodiment can also be applied to the heat exchanger 10a of the heat exchanger unit 100a according to the first embodiment. At this time, the angle at which the flat tube 20 is tilted can be appropriately changed according to the position on the annular virtual line 23a.

実施の形態3.
実施の形態3に係る熱交換器ユニット300は、実施の形態1に係る熱交換器ユニット100に対し、熱交換器10の複数の扁平管20に第1フィン50を追加したものである。実施の形態3に係る熱交換器ユニット300においては、実施の形態1に対する変更点を中心に説明する。実施の形態3に係る熱交換器ユニット300の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 3.
The heat exchanger unit 300 according to the third embodiment is obtained by adding a first fin 50 to a plurality of flat tubes 20 of the heat exchanger 10 with respect to the heat exchanger unit 100 according to the first embodiment. In the heat exchanger unit 300 according to the third embodiment, the changes to the first embodiment will be mainly described. Regarding each part of the heat exchanger unit 300 according to the third embodiment, those having the same function in each drawing shall be indicated with the same reference numerals as those used in the description of the first embodiment.

図11は、実施の形態3に係る熱交換器ユニット300の送風機2と熱交換器310の複数の扁平管320との位置関係の説明図である。図12は、図11の熱交換器310を構成する扁平管320の構造を説明する模式図である。図11に示される様に、熱交換器310は、複数の扁平管320が実施の形態1に係る熱交換器10と同様に配置されている。これに対し、実施の形態3においては、複数の扁平管320の第1端部21から第1フィン50が径方向内側に向かって延設されている。つまり扁平管320は、第1端部21から内側風路70側に延びる板状の第1フィン50を備える。 FIG. 11 is an explanatory diagram of the positional relationship between the blower 2 of the heat exchanger unit 300 and the plurality of flat tubes 320 of the heat exchanger 310 according to the third embodiment. FIG. 12 is a schematic diagram illustrating the structure of the flat tube 320 constituting the heat exchanger 310 of FIG. As shown in FIG. 11, in the heat exchanger 310, a plurality of flat tubes 320 are arranged in the same manner as the heat exchanger 10 according to the first embodiment. On the other hand, in the third embodiment, the first fins 50 are extended inward in the radial direction from the first end 21 of the plurality of flat tubes 320. That is, the flat tube 320 includes a plate-shaped first fin 50 extending from the first end 21 toward the inner air passage 70.

図11に示される様に、第1フィン50は、回転中心軸61と第1端部21とを結んだ仮想直線L4に対し、第1端部21を基準として送風機2の回転方向とは反対方向に傾斜している。送風機2から吹き出された空気は、矢印63の方向に進むが、第1フィン50が延びる方向と送風機2からの空気が流れる方向とは、平行に近い角度を為している。従って、送風機2からの空気は、第1の扁平管320aに設けられた第1フィン50と第2の扁平管320bに設けられた第1フィン50との間に流れ込む際に屈曲する角度が小さい。送風機2からの空気は、第1フィン50の間に進入する際に方向が大きく屈曲することがないため、圧力損失が小さく、流速の低下も少ない。これにより、実施の形態3に係る熱交換器ユニット300の熱交換器310は、実施の形態1に係る熱交換器ユニット100の熱交換器10よりも、熱交換効率及び実装効率を向上させることができる。さらに、第1フィン50が設置されることにより、熱交換器310は、実施の形態1に係る熱交換器10よりも空気と接触する面積が増え、熱交換効率を向上させることができる。なお、実施の形態3においては、第1の扁平管320a、第2の扁平管320b、及び第3の扁平管320cの全てに第1フィン50が設けられているが、隣合った複数の扁平管320の全てに第1フィン50が設けられている必要はなく、複数の扁平管320のうち一部の扁平管320のみに第1フィンが設けられていても良い。 As shown in FIG. 11, the first fin 50 is opposite to the rotation direction of the blower 2 with respect to the virtual straight line L4 connecting the rotation center shaft 61 and the first end portion 21 with respect to the first end portion 21. It is tilted in the direction. The air blown out from the blower 2 travels in the direction of the arrow 63, but the direction in which the first fin 50 extends and the direction in which the air from the blower 2 flows form an angle close to parallel. Therefore, the angle at which the air from the blower 2 bends when flowing between the first fin 50 provided in the first flat pipe 320a and the first fin 50 provided in the second flat pipe 320b is small. .. Since the air from the blower 2 does not bend significantly in the direction when entering between the first fins 50, the pressure loss is small and the decrease in the flow velocity is small. As a result, the heat exchanger 310 of the heat exchanger unit 300 according to the third embodiment has higher heat exchange efficiency and mounting efficiency than the heat exchanger 10 of the heat exchanger unit 100 according to the first embodiment. Can be done. Further, by installing the first fin 50, the heat exchanger 310 has a larger area in contact with air than the heat exchanger 10 according to the first embodiment, and the heat exchange efficiency can be improved. In the third embodiment, the first fin 50 is provided in all of the first flat tube 320a, the second flat tube 320b, and the third flat tube 320c, but a plurality of adjacent flat tubes are provided. It is not necessary that all of the pipes 320 are provided with the first fins 50, and the first fins may be provided only in a part of the flat pipes 320 among the plurality of flat pipes 320.

実施の形態4.
実施の形態4に係る熱交換器ユニット400は、実施の形態3に係る熱交換器ユニット300に対し、熱交換器310の複数の扁平管320のそれぞれにフィンを追加したものである。実施の形態4に係る熱交換器ユニット400においては、実施の形態3に対する変更点を中心に説明する。実施の形態4に係る熱交換器ユニット400の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 4.
The heat exchanger unit 400 according to the fourth embodiment has fins added to each of the plurality of flat tubes 320 of the heat exchanger 310 with respect to the heat exchanger unit 300 according to the third embodiment. In the heat exchanger unit 400 according to the fourth embodiment, the changes to the third embodiment will be mainly described. Regarding each part of the heat exchanger unit 400 according to the fourth embodiment, those having the same function in each drawing shall be indicated with the same reference numerals as those used in the description of the first embodiment.

図13は、実施の形態4に係る熱交換器ユニット400の送風機2と熱交換器410の複数の扁平管20との位置関係の説明図である。図14は、図13の熱交換器410を構成する扁平管20の構造を説明する模式図である。熱交換器410は、扁平管420の第2端部22から第2フィン51が径方向外側に向かって延設されている。つまり扁平管420は、第2端部22から外側風路71側に延びる板状の第2フィン51を備える。図13に示される様に、第1フィン50は、回転中心軸61と第1端部21とを結んだ仮想直線L4に沿って延びている。熱交換器410は、第2フィン51が設置されることにより、実施の形態3に係る熱交換器310よりも空気と接触する面積が増え、熱交換効率を向上させることができる。 FIG. 13 is an explanatory diagram of the positional relationship between the blower 2 of the heat exchanger unit 400 and the plurality of flat tubes 20 of the heat exchanger 410 according to the fourth embodiment. FIG. 14 is a schematic diagram illustrating the structure of the flat tube 20 constituting the heat exchanger 410 of FIG. In the heat exchanger 410, the second fin 51 extends radially outward from the second end portion 22 of the flat tube 420. That is, the flat tube 420 includes a plate-shaped second fin 51 extending from the second end 22 toward the outer air passage 71. As shown in FIG. 13, the first fin 50 extends along a virtual straight line L4 connecting the rotation center axis 61 and the first end portion 21. By installing the second fin 51, the heat exchanger 410 has a larger area in contact with air than the heat exchanger 310 according to the third embodiment, and the heat exchange efficiency can be improved.

図15は、実施の形態4に係る熱交換器ユニット400の送風機2の回転中心軸61に垂直な断面における構造の模式図である。実施の形態4に係る熱交換器410の扁平管420に設けられた第2フィン51は、扁平管20の位置によって傾斜する角度を適宜変更しても良い。つまり、外側風路71内を通り第2端部22から開口部81に至る経路が最短になる経路を最短経路と定義したときに、第2フィン51は、第2端部22を基準として最短経路側に傾斜している。例えば、図15において、複数の扁平管420のうちの1つである扁平管420xが備える第2フィン51は、扁平管420xの第2端部22を基準として左側に傾斜している。外側風路71内を通り扁平管420xの第2端部22から外側風路71の出口である開口部81までの最短経路は、図15に示される様に経路R1と経路R2とが考えられる。図15においては、経路R2よりも経路R1の方が短く、扁平管420xの第2端部22から開口部81までの最短経路は、経路R1になる。従って、第2フィン51は、第2端部22を基準として経路R1方向に傾斜している。更に言うと、第2フィン51は、第2端部22と送風機2の回転中心軸61とを結ぶ仮想直線L5に対し、先端側が経路R1方向に傾斜している。 FIG. 15 is a schematic view of a structure in a cross section perpendicular to the rotation center axis 61 of the blower 2 of the heat exchanger unit 400 according to the fourth embodiment. The angle of inclination of the second fin 51 provided in the flat tube 420 of the heat exchanger 410 according to the fourth embodiment may be appropriately changed depending on the position of the flat tube 20. That is, when the shortest path is defined as the shortest path from the second end 22 to the opening 81 through the outer air passage 71, the second fin 51 is the shortest with respect to the second end 22. It is inclined to the path side. For example, in FIG. 15, the second fin 51 included in the flat tube 420x, which is one of the plurality of flat tubes 420, is inclined to the left with respect to the second end portion 22 of the flat tube 420x. As shown in FIG. 15, the shortest path from the second end 22 of the flat pipe 420x to the opening 81, which is the exit of the outer air passage 71, through the outer air passage 71 is considered to be the route R1 and the route R2. .. In FIG. 15, the path R1 is shorter than the path R2, and the shortest path from the second end 22 of the flat tube 420x to the opening 81 is the path R1. Therefore, the second fin 51 is inclined in the path R1 direction with respect to the second end portion 22. Further, the tip side of the second fin 51 is inclined in the path R1 direction with respect to the virtual straight line L5 connecting the second end portion 22 and the rotation center axis 61 of the blower 2.

図15に示される様に、第2フィン51を外側風路71内を通り扁平管420から開口部81までの最短経路R1側に傾斜させることにより、扁平管420の間から流出する空気は、第2フィン51に沿って流れ剥離しにくくなるため、第2フィン51を追加することによる圧力損失の増加を抑制することができる。 As shown in FIG. 15, by inclining the second fin 51 through the outer air passage 71 toward the shortest path R1 from the flat pipe 420 to the opening 81, the air flowing out from between the flat pipes 420 is released. Since it is difficult for the flow to separate along the second fin 51, it is possible to suppress an increase in pressure loss due to the addition of the second fin 51.

なお、実施の形態3及び4に示される第1フィン50及び第2フィン51は、実施の形態2に係る熱交換器ユニット200に適用することもできる。その場合、第1フィン50及び第2フィン51の傾斜角度は、空気の流れの圧力損失の増加を抑制するように適宜変更することができる。また、実施の形態1~4に係る熱交換器ユニット100、100a、100b、200、300、400は、送風機2に遠心式送風機だけでなく、軸流式等の形式を適用することもできる。その際、内側風路70及び外側風路71の形状も適宜変更することができる。 The first fins 50 and the second fins 51 shown in the third and fourth embodiments can also be applied to the heat exchanger unit 200 according to the second embodiment. In that case, the inclination angles of the first fin 50 and the second fin 51 can be appropriately changed so as to suppress an increase in the pressure loss of the air flow. Further, in the heat exchanger units 100, 100a, 100b, 200, 300, 400 according to the first to fourth embodiments, not only the centrifugal blower but also an axial flow type or the like can be applied to the blower 2. At that time, the shapes of the inner air passage 70 and the outer air passage 71 can be changed as appropriate.

1 冷凍サイクル装置、2 送風機、3 圧縮機、4 四方弁、5 室外熱交換器、6 膨張装置、7 室内熱交換器、8 室外機、9 室内機、10 熱交換器、10a 熱交換器、10b 熱交換器、20 扁平管、20a 第1の扁平管、20b 第2の扁平管、20c 第3の扁平管、20d 第1の扁平管、20e 第2の扁平管、20f 第3の扁平管、21 第1端部、22 第2端部、23 仮想線、23a 仮想線、24 冷媒流路、26 長軸、27 短軸、30 第1ヘッダ、40 第2ヘッダ、41 強度部材、50 第1フィン、51 第2フィン、60 送風機、61 回転中心軸、63 矢印、70 内側風路、71 外側風路、80 筐体、81 開口部、82 開口部、90 冷媒配管、100 熱交換器ユニット、100a 熱交換器ユニット、100b 熱交換器ユニット、110 熱交換器、120 扁平管、120a 扁平管、120b 扁平管、120c 扁平管、120f 扁平管、120h 扁平管、120i 扁平管、121 第1端部、123 仮想線、128 直線部、129 角部、200 熱交換器ユニット、210 熱交換器、300 熱交換器ユニット、310 熱交換器、320 扁平管、320a 第1の扁平管、320b 第2の扁平管、320c 第3の扁平管、400 熱交換器ユニット、410 熱交換器、420 扁平管、420x 扁平管、1100 熱交換器ユニット、L 仮想直線、L1 仮想直線、L2 仮想直線、L4 仮想直線、L5 仮想直線、R1 (最短)経路、R2 経路、θ1 角度、θ2 角度。 1 Refrigeration cycle device, 2 blower, 3 compressor, 4 four-way valve, 5 outdoor heat exchanger, 6 expander, 7 indoor heat exchanger, 8 outdoor unit, 9 indoor unit, 10 heat exchanger, 10a heat exchanger, 10b heat exchanger, 20 flat tube, 20a first flat tube, 20b second flat tube, 20c third flat tube, 20d first flat tube, 20e second flat tube, 20f third flat tube , 21 1st end, 22 2nd end, 23 virtual line, 23a virtual line, 24 refrigerant flow path, 26 long axis, 27 short axis, 30 1st header, 40 2nd header, 41 strength member, 50th 1 fin, 51 2nd fin, 60 blower, 61 rotation center axis, 63 arrow, 70 inner air passage, 71 outer air passage, 80 housing, 81 opening, 82 opening, 90 refrigerant piping, 100 heat exchanger unit , 100a heat exchanger unit, 100b heat exchanger unit, 110 heat exchanger, 120 flat tube, 120a flat tube, 120b flat tube, 120c flat tube, 120f flat tube, 120h flat tube, 120i flat tube, 121 first end Part, 123 virtual line, 128 straight part, 129 square part, 200 heat exchanger unit, 210 heat exchanger, 300 heat exchanger unit, 310 heat exchanger, 320 flat tube, 320a first flat tube, 320b second Flat tube, 320c 3rd flat tube, 400 heat exchanger unit, 410 heat exchanger, 420 flat tube, 420x flat tube, 1100 heat exchanger unit, L virtual straight, L1 virtual straight, L2 virtual straight, L4 virtual Straight line, L5 virtual straight line, R1 (shortest) path, R2 path, θ1 angle, θ2 angle.

Claims (15)

筐体内に外気を導入する送風機と、
前記送風機の回転中心軸の側方を囲む熱交換器と、を備え、
前記熱交換器は、
管軸を上下方向に向けて前記送風機の前記回転中心軸の周囲に並列に配置された複数の扁平管と、
前記複数の扁平管を接続するヘッダと、を備え、
前記複数の扁平管は、
第1の扁平管、第2の扁平管、及び第3の扁平管を有し、
前記第2の扁平管及び前記第3の扁平管は、
前記第1の扁平管と隣合って配置され、
前記第1の扁平管との間を接続するフィンが設置されておらず、
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は、
前記送風機の前記回転中心軸を中心とした径方向を規定したときに、
前記管軸に垂直な断面の長軸の2つの端部のうち前記径方向において前記中心側に位置する第1端部が前記回転中心軸を囲む環状の仮想線上に配置され、
前記第1の扁平管の前記第1端部は、
前記第2の扁平管の前記第1端部と前記第3の扁平管の前記第1端部とを結ぶ仮想直線よりも前記径方向において前記中心から遠い側に配置される、熱交換器ユニット。
A blower that introduces outside air into the housing,
A heat exchanger that surrounds the side of the rotation center axis of the blower is provided.
The heat exchanger is
A plurality of flat tubes arranged in parallel around the rotation center axis of the blower with the tube axis facing up and down,
With a header connecting the plurality of flat tubes,
The plurality of flat tubes
It has a first flat tube, a second flat tube, and a third flat tube.
The second flat tube and the third flat tube are
Placed next to the first flat tube,
The fins connecting to the first flat tube are not installed, and the fins are not installed.
The first flat tube, the second flat tube, and the third flat tube are
When the radial direction around the rotation center axis of the blower is specified,
Of the two ends of the long axis having a cross section perpendicular to the tube axis, the first end located on the center side in the radial direction is arranged on an annular virtual line surrounding the rotation center axis.
The first end of the first flat tube
A heat exchanger unit arranged on a side farther from the center in the radial direction than a virtual straight line connecting the first end portion of the second flat tube and the first end portion of the third flat tube. ..
前記第1の扁平管の前記管軸に垂直な断面における前記長軸の延長線である第1の仮想線は、
前記第2の扁平管の前記長軸の延長線である第2の仮想線及び前記第3の扁平管の前記長軸の延長線である第3の仮想線のそれぞれと前記径方向において前記中心側で交差する、請求項1に記載の熱交換器ユニット。
The first imaginary line, which is an extension of the long axis in the cross section perpendicular to the tube axis of the first flat tube, is
Each of the second virtual line, which is an extension of the long axis of the second flat tube, and the third virtual line, which is an extension of the long axis of the third flat tube, and the center in the radial direction. The heat exchanger unit according to claim 1, which intersects on the side.
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は、
前記第1端部が前記回転中心軸から等距離に配置される、請求項1又は2に記載の熱交換器ユニット。
The first flat tube, the second flat tube, and the third flat tube are
The heat exchanger unit according to claim 1 or 2, wherein the first end portion is arranged equidistantly from the rotation center axis.
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は、
前記送風機の周囲の全周にわたって配置される、請求項1~3の何れか1項に記載の熱交換器ユニット。
The first flat tube, the second flat tube, and the third flat tube are
The heat exchanger unit according to any one of claims 1 to 3, which is arranged all around the circumference of the blower.
前記複数の扁平管は、
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管から構成される、請求項1~4の何れか1項に記載の熱交換器ユニット。
The plurality of flat tubes
The heat exchanger unit according to any one of claims 1 to 4, which is composed of the first flat tube, the second flat tube, and the third flat tube.
前記径方向において前記熱交換器の内側に設けられ、前記送風機が配置された内側風路を備え、
前記複数の扁平管のうち少なくとも1つの扁平管は、
前記第1端部から前記内側風路側に延びた板状の第1フィンを備える、請求項1~5の何れか1項に記載の熱交換器ユニット。
Provided inside the heat exchanger in the radial direction and provided with an inner air passage in which the blower is located.
At least one of the plurality of flat tubes is
The heat exchanger unit according to any one of claims 1 to 5, further comprising a plate-shaped first fin extending from the first end portion toward the inner air passage side.
筐体内に外気を導入する送風機と、
前記送風機の回転中心軸の側方を囲む熱交換器と、
前記送風機の前記回転中心軸を中心とした径方向を規定したときに、前記径方向において前記熱交換器の内側に設けられ、前記送風機が配置された内側風路と、を備え、
前記熱交換器は、
管軸を上下方向に向けて前記送風機の前記回転中心軸の周囲に並列に配置された複数の扁平管と、
前記複数の扁平管を接続するヘッダと、を備え、
前記複数の扁平管は、
第1の扁平管、第2の扁平管、及び第3の扁平管を有し、
前記第2の扁平管及び前記第3の扁平管は、
前記第1の扁平管と隣合って配置され、
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は
記管軸に垂直な断面の長軸の2つの端部のうち前記径方向において前記中心側に位置する第1端部が前記回転中心軸を囲む環状の仮想線上に配置され、
前記第1の扁平管の前記第1端部は、
前記第2の扁平管の前記第1端部と前記第3の扁平管の前記第1端部とを結ぶ仮想直線よりも前記径方向において前記中心から遠い側に配置され、
前記複数の扁平管のうち少なくとも1つの扁平管は、
前記第1端部から前記内側風路側に延びた板状の第1フィンを備える、熱交換器ユニット。
A blower that introduces outside air into the housing,
A heat exchanger that surrounds the side of the central axis of rotation of the blower,
When the radial direction around the rotation center axis of the blower is defined, the inner air passage provided inside the heat exchanger in the radial direction and in which the blower is arranged is provided.
The heat exchanger is
A plurality of flat tubes arranged in parallel around the rotation center axis of the blower with the tube axis facing up and down,
With a header connecting the plurality of flat tubes,
The plurality of flat tubes
It has a first flat tube, a second flat tube, and a third flat tube.
The second flat tube and the third flat tube are
Placed next to the first flat tube,
The first flat tube, the second flat tube, and the third flat tube are
Of the two ends of the long axis having a cross section perpendicular to the tube axis, the first end located on the center side in the radial direction is arranged on an annular virtual line surrounding the rotation center axis.
The first end of the first flat tube
It is arranged on the side farther from the center in the radial direction than the virtual straight line connecting the first end portion of the second flat tube and the first end portion of the third flat tube.
At least one of the plurality of flat tubes is
A heat exchanger unit including a plate-shaped first fin extending from the first end portion toward the inner air passage side .
前記送風機は
遠心式送風機であり、
前記第1フィンは、
前記回転中心軸と前記第1端部とを結んだ仮想直線に対し、前記第1端部を基準として前記送風機の回転方向とは反対方向に傾斜している、請求項6又は7に記載の熱交換器ユニット。
The blower is a centrifugal blower.
The first fin is
The sixth or seventh aspect of the present invention, wherein the virtual straight line connecting the rotation center axis and the first end portion is inclined in a direction opposite to the rotation direction of the blower with respect to the first end portion. Heat exchanger unit.
前記径方向において前記熱交換器の外側に設けられた外側風路を備え、
前記複数の扁平管のうち少なくとも1つの扁平管は、
前記管軸に垂直な断面の前記長軸の2つの端部のうち前記径方向の外側に位置する第2端部から前記外側風路側に延びた板状の第2フィンを備える、請求項1~の何れか1項に記載の熱交換器ユニット。
It is provided with an outer air passage provided outside the heat exchanger in the radial direction.
At least one of the plurality of flat tubes is
1 The heat exchanger unit according to any one of 8 to 8 .
筐体内に外気を導入する送風機と、
前記送風機の回転中心軸の側方を囲む熱交換器と、
前記送風機の前記回転中心軸を中心とした径方向を規定したときに、前記径方向において前記熱交換器の外側に設けられた外側風路と、を備え、
前記熱交換器は、
管軸を上下方向に向けて前記送風機の前記回転中心軸の周囲に並列に配置された複数の扁平管と、
前記複数の扁平管を接続するヘッダと、を備え、
前記複数の扁平管は、
第1の扁平管、第2の扁平管、及び第3の扁平管を有し、
前記第2の扁平管及び前記第3の扁平管は、
前記第1の扁平管と隣合って配置され、
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は
記管軸に垂直な断面の長軸の2つの端部のうち前記径方向において前記中心側に位置する第1端部が前記回転中心軸を囲む環状の仮想線上に配置され、
前記第1の扁平管の前記第1端部は、
前記第2の扁平管の前記第1端部と前記第3の扁平管の前記第1端部とを結ぶ仮想直線よりも前記径方向において前記中心から遠い側に配置され
前記複数の扁平管のうち少なくとも1つの扁平管は、
前記管軸に垂直な断面の前記長軸の2つの端部のうち前記径方向の外側に位置する第2端部から前記外側風路側に延びた板状の第2フィンを備える、熱交換器ユニット。
A blower that introduces outside air into the housing,
A heat exchanger that surrounds the side of the central axis of rotation of the blower,
When the radial direction around the rotation center axis of the blower is defined, an outer air passage provided outside the heat exchanger in the radial direction is provided.
The heat exchanger is
A plurality of flat tubes arranged in parallel around the rotation center axis of the blower with the tube axis facing up and down,
With a header connecting the plurality of flat tubes,
The plurality of flat tubes
It has a first flat tube, a second flat tube, and a third flat tube.
The second flat tube and the third flat tube are
Placed next to the first flat tube,
The first flat tube, the second flat tube, and the third flat tube are
Of the two ends of the long axis having a cross section perpendicular to the tube axis, the first end located on the center side in the radial direction is arranged on an annular virtual line surrounding the rotation center axis.
The first end of the first flat tube
It is arranged on the side farther from the center in the radial direction than the virtual straight line connecting the first end portion of the second flat tube and the first end portion of the third flat tube.
At least one of the plurality of flat tubes is
A heat exchanger provided with a plate-shaped second fin extending toward the outer air passage side from a second end located on the outer side in the radial direction of the two ends of the long axis having a cross section perpendicular to the pipe axis . unit.
前記第2フィンは、
前記管軸に垂直な断面の前記長軸に対し傾斜している、請求項9又は10に記載の熱交換器ユニット。
The second fin is
The heat exchanger unit according to claim 9 or 10 , which is inclined with respect to the long axis having a cross section perpendicular to the tube axis.
前記外側風路は、
前記径方向において前記中心から遠い側から前記熱交換器を囲む風路外壁と前記熱交換器の外周との間に形成され、
前記風路外壁は、
前記外側風路と前記外側風路の外部とを連通する開口部を備え、
前記第2フィンは、
前記外側風路内を通り前記第2端部から前記開口部に至る経路が最短になる経路を最短経路と定義したときに、前記第2端部を基準として前記最短経路側に傾斜している、請求項11に記載の熱交換器ユニット。
The outer air passage is
Formed between the outer wall of the air passage surrounding the heat exchanger and the outer circumference of the heat exchanger from the side far from the center in the radial direction.
The outer wall of the air passage is
An opening that communicates the outer air passage with the outside of the outer air passage is provided.
The second fin is
When the shortest path that passes through the outer air passage and reaches the opening from the second end is defined as the shortest path, the path is inclined toward the shortest path with the second end as a reference. The heat exchanger unit according to claim 11 .
前記送風機は
遠心式送風機であり、
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は、
前記回転中心軸と前記第1端部とを結んだ直線に対し、前記管軸に垂直な断面の前記長軸が、前記第1端部を基準として前記送風機の回転方向に傾斜している、請求項1~12の何れか1項に記載の熱交換器ユニット。
The blower is a centrifugal blower.
The first flat tube, the second flat tube, and the third flat tube are
With respect to the straight line connecting the rotation center axis and the first end portion, the long axis having a cross section perpendicular to the pipe axis is inclined in the rotation direction of the blower with respect to the first end portion. The heat exchanger unit according to any one of claims 1 to 12 .
筐体内に外気を導入する送風機と、
前記送風機の回転中心軸の側方を囲む熱交換器と、を備え、
前記熱交換器は、
管軸を上下方向に向けて前記送風機の前記回転中心軸の周囲に並列に配置された複数の扁平管と、
前記複数の扁平管を接続するヘッダと、を備え、
前記複数の扁平管は、
第1の扁平管、第2の扁平管、及び第3の扁平管を有し、
前記第2の扁平管及び前記第3の扁平管は、
前記第1の扁平管と隣合って配置され、
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は、
前記送風機の前記回転中心軸を中心とした径方向を規定したときに、
前記管軸に垂直な断面の長軸の2つの端部のうち前記径方向において前記中心側に位置する第1端部が前記回転中心軸を囲む環状の仮想線上に配置され、
前記第1の扁平管の前記第1端部は、
前記第2の扁平管の前記第1端部と前記第3の扁平管の前記第1端部とを結ぶ仮想直線よりも前記径方向において前記中心から遠い側に配置され、
前記送風機は
遠心式送風機であり、
前記第1の扁平管、前記第2の扁平管、及び前記第3の扁平管は、
前記回転中心軸と前記第1端部とを結んだ直線に対し、前記管軸に垂直な断面の前記長軸が、前記第1端部を基準として前記送風機の回転方向に傾斜している、熱交換器ユニット。
A blower that introduces outside air into the housing,
A heat exchanger that surrounds the side of the rotation center axis of the blower is provided.
The heat exchanger is
A plurality of flat tubes arranged in parallel around the rotation center axis of the blower with the tube axis facing up and down,
With a header connecting the plurality of flat tubes,
The plurality of flat tubes
It has a first flat tube, a second flat tube, and a third flat tube.
The second flat tube and the third flat tube are
Placed next to the first flat tube,
The first flat tube, the second flat tube, and the third flat tube are
When the radial direction around the rotation center axis of the blower is specified,
Of the two ends of the long axis having a cross section perpendicular to the tube axis, the first end located on the center side in the radial direction is arranged on an annular virtual line surrounding the rotation center axis.
The first end of the first flat tube
It is arranged on the side farther from the center in the radial direction than the virtual straight line connecting the first end portion of the second flat tube and the first end portion of the third flat tube.
The blower
It is a centrifugal blower,
The first flat tube, the second flat tube, and the third flat tube are
With respect to the straight line connecting the rotation center axis and the first end portion, the long axis having a cross section perpendicular to the pipe axis is inclined in the rotation direction of the blower with respect to the first end portion. Heat exchanger unit.
請求項1~14の何れか1項に記載の熱交換器ユニットを搭載した、冷凍サイクル装置。 A refrigeration cycle apparatus equipped with the heat exchanger unit according to any one of claims 1 to 14 .
JP2020537961A 2018-08-23 2018-08-23 Heat exchanger unit and refrigeration cycle device Active JP7023366B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031151 WO2020039547A1 (en) 2018-08-23 2018-08-23 Heat exchanger unit, and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2020039547A1 JPWO2020039547A1 (en) 2021-05-13
JP7023366B2 true JP7023366B2 (en) 2022-02-21

Family

ID=69592810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020537961A Active JP7023366B2 (en) 2018-08-23 2018-08-23 Heat exchanger unit and refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP3842698A4 (en)
JP (1) JP7023366B2 (en)
CN (1) CN112567178B (en)
WO (1) WO2020039547A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021116292A1 (en) * 2021-06-23 2022-12-29 Max Bögl Wind AG Device with a container for receiving water and for installation in the ground and with heat exchangers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124359A (en) 1999-10-26 2001-05-11 Hitachi Ltd Air conditioner
JP2008528943A (en) 2005-02-02 2008-07-31 キャリア コーポレイション A heat exchanger that expands the fluid in the header
JP2009145009A (en) 2007-12-17 2009-07-02 Hitachi Appliances Inc Air conditioner
JP2013139971A (en) 2012-01-06 2013-07-18 Mitsubishi Electric Corp Heat exchanger, indoor machine, and outdoor machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129424A (en) * 1982-01-27 1983-08-02 Canon Inc Optical lens
JPH0989363A (en) * 1995-09-22 1997-04-04 Sanyo Electric Co Ltd Air conditioner
JPH11153344A (en) * 1997-11-21 1999-06-08 Mitsubishi Heavy Ind Ltd Air conditioner
JP4513207B2 (en) * 2000-12-21 2010-07-28 ダイキン工業株式会社 Air heat exchanger
KR20030028590A (en) * 2001-09-18 2003-04-10 주식회사 엘지이아이 Heat-exchanger for airconditioner
JP2004060622A (en) * 2002-07-31 2004-02-26 Daikin Ind Ltd Centrifugal blower using sirocco centrifugal fan rotor and air conditioner
JP3945575B2 (en) * 2002-09-18 2007-07-18 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle air conditioner using the same
JP2005090806A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Heat exchanger
JP4684085B2 (en) 2005-02-24 2011-05-18 三菱電機株式会社 Embedded ceiling air conditioner
JP5579134B2 (en) * 2011-07-11 2014-08-27 三菱電機株式会社 Indoor unit
JP2015218907A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Heat exchanger
JP2016142431A (en) * 2015-01-30 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP6435220B2 (en) * 2015-03-20 2018-12-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner outdoor unit
EP3358287B1 (en) * 2015-09-30 2019-08-28 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device provided with same
JP6621928B2 (en) * 2016-07-25 2019-12-18 三菱電機株式会社 Heat exchanger and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124359A (en) 1999-10-26 2001-05-11 Hitachi Ltd Air conditioner
JP2008528943A (en) 2005-02-02 2008-07-31 キャリア コーポレイション A heat exchanger that expands the fluid in the header
JP2009145009A (en) 2007-12-17 2009-07-02 Hitachi Appliances Inc Air conditioner
JP2013139971A (en) 2012-01-06 2013-07-18 Mitsubishi Electric Corp Heat exchanger, indoor machine, and outdoor machine

Also Published As

Publication number Publication date
EP3842698A4 (en) 2021-11-03
JPWO2020039547A1 (en) 2021-05-13
CN112567178B (en) 2022-04-08
EP3842698A1 (en) 2021-06-30
WO2020039547A1 (en) 2020-02-27
CN112567178A (en) 2021-03-26

Similar Documents

Publication Publication Date Title
JP6278904B2 (en) Refrigerant distributor and heat pump device using the refrigerant distributor
JP6017047B2 (en) Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
EP2784428B1 (en) Heat exchanger
JP4715971B2 (en) Heat exchanger and indoor unit equipped with the same
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JP6576577B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP7170841B2 (en) Heat exchanger and refrigeration cycle equipment
JP7023366B2 (en) Heat exchanger unit and refrigeration cycle device
EP3845851B1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2017135442A1 (en) Heat exchanger
WO2016121119A1 (en) Heat exchanger and refrigeration cycle device
JP5935167B2 (en) Air conditioner
JP2018162953A (en) Heat exchanger
EP3885690B1 (en) Heat exchanger and refrigeration cycle device
WO2019207802A1 (en) Heat exchanger and air conditioner
JP2023051072A (en) Heat exchanger and air conditioner
WO2020065697A1 (en) Heat exchanger, air conditioner comprising same heat exchanger, and refrigerator comprising same heat exchanger
JP2024061466A (en) Heat exchanger and air conditioner
KR20180080879A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220208

R150 Certificate of patent or registration of utility model

Ref document number: 7023366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150